1. What is the aim of the theory?
Suppose
$$X \rightarrow \text{complex}$$
 analytic variety
 X
 $\int f$ a proper morphism which is smooth over $D^* = D \setminus \{0\}$
 $D \leftarrow \text{unct} \text{ disc}$

Qn. Then find the velation between $H^*(X_t) \notin H^*(X_0)$ for $t \neq 0$.

We know the answer to this in some cases. For ex. if f was smooth & proper over D then $R^{i}f_{*}\mathbb{Z}$ are local systems on D (smooth & proper base change), thus $H^{i}(X_{t}) \xrightarrow{\sim} H^{i}(X_{o})$.

More specifically we want to understand a) Relation between the stalks $(\hat{R}^{i}f_{*}Z')_{t\neq 0} \notin (\hat{R}^{i}f_{*}Z')_{0}$ b) the monodromy action on $(\hat{R}^{i}f_{*}Z')_{t}$.

2. Sheaves on a Disk:

Let X be a complex analytic variety. Let ZEX be a base point Then we have an equivalence of the following categories.

 $\begin{cases} finite dimensional complex \\ Representations of <math>T_1(X, x) \end{cases} \longleftrightarrow \begin{cases} complex. \\ Local systems d on X \\ \end{cases} \end{cases}$

Moseover under this equivalence $H^{\circ}(X, F) = J_{x}^{\Pi_{1}(X, x)}$

Sheaves on a disc:

Poop: The following categories are equivalent

 $\frac{Pf}{F} \qquad \text{Given a sheaf } J \text{ on } A \text{ whose vestoriction to } A^{\text{t}} \text{ is a local system} \\ \text{we set } J_{0} \Rightarrow \text{stalk of } J_{a} + 0 \\ J_{t} \Rightarrow \text{stalk of } J \text{ at } t \neq 0 \\ \end{array}$

<u>The map</u> d: given any $u \notin F_0$, choose an open mbd. $U \ni 0$ s.t $u \notin H^0(U, F)$ we define d(u) = Im(u) in $H^0(U', F) = F^{T_1(A^*)}$ Easy to see that this ind. of the choice of U.

Conversely given (F_0, F_t, α) , first get a local system on A^* using F_t . Then glue this with the stalk at 0 to get a sheaf on A.

$$\frac{2 \cdot 1}{2} \quad \text{Now we realize the triple (Fo, Ft, d) geometrically.}$$

Let \mathcal{D} be an universal covering space of \mathcal{D}^{\dagger} .

Define
$$\tilde{D} := \tilde{D}^* \amalg 203 \notin give a bloology such thata) $\tilde{D}^* \underset{open}{\leftarrow} \tilde{D}$
basis of
b) basis of $O \in \tilde{D}$ are of the form $\tilde{p}(U)$, U an open
nbd. of $O \in D$.$$

Then we may extend $\dot{p}: \tilde{D}^* \rightarrow \tilde{D}^*$ to a continuous map $\dot{p}: \tilde{D} \rightarrow D$. Thus have a comm. diagram

Let
$$F$$
 be a sheaf on D . Then we have a natural map.
 $p^* F \rightarrow \overline{J_* J^* p^* F} = \overline{J_* p^* (F|_{D^*})}$
 $\Rightarrow pulling this back along \overline{i} gives a map of sheaves on
 203
 $\overline{i} p^* F \rightarrow \overline{i} \overline{J_*} (\overline{F|_{D^*}}) = \overline{F_t}$
 $\downarrow j$ naturally $\overline{T_1}(D^*)$ equivariant.
The upshot is $\overline{J_0}, \overline{J_t}$ naturally live on $203 \notin$ there is an
equivariant map $\alpha: \overline{J_0} \rightarrow \overline{J_t}$.$

3. Nearby cycles and Vanishing Cycles:

Given any space Y we define two abolian categories.

a)
$$Sh(Y \times D) \rightarrow triple (F_0, F_{\eta}, \alpha)$$

Sheaves on Y with an action of $TI(D^*)$
 $\alpha: F_0 \rightarrow F_{\eta}$ an equivariant map.

Rmk: The notation YXD & YXD have their origins in a suitable product topos.

We also have the following functors.

$$Sh(Y \times D) \xrightarrow{4}{Sp^{*}} Sh(Y \times D)$$

 $d^{*}(F_{0}, F_{\eta}, \alpha) \longrightarrow F_{\eta}$
 $sp^{*}(F_{0}, F_{\eta}, \alpha) \longrightarrow F_{0}$

We can upgrade this entire picture at the level of derived Categories. Thus use have $D^{+}(Y \times D, \Lambda) \notin the derived <math>D^{+}(Y \times D^{+}, \Lambda)$

versions of Spt & Jt.

Hence beginning with any
$$F \in D(Y \times D, \Lambda)$$
 we get objects.
 $sp^{*}F \notin f^{*}F \in D(Y \times D^{*}, \Lambda) \notin amorphism.$
 $sp^{*}F \xrightarrow{} J^{*}F$.
 $\overline{\Phi}(F) \notin Var.:$

The vanishing cycle complex of F is the come

$$sp^{*}F \rightarrow J^{*}F \rightarrow \Phi(F) \xrightarrow{+1}$$
 in $D(Y \times D^{*}, \Lambda)$.

 \underline{Rmk} : a) $\underline{\Psi}(F)$ as constructed above is not unique. For a more precise construction see SGA7, I, Exp X II Section 1.4.

b) Note that $\overline{\Phi}(\overline{F})$ by construction has an action of $\overline{U}_1(\overline{D}^*)$ of there is a long exact sequence in cohomology

$$\rightarrow$$
 IHⁱ(Y, SP^{*}F) \rightarrow IHⁱ(Y, J^{*}F) \rightarrow IHⁱ(Y, $\Phi(F)$) \rightarrow .
equivariant for the action of $\pi(CD^*)$.

