Chapter 9
Cyclic groups

A group (G, -, e) is called cyclic if it is generated by a single element g. That is
if every element of G is equal to

gg .. .g (n times) ifn>0
g =\5e€ ifn=0
g lg7t...g7 (In| times) ifn <0

Note that if the operation is +, instead of exponential notation, we use ng =
g+g+...

Example 9.1. Z is cyclic. It is generated by 1.
Example 9.2. Z, is cyclic. It is generated by 1.

Example 9.3. The subgroup of {I, R, R%} of the symmetry group of the triangle
is cyclic. It is generated by R.
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Example 9.4. Let R, = {e"» [k =0,1...n— 1} be the subgroup of (C*,-,1)
consisting of nth roots of unity. This is cyclic. It is generated by et

We recall that two groups H and G are isomorphic if there exists a one to
one correspondence f : H — G such that f(hihs) = f(h1)f(he). The function
f is called an isomorphism. A function f: H — G is called a homomorphism if
f(hiha) = f(h1)f(h2). This is more general than an isomorphism because we
do not require it to be one to one or onto. Here are some basic examples.

Example 9.5. The function f : Z — R, defined by f(x) = *™@ is a homo-
morphism because f(z +y) = f(z)f(y) from highschool algebra.

Example 9.6. The function f : Z, — R, defined by E(x) = e*™® is an
isomorphism.
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Example 9.7. The function f : Z — Z, defined by f(z) = zmodn is a
homomorphism. Reverting to @& notation, we observe that we need f(x +y) =
f(x) ® f(y), and this comes down to fact that

(x +y) modn = (x mod n) & (y mod n)

which we verified back in chapter 5. Alternatively, we can reduce this to the first
example by using the fact that Z,, and R,, are isomorphic.

Theorem 9.8. Any cyclic group is isomorphic to either Z or Z,.

Proof. Let (G,-,e) be a cyclic group with generator g. There are two cases.
The first case is that ¢g" # e for any positive n. We say that ¢ has infinite
order. Then we define f : Z — G by f(m) = ¢g™. Since f(m +n) = gm*t™" =
gmg" = f(m)f(n), it is a homomorphism. It is also onto, because G = {¢g™ =
f(m) | m € Z} by assumption. Suppose that f(n1) = f(n2) with ny > ns.
Then g™ = ¢™2 implies that ¢g"*~™2 = e, which contradicts the fact that g has
infinite order.

In the second case, g has finite order which means that g™ = e for some n > 0.
Let us assume that n is the smallest such number (this is called the order of
g). We claim that G = {e,g,...,¢g" '} and that all the elements as written are
distinct. By distinctness we mean that if my > mg lie in {0,1,...n — 1} then
g™ £ ¢g™2, If not then ¢"™*~™2 = e would contradict the fact that n is the
order of g. To finish the proof of the claim, use the division algorithm to write
any integer m as m = nq + r, where r = mmod n. Then ¢™ = (¢")1¢" = g" =
gmmedn  We define f : Z, — G by f(m) = g™. This is onto, and therefore
also a one to one correspondence because the sets have the same cardinality.
Finally, we note that it is an isomorphism because

f(m) f(mg) = gm™igm? = gmitme = glmitmamodn — (1, @ my)

Theorem 9.9. A subgroup of a cyclic group is cyclic.

Proof. We may assume that the group is either Z or Z,,. In the first case, we
proved that any subgroup is Zd for some d. This is cyclic, since it is generated
by d. In the second case, let S C Z,, be a subgroup, and let f(x) = x modn as
above. We define

fri8={xeZ] f(z) € S}

We claim that this is a subgroup. Certainly, 0 € f=1S because f(0) = 0. Also
if 7,y € f~19 then f(z +y) = f(z) + f(y) € S, and therefore z +y € f~1S.
Finally, if x € S, then f(—x) = —xmodn = ©x € S. Therefore —z € f=1S.
Thus f~1S is a subgroup as claimed. This implies that f~1S = Zd for some d.
It follows that S is generated by f(d). O
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9.10 Exercises

1. Let Z% be the set of nonzero elements in Z; regarded as a group using
(modular) multiplication. Show that it is cyclic by finding a generator.

2. Given a homomorphism f : H — G, prove that f takes the identity to the
identity.
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