Hodge Modules

Scott Hiatt

Purdue University

October 28, 2020

2

Let X be a complex algebraic variety of dimension n.

Definition

A filtered regular holonomic \mathcal{D} -module with \mathbb{Q} is a triple $M = (\mathcal{M}, F_{\bullet}\mathcal{M}, K)$, consisting of the following objects:

- A constructible complex of \mathbb{Q} -vector spaces K.
- **2** A regular holonomic right \mathcal{D}_X -module \mathcal{M} with an isomorphism $DR(M) \simeq \mathbb{C} \otimes_{\mathbb{O}} K$.

By the Riemann Hilbert correspondance, this makes K a perverse sheaf.

A good filtration F_•M by O_X-coherent subsheaves of M such that
 F_pM ⋅ F_kD_X ⊆ F_{p+k}M
 gr_•^FM is coherent over gr_•^FD_X

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Remark on the de Rham Complex

For a right \mathcal{D}_X -module \mathcal{M} , we have a left \mathcal{D} -module \mathcal{N} such that $\omega_X \otimes \mathcal{N} = \mathcal{M}$.

With the following isomorphism,

$$DR(\mathcal{M}) \simeq DR(\mathcal{N})[n] =$$

 $[\mathcal{N}
ightarrow \Omega^1_X \otimes \mathcal{N}
ightarrow \cdots
ightarrow \Omega^{n-1}_X \otimes \mathcal{N}
ightarrow \Omega^n_X \otimes \mathcal{N}][n]$

When we have a filtered \mathcal{D} -module \mathcal{M} , we have

$$F_{p}\mathcal{M}=F_{p+n}\mathcal{N}\otimes_{\mathcal{O}_{X}}\omega_{X}.$$

We also have the natural filtered family of subcomplexes

$$F_p DR(\mathcal{M}) \simeq F_p DR(\mathcal{N})[n] =$$

 $[\mathcal{N}_p \to \Omega^1_X \otimes \mathcal{N}_{p+1} \to \dots \to \Omega^n_X \otimes \mathcal{N}_{p+n}][n]$

물 제 제 물 제

Example

Let $\mathcal{M} = \omega_X$ with the following filtration

$$F_p \omega_X = egin{cases} \omega_X & \mbox{if } p \geq -n \ 0 & \mbox{if } p < -n \end{cases}$$

Then $(\omega_X, F_{\bullet}\omega_X, \mathbb{Q}[n])$ is a filtered regular holonomic \mathcal{D} -module with \mathbb{Q} -structure.

For $0 \le p \le n$ we have

$$F_{-p}DR(\omega_X) \simeq [0 \to \Omega_X^p \to \Omega_X^{p+1} \to \dots \to \Omega_X^n][n]$$

 $gr_{-p}^F DR(\omega_X) \simeq \Omega_X^p[n-p]$

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

For a holomorphic function $f : X \to \Delta$ which is submersive over the punctured unit disk $\Delta^* = \Delta \setminus \{0\}$, we have following commutative diagram:

$$\begin{split} \mathbb{H} &= \mathsf{Upper half-plane} \\ \tilde{X} &= \mathsf{the fiber product of } X \mathsf{ and } \mathbb{H} \mathsf{ over } \Delta \\ X_0 &= f^{-1}(0) \end{split}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Let *K* be a contsructible complex of \mathbb{C} -vector spaces on *X*. We have the following two complexes:

Complex of nearby cycles

$$\psi_f K = i^{-1} R \pi_*(\pi^{-1} K)$$

Vanishing cycles

$$\phi_f K = Cone(i^{-1}K \to \psi_f K)$$

э

Suppose $f: X \to \Delta$ is proper and smooth on $X \setminus X_0$. If $x \in X_0$, then we have

$$\mathcal{H}^{i}(\psi_{f}K)_{x} \simeq \mathbb{H}^{i}(B^{\circ}_{\epsilon,x} \cap X_{t}; K|_{X_{t}})$$

