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These are my notes for an introductory course in algebraic geometry. I have
trodden lightly through the theory and concentrated more on examples. Some
examples are handled on the computer using Macaulay2, although I use this as
only a tool and won’t really dwell on the computational issues.

Of course, any serious student of the subject should go on to learn about
schemes and cohomology, and (at least from my point of view) some of the
analytic theory as well. Hartshorne [Ht] has become the canonical introduction
to the first topic, and Griffiths-Harris [GH] the second.
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Chapter 1

Affine Geometry

1.1 Algebraic sets

Let k be a field. We write An
k = kn, and call this n dimensional affine space

over k. Let

k[x1, . . . xn] = {
∑

ci1...inxi1
1 . . . xin

n | ci1...in ∈ k}

be the polynomial ring. Given a = (ai) ∈ An, we can substitute xi by ai ∈ k in
f to obtain an element denoted by f(a) or eva(f), depending on our mood. A
polynomial f gives a function ev(f) : An

k → k defined by a 7→ eva(f).
Given f ∈ k[x1, . . . xn], define it zero set by

V (f) = {a ∈ An
k | f(a) = 0}

At this point, we are going to need to assume something about our field. The
following is easy to prove by induction on the number of variables. We leave
this as an exercise.

Lemma 1.1.1. If k is algebraically closed and f nonconstant, then V (f) is
nonempty.

If S ⊂ k[x1, . . . xn], then let V (S) be the set of common zeros

V (S) =
⋂
f∈S

V (f)

A set of this form is called algebraic. I want to convince you that algebraic sets
abound in nature.

Example 1.1.2. The Fermat curve of degree d is V (xd
1 + xd

2 − 1) ⊂ A2. More
generally, a Fermat hypersurface is given by V (xd

1 + xd
2 + . . . xd

n − 1).

Example 1.1.3. Let us identify An2

k with the set Matn×n(k) of n×n matrices.
The set of singular matrices is algebraic since it is defined by the vanishing of
the determinant det which is a polynomial.
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Example 1.1.4. Then the set SLn(k) ⊂ An2
of matrices with determinant 1

is algebraic since it’s just V (det−1).

The set of nonsingular matrices GLn(k) is not an algebraic subset of Matn×n(k).
However, there is useful trick for identifying it with an algebraic subset of
An2+1 = An2 × A1.

Example 1.1.5. The image of GLn(k) under the map A 7→ (A, 1/ det(A))
identifies it with the algebraic set

{(A, a) ∈ An2+1 | det(A)a = 1}

Example 1.1.6. Identify Amn
k with the set of m × n matrices Matm×n(k).

Then the set of matrices of rank ≤ r is algebraic. This is because it is defined
by the vanishing of the (r + 1) × (r + 1) minors, and these are polynomials in
the entries. Notice that the set of matrices with rank equal r is not algebraic.

Example 1.1.7. The set of pairs (A, v) ∈ Matn×n(k) × kn such that v is an
eigenvector of A is algebraic, since the condition is equivalent to rank(A, v) ≤ 2.

Example 1.1.8. Let Ni ⊆ An2

k be the set of matrices which are nilpotent of
order i, i.e matrices A such that Ai = 0. These are algebraic.

Before doing the next example, let me remind you about resultants. Given
two polynomials

f = anxn + . . . a0

and
g = bmxm + . . . b0

Suppose, we wanted to test whether they had a common zero, say α. Then
multiplying f(α) = g(α) = 0 by powers of α yields

anαn+ an−1α
n−1 + . . . a0 = 0

. . .
anαn+m+ an−1α

n+m−1 + . . . = 0
bmαm + . . . b0 = 0

. . .
bmαn+m + . . . = 0

We can treat this as a matrix equation, with unknown vector (αn+m, αn+m−1, . . . , 1)T .
For the a solution to exist, we would need the determinant of the coefficient ma-
trix, called the resultant of f and g, to be zero. The converse, is also true (for
k = k̄) and can be found in most standard algebra texts. Thus:

Example 1.1.9. Identify the set of pairs (f, g) with A(n+1)+(m+1). The set of
pairs with common zeros is algebraic.
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We can use this to test whether a monic polynomial (i.e. a polynomial with
leading coefficient 1) f has repeated root, by computing the resultant of f and
its derivative f ′. This called the discriminant of f . Alternatively, if we write
f(x) =

∏
(x − ri), the discriminant disc(f) =

∏
i<j(ri − rj)2. This can be

written as a polynomial in the coefficients of f by the theorem on elementary
symmetric functions.

Example 1.1.10. The set of monic polynomials with repeated roots is a an
algebraic subset of An.

We call a map F : An → Am a morphism if it is given by

F (a) = (f1(a), . . . fm(a))

for polynomials fi ∈ k[x1, . . . xn]. Clearly the preimage under a regular map of
an algebraic set is algebraic. Let us identify An2

with the set of n× n matrices
once again. To every matrix, A we can associate its characteristic polynomial
det(tI − A). We thus get a morphism ch : An2 → An given by taking the
coefficients of this polynomial other than the leading coefficient which is just
one. Therefore

Example 1.1.11. The set of matrices in An2
with repeated eigenvalues is an

algebraic set. More explicitly it is the zero set of the discriminant of the char-
acteristic polynomial.

Exercise 1.1.12.

1. Identify A6 = (A2)3 with the set of triples of points in the plane. Which
of the following is algebraic:

a) The set of triples of distinct points.

b) The set of triples (p1, p2, p3) with p3 = p1 + p2.

c) The set of triples of colinear points.

2. Check that V (S) = V (〈S〉), where

〈S〉 = {
∑

hifi | hi ∈ k[x1, . . . xn], fi ∈ S}

is the ideal generated by S. Therefore by the Hilbert basis theorem, which
says that k[x1, . . . xn] is Noetherian, we find that any algebraic set is de-
fined by a finite number of polynomials.

1.2 Weak Nullstellensatz

Recall that the a (commutative) k-algebra is a commutative ring R with a ring
homomorphism k → R. For example, k[x1, . . . xn] is a k-algebra. A homomor-
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phism of k-algebras is a ring homomorphism R → S such that

k

�� ��?
??

??
??

?

R // S

commutes. Let’s make a simple observation at this point:

Lemma 1.2.1. The map f 7→ ev(f) is a homomorphism of k-algebras from
k[x1, . . . xn] to the algebra of k-valued functions on An.

Exercise 1.2.2. Show that this homomorphism is injective if k is infinite, but
not in general.(In view of this, we will eventually stop distinguishing between f
and ev(f) when k is infinite.)

Let’s suppose that S is explicity given to us as a finite set of polynomials.
We can now ask is there an algorithm to decide when V (S) this nonempty?
Here are some answers:

1. Algebraically closed fields: Yes by Hilbert’s Nullstellensatz (see below).

2. Finite fields: Yes, since there are only a finite number of points to check.

3. R: Yes, by Tarski.

4. Q: Unknown! (However, Matjisevich proved that there is no algorithm
for Z, or equivalently Hilbert’s 10th problem has a negative solution. So
it’s reasonable to expect that it would be no for Q as well.)

Theorem 1.2.3 (Weak Hilbert Nullstellensatz). If k is algebraically closed,
then V (S) = ∅ iff there exists f1 . . . fN ∈ S and g1 . . . gN ∈ k[x1, . . . xn] such
that

∑
figi = 1

The German word nullstellensatz could be translated as “zero set theorem”.
The Weak Nullstellensatz can be rephrased as V (S) = ∅ iff 〈S〉 = (1). Since
this result is central to much of what follows, we will assume that k is alge-
braically closed from now on unless stated otherwise. To get an algorithm
as claimed above, we need an effective form of the nullstellensatz:

Theorem 1.2.4 (Hermann). If (f1, . . . fN ) = (1), then there exists gi, with
degree bounded by a computable constant depending on max{deg fi}, such that∑

figi = 1.