Now Let $T \in \Pi_1(\mathbb{CD}^*)$ be the objected generator. We define $Var(\mathbb{CT})$ to be the induced map $\Phi(\mathbb{T}) \longrightarrow J^* \mathcal{F}$ coming from.

$$sp^{*}J \rightarrow d^{*}J \longrightarrow \overline{\Phi}(CJ) \longrightarrow sp^{*}J[J]$$

$$\int \overline{\Gamma} - 1 = 0 \quad \int \overline{\Gamma} - 1 \quad \int \overline{\Gamma} - 1 \quad \int 0$$

$$sp^{*}J \rightarrow d^{*}J \stackrel{L'}{\longrightarrow} \overline{\Phi}(CJ) \rightarrow sp^{*}J[U]$$

$$\longrightarrow Var(T).$$

Having discussed an abstract set-up let us give concrete examples of Sh(YXD)

Suppose
$$X$$
 a morphism. we want to define the nearby
 $\int f$
 D
cycles ξ vanishing cycles functor
 $R\Psi: D^{\dagger}(X, \Lambda) \rightarrow D^{\dagger}(X_{0} \times D, \Lambda)$
 $R\Phi: D^{\dagger}(X, \Lambda) \rightarrow D^{\dagger}(X_{0} \times D^{\dagger}, \Lambda)$.

We have a diagram _____

Define
$$R\Psi(J) = (i^*J, i^*J_{q}^*I_{q}^*J_{$$

one needs to understand $R_{\eta}^{\mu}\Lambda$. For any point $z \in X_{o}$. The $\frac{11}{i^{\mu}J_{\mu}\Lambda}$. Stalks of the q^{μ} q^{μ} Cohomology $(\overline{i}, R_{J_{\mu}}\Lambda)_{z_{o}}$ are canonically the q^{μ} cohomology of a Milnor Ball.

In fact if f is smooth at z_0 then $(\hat{R}\psi_{\bar{\eta}} \Lambda)_{z_0} = 0$ for $i \neq 0$ & i = 0 it is Λ .

4. Relationship with de Rham Cohomology:

Now we summarize the results in SGA 7, II, Exp. XIV, Section 4.

As be fore we have a diagram.

$$\begin{array}{c} X_{0} \xrightarrow{i} \overline{X} \xrightarrow{i$$

Suppose Xt is smooth. Then.

$$\frac{P_{oop}}{P_{mop}} = R \psi_{\eta}(\mathbb{C}) \simeq \overline{i}^{*} \overline{j}_{*} \mathcal{Q}_{X}^{*} \text{ in } \mathcal{D}^{b}(X_{o}, \mathbb{C}).$$

<u>Pf</u> On X^* by the hold. Poincase Lemma we have an iso. $\overline{C} \xrightarrow{\sim} \mathscr{D}_{X^*}^*$. This give a mosphism. $\overline{J}_{4}^* \mathscr{D}_{X^*}^* \longrightarrow R \overline{J}_{4}^* \overline{C} \cdot \widetilde{C}^*$. This would have been an iso. if we had R on the right.
Nous. we claim. J_X, D^{*}_X* → R J_X C. This is trivially true on X^{*}.
To check this on X₀. We need to show that (R⁹J_X, D^{*}_X*)_x=0 ∀ z ∈ X₀.
Or equivalently that any z ∈ X₀ has a basis of stein neighbour hoods. This follows from the fact that X^{*} → X is defined by the complement of one equation.

Thus for any local system Von Xt.

$$\overline{\mathfrak{c}^*}\overline{\mathfrak{d}_*}\,\mathfrak{D}^*_{\overline{X}^*}\,\mathbb{C}\,\mathfrak{p}'^*\,\mathbb{V}\,\xrightarrow{\sim}\,\mathbb{R}\,\mathfrak{P}_{\mathfrak{N}}\,\mathbb{V}\,.$$

In fact move is true. There exists a subcomplex of $\overline{c}^* \overline{J_{+}} \Sigma_{\overline{X}}^* C p'^* v$) for which this iso. holds.

<u>4.1</u> guasi-unipotent sections with finite determination:

Let
$$\overline{J}$$
 be asheaf on X^* . Let \overline{J} be its image in \overline{X}^* . An element $f \in H^o(\overline{X}^*, \overline{F})$ is said to be of finite determination if
the span of $\langle T^n f, n \in IN \rangle$ is a finite dimensional space

there exists a polynomial P(T) such that P(T)f = 0. Moreover fis said to be quasi-unipotent if $P(T) = (T^m - 1)^N$.

1. 11 10000

For any sheaf Fon X obtained as a restriction of sheaf on X we can also talk of sections with moderate growth along Xo. Thus in particular we have. $\mathcal{N}_{\mathcal{N}}^{\mathsf{mgu}}(\mathcal{I}_{\mathcal{X}}^{\mathsf{r}}) \subset Sections of \tilde{\mathcal{I}}_{\mathcal{F}}^{\mathsf{r}} \mathcal{I}_{\mathcal{X}}^{\mathsf{r}}$ which are images of sections of $\tilde{\mathcal{I}}_{\mathcal{F}} \stackrel{\mathsf{r}}{\to} \mathcal{I}_{\mathcal{X}}^{\mathsf{r}}$ with moderate growth f quasi-unipotent finite determinants, Then.