Chapter 5

Divisibility and Congruences

Given two integers a and b, we say a divides b or that b is a multiple of a or $a|b$ if there exists an integer q with $b = aq$. Some basic properties divisibility are given in the exercises. It is a much subtler relation than \leq. A natural number p is called prime if $p \geq 2$ and if the only natural numbers dividing are 1 and p itself.

Lemma 5.1. Every natural number $n \geq 2$ is divisible by a prime.

Proof. Let $D = \{m \mid m|n$ and $m \geq 2\}$. D is nonempty since it contains n. Let p be the smallest element of D. If p is not prime, there exists $d|p$ with $2 \leq d < p$. Then $d \in D$ by exercise 1 of this chapter, but this contradicts the minimality of p. \qed

Corollary 5.2. (Euclid) There are infinitely many primes.

Proof. Suppose that there are only finitely many primes, say $p_1, p_2, \ldots p_n$. Then consider $N = p_1p_2 \ldots p_n + 1$. Then N must be divisible by a prime which would have to be one of the primes on the list. Suppose it’s p_k. Then by exercise 2, $1 = N - p_1p_2 \ldots p_n$ would be divisible by p_k, but this is impossible. \qed

The following is half of the fundamental theorem of arithmetic. What’s missing is the uniqueness statement and this will be proved later.

Corollary 5.3. Every natural number $n \geq 2$ is a product of primes.

The statement will be proved by induction on n. Note that we have to start the induction at $n = 2$. This does not entail any new principles, since we can change variables to $m = n - 2$, and do induction on $m \geq 0$.

Proof. $n = 2$ is certainly prime. By induction, we assume that the statement holds for any $2 \leq n' < n$. By the lemma, $n = pn'$ with p prime and n' a natural
number. If \(n = p \) then we are done. Otherwise \(n' \geq 2 \), so that it can be written as a product of primes. Therefore the same goes for \(n = pn' \).

The proofs can be turned into a method, or algorithm, for factoring an integer. In fact, it’s the obvious one. Start with \(n \), try to divide by 2, 3, 4 \ldots \(n-1 \). If none of these work, then \(n \) is prime. Otherwise, record the first number, say \(p \), which divides it; it’s a prime factor. Replace \(n \) by \(n/p \) and repeat. Similarly, we get an algorithm for testing whether \(n \) is prime, by repeatedly testing divisibility by 2, 3, 4 \ldots \(n-1 \). Note that we can do slightly better (ex. 3).

Fix a positive integer \(n \). For doing computations in \(\mathbb{Z}_n \) with paper and pencil, it’s very convenient to introduce the \(\equiv \) symbol. We will say that \(a \equiv b \pmod{n} \) if \(a \equiv b \) is divisible by \(n \), or equivalently if \(a \equiv b \). One can work with \(\equiv \) symbol as one would for \(= \) thanks to:

Proposition 5.4. The following hold:

1. \(\equiv_n \) is reflexive, i.e. \(x \equiv_n x \).
2. \(\equiv_n \) is symmetric, i.e. \(x \equiv_n y \) implies \(y \equiv_n x \).
3. \(\equiv_n \) is transitive, i.e. \(x \equiv_n y \) and \(y \equiv_n z \) implies that \(x \equiv_n z \).
4. If \(a \equiv_n b \) and \(c \equiv_n d \) then \(a+c \equiv_n b+d \).

Proof. We prove the transitivity (3). The other statements are left as an exercise. Suppose that \(x \equiv_n y \) and \(y \equiv_n x \), then \(x - y = na \) and \(y - z = nb \) for some \(a, b \in \mathbb{Z} \). Then \(x - z = x - y + y - z = n(a + b) \), which proves that \(x \equiv_n z \).

A relation satisfying the first three properties above is called an *equivalence relation*.

Lemma 5.5. Given an integer \(x \) and a positive integer \(n \), there exist a unique element \((x \mod n) \in \{0, 1, \ldots, n-1\} \) such that \(x \equiv_n (x \mod n) \)

A warning about notation. Typically, in most math books, they would write \(x \equiv y \pmod{n} \) instead of \(x \equiv_n y \).