Define the ring
R = k[x1, . . . xn]/〈S〉

Lemma 1.2.5. (k any field.) eva : k[x1, . . . xn] → k factors throught the canon-
ical map k[x1, . . . xn] → R iff a ∈ V (S).
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Proof. eva factors through R iff eva(〈S〉) = 0 iff f(a) = 0,∀f ∈ 〈S〉 iff a ∈
V (S).

In view of the lemma, we can view eva as a homomorphism of R → k when
a ∈ V (S).

Corollary 1.2.6. The map a 7→ eva gives a bijection

V (S) ∼= Homk−algebras(R, k)

Proof. Given h ∈ Hom(R, k), let a(h) be the vector whose ith component is
eva(x̄i), where x̄i = image(xi) in R. Then h 7→ a(h) gives the inverse.

We are now, almost already to prove WN, we need the following which is
really an algebraic form of the Nullstellensatz:

Theorem 1.2.7 (Algebraic Nullstellensatz). Let k1 ⊂ k2 be a field extension,
such that k2 is finitely generated as a k1-algebra, then k2 is a finite field extension
of k1.

Proof. See Atiyah-MacDonald [AM, prop. 7.9 ].

Proof of W. Nullstellensatz. If
∑

figi = 1 for fi ∈ S, then clearly these poly-
nomials have no common zeros.

Conversely, suppose that 〈S〉 is a proper ideal. Therefore R = k[x1, . . . xn]/〈S〉
is nonzero, so it has a maximal ideal m. R/m is a field containing k which is
finitely generated as a k-algebra. By the previous, theorem R/m is a finite, hence
algebraic, extension of k. Thus k = R/m. The homomorphism, R → R/m = k
corresponds to by above, to a point of V (S).

1.3 Zariski topology

One nice feature of working over R or C is that affine carries natural topology
defined by the Euclidean metric. It turns out that one can define a topology
over any field which is sometimes just as good. Given a subset X ⊂ An

k , let

I(X) = {f ∈ k[x1, . . . xn] | f(a),∀a ∈ X}

This is an ideal of k[x1, . . . xn]. We now have two operations

{subsets of An}
I // {subsets of k[x1, . . . xn]}
V

oo

which we need to compare.

Proposition 1.3.1. 1. X ⊆ Y ⇒ I(X) ⊇ I(Y ).

2. S ⊆ T ⇒ V (S) ⊇ V (T ).

3. V (I(X)) ⊇ X.
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4. I(V (S)) ⊇ S.

5. If I and J are ideals, V (I ∩ J) = V (I) ∪ V (J).

6. If {Ia} is a family of ideals, then

V (
∑

Ia) =
⋂

V (Ia)

Proof. We prove (5) assuming the previous parts. We have I ∩ J ⊆ I, J which
implies V (I∩J) ⊇ V (I), V (J). Therefore V (I∩J) ⊇ V (I)∪V (J). If a ∈ V (I∩J)
is not contained in the union, then f(a) 6= 0 6= g(a). Therefore fg(a) 6= 0 which
contradicts the fact that fg ∈ I ∩ J .

Corollary 1.3.2. V (I(V (S))) = V (S).

Proof. ⊇ follows by (3). (4) gives S ⊆ I(V (S)) which implies the opposite
inclusion.

Corollary 1.3.3. The complements of algebraic sets forms a topology on An

called the Zariski topology. In other words the algebraic sets are the precisely
the closed sets for this topology.

Proof. A collection of subsets is a topology if it is closed under arbitrary unions,
finite intersections, and contains ∅ and An. The collection of complements of
algebraic sets satisfies all of the above.

While it’s nice to have a topology, you have to be careful about your intuition.
It’s much coarser than the ones you may encounter in an analysis class. For
example, the nonempty open sets of A1 are the complements of finte sets. This
is often called the cofinite topology.

A function f : An → A1 is called regular if it is a morphism, i.e. if it is
defined by a polynomial.

Lemma 1.3.4. All regular functions f : An
k → A1

k are continuous with respect to
the Zariski topology on An

k and the cofinite topology on A1
k. This is the weakest

topology with this property.

Proof. Continuity means that the preimage of open sets are open, or equivalently
the preimage of closed sets are closed. The preimage of {a1, . . . aN} ⊂ A1

k is
V (

∏
(f − ai)) which is Zariski closed by definition.

Given any other topology with this property, V (f) would be closed for it.
Therefore V (S) is closed in this other topology for any S.

More generally, we see that morphisms F : An → Am are continuous when
both spaces are given their Zariski topologies.

When k = C, we have two choices of topologies, the Zariski topology and
the Euclidean metric space topology that we will call the classical or strong
topology. The strong topology on An

C is Hausdorff, noncompact, and coincides
with the product topology A1

C × A1
C . . . A1

C. All of these fail for Zariski.
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Exercise 1.3.5.

1. Finish the proof of proposition 1.3.1.

2. Let D(f) = An − V (f). Show that any open set is a union of D(f)’s, in
other words, these sets form a basis for the topology.

3. Show that An is not Hausdorff if k is infinite.

4. Prove that any nonempty open subset of An is dense.

5. Prove that An is compact.

6. Show that the Zariski topology of A2 is finer than the product topology of
A1 × A1.

1.4 The Cayley-Hamilton theorem

Given a square matrix A, recall that its characteristic polynomial is det(tI−A) ∈
k[t]. Its roots are precisely the eigenvalues of A.

Theorem 1.4.1 (Cayley-Hamilton). If pA(t) = det(tI −A), then pA(A) = 0.

We give a proof which makes use of the Zariski topology.

Lemma 1.4.2. The subset of matrices Dn in Matn×n with distinct eigenvalues
is dense in the Zariski topology.

Proof. The set of these matrices is certainly nonempty and open since comple-
ment is an algebraic set by example 1.1.11. As observed in the exercises of the
last section, nonempty open sets are dense.

We recall the following standard fact from linear algebra.

Theorem 1.4.3. Any matrix A ∈ Dn can be diagonalized, that this there exist
T ∈ Gln(k) such that T−1AT is diagonal.

Proof. Take D to be the diagonal matrix of eigenvalues λi of A and T a matrix
with eigenvectors vi as columns. Then AT = TD. We will be done if we can
show that T is invertible. For this it is enough to prove that vi are linearly
independent. Suppose that ∑

aivi = 0

where not all the ai = 0. We can assume the number of ai 6= 0 is chosen as
small as possible and that i = 1 is among these indices. Then multiplying the
equation by T − λ1I yields a shorter relation∑

ai(λi − λ1)vi = 0

which is a contradiction.
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Proof of Cayley-Hamilton. We have to show that the morphism An2 → A given
by A 7→ pA(A) vanishes identically. It suffices to check this for A ∈ Dn since
it is dense. By the previous theorem, any matrix A ∈ Dn can be diagonalized.
Since pT−1AT (T−1AT ) = T−1pA(A)T , we can reduce to the case where

A =

λ1 0 . . .
0 λ2 0 . . .

. . .


The result is now straightforward calculation using pA(t) =

∏
(t− λi).

1.5 Affine Varieties

The Noetherian property of k[x1, . . . xn] has the following topological interpre-
tation.

Lemma 1.5.1. Any descending chain X1 ⊇ X2 ⊇ . . . stabilizes (XN = XN+1 =
. . . for some N).

Proof. The chain of ideals I(X1) ⊆ I(X2) ⊆ . . . has to stabilize by the Noethe-
rian property.

A space satisfying this lemma is called Noetherian. Let X = V (I) ⊆ An
k .

We give X the induced topology, which means that a subset of X is closed if it
is closed as a subset of An

k . X is again Noetherian. We say that X is reducible
if it is a union of two proper closed sets. Otherwise X is called irreducible.

Exercise 1.5.2. Show that V (f) is irreducible if f is an irreducible polynomial.

The unique factorization property for polynomials can be generalized as
follows.

