
Chapter 8

Grassmanians and

Applications

8.1 The functor of points for projective space.

Recall Pn
Z = ProjZ[x0, . . . , xn], and for a field Pn

Z(k) is just the set of one
dimensional subspaces of kn+1. For a more general ring, the story is more
complicated.

Theorem 8.1.1. Given a finitely presented module M over a commutative ring
R, the following are equivalent

(a) Mp is free (of rank d) for every p 2 SpecR.

(b) There exists an open cover {D(fi)} of SpecR such that M [1/fi] is free (of
rank d)

(c) M is a projective, i.e. a direct summand of a free module of finite rank.

Proof. The equivalence of (a) and (b) is straightforward. For (a) , (c), see
Matsumura Comm. Alg. p 21.

If these conditions hold, M is called locally free (of rank d) Free modules
are locally free, but the converse need not hold (see exercises).

Lemma 8.1.2. Pn
Z(R) is the set of submodules of Rn, which are locally free of

rank 1.

Sketch. We recall that Pn is covered by a�ne schemes Ui = D+(xi) ⇠= An
Z. To

give an element of Pn
Z(R) amounts to giving a covering D(ri) of SpecR and a

compatible family of morphisms fi : D(ri) ! Ui. fi can be viewed as a vector
in R[1/ri]n+1, and compatibility means that fi and fj both generate the same
submodule of R[1/rirj ]n+1. Then M = hr1f,r2f2 . . .i ⇢ Rn+1 is locally free of
rank 1.
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Conversely, given a rank one locally free M ⇢ Rn+1, we can find a finite set
of ri 2 R such that M [1/ri] is free and generated by a vector whose ith entry is
invertible. Then we use these vectors to construct a compatible family of maps
from D(ri) ! Ui.

We can generalize this.

Theorem 8.1.3. There exists a scheme GZ = GZ(d, n) over SpecZ, such that
GZ(R) is the set of submodules of Rn, which are locally free of rank d.

8.2 Grassmanians

Rather than proving theorem 8.2.4 in the generality that it’s stated, we do it in
classical setting of quasiprojective varieties over an algebraically closed field k.
Given the vector space V = kn, we define the Grassmanian

Gk(d, n) = {W ⇢ V | dimW = d}
When d = 1, this is just Pn�1

k . In general, Gk(d, n) can be identified with the
set of d� 1 dimensional linear subspaces of Pn�1, so many people prefer to call
this G(d� 1, n� 1) or something similar.

Right now G = Gk(d, n) is just a set. We can give it more structure by
describing it in more explicit terms. To give W 2 G, it is enough to give an
ordered basis v1, . . . , vd. The n⇥ d matrix A = [v1 . . . vd] lies in the set R(d, n)
of n⇥d matrices of rank d. R(d, n) in open is the a�ne space of all matrices, so
it’s quasiprojective. The group GLn(k) acts on this by left multiplication, and
GLd(k) by right multiplication. The following is straightforward.

Lemma 8.2.1.

(a) The left action on R(d, n) is easily seen to be transitive.

(b) The right action is transitive on the fibres of the projection R(d, n) ! G.
Therefore G is the orbit space R(d, n)/GLd(k).

Given M 2 R(d, n), the Plücker vector pl(M) is the vector of d⇥d minors of
M (in some chosen order). This is a nonzero vector of length N =

�

n
d

�

. We can
express this in more coordinate free language by introducing exterior powers.
Recall that the tensor algebra is the noncommutative graded algebra

T ⇤V = k � V � (V ⌦ V )� . . .

The exterior algebra ^⇤V is a quotient1 of this by the two sided ideal generated
by {v ⌦ v | v 2 V }. The product in this algebra is denote by ^. It satisfies
v^ v = 0, and consequently u^ v = �v^u. This algebra has a natural grading,

1If you learned this in a di↵erential geometry class, then you might have seen this de-
fined as the subspace of antisymmetric multilinear forms on V

⇤. This works over a field of
characteristic 0, but not in general.
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where the ^dV is generated by vi1 ^ vi2 ^ . . . vid . In fact, if e1, . . . , en is the
standard basis of V , products ei1 ^ ei2 ^ . . . eid with i1 < . . . id form a basis of
^dV . From this point of view,

pl([v1, . . . , vd]) = v1 ^ . . . ^ vd

We can see this by expanding out this expression in the above basis. These
constructions a functorial. In particular, given a matrix A 2 GLn(k), it acts
naturally on ^dV ⇠= V N . So that we have a homomorphism (of algebraic groups)
⇢d : GLd(k) ! GLN (k).

Lemma 8.2.2.

(a) pl(MB) = det(B) pl(M), for B 2 GLd(k)

(b) pl(AM) = ⇢d(A) pl(M), for A 2 GLn(k)

(c) pl induces an injective map from G ! PN�1.

Proof. (a) and (b) are easy to see using the first and second definitions of pl
respectively. So we focus on (c). First of all, by (a), pl gives a well defined map
G ! PN�1, which we will denote by pl (but eventually just pl). We just have
to prove injectivity.

Suppose that pl(M) = pl(M 0), then we have to show that M 0 = MB for
some B 2 GLd(k). By (b), and transitivity of the GLn(k)-action, we may take

A = [e1e2 . . . ed] =

✓

I
0

◆

All d ⇥ d minors of A except for the topmost are zero, and the same goes for
A0. Write

A0 =

✓

B
C

◆

where B is d ⇥ d. Then B is invertible, so replacing A0 by A0B�1 allows us to
take B = I. Since all but the topmost minors vanish, we can see that C must
be 0.

Theorem 8.2.3. With previous notation, the image of G in PN�1 is closed.

Proof. We identify PN�1 with the projective space associated to ^dV as above.
The condition for an element [w] to lie in G is that w = v1 ^ . . . vd for some
linearly independent vi 2 V . One says that w is decomposable. Observe that if
such vi exist, then

w^ : V ! ^d+1V

must have rank n� d.
Conversely, suppose that the rank of the map w ^� is less than or equal to

n�d, then we could find at a least d linearly independent elements vi such that
w ^ vi = 0. We extend these elements a basis, and express

w =
X

ai1...idvi1 ^ . . . vid
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Expanding w ^ v1 = 0, we can see that it implies that w = w1 ^ v1 for some
w1 2 ^d�1V . The condition w^v2 = w1^v1^v2 = 0 can be seen to implies that
w1 = w2 ^ v2 for some w2. Continuing in this way, we see that w = v1 ^ . . . vd.
This proves that [w] 2 G if and only if rank(w^�)  n�d. This rank condition
is given by the vanishing of (n�d+1)⇥(n�d+1) minors of a matrix representing
w ^ �. This shows that G is algebraic.

With more work, one can get an explicit set of equations for G called Plücker
equations. We will give a special case later on. But first, we find the dimension.
As a first step observe that the map pl : R(d, n) ! G(d, n) is actually regular.

Theorem 8.2.4. G(d, n) is irreducible and dimG(d, n) = d(n� d).

Proof. We first observe that the image of an irreducible space under a continuous
map is irreducible. By lemma 8.2.1, there is a surjective map GLn(k) ! R(d, n),
given by the A 7! AM , for some fixed M 2 R(d, n). Therefore R(d, n) is irre-
ducible. The map pl : R(d, n) ! G is surjective, consequently G is irreducible.

Let Ũ ⇢ R(d, n) be the subset of matrices such that the top d ⇥ d block is
nonsingular. This is a GLd(k)-invariant open set, and the image pl(Ũ) is also
open. This means that dimG = dimpl(Ũ). Consider the subset of Ũ

U =

⇢✓

I
M

◆

| M 2 Ad(n�d)

�

where the identity I is d ⇥ d and M is an arbitrary d(n � d) matrix. This is
isomorphic to Ad(n�d). We can see that UB\U = ; unless B = I and that Ũ is
a union of GLd(k)-orbits. This implies that pl |U is injective and pl(U) = pl(Ũ).
Therefore theorem 4.3.5 shows that dimpl(U) = dimU = d(n� d).

8.3 Lines in P3

Let’s study the first interesting case of a Grassmanian which is not a projective
space. We can identify G = G(2, 4) with the set of lines in P3, where to each line
L, we associate the two dimension space Cone(L) ⇢ k4. The Plücker embedding
sends G ,! P(^2k4) ⇠= P5, and dimG = 4. Therefore G is a hypersurface. If
w = pl([v1, v2]) = v1 ^ v2 then w ^ w = 0. Writing

w =
X

xijei ^ ej ,

we obtain

w ^ w = (x12x34 + x13x24 + x14x23)e1 ^ e2 ^ e3 ^ e4 = 0

The coe�cients can be viewed as homogeneous coordinates of P5. Under the
Plücker embedding they correspond to minors. In summary:

Theorem 8.3.1. G(2, 4) is a degree 2 hypersurface, or quadric, in P5.
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Let us try to look at some geometrically defined subvarieties. Fix a line
`0 ⇢ P3, say x0 = x1 = 0. Consider the subset, which is an example of a
Schubert variety

S = {` 2 G | ` \ `0 6= ;}
This can viewed as the subset of two dimensional subspaces which have nonzero
intersection with the span of e3 and e4. A matrix M lies in pl�1(S) ⇢ R(2, 4)
if a nonzero linear combination of its columns is of the form (0, 0, ⇤, ⇤)T . This
means that S = VP(x12) \ G is a hypersurface in the Grassmanian. We can
generalize this as follows:

Proposition 8.3.2. For any curve C ⇢ P3, that is a subvariety of dimension
1, the set

ChC = {` 2 G | ` \ C 6= ;}
is a closed set of dimension 3.

Proof. We start by forming the flag variety F = {(p, `) 2 P3 ⇥G | p 2 `}. This
has two projections pi to the factors. Then ChC = p1(p

�1
2 (C)), and this implies

that it is closed. We can also use this to calculate the dimension. The fibre
p�1
2 (p) is the the set of lines through p. We will see in the exercises, that this is

isomorphic to P2. In particular, dim p�1
2 (C) = dimC + dim (general fibre) = 3.

Now consider the restriction of the first projection f : p�1
2 (C) ! S. For ` 2 S,

f�1(`) = C \ `. This is finite unless C = `; in particular, almost all fibres are
finite. Therefore dimS = 3.

Thus to any curve, we can associate a hypersurface ChC ⇢ G. This can be
shown to be given by vanishing of a single polynomial in the Plücker coordinates,
i.e. ChC = G\VP(f). The coe�cients of these polynomials are called the Chow
coordinates of C. They completely determine the curve.

8.4 Exercises

Exercise 8.4.1.

1. Show that an ideal I in a commutative ring R is free if and only if it is
principal.

2. Let X = V (y2 � x(x � 1)(x � 2)) ⇢ A2
C, and let R = O(X). Show that

the ideal I = (x, y) is locally free but not free. For local freeness you can
assume that the local rings are PID’s if you need to.

3. Show that the group GLn(k) acts transitively on Gk(d, n).

4. Show that any point of Gk(d, n) has an open neighbourhood isomorphic to
Ad(n�d). Conclude that it is regular. Hint: Use the proof of theorem 8.2.4
and the previous exercise.
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5. Identify G = Gk(2, 4) with the set of lines in P3
k. Show that the map

P3 ⇥P3 �� ! G sending (p, q) to the line through p and q is a morphism
of quasiprojective varieties.
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