Proof. First suppose \(x \geq 0 \). In this case, there are no surprises. The division algorithm gives \(x = qn + r \) with \(r \in \{0, \ldots, n-1\} \). \(x \equiv_n r \) since \(n \) divides \(x - r \). So we can take \(x \mod n = r \).

Suppose that \(x < 0 \). If \(x \) is divisible by \(n \), then we take \(x \mod n = 0 \). Suppose is \(x \) is not divisible by \(n \), then applying the division algorithm to \(-x\) yields \(-x = qn + r \) with \(0 < r < n \). Therefore

\[
x = -qn - r = -qn - n + n - r = -(q+1)n + (n - r)
\]

with \(0 < n - r < n \). So we can take \(x \mod n = n - r \). We leave it as an exercise to check the uniqueness.

21
$x \rightarrow x \mod n$ can be visualized as follows when $n = 3$

\[
\begin{array}{ccccccc}
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & 1 & 2 & 0 & 1 & 2 & 0
\end{array}
\]

The rule for adding in \mathbb{Z}_n is now quite easy with this notation. Given $x, y \in \{0, 1, \ldots n - 1\}$

\[x \oplus y = (x + y) \mod n\]

Now we can finally prove:

Theorem 5.6. $(\mathbb{Z}_n, +, 0)$ is an Abelian group.

Proof. We assume that the variables $x, y, z \in \{0, 1, \ldots n - 1\}$. Let’s start with the easy properties first.

\[x \oplus y = (x + y) \mod n = (y + x) \mod n = y \oplus x\]
\[x \oplus 0 = (x + 0) \mod n = x\]

Set
\[\ominus x = (-x) \mod n\]

Then, either $x = 0$ in which case
\[x \oplus (\ominus x) = 0 + 0 \mod n = 0,\]
or else $x \neq 0$ in which case $\ominus x = n - x$ so that
\[x \oplus (\ominus x) = (x + n - x) \mod n = 0.\]

Finally, we have to prove the associative law. We have
\[y + z \equiv_n (y + z \mod n) = y \oplus z\]
by definition. Therefore by proposition 5.4

\[x + (y + z) \equiv_n x + (y \oplus z) \equiv_n (x + (y + z \mod n)) \mod n = x \oplus (y \oplus z)\]

On the other hand
\[x + y \equiv_n (x + y \mod n) = x \oplus y\]
so that
\[(x + y) + z \equiv_n (x \oplus y) + z \equiv_n ((x \oplus y) + z) \mod n = (x \oplus y) \oplus z\]

Since $x + (y + z) = (x + y) + z$, we can combine these congruences to obtain
\[x \oplus (y \oplus z) \equiv_n (x \oplus y) \oplus z\]

We can conclude that the two numbers are the same by the uniqueness statement of lemma 5.5.
5.7 Exercises

1. Prove that \(\mid \) is transitive, and that \(a \mid b \) implies that \(a \leq b \) provided that \(b > 0 \).

2. Prove that \(a \mid b \) and \(a \mid c \) implies \(a \mid (b' + c') \) for any pair of integers \(b', c' \).

Let \(b \geq 2 \) be an integer. A base \(b \) expansion of a natural number \(N \) is a sum
\(N = a_n b^n + a_{n-1} b^{n-1} + \ldots + a_0 \) where each \(a_i \) is an integer satisfying \(0 \leq a_i < b \).
Base 10 (decimal) expansions are what we normally use, but \(b = 2, 8, 16 \) are
useful in computer science.

3. Show that \(a_0 \) is the remainder of division of \(N \) by \(b \).

4. For any \(b \geq 2 \), prove that any natural number \(N \) has a base \(b \) expansion
by induction. (Use the division algorithm.)

5. Turn the proof around to find a method for calculating the coefficients \(a_i \).
 Find a base 8 expansion of 1234.

6. Finish the proof of proposition 5.4.