Theorem 1.5.3. Any Noetherian space X can be expressed as a union of X =
X1 ∪X2 ∪ . . . Xn of irreducible closed sets, where no Xi is contained in an Xj.
This is unique up to reordering.

Proof. If X is irreducible, there is nothing to prove. Suppose X is reducible,
then we can write X = X(0) ∪X(1) where X(i) are proper and closed. Repeat
this for each X(i), and continue doing this. Let’s represent this as a tree:

X

zz
zz

zz
zz

DD
DD

DD
DD

X(0)

wwwwwwww
X(1)

GGGGGGGG

X(00) X(01) X(10) X(11)
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By the Noetherian property, we can’t continue this forever. Thus the tree
must be finite (we’re using König’s lemma that an infinite binary tree contains
an infinite path). The “leaves”, i.e. the lowest elements give the Xi.

Suppose we have another decomposition, X = X ′
1 ∪X ′

2 ∪ . . . X ′
m. Then

X ′
i = (X1 ∩X ′

i) ∪ (X2 ∩X ′
i) ∪ . . .

Since the left side is irreducible, we must have X ′
i = Xj ∩ X ′

i for some j. So
that X ′

i ⊆ Xj . By symmetry, Xj ⊆ X ′
`. Therefore X ′

i = X ′
` by assumption, and

this forces X ′
i = Xj . This proves

{X ′
1, X

′
2, . . .} ⊆ {X1, X2, . . .}

We get the opposite inclusion by symmetry.

The Xi in the theorem are called the irreducible components. An irreducible
closed subset of some An

k is called an affine algebraic variety.

Lemma 1.5.4. X ⊆ An
k is irreducible iff I(X) is a prime ideal.

In terms of ideal theory, the irreducible components of X correspond to the
minimal primes of I = I(X). That is primes ideals p containing I and minimal
with respect to this property.

1.6 Hilbert’s Nullstellensatz

We haven’t completely finished our analysis of V and I. We need to understand
what happens if we follow one by the other. One direction is easy.

Lemma 1.6.1. V (I(X)) is the closure of X (in the Zariski topology).

Exercise 1.6.2. Prove this.

The other direction is harder. The radical of an ideal I is defined by
√

I = {f | ∃n ∈ N, fn ∈ I}

This is an ideal containing I. We define the localization of a ring R at f ∈ R
by

R[1/f ] = R[T ]/(Tf − 1)

The image of T will be denoted by 1/f . Notice that R[1/0] makes sense, but
the whole ring is 0. More generally,

Lemma 1.6.3. R[1/f ] = 0 iff f is nilpotent.

Corollary 1.6.4. Let R = k[x1, . . . xn]/I, f ∈ k[x1, . . . xn] and f̄ its image.
Then R[1/f̄ ] = 0 iff f ∈

√
I.

Theorem 1.6.5 (Hilbert’s Nullstellensatz). If k is algebraically closed, I(V (I)) =√
I.
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Proof. The inclusion
√
I ⊆ I(V (I)) is obvious: if fn vanishes on V (I) then so

does f .
Suppose that f ∈

√
I. Let R = k[x1, . . . xn]/I. Then R[1/f̄ ] 6= 0. Choose

a maximal ideal m ⊂ R[1/f̄ ]. Then R[1/f̄ ]/m = k by the Algebraic Nullstel-
lensatz. Thus we have a homomorphism h : R[1/f̄ ] → k. The composition
R → R[1/f̄ ] → k is necessarily of the form eva with a ∈ V (I). The fact that
eva factors through R[1/f̄ ] means that f(a) has an inverse i.e. f(a) 6= 0. Which
shows that f /∈ I(V (I)).

1.7 Nilpotent matrices

Let A be 2×2 matrix over a field k. The Cayley-Hamilton theorem tells us that

A2 − trace(A)A + det(A)I = 0

Therefore det(A) = trace(A) = 0 implies that A is nilpotent of order 2. Con-
versely, these vanish for a nilpotent matrix since it has zero eigenvalues. Let’s
try and understand this using the Nullstellensatz. Let

A =
(

x1 x2

x3 x4

)
be the generic matrix. The polynomials det(A), trace(A) generate an ideal I ⊂
k[x1, . . . x4]. The entries of A2 generate another ideal J . We need to check that√

I =
√

J .
We have already hinted that many of these computations can be carried

algorithmically. The name of the game here is Gröbner basis theory, and the
book by Cox, Little, O’shea [CLO] gives an introduction to this. These algo-
rithms have been implemented in several computer packages. We are going to
use Grayson and Stillman’s Macaulay2 program

http://www.math.uiuc.edu/Macaulay2/

which is particularly convenient for algebraic geometry/commutative algebra.
We will check this in characteristic 0, however we need to work over a field
where the elements and operations can be represented precisely on a machine.
We will use the prime field k = Q even though we are interested in algebraically
closed fields containing it. This is justified by the following:

Lemma 1.7.1. Let k1 ⊂ k2 be a field extension. Suppose that I ⊂ k1[x0, . . . xn]
is an ideal, and let I ′ ⊂ k2[x0, . . . xn] be the ideal generated by I. Then I ′ ∩
k1[x0, . . . xn] = I and

√
I ′ is generated by

√
I.

Proof. We prove this using tensor products (see Atiyah-MacDonald for a re-
view). We have k2[x0, . . . xn] = k2 ⊗k1 k1[x0, . . . xn] as algebras. Furthermore
I ′ = k2 ⊗k1 I and the first statement follows easily.
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Let J = k2 ⊗
√

I. We certainly have I ′ ⊂ J ⊆
√

I ′, we just have to check
that J is radical. This is equivalent to condition that the ring

k2[x1, . . . xn]/J ∼= k2 ⊗k1 (k1[x1, . . . xn]/
√

I)

has no nonzero nilpotents. This is clear, since (a⊗ f)n = an ⊗ fn = 0 forces a
or f to be 0.

Beware that for some questions the field does matter. For example, the ideal
(x2 − 2) is prime over Q but not over C.

Below is a transcript of a Macaulay 2 session which shows that
√

I =
√

J
and that J $ I. It shouldn’t be too hard to understand what the commands
are doing. The ; is used to suppress output, = is used to assign values, and ==
for testing equality.

i1 : R = QQ[x_1..x_4];

i2 : A = matrix{{x_1,x_2},{x_3,x_4}};

i3 : D = det A;

i4 : T = trace A;

i5 : I =ideal {D,T};

i6 : J = ideal A^2;

i7 : I == J

o7 = false

i8 : isSubset(J,I)

o8 = true

i9 : radical I == radical J

o9 = true

We will do a similar calculation for 3 × 3 matrices over the finite field k =
Z/101Z, since Macaulay 2 is more efficient in finite characteristic. We let I
denote the ideal defined by the coefficients of the characteristic polynomial of a
generic 3 × 3 matrix which in addition to the det and trace includes the trace
of the matrix of 2 × 2 minors generated by the exteriorPower command. We
show that V (I) is the set of nilpotent matrices of order 3.

i1 : R = ZZ/101[x_1..x_9];
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i2 : A = genericMatrix(R,x_1,3,3)

o2 = | x_1 x_4 x_7 |
| x_2 x_5 x_8 |
| x_3 x_6 x_9 |

3 3
o2 : Matrix R <--- R

i3 : I = ideal { det(A), trace(A), trace(exteriorPower(2,A))};

o3 : Ideal of R

i4 : J = ideal A^3;

o4 : Ideal of R

i5 : radical I == radical J

o5 = true

Exercise 1.7.2. Let K be the ideal defining nilpotent 2 × 2 matrices of order
3. Show that

√
J coincides with

√
K. Does J = K?
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Chapter 2

Projective Geometry

2.1 Projective space

In Euclidean plane geometry, we need seperate the cases of pairs of lines which
meet and parallel lines which don’t. Geometry becomes a lot simpler if any
two lines met possibly “at infinity”. There are various ways of arranging this,
the most convenient method is to embed the A2 into 3 dimensional space as
depicted. To each point P ∈ A2, we can associate the line OP . The lines
parallel to the plane correspond to the points at infinity.