 $\mathcal{H}^{i}(\phi_{f}K)_{x} \simeq \mathbb{H}^{i+1}(B^{\circ}_{\epsilon,x}, B^{\circ}_{\epsilon,x} \cap X_{t}; K|_{X_{t}})$
 $\mathbb{H}^{i}(X_{0}; \psi_{f}K) \simeq \mathbb{H}^{i}(X_{t}; K|_{X_{t}})$

Where $X_t = f^{-1}(t)$ for 0 < |t| sufficiently small and $B_{\epsilon,x}^{\circ}$ is an open ball of radius ϵ in X, centered at x.

Reference: L. Maxim, Intersection Homology & Perverse Sheaves

Recall:

• (Gabber) When K is perverse, the shifted complexes

$${}^{p}\psi_{f}K = \psi_{f}K[-1] \text{ and } {}^{p}\phi K = \phi_{f}K[-1]$$

are perverse sheaves.

- ${}^{p}\psi_{f}K$ has a monodromy operator T, induced by the automorphism $z \to z + 1$ of the upper half-plane \mathbb{H} .
- Since perverse sheaves form an abelian category, we have the following decomposition

$${}^{p}\psi_{f}K = \bigoplus_{\lambda \in \mathbb{C}^{\times}} {}^{p}\psi_{f,\lambda}K$$

Where ${}^{p}\psi_{f,\lambda}K = ker(T - \lambda id)^{m}$, for $m \gg 0$, are the eigenspaces.

We have a similar decomposition for ${}^{p}\phi_{f}$.

イロト 不得 とくきとくきとうき

Let $f \in \mathcal{O}_X$ an arbitrary nontrivial function. For a filtered \mathcal{D}_X -module $M = (\mathcal{M}, F_{\bullet}\mathcal{M}, K)$, we use the graph embedding

 $(id, f): X \hookrightarrow X \times \mathbb{C}$

to obtain a filtered $\mathcal{D}_{X \times \mathbb{C}}$ -module $(\mathcal{M}_f, F_{\bullet} \mathcal{M}_f)$.

Where

$$\mathcal{M}_{f} = (id, f)_{+}\mathcal{M} = \mathcal{M}[\partial_{t}]$$
$$F_{\bullet}\mathcal{M}_{f} = F_{\bullet}(id, f)_{+}\mathcal{M} = \bigoplus_{i=0}^{\infty} F_{\bullet-i}\mathcal{M} \otimes \partial_{t}^{i}.$$

э

A <u>V- filtration</u> on \mathcal{M}_f is a rational filtration $(V_{\gamma} = V_{\gamma}\mathcal{M}_f)_{\gamma \in \mathbb{Q}}$ that is exhaustive and increasing such that the following conditions are satisfied:

- Each V_{γ} is a coherent module over $\mathcal{D}_X[t, \partial_t t]$
- For each $\gamma \in \mathbb{Q}$ and $i \in \mathbb{Z}$, we have an inclusion

$$V_{\gamma} \cdot V_i \mathcal{D}_{X \times \mathbb{C}} \subseteq V_{\gamma+i}.$$

Furthermore, $V_{\gamma} \cdot t = V_{\gamma-1}$ for $\gamma < 0$.

• For every $\gamma \in \mathbb{Q}$, if we set $V_{<\gamma} = \bigcup_{\gamma' < \gamma} V_{\gamma'}$, then $t\partial_t - \gamma$ acts nilpotently on $gr_{\gamma}^V = V_{\gamma}/V_{<\gamma}$.

