$$
V \text { - filtrotion }
$$

D-modies on a Disk
Let \triangle be a disk centered at 0

$$
\begin{aligned}
& \underline{n}^{*}=1-(0) \\
& \partial: \Delta+a \Delta, \therefore i d A \text { ind(u).ons) }
\end{aligned}
$$

z the coordinat

$$
w=c a b \text { ilentifiel with } \text { in }^{\prime} \in>0
$$

$$
z=e-p(2, t)
$$

Ous goal is to dasonk regel holonomic (aralytic) D-milh M an .

Sine m is senialf a intrell comaction, them is mo loss in assinig $M{I_{A}}=V \quad i s$ an intorber counethu. Let u. aom ghatwih
 (intorad) crunat. ∇. V is u e.e...samily trivid, or me cm illts τ with

$$
\frac{d}{d z}+A(z)
$$

We arsume σ is rage wh..L meons solet.ons to $\nabla f=0$ have molurate grall naor o (arzo ($\frac{1}{\mid z_{i}^{n}}$) for sormn)

Fuch: crite.in impliar we can cal will assum $A(z)=\underbrace{A_{-1} \frac{1}{2}}+A_{0}+\cdots$ c-lke ras.hmef σ.
At k momant V is $D_{\Delta^{+}}$-molel. W e ca evtad it to a ∂_{s}-molle by taki.g $t=$ direnf imig ji V tromern of woold not ba zuas: colat.
So mer lof

$$
i_{+}^{n} V \subset i_{+} V
$$

cons.it f sa.te wik mockrel grouth nacen 0. This is a sub D.malh whid ir cohual on $\theta_{s}(* 0)$, al hena. quas.-colut co es
2. Sompl Objiats

Th catory of v aghe Lulome malue - D is A.tiniv, so can ge a gad (partid) unlerstal b_{y}
degcribing th sigh obids. There an 3 types

1) $D_{\Delta} / Z D_{\Delta}=\int_{i}^{0} C_{0}$
2) U_{B}
3) Tcle emb ond radu bull V with a conndm $\frac{d}{\alpha_{2}}+\frac{a}{z}, a \notin \mathbb{Z}$.
Form $M=J_{T}^{m} v$
It is ant had t chat the a siad.
The fact the thene an all of the sioh objects... harle blt fullows from result, statel pravourly about simph obiat. arisioy fin ink-whid eotroch.
 the interuded e-thasin

$$
j!-v
$$

is a rege holonare D_{B} mald

$$
\begin{aligned}
& \text { wh mod subquotiont s-rports a } 0 \text {. } \\
& \text { (For turs enason, Ki=ls } \\
& \text { colcos man }
\end{aligned}
$$

3. Informaclid Extansion,

We want to dercrik intermhit eatengun. in gened. N aively, own miglt iti J. V, bat it ca Lum subquotict s-rutal at 0 .

To start fram k suginay a soldin $t \quad \nabla f=0 \quad i s u \cdot d l$ mulf.culand, ix if lima on \tilde{u}^{+} if $f_{1}, \ldots f_{\text {a }}$ is a b.i.s of solitu.
ten $\vec{f}^{\prime}(\epsilon+1)=T \vec{f}(\epsilon)$
for sa mataix callad monolromy Pror $T=$ esp (-2rinker)

In woibag the provious formala, we \therefore inplicitly chom an e-fans- of $V E$ a frivil vection bilh \bar{V} ol $\bar{\nabla}$ an opurater $\bar{\nabla}: \bar{U} \longrightarrow \Omega_{1}^{\prime}\left(\log _{\sigma}\right) \otimes \bar{V}$ Th pair $(\bar{V}, \bar{\nabla})$ is not uniquly determind. The last proposithe explaing h anbignty, ch.ch amonts t choosig log \bar{c}.

An extansin \bar{V} amount, t achoco f a surtable B_{1}-submale $f j^{i m} V$.
Nu expli..t choice f \bar{v} the t Dul.gne is the submole $V \geqslant 0<j{ }^{m} V$ genact by swohn with logathati: promk, or morw proasel which grows lik $O\left(\left(\log (2,)^{N}\right)\right.$. th \therefore car also bu chorachirial as the ertho.. f wh h loganten connection $\nabla \geqslant 0$ hat a rasile w.h rel parb f eig...valuas in $[0,1$). Mon ge...lf for eat $r=R_{1}$ me can cons.le t. exhnir $V^{\geqslant r}$ (roir $V^{>r}$) h ad r ortr lin in $[r, r+1$) (reop. $(r, r+1)$).

Here is heurobtic expfantm. The conditio to $\&$ in $U \geqslant 3$ is thet He firm $v_{0} / z v_{0}$ ot is spand by gonahizal cis ut, fr $z \partial \mathrm{mh}$ eigund. har $r-d$ pab in (s_s<1), If wor $\left(v \geq{ }^{\circ}\right)$ is thertif ag sah eigat u_{h}, of leat, foll
 1- Cr, rel).

Thus we get on \mathbb{R}-inh ind F.lfot - $i^{m} \mathrm{~V}$ c-llel the kash.wara.Malyme or V-f.ltath. We'll say mon leton

Th. $j!V \in j^{m} V$ is H H D-moll generald ζ_{y} $V>-1$
4. Perverse Shacw, a disk

To undestad k stonten f reg. holonome mble - 1 , m an larle
 Since Ω_{1}^{\prime} is trivid, me ca idhenth LR l Rhe cqe wh $\partial R(M)=M \xrightarrow{\partial} M=L$ We see thet st $\left\{\begin{array}{l}\operatorname{t}^{i}(L)=0 \quad L \quad i>0 \\ J t^{\circ}(L) \text { is a-prulad of } 0\end{array}\right.$ Usiy the dal nobles $\mathbb{D} M$, me fiel tur k sam conditios hold for the reading de.

$$
D L=R \operatorname{lan}(L, C[-21)
$$

A corbe $L \in D_{c}^{b}(\underline{1} C)$ with then propartio, is coleds." "perwan oluf".
For erorl, it $\mathcal{f} i r$. (od syst A^{\prime}, \quad un $j!f(1), j_{+} f(1)$ and $\mathbb{R}_{j} f(1)$ an ll pervers.

The struatio of th ratere of rervaren awi is uot eary to uaberotal for the efoncho. A belte deeceriminer $\therefore b_{y}$ ranith.y ayder. wa w.ill do th.s po-t II