P

O

We now make this precise. n dimensional projective space Pn
k over a (not

necessarily algebraically closed) field k consists of the set of lines through 0, or
equivalently one dimensional subspaces, in An+1. There is a map π : An+1

k −
{0} → Pn

k which sends v to its span. We will usually write [a0, . . . an] for
π((a0, . . . an)). We identify (a1, . . . an) ∈ An with the point [1, a1, . . . an] ∈ Pn.
The complement of An is called the hyperplane at infinity. It can be identified
with Pn−1.
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2.2 Projective varieties

We want to do algebraic geometry on projective space. Given X ⊂ Pn, define
the cone over X to be Cone(X) = π−1X ∪ {0} ⊆ An+1. A subset of An+1 of
this form is called a cone. We define X ⊆ Pn to be algebraic iff Cone(X) is
algebraic in An+1.

Lemma 2.2.1. The collection of algebraic subsets are the closed for a Noethe-
rian topology on Pn also called the Zariski topology. An ⊂ Pn is an open subset.

Proof. Exercise!

There are natural embeddings An → Pn given by

(a1, . . . an) 7→ [a0, . . . ai−1, 1, ai . . . an]

This identifies the image with the open set Ui = {xi 6= 0}. This gives an open
cover of Pn which allows many problems to be reduced to affine geometry.

We can define the strong topology of Pn
C in the same way as the Zariski

topology.

Lemma 2.2.2. Pn
C is a compact Hausdorff space which contains An

C as a dense
open set. In other words, it is a compactification of affine space.

Proof. Pn
C is compact Hausdorff since it is the image of the unit sphere {z ∈

Cn+1 | |z| = 1}.

Let’s make the notion of algebraic set more explicit. We will use variables
x0, . . . xn. Thus X is algebraic iff Cone(X) = V (S) for some set of polynomials
in k[x0, . . . xn]. Let’s characterize the corresponding ideals. Given a polynomial
f , we can write it as a sum of homogeneous polynomials f = f0 + f1 + . . .. The
fi will be called the homogeneous components of f .

Lemma 2.2.3. I ⊂ k[x0, . . . xn] is generated by homogeneous polynomials iff I
contains all the homogeneous components of its members.

Proof. Exercise!

An I ⊂ k[x0, . . . xn] is called homogeneous if it satisfies the above conditions

Lemma 2.2.4. If I is homogeneous then V (I) is a cone. If X is a cone, then
I(X) is homogeneous .

Proof. We will only prove the second statement. Suppose that X is a cone.
Suppose that f ∈ I(X), and let fn be its homogenous components. Then for
a ∈ X, ∑

tnfn(a) = f(ta) = 0

which implies fn ∈ I(X).
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We let PV (I) denote the image of V (I) − {0} in Pn. Once again, we will
revert to assuming k is algebraically closed. Then as a corollary of the weak
Nullstellensatz, we obtain

Theorem 2.2.5. If I is homogeneous , then PV (I) = ∅ iff (x0, . . . xn) ⊆
√

I.

A projective variety is an irreducible algebraic subset of some Pn.

2.3 Projective closure

Given a closed subset X ⊂ An, we let X ⊂ Pn denote its closure. Let us describe
this algebraically. Given a polynomial f ∈ k[x1, . . . xn], it homogenization (with
respect to x0) is

fH = xdeg f
0 f(x1/x0, . . . xn/x0)

The inverse operation is fD = f(1, x1, . . . xn). The second operation is a homo-
morphism of rings, but the first isn’t. We have (fg)H = fHgH for any f, g, but
(f + g)H = fH + gH only holds if f, g have the same degree.

Lemma 2.3.1. PV (fH) is the closure of V (f).

Proof. Obviously, f(a) = 0 implies fH([1, a]) = 0. Thus PV (fH) contains V (f)
and hence its closure. Conversely, it’s enough to check that

IP (PV (fH)) ⊆ IP (V (f))

For simplicity assume that f is irreducible. Then the left hand ideal is (fH).
Suppose that g ∈ IP (V (f)), then gD ∈ I(V (f)). This implies f |gD which shows
that fH |g.

We extend this to ideals

IH = {fH | f ∈ k[x1, . . . xn]}

ID = {fD | f ∈ k[x0, . . . xn]}

Lemma 2.3.2. IH is a homogenous ideal such that (IH)D = I.

Theorem 2.3.3. V (I) = PV (IH).

Proof.

V (I) =
⋂
f∈I

V (f) ⊆
⋂

V (f)

Conversely, proceed as above. Let g ∈ IP (V (I)) then gD ∈ I(V (I)) =
√

I.
Thus

(gD)N = (gD)N ∈ I

for some N . Therefore gN ∈ IH . So that g ∈ IP (PV (IH)) =
√

IH .
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For principal ideals, homogenization is very simple. (f)H = (fH). In gen-
eral, homogenizing the generators need not give the right answer. For ex-
ample, the affine twisted cubic is the curve in A3 defined by the ideal I =
(x2 − x2

1, x3 − x3
1). Then

(x2x0 − x2
1, x3x

2
0 − x3

1) $ I

We will check on the computer for k = Q. But first, let us give the correct
answer,.

Lemma 2.3.4. Let I = (f1, . . . fN ) and J = (fH
1 , . . . fH

N ). Then

IH = {f ∈ k[x0, . . . xn] | ∃m,xm
0 f ∈ J}

The process of going from J to IH above is called saturation with respect
to x0. It can be computed with the saturate command in Macaulay2.

i1 : R = QQ[x_0..x_3];

i2 : I = ideal {x_2-x_1^2, x_3 -x_1^3};

o2 : Ideal of R

i3 : J = homogenize(I, x_0)

2 3 2
o3 = ideal (- x + x x , - x + x x )

1 0 2 1 0 3

o3 : Ideal of R

i4 : IH = saturate(J, x_0)

2 2
o4 = ideal (x - x x , x x - x x , x - x x )

2 1 3 1 2 0 3 1 0 2

Exercise 2.3.5. Prove that IH is generated by the polynomials given in the
computer calculation, and conclude IH 6= J (for arbitary k).

2.4 Miscellaneous examples

Consider the quadric Q given by x0x3 − x1x2 = 0 in P3.
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This is a doubly ruled surface which means that it has two families of lines.
This can be see explicitly by setting up a bijection P1 × P1 ∼= Q by

([s0, s1], [t0, t1]) 7→ [s0t0, s0t1, s1t0, s1t1]

More generally, the Segre embedding of

Pm × Pn → P(m+1)(n+1)−1

is given by sending ([si], [tj ]) to [sitj ] ordered appropriately.

Exercise 2.4.1. Check that the image of the Segre embedding is a projective
variety.

The rational normal curve of degree n is the image of P1 in Pn under

[x0, x1] 7→ [xn
0 , xn−1

0 x1, . . . x
n
1 ]

Exercise 2.4.2. Check that the rational normal curve is a projective variety.

2.5 Grassmanians

Let’s turn to a fairly important but subtle example of a projective variety. Let
r ≤ n. As a set the Grassmanian Gr(r, n) is the set of r dimensional subspaces
of kn. For example, Gr(1, n) = Pn−1. Let Mat = Matr×n

∼= Anr denote the
space of r × n matrices, and let R(r, n) ⊂ Mat denote the subset of matrices
of rank r. This is a dense open subset of Mat. Choose the standard basis of
kn, and represent the elements by row vectors. Then we have a surjective map
R(r, n) → Gr(r, n) which sends A to the span of its rows. This is not a very
good parameterization since it is very far from one to one. In fact, A and A′

represent the same subspace iff A′ = MA for some invertible r × r matrix. Let
N =

(
n
r

)
and label the minors of A by integers 1, . . . N . Let us consider the map

pl : Mat → AN , which sends A to its vector of r × r minors. We call pl(A) the
Plücker vector of A. Note that pl−1AN − {0} = R(r, n). If A and A′ define the
same point, so that A′ = AM , then pl(A′) = det(M)pl(A). Therefore, we have
proven
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Lemma 2.5.1. The map A 7→ [pl(A)] is an injection from Gr(r, n) → PN−1.