Recall:

- (Kashiwara, Malgrange) When \mathcal{M} is regular holonomic and ${}^{p}\psi_{f}K$ is quasi-unipotent, the V-filtration for \mathcal{M}_{f} exists and it is unique.
- (Kashiwara, Malgrange) The graded quotients $gr_k^V \mathcal{M}_f$ are again regular holonomic \mathcal{D} -modules on X whose support is contained in the original divisor $X_0 = f^{-1}(0)$.
- We endow each \mathcal{D}_X -module $gr_{\gamma}^V \mathcal{M}_f$ with the filtration induced by $F_{\bullet} \mathcal{M}_f$

$$F_{p}gr_{\gamma}^{V}\mathcal{M}_{f} = \frac{F_{p}\mathcal{M}_{f} \cap V_{\gamma}\mathcal{M}_{f}}{F_{p}\mathcal{M}_{f} \cap V_{<\gamma}\mathcal{M}_{f}}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

The unipotent nearby cycles D_X -module of \mathcal{M}_f along t is defined as

$$\psi_{t,1}\mathcal{M} := gr_{-1}^{\mathcal{V}}\mathcal{M}_f.$$

The vanishing cycles D_X -module of \mathcal{M}_f along t is

$$\phi_{t,1}\mathcal{M} := gr_0^V \mathcal{M}_f$$

From the previous discussion and the definitions above, it seems as though we have the following to be filtered regular holonomic \mathcal{D} -modules with \mathbb{Q} -structure:

$$\psi_{f,1}M = (gr_{-1}^{V}\mathcal{M}_{f}, F_{\bullet-1}gr_{-1}^{V}\mathcal{M}_{f}, {}^{p}\psi_{f,1}K)$$
$$\phi_{f,1}M = (gr_{0}^{V}\mathcal{M}_{f}, F_{\bullet}gr_{0}^{V}\mathcal{M}_{f}, {}^{p}\phi_{f,1}K)$$

We say that $(\mathcal{M}, F_{\bullet}\mathcal{M}, K)$ is quasi-unipotent along f = 0 if all eigenvalues of the monodromy operator on ${}^{p}\psi_{f}K$ are roots of unity, and if the V-filtration $V_{\bullet}\mathcal{M}_{f}$ satisfies the following two additional conditions:

We say the $(\mathcal{M}, F_{\bullet}\mathcal{M}, K)$ is regular along f = 0 if $F_{\bullet}gr_{\gamma}^{V}\mathcal{M}_{f}$ is a good filtration for every $-1 \leq \gamma \leq 0$.

< ロ > < 同 > < 回 > < 回 > .

If ${\mathcal M}$ is holonomic, and is regular and quasi-unipotent along f , then we have

$$DR(gr_{\gamma}^{V}\mathcal{M}_{f})\simeq egin{cases} \psi_{\lambda}DR(\mathcal{M})[-1] & \textit{for}-1\leq\gamma<0\ \phi_{\lambda}DR(\mathcal{M})[-1] & \textit{for}-1<\gamma\leq0 \end{cases}$$

where $\lambda = e^{2\pi i \gamma}$. Furthermore, we have the following identification between perverse sheaves and D-modules

イロト イポト イヨト イヨト

э

If $M = (\mathcal{M}, F_{\bullet}\mathcal{M}, K)$ is a filtered regular holonomic \mathcal{D} -module with \mathbb{Q} -structure which is quasi-unipotent and regular along f, then

$$\psi_{f}M = \bigoplus_{-1 \le \gamma < 0} (gr_{\gamma}^{V}\mathcal{M}_{f}, F_{\bullet-1}gr_{\gamma}^{V}\mathcal{M}_{f}, {}^{p}\psi_{f,e^{2\pi i\gamma}}K)$$
$$\psi_{f,1}M = (gr_{-1}^{V}\mathcal{M}_{f}, F_{\bullet-1}gr_{-1}^{V}\mathcal{M}_{f}, {}^{p}\psi_{f,1}K)$$
$$\phi_{f,1}M = (gr_{0}^{V}\mathcal{M}_{f}, F_{\bullet}gr_{0}^{V}\mathcal{M}_{f}, {}^{p}\phi_{f,1}K)$$

are filtered regular holonomic \mathcal{D} -modules with \mathbb{Q} -structure on X whose support is contained in $X_0 = f^{-1}(0)$.

