
Chapter 9

Cyclic groups

A group (G, ·, e) is called cyclic if it is generated by a single element g. That is
if every element of G is equal to

gn =

8
><

>:

gg . . . g (n times) if n > 0

e if n = 0

g�1g�1 . . . g�1 (|n| times) if n < 0

Note that if the operation is +, instead of exponential notation, we use ng =
g + g + . . .

Example 9.1. Z is cyclic. It is generated by 1.

Example 9.2. Z
n

is cyclic. It is generated by 1.

Example 9.3. The subgroup of {I, R,R2} of the symmetry group of the triangle

is cyclic. It is generated by R.

Example 9.4. Let R
n

= {e 2⇡ik
n | k = 0, 1 . . . n� 1} be the subgroup of (C⇤, ·, 1)

consisting of nth roots of unity. This is cyclic. It is generated by e
2⇡i
n
.

We recall that two groups H and G are isomorphic if there exists a one to
one correspondence f : H ! G such that f(h1h2) = f(h1)f(h2). The function
f is called an isomorphism. A function f : H ! G is called a homomorphism if
f(h1h2) = f(h1)f(h2). This is more general than an isomorphism because we
do not require it to be one to one or onto. Here are some basic examples.

Example 9.5. The function f : Z ! R
n

defined by f(x) = e2⇡ix is a homo-

morphism because f(x+ y) = f(x)f(y) from highschool algebra.

Example 9.6. The function f : Z
n

! R
n

defined by E(x) = e2⇡ix is an

isomorphism.
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Example 9.7. The function f : Z ! Z
n

defined by f(x) = x mod n is a

homomorphism. Reverting to � notation, we observe that we need f(x + y) =
f(x)� f(y), and this comes down to fact that

(x+ y)mod n = (x mod n)� (y mod n)

which we verified back in chapter 5. Alternatively, we can reduce this to the first

example by using the fact that Z
n

and R
n

are isomorphic.

Theorem 9.8. Any cyclic group is isomorphic to either Z or Z
n

.

Proof. Let (G, ·, e) be a cyclic group with generator g. There are two cases.
The first case is that gn 6= e for any positive n. We say that g has infinite
order. Then we define f : Z ! G by f(m) = gm. Since f(m + n) = gm+n =
gmgn = f(m)f(n), it is a homomorphism. It is also onto, because G = {gm =
f(m) | m 2 Z} by assumption. Suppose that f(n1) = f(n2) with n1 > n2.
Then gn1 = gn2 implies that gn1�n2 = e, which contradicts the fact that g has
infinite order.

In the second case, g has finite order which means that gn = e for some n > 0.
Let us assume that n is the smallest such number (this is called the order of
g). We claim that G = {e, g, . . . , gn�1} and that all the elements as written are
distinct. By distinctness we mean that if m1 > m2 lie in {0, 1, . . . n � 1} then
gm1 6= gm2 . If not then gm1�m2 = e would contradict the fact that n is the
order of g. To finish the proof of the claim, use the division algorithm to write
any integer m as m = nq + r, where r = mmod n. Then gm = (gn)qgr = gr =
gm mod n. We define f : Z

n

! G by f(m) = gm. This is onto, and therefore
also a one to one correspondence because the sets have the same cardinality.
Finally, we note that it is an isomorphism because

f(m1)f(m2) = gm1gm2 = gm1+m2 = g(m1+m2) mod n = f(m1 �m2)

Theorem 9.9. A subgroup of a cyclic group is cyclic.

Proof. We may assume that the group is either Z or Z
n

. In the first case, we
proved that any subgroup is Zd for some d. This is cyclic, since it is generated
by d. In the second case, let S ⇢ Z

n

be a subgroup, and let f(x) = x mod n as
above. We define

f�1S = {x 2 Z | f(x) 2 S}

We claim that this is a subgroup. Certainly, 0 2 f�1S because f(0) = 0. Also
if x, y 2 f�1S then f(x + y) = f(x) + f(y) 2 S, and therefore x + y 2 f�1S.
Finally, if x 2 S, then f(�x) = �x mod n =  x 2 S. Therefore �x 2 f�1S.
Thus f�1S is a subgroup as claimed. This implies that f�1S = Zd for some d.
It follows that S is generated by f(d).
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9.10 Exercises

1. Let Z⇤
7 be the set of nonzero elements in Z7 regarded as a group using

(modular) multiplication. Show that it is cyclic by finding a generator.

2. Given a homomorphism f : H ! G, prove that f takes the identity to the
identity.
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