We are going to prove that

Theorem 2.5.2. The image of Gr(r, n) in PN−1 is a projective variety.

Let’s start by trying to discover the equations for Gr(2, 4). Identify (x1, . . . x8) ∈
A8 with (

x1 x3 x5 x7

x2 x4 x6 x8

)
Order the minors by

1× 2, 1× 3, 2× 3, 1, 2× 4, 3× 4

Then pl is associated to the map of polynomials rings:

k[y1, . . . y6] → k[x1, . . . x8]

sending yi to the ith minor. We can discover the relations among the minors
by looking at the kernel of this map. We do this using Macaulay 2.

i1 : R = QQ[x_1..x_8];

i2 : S = QQ[y_1..y_6]

i3 : A = genericMatrix(R,x_1,2,4)

o3 = | x_1 x_3 x_5 x_7 |
| x_2 x_4 x_6 x_8 |

2 4
o3 : Matrix R <--- R

i4 : M2 = exteriorPower(2,A);

1 6
o4 : Matrix R <--- R;

i5 : pl = map(R,S,M2);

i6 : ker pl

o6 = ideal(y y - y y + y y )
3 4 2 5 1 6
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Having discovered the basic equation

y3y4 − y2y5 + y1y6 = 0 (2.1)

by machine over Q, let’s check this by hand for any k. Let R(2, 4)i be the set of
matrices where the ith minor is nonzero. This gives an open covering of R(2, 4).
The matrices in R(2, 4) are of the form(

x1 x3 1 0
x2 x4 0 1

)
times a nonsingular 2 × 2 matrix. Thus it’s Plücker vector is nonzero multiple
of

(x1x4 − x2x3,−x2,−x4, x1, x3, 1)

It follows easily that (2.1) holds for this. Moreover, the process is reversable,
any vector satisfying (2.1) with y6 = 1 is the Plücker vector of(

y4 y5 1 0
−y2 −y3 0 1

)
By a similar analysis for the other R(2, 4)i, we see that Gr(2, 4) is determined
by (2.1).

In order to analyze the general case, it is convenient to introduce the appro-
priate tool. Given a vector space V , the exterior algebra ∧∗V is the free asso-
ciative (noncommutative) algebra generated by V modulo the relation v∧v = 0
for all v ∈ V . This relation forces anticommutivity:

(v + w) ∧ (v + w) = v ∧ w + w ∧ v = 0

If v1, . . . vn is a basis for V , then

{vi1 ∧ . . . vin | i1 < . . . in}

forms a basis for ∧∗V . ∧rV is the space of ∧∗V spanned by r-fold products of
vectors. dim∧rV =

(
n
r

)
.

Let V = kn, with vi the standard basis. The exterior algebra has a close
connection with determinants.

Lemma 2.5.3. Let A be an r × n matrix and let wi =
∑

aijvj be the ith row,
then

w1 ∧ . . . wr =
∑

(i1 . . . irth minor )vi1 ∧ . . . vir

This says that the w1∧ . . . wr is just the Plücker vector pl(A). The condition
for an element of ∧rV to be of the form pl(A) is that it is decomposable, this
means that it is a wedge product of r elements of V .

Lemma 2.5.4. Given ω ∈ ∧sV and linearly independent vectors v1, . . . vr ∈ V ,
∀i, ω ∧ vi = 0 iff ω = ω′ ∧ v1 ∧ . . . vr.
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Proof. One direction is clear. For the other, we can assume that vi is part of
the basis. Writing

ω =
∑

i1<...<is

ai1...isvi1 ∧ . . . vis

Then
ω ∧ v1 =

∑
i1<...<is;i 6=i1,...i 6=is

ai1...is
vi1 ∧ . . . vis

∧ v1 = 0

precisely if 1 is included in the set of indices for which ai1...is 6= 0. This means
that v1 can be factored out of ω. Continuing this way gives the whole lemma.

Corollary 2.5.5. A nonzero ω is decomposable iff the dimension of the kernel
of v 7→ ω∧v on V is at least r, or equivalently if the rank of this map is at most
n− r.

Corollary 2.5.6. The image of pl is algebraic.

Proof. The conditions on the rank of v 7→ ω∧ v are expressible as the vanishing
of (n− r + 1)× (n− r + 1) minors of its matrix.

2.6 Elimination theory

Although An is compact with its Zariski topology, there is a sense in which it
isn’t. To motivate the precise statement, we start with a result in point set
topology. Recall that a map of topological spaces is closed if it takes closed sets
to closed sets.

Theorem 2.6.1. If X is a compact metric space then for any metric space Y ,
the projection p : X × Y → Y is closed

Sketch. Given a closed set Z ⊂ X ×Y and a convergent sequence yi ∈ p(Z), we
have to show that the limit y lies in p(Z). By assumption, we have a sequence
xi ∈ X such that (xi, yi) ∈ Z. Since X is compact, we can assume that xi

converges to say x ∈ X after passing to a subsequence. Then we see that
(x, y) is the limit of (xi, yi) so it must lie in Z because it is closed. Therefore
y ∈ p(Z).

The analogous property for algebraic varieties is called completeness or
properness. To state it precisely, we need to define products. For affine va-
rieties X ⊂ An and Y ⊂ Am, their set theoretic product X × Y ⊂ An×m is
again algebraic and irreducible.

Exercise 2.6.2. Prove this.

Given a polynomial f ∈ k[x0, . . . xn, y1, . . . ym] which is homogeneous in the
xi, we can defines its zeros in Pn ×Am as before. Similarly if f is homogeneous
seperately in the x’s and y’s or bihomogeneous, then we can define its zeros in
Pn×Pm−1. A subset of either product is called algebraic if it is the intersection
of the zero sets of such polynomials. We can define a Zariski topology whose
closed sets are exactly the algebraic sets.
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Exercise 2.6.3. Show that the Zariksi topology on Pn × Pm coincides with
induced topology under the Segre embedding Pn × Pm ⊂ P(n+1)(m+1)−1.

With this it is easy to see that:

Lemma 2.6.4. The projections Pn × Am → Pn etcetera are continuous.

We say that a variety X is complete if the projections X × Am → Am are
all closed. Then An is not complete if n > 0. To see this, observe that the
projection An × A1 → A1 is not closed since V (x1y − 1) maps onto A1 − {0}.
It is possible to describe the closure of the images explicitly. Given coordinate
x1, . . . xn on An and y1, . . . ym on Am. A subvariety of the product is given
by an ideal I ⊂ k[x1, . . . xn, y1, . . . ym]. The intersection I ′ = I ∩ k[y1, . . . ym]
is called the elimination ideal (with respect to the chosen variables). Then it
known V (I ′) = V (I) [CLO, chap 3].

Exercise 2.6.5. Prove that V (I ′) ⊇ V (I).

Theorem 2.6.6 (Main theorem of elimination theory). Pn is complete. That
is given a collection of polynomials fi(~x, ~y) homogeneous in x, there exists poly-
nomials gj(~y) such that

∃~x 6= 0,∀ifi(~x, ~y) = 0 ⇔ ∀jgj(~y) = 0

Proofs can be found in the references at the end. Note that the images can
be computed explicitly by using elimination ideals.

Corollary 2.6.7. The projections Pn × Pm → Pm are closed.

Proof. Let Z ⊂ Pn × Pm be closed. Pm has a finite open cover Ui defined
earlier. Since Ui can be identified with Am, it follows that Z ∩ Ui is closed in
Ui. Therefore Pm = ∪(Ui − Z) is open.