Remark:

Let $j: X \times \mathbb{C} \setminus X \times \{0\} \hookrightarrow X \times \mathbb{C}$ be the natural inclusion map.

• Suppose *M* has strict support *Z* and *M* is quasi-unipotent and regular along *f*. If the restriction of *f* to *Z* is not constant, then

$$F_{p}\mathcal{M}_{f} = \sum_{t=0}^{\infty} (V_{<0}\mathcal{M}_{f} \cap j_{*}j^{*}F_{p-i}\mathcal{M}_{f})\partial_{t}^{i}$$

provided that $\partial_t : F_p gr_{-1}^V \mathcal{M}_f \to F_{p+1} gr_0^V \mathcal{M}_f$ is surjective.

• The equality implies *M* is uniquely determined by its restriction to $Z \setminus (Z \cap X_0)$.

・ロト ・回ト ・ヨト ・ ヨト

Given a filtered regular holonomic \mathcal{D} -module with \mathbb{Q} -structure $M = (\mathcal{M}, F_{\bullet}\mathcal{M}, K)$. When is M a Hodge Module?

- First, for any Zariski-open subset U ⊂ X and f ∈ Γ(U, O_U), the restriction of M to U is quasi-unipotent and regular along f = 0.
- Second, Saito requires *M* to admit a decomposition by strict support, in the category of regular holonomic *D*-modules with *Q*-structure.

< ロ > < 同 > < 回 > < 回 > .

Theorem

Let M be a filtered regular holonomic \mathcal{D} module with \mathbb{Q} structure, and suppose that $(\mathcal{M}, F_{\bullet}\mathcal{M})$ is quasi-unipotent and regular along f = 0 for every locally defined holomorphic function f. Then M admits a decomposition

$$M\simeq \bigoplus_{Z\subseteq X} M_Z$$

by strict support, in which each M_Z is again filtered regular holonomic \mathcal{D} -module with \mathbb{Q} -structure, if and only if one has

$$\phi_{f,1}M = \ker(\operatorname{Var}: \phi_{f,1}M \to \psi_{f,1}M(-1)) \oplus \operatorname{im}(\operatorname{can}: \psi_{f,1}M \to \phi_{f,1}M)$$

for every locally defined holomorphic function f.

The problem of defining Hodge modules is reduced to defining Hodge modules with strict support on irreducible closed subvarieties Z.

< ロ > < 同 > < 回 > < 回 > .

Let Z be an irreducible closed subvariety of X. Saito uses a recursive procedure to define the following category.

 $HM_Z(X, w) =$

 $\left\{ \text{Hodge Modules on } X \text{ with strict support on } Z \text{ with weight } w \right\}$

 If Z is a point x ∈ X, then we have an equivalence of categories between Hodge Structures and Hodge Modules with strict support on x.

$$(i_x)_*$$
: $HS(w) \simeq HM_x(X, w)$

If d_Z > 0, then M belongs in HM_Z(X, w) if the following conditions hold:

Let $f \in \Gamma(U, \mathcal{O}_U)$ and suppose $Z \cap U \nsubseteq f^{-1}(0)$, then we have $gr^W_{i-w+1}\psi_f M_U$, $gr^W_{i-w}\phi_{f,1}M_U \in HM_{\leq d_Z}(U, i)$

Where W is the monodromy filtration of the nilpotent operator N on the nearby cycles of $\psi_f M$.

 $HM_{\leq d_Z}(U,i)$ is the direct sum of $HM_{Z'}(U,i)$ with Z' running over closed irreducible subvarieties of U with $d_{Z'} < d_Z$.