2.7 Simultaneous eigenvectors

Given two n× n matrices A,B, a vector v is a simultaneous eigenvector if it is
an eigenvector for both A and B with possibly different eigenvalues. It should
be clear that the pairs admiting simultaneous eigenvectors are special. The
question is how special.

Proposition 2.7.1. The set S of (A,B) ∈ (Matn×n(k))2 = An2 × An2
such

that A and B admit a simultaneous eigenvector is a proper Zariski closed set.

Proof. We first introduce an auxillary set

E2 = {(A,B, v) ∈ An2
× An2

× kn | v is an eigenvector for A&B}

This is defined by the conditions rank(Av, v) ≤ 1 and rank(Bv, v) ≤ 1 which
is expressable as the vanishing of the 2 × 2 minors of these matrices. These
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are multihomogeneous equations, therefore they define a closed set in Pn2−1 ×
Pn2−1×Pn−1. Let PS be the image of this set in Pn2−1×Pn2−1 under projection.
This is closed by the elimination theorem and therefore the preimage of PS in
(An2 − {0})2 is also closed. It is now easy to see that our set S, which is the
union of the preimage with the axes {0} × An2 ∪ An2 × {0}, is also closed.

The proposition implies that the set S above is defined by polynomials. Let’s
work out the explicit equations when n = 2 and k = Q. We write our matrices
as

A =
(

a b
c d

)
B =

(
e f
g h

)
Now we work out the ideal I defining E2:

i1 : R = QQ[x,y,a,b,c,d,e,f,g,h];

i2 : Avv = matrix {{a*x+ b*y, x},{c*x+d*y, y}}

o2 = | xa+yb x |
| xc+yd y |

2 2
o2 : Matrix R <--- R

i3 : Bvv = matrix {{e*x+f*y,x}, {g*x+h*y, y}}

o3 = | xe+yf x |
| xg+yh y |

2 2
o3 : Matrix R <--- R

i4 : I= ideal( determinant Avv, determinant Bvv)

2 2 2 2
o4 = ideal (x*y*a + y b - x c - x*y*d, x*y*e + y f - x g - x*y*h)

Now try to eliminate x, y:

i5 : eliminate(I, {x,y})

o5 = 0
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And we get 0? The problem is that affine algebraic set V (I) has two irreducible
components which we can see by calculating minimal primes

i6 : minimalPrimes I

o6 = {ideal (- x*y*a - ... ),ideal (y, x)}

(we are suppressing part of the output). The uninteresting component x = y = 0
corresponding to the second ideal is throwing off our answer. Setting J to the
first ideal, and then eliminating gives us the right answer.

i7 : J= o6#0;

o7 : Ideal of R

i8 : eliminate(J,{x,y})

After cleaning this up, we see that the locus of pairs of matrices with a simul-
taneous eigenvector is defined by

bce2−acef+cdef−c2f2−abeg+bdeg+a2fg+2bcfg−2adfg+d2fg−b2g2−2bceh

+acfh− cdfh + abgh− bdgh + bch2 = 0

The corresponding computation for n = 3 seems painfully slow (at least on
my computer). So we ask a more qualitative question: can S be defined by a
single equation for n > 2? We will see that the answer is no in the next chapter.
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Chapter 3

The category of varieties

3.1 Rational functions

Given an affine variety X ⊂ An, its coordinate ring

O(X) = k[x1, . . . xn]/I(X)

An f ∈ O(X) is an equivalence class of polynomials. Any two polynomial
representatives f̃i of f give the same value f̃1(a) = f̃2(a) for a ∈ X. Thus the
elements can be identified with functions X → k called regular functions. Since
I(X) is a prime ideal, it follows that O(X) is an integral domain. Its field of
fractions is called the function field k(X) of X. An element f/g ∈ k(X) is called
a rational function. It is regular on the open set D(g) = {g(x) 6= 0}. Note that
D(g) can be realized as the affine variety

{(a, b) ∈ An+1 | g(a)b = 1}

Its coordinate ring is the localization O(X)[1/g]. This has the same function
field as X. Thanks to this, we can define the function field of a projective variety
X ⊂ Pn as follows. Choose i so that Ui has a nonempty intersection with X,
then set k(X) = k(X ∩ Ui). If X ∩ Uj 6= ∅ then

k(X ∩ Ui) = k(X ∩ Ui ∩ Uj) = k(X ∩ Uj)

so this is well defined.

Example 3.1.1. k(Pn) = k(An) = k(x1 . . . xn).

It is convenient to enlarge the class of varieties to a class where affine and
projective varieties can be treated together. A quasi-projective variety is an
open subset of a projective variety. This includes both affine and projective
varieties and some examples which are neither such as Pn × Am. The local
study of quasi-projective varieties can be reduced to affine varieties because of
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Lemma 3.1.2. Any quasi-projective variety X has a finite open cover by affine
varieties.

Proof. Suppose that X is an open subset of a projective variety Y ⊂ Pn. Then
X ∩ Ui is open in Y ∩ Ui. Let fij be a finite set of generators of the ideal of
(Y − X) ∩ Ui Then Y ∩ Ui − V (fij) is our desired open cover. These sets are
affine since they can be embedded as closed sets into An+1.

When X is quasi-projective with a cover as above, we define k(X) = k(Ui)
for some (and therefore any) i.

3.2 Quasi-projective varieties

We have defined morphisms of affine varieties. These are simply maps defined
by polynomials. We can compose morphisms to get new morphisms. Thus the
collection of affine varieties and morphisms between them forms a category. The
definition of categories and functors can be found, for example, in [L].

A morphism F : X → Y of affine varieties given by

(x1, . . . xn) 7→ (F1(x1 . . . xn), . . . Fm(x1, . . . xn))

induces an algebra homomorphism F ∗ : O(Y ) → O(X) called pull back, given
by

F ∗(p(y1, . . . ym)) = p(F1(~x), . . . Fm(~x))

This can be identified with the composition p 7→ p◦F of functions. If F : X → Y
and G : Y → Z, then we have (G ◦ F )∗ = F ∗ ◦ G∗. Therefore the assignment
X 7→ O(X), F 7→ F ∗ is a contravariant functor from the category of affine
varieties to the category of finitely generated k-algebra which happen to be
domains. In fact:

Theorem 3.2.1. The category of affine varieties is antiequivalent to this cate-
gory of algebras.

Exercise 3.2.2. The theorem amounts to the following two assertions.

1. Show that any algebra of the above type is isomorphic to O(X) for some
X.

2. Show that there is a one to one correspondence between the set of mor-
phisms from X to Y and k-algebra homomorphisms O(Y ) → O(X).

We want to have a category of quasi-projective varieties. The definition of
morphism is a little trickier than before, since we can allow rational expressions
provided that the singularities are “removable”. We start with a weaker notion.
A rational map F : X 99K Y of projective varieties is given by a morphism
from an affine open set of X to an affine open set of Y . Two such morphisms
define the same rational map if they agree on the intersection of their domains.
So a rational map is really an equivalence class. A morphism F : X → Y of
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quasi-projective varieties is a rational map such that for an affine open cover
{Ui} F : X ∩ Ui 99K Y extends to a morphism for all i.

Here are two examples.

Example 3.2.3. The map P1 → P3 given by [x0, x1] 7→ [x3
0, x

2
0x1, x0x

2
1, x

3
1] is a

morphism.

Example 3.2.4. Let E be PV (zy2 − x(x − z)(x − 2z)) ⊂ P2. Then E → P1

given by [x, y, z] 7→ [x, z] is a morphism.

The first should be obvious, but the second isn’t. The second map appears
to be undefined at [0, 1, 0] ∈ E. To check, we can work on U2 = {y 6= 0}.
Normalizing y = 1 and substituting into the defining equation gives

[x, y, z] 7→ [x, z] = [x, x(x− z)(x− 2z)] = [1, (x− z)(x− 2z)]

The last expression is well defined even on [0, 1, 0].
A regular function on a quasi-projective variety is morphism from it to A1.

For affine varieties, this coincides with the definition given earlier. The following
exercise gives a characterization of morphism which is taken as the definition
in more advanced presentations. (Of course one would need to define regular
functions first.)

Exercise 3.2.5. Show that a continuous map F : X → Y of quasi-projective
varieties is a morphism if and only if f ◦ F :−1 U → k is regular whenever
f : U → k is regular.

3.3 Graphs

Proposition 3.3.1. If f : X → Y is a morphism of quasi-projective varieties,
then the graph Γf = {(x, f(x)) | x ∈ X} is closed.

Proof. We first treat the case of the identity map id : X → X. The graph is
just the diagonal ∆X = {(x, x) | x ∈ X}. This is closed when X = Pn since
it is defined by the equations xi − yi = 0 . For X ⊂ Pn, ∆X = ∆Pn ∩X ×X
is therefore also closed. Define the morphism f × id : X × Y → Y × Y by
(x, y) 7→ (f(x), y), then Γf = (f × id)−1∆Y . So it is closed.

Exercise 3.3.2. Let C = V (y2 − x3). Show that f : C → A1 given by (x, y) 7→
y/x if x 6= 0, and f(0, 0) = 0 has closed graph but is not a morphism.

Proposition 3.3.3. If X is projective and Y quasi-projective, then any mor-
phism f : X → Y is closed

Proof. Let p : X×Y → X and q : X×Y → Y be the projections. q is closed by
theorem 2.6.6. If Z ⊂ X is closed then f(Z) = q(p−1Z ∩ Γf ) is also closed.

The next theorem can be viewed as an analogue of Lioville’s theorem in
complex analysis, that bounded entire functions are constant.
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Theorem 3.3.4. Any regular function on a projective variety is constant.

Proof. Let X be a projective variety. A regular function f : X → A1 is closed,
so f(X) is either a point or A1. The second case is impossible since f composed
with the inclusion A1 ⊂ P1 is also closed.

Exercise 3.3.5. Show that a point is the only variety which is both projective
and affine.
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Chapter 4

Dimension theory

4.1 Dimension

We define the dimension dim X of an affine or projective variety to be the tran-
cendence degree of k(X) over k. This is the maximum number of algebraically
independent elements of k(X). A point is the only zero dimensional variety.
Varieties of dimension 1, 2, 3 . . . are called curves, surfaces, threefolds...

Example 4.1.1. The function field k(An) = k(Pn) = k(x1, . . . xn). Therefore
dim An = dim Pn = n as we would expect.

A morphism F : X → Y is called dominant if F (X) is dense. If F is dominant
then the domain of any rational function on Y meets F (X), so it can be pulled
back to a rational function on X. Thus we get a nonzero homomorphism k(Y ) →
K(X) which is necessarily injective. A rational map is called dominant if it can
be realized by a dominant morphism. Putting all of this together yields:

Lemma 4.1.2. If F : X 99K Y is a dominant rational map, then we have an
inclusion k(Y ) ⊆ k(X). Therefore dim X ≥ dim Y .

A dominant morphism F : X 99K Y is called generically finite if k(Y ) ⊆ k(X)
is a finite field extension.

Lemma 4.1.3. If F : X 99K Y is a generically finite rational map, then
dim X = dim Y .

Proof. The extension k(Y ) ⊆ k(X) is algebraic, so the transcendence degree is
unchanged.

Example 4.1.4. Suppose that f(x1, . . . xn) =
∑

fi(x1, . . . xn−1)xi
n is a polyno-

mial nonconstant in the last variable. Then projection V (f) → An−1 onto the
first n− 1 coordinates is generically finite.

Lemma 4.1.5. If f is a nonconstant (homogeneous) polynomial in n (respec-
tively n+1) variables, then dim V (f) = n− 1 (respectively dim PV (f) = n− 1).
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Proof. By reordering the variables, we can assume that the conditions of the
previous example hold. Then dim V (f) = dim An−1. The projective version
follows from this.

In fact, much more is true:

Theorem 4.1.6 (Krull’s principal ideal theorem). If X ⊂ An is a closed set
and f ∈ k[x1, . . . xn] gives a nonzero divisor in k[x1, . . . xn]/I(X), then the
dimension of any irreducible component of V (f) ∩X is dim X − 1.

Although we have stated it geometrically, it is a standard result in commu-
tative algebra [AM, E]. By induction, we get:

Corollary 4.1.7. Suppose that f1, f2, . . . fr gives a regular sequence in k[x1, . . . xn]/I(X)
which means f1 is a nonzero divisor in k[x1, . . . xn]/I(X), f2 a nonzero divisor
in k[x1, . . . xn]/I(X)+(f1) and so on. Then any component of V (f1, . . . fr)∩X
has dimension dim X − r.

Regularity can be understood as a kind of nondegeneracy condition. Without
it, dim X − r only gives a lower bound for the dimension of the components.

4.2 Dimension of fibres

We want to state a generalization of the “rank-nullity” theorem from elementary
linear algebra. The role of the kernel of a linear map is played by the fibre. Given
a morphism f : X → Y of quasi-projective varieties. The fibre f−1(y) ⊂ X is a
closed set. So it is a subvariety if it is irreducible.

Theorem 4.2.1. Let f : X → Y be a dominant morphism of quasi-projective
varieties and let r = dim X − dim Y . Then for every y ∈ f(X) the irreducible
components of f−1(y) have dimension at least r. There exists a nonempty open
set U ⊆ f(X) such that for y ∈ U the components of f−1(y) have dimension
exactly r.

A complete proof can be found in [M, I§8]. We indicate a proof of the first
statement. We can reduce to the case where X and Y are affine, and then
to the case Y = Am using Noether’s normalization theorem. Let yi be the
coordinates on Am. Then the fibre over a ∈ f(X) is defined by m equations
y1 − a1 = 0, . . . ym − am = 0. So the inequality follows from the remark at the
end of the last section. For the second part, it be enough to find an open set U
such that y1 − a1, . . . ym − am gives a regular sequence whenever a ∈ U .

Corollary 4.2.2. With the same notation as above, dim X = dim Y if and only
if there is nonempty open set U ⊆ f(X) such that f−1(y) is finite for all y ∈ U .

Corollary 4.2.3. dim X × Y = dim X + dim Y .

The dimensions of the fibres can indeed jump.
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Example 4.2.4. Let B = V (y − xz) ⊂ A3. Consider the projection to the
xy-plane. The fibre over (0, 0) is the z-axis, while the fibre over any other point
in the range is (x, y, y/x).

We can apply this theorem to calculate the dimension of the Grassmanian
Gr(r, n). Recall there is a surjective map π from the space R(r, n) of r × n
matrices of rank r to Gr(r, n). This is a morphism of quasi-projective varieties.
An element W ∈ Gr(r, n) is just an r dimensional subspace of kn. The fibre
π−1(W ) is the set of all matrices A ∈ R(r, n) whose columns span W . Fixing
A0 ∈ π−1(W ). Any other element of the fibre is given by MA0 for a unique
matrix Glr. Thus we can identify π−1(W ) with Glr. Since Glr ⊂ Matr×r

and R(r, n) ⊂ Matr×n are open, they have dimension r2 and rn respectively.
Therefore

dim Gr(r, n) = rn− r2 = r(n− r)

4.3 Simultaneous eigenvectors (continued)

Our goal is to estimate the dimension of the set S of pairs (A,B) ∈ Mat2n×n

having a simultaneous eigenvector. As a first step we compute the dimension of

E1 = {(A, v) ∈ Matn×n × kn | v is an eigenvector of A}

We have a projection to p2 : E1 → kn = An which is obviously surjective.
The fibre over 0 is all of Matn×n which has dimension n2. This however is the
exception and will not help us. If M ∈ Gln, then (A, v) 7→ (MAM−1,Mv)
defines an automorphism of E1, that is a morphism from E1 to itself whose
inverse exists and is also a morphism. Suppose v ∈ kn is nonzero. Then there
is an invertible matrix M such that Mv = (1, 0 . . . 0)T . The automorphism just
defined takes the fibre over v to the fibre over (1, 0 . . . 0)T , so they have the
same dimension. p−1

2 ((1, 0 . . . 0)T ) is the set of matrices A = (aij) satisfying
a21 = a31 = . . . an1 = 0. This is an affine space of dimension n2− (n− 1). Since
this is the dimension of the fibres over an open set. Therefore

dim E1 = n2 − n + 1 + n = n2 + 1

This can be seen in another way. The first projection p1 : E1 → Matn×n is also
surjective, and the fibre over A is the union of its eigenspaces. These should be
one dimensional for a generic matrix.

Consider

E2 = {(A,B, v) | v is a simultaneous eigenvector}

This is an example of fibre product. The key point is that fibre of (A,B, v) 7→ v
over v is the product of the fibres p−1

2 (v)×p−1
2 (v) considered above. So this has

dimension 2(n2 − n + 1). Therefore

dim E2 = 2(n2 − n + 1) + n = 2n2 − n + 2
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We have a surjective morphism E2 → S given by projection. The fibre is the
union of simultaneous eigenspaces, which is at least one dimensional. Therefore

dim S ≤ 2n2 − n + 1

To put this another way, the codimension of S in Mat2n×n is at least n− 1. So
it cannot be defined by single equation if n > 2.
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Chapter 5

Differential calculus

5.1 Tangent spaces

In calculus, one can define the tangent plane to a surface by taking the span of
tangent vectors to arcs lying on it. In translating this into algebraic geometry, we
are going to use “infinitesimally short” arcs. Such a notion can be made precise
using scheme theory, but this goes beyond what we want to cover. Instead we
take the dual point of view. To give a map of affine varieties Y → X is equivalent
to giving a map of their coordinate algebras O(X) → O(Y ). In particular,
the points of X correspond to homomorphisms O(X) → k (cor. 1.2.6). Our
infinitesimal arc should have coordinate ring k[ε]/(ε2). The intuition is that the
parameter ε is chosen so small so that ε2 = 0. We define a tangent vector to be
an algebra homomorphism

v : O(X) → k[ε]/(ε2)

We can compose this with the map k[ε]/(ε2) → k (a+ bε 7→ 0) to get homomor-
phism to k, and hence a point of X. This will be called the base of the vector.
Define the tangent space TaX to X at a ∈ X to be the set of all tangent vectors
with base a. A tangent vector on An amounts to an assignment xi 7→ ai + biε,
where ai are coordinates of the base. Therefore TaAn ∼= kn.

Exercise 5.1.1. Show that the f ∈ k[x1, . . . xn] goes to

f(a1 + b1ε, . . .) = f(a) +
∑

bi
∂f

∂xi
(a)ε ∈ k[ε]/(ε2)

In general, a vector v ∈ TaX is determined by the coefficient of ε. These
coefficients can be added, and multiplied by scalars. Thus TaX is a k-vector
space.

Theorem 5.1.2. Given a variety X ⊂ An and a ∈ X. Let I(X) = (f1, . . . fN ).
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Then TaX is isomorphic to the kernel of the Jacobian matrix

J(a) =

 ∂f1
∂x1

(a) . . . ∂f1
∂xn

(a)
. . .

∂fN

∂x1
(a) . . .


Proof. The homomorphism xi 7→ ai + biε factors through O(X) if and only if
each fj maps to 0. From the exercise this holds precisely when J(a)b = 0.

Example 5.1.3. The locus of noninvertible matrices
(

x y
z t

)
is given by xt−

yz = 0. The Jacobian J = (t,−z,−y, x) so the tangent space at the zero matrix
is 4 dimensional while the tangent space at any other point is 3 dimensional.

Exercise 5.1.4. Show that det(I + Bε) = 1 + trace(B)ε, and conclude that
TISln(k) = {B ∈ Matn×n | trace(B) = 0}.

Suppose that U = D(f) ⊂ X is a basic open set. This is also affine. Suppose
that a ∈ U .

Lemma 5.1.5. TaU ∼= TaX canonically.

Proof. Any tangent vector v : O(U) = O(X)[1/f ] → k[ε]/(ε2) with base a
induces a tangent vector on X. Conversely any vector v : O(X) → k[ε]/(ε2)
with base a must factor uniquely through O(X)[1/f ] since v(f) = f(a) + bε is
a unit.

Thanks to this, we can define the tangent space of a quasi-projective variety
X as TaU where U is an affine neighbourhood of a.

5.2 Singular points

A point a of a variety X is called nonsingular if dim TaX = dim X, otherwise it
is called singular. For example, the hypersurface xt−yz = 0 has dimension equal
to 3. Therefore the origin is the unique singular point. X is called nonsingular
if it has no singular points. For example An and Pn are nonsingular. Over C
nonsingular varieties are manifolds.

Theorem 5.2.1. The set of nonsingular points of a quasi-projective variety
forms a nonempty open set.

Details can be found in [Ht, II 8.16] or [M, III.4]. Let us at least explains why
the set of singular points is closed. It is enough to do this for affine varieties.

Lemma 5.2.2. Let ma ⊂ O(X) be the maximal ideal of regular functions van-
ishing at a ∈ X. Then Ta

∼= (ma/m2
a)∗ (∗ denotes the k-vector space dual).

Exercise 5.2.3. Given h ∈ (ma/m2
a)∗, we can interpret it has linear map

ma → k killing m2
a. Show that v(f) = f(a) + h(f − f(a))ε defines a tangent

vector. Show that this gives the isomorphism Ta
∼= (ma/m2

a)∗.
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We need a couple of facts from commutative algebra [AM, E]

• The dimension of X as defined earlier coincide with the Krull dimension
of both O(X) and its localization O(X)ma .

•
dim ma/m2

a = dim maO(X)ma
/(maO(X)ma

)2 ≥ dimO(X)ma

It follows that if X ⊂ An, then

rankJ(a) ≤ n− dim X

for all a ∈ X. The set of singular points of is the set where this inequality is
strict. This set is defined by the vanishing of the (n − dim X)2 minors of J .
Therefore it is closed.

A variety is called homogenous if its group of automorphisms acts transi-
tively. That is for any two points there is an automorphism which one to the
other.

Corollary 5.2.4. A homogenous quasi-projective variety is nonsingular.

Exercise 5.2.5.

1. Show that the space of matrices in Matn×m of rank r is homogeneous.

2. Show that any Grassmanian is homogeneous.

5.3 Singularities of nilpotent matrices

In this section, we again return to the computer, and work out the singularities
of the variety Nilp of nilpotent 3 × 3 matrices. Since these computations are
a bit slow, we work over a field of finite (but not too small) characteristic. We
will see that in this case the singular locus of Nilp coincides with the set of
matrices {A | A2 = 0} which is about as nice as one could hope for. Certainly
this calls for proper theoretical explanation and generalization (exercise**)!

Using Cayley-Hamilton, we can see that the ideal I of this variety is gener-
ated by the coefficients of the characteristic polynomial (see §1.7). We compute
the dimension of the variety, and find that it’s 6. (Actually we are comput-
ing the Krull dimension of the quotient ring k[x1 . . . x9]/I which would be the
same.)

R = ZZ/101[x_1..x_9];

i2 : A = genericMatrix(R, x_1, 3,3);

3 3
o2 : Matrix R <--- R
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i3 : I = ideal {det(A), trace(A), trace(exteriorPower(2,A))};

o3 : Ideal of R

i4 : Nilp = R/I;

i5 : dim Nilp

o5 = 6

Next we do a bunch of things. We define the ideal K of matrices satisfying
A2 = 0, and them compute its radical. On the other side we compute the ideal
Sing of the singular locus by running through the procedure of the previous
section. Sing is the sum of I with the 3 × 3 minors of the Jacobian of the
generators of I. The final step is to see that

√
K =

√
Sing.

i6