<ロ> <回> <ヨ> <ヨ> 三日

The category of Hodge modules of weight w on X has objects

$$HM(X,w) = \bigcup_{d \ge 0} HM_{\le d}(X,w) = \bigoplus_{Z \subseteq X} HM_Z(X,w);$$

its morphisms are the morphisms of regular holonomic $\mathcal{D}\text{-}\mathsf{modules}$ with $\mathbb{Q}\text{-}\mathsf{structure}.$

э

A polarization on a Hodge module $M \in HM(X, w)$ is a perfect pairing

$$S: K \otimes_{\mathbb{Q}} K \to \mathbb{Q}_X(n-w)[2n]$$

with the following properties:

- It's compatible with the filtration. That is, it extends to an isomorphism M(w) ≃ DM in the category of Hodge modules.
- Provide a set of the set of t

 ${}^{p}\psi_{f}S\circ(id\otimes N^{i})$

is a polarization of ${}^{P}gr^{W}_{i-w+1}\psi_{f}M_{U} := ker(N^{i+1})$ (primitive part).

• If dim $M_Z = 0$, then S is induced by a polarization of Hodge structures in the usual sense.

We say a Hodge module is polarizable if it admits at least one polarization, and we denote by

```
HM^{p}(X, w) \subseteq HM(X, w) and HM^{p}_{Z}(X, w) \subseteq HM_{Z}(X, w)
```

the full subcategories of polarizable Hodge modules.

Theorem (Properties)

- There are no nonzero morphism from an object in HM^p(X, w₁) to an object HM^p(X, w₂) if w₂ > w₁
- The category HM^p(X, w) is abelian and any morphism is strict.
- The category HM^p(X, w) is semi-simple.

For any closed irreducible subvariety $Z \subseteq X$, the restriction to sufficiently small open subvarieties of Z induces an equivalence of categories

 $HM_Z^p(X, w) \simeq VHS_{gen}^p(Z, w - dimZ)$

where the right-hand side is the category of polarizable variations of pure Hodge structures of weight w-dimZ defined on a smooth dense open subvarieties U of Z. Moreover, we have a one-to-one correspondence between polarizations of $M \in HM_Z(X, w)$ and those of the corresponding generic variation of Hodge structure.

For any closed irreducible subvariety $Z \subseteq X$, the restriction to sufficiently small open subvarieties of Z induces an equivalence of categories

 $HM_Z^p(X, w) \simeq VHS_{gen}^p(Z, w - dimZ)$

where the right-hand side is the category of polarizable variations of pure Hodge structures of weight w-dimZ defined on a smooth dense open subvarieties U of Z. Moreover, we have a one-to-one correspondence between polarizations of $M \in HM_Z(X, w)$ and those of the corresponding generic variation of Hodge structure.

• $(\omega_X, F_{\bullet}\omega_X, \mathbb{Q}[n])$ is a polarizable Hodge module of weight *n*.

・ロト ・ 一下・ ・ ヨト・

Let $f : X \to Y$ be a projective morphism of smooth complex algebraic varieties, and $M = (\mathcal{M}, F_{\bullet}, K) \in HM_Z^p(X, w)$. Let ℓ be the first Chern class of an f-ample line bundle. Then the direct image $f_*(M, F_{\bullet})$ as a filtered \mathcal{D} -module is strict, and we have

 $\mathcal{H}^{i}f_{*}M := (\mathcal{H}^{i}f_{*}^{\mathcal{D}}(\mathcal{M}, F), {}^{p}\mathcal{H}^{i}f_{*}K) \in HM^{p}(Y, w + i)$

together with isomorphisms

 $\ell^i: \mathcal{H}^{-i}f_*M \simeq \mathcal{H}^if_*M(i)$

Moreover, a polarization of M induces a polarization on $\mathcal{H}^i f_*M$ in the Hodge-Lefschetz sense.

- L. Maxim, Intersection Homology & Perverse Sheaves
- M. Popa, Kodiara-Saito vanishing and applicaitons.
- M. Saito, A Yound Person's Guide to Mixed Hodge Modules.
- M. Saito, Modules de Hodge polarisables.

C. Schnell, An Overview of Morihiko Saito's theory of mixed Hodge modules.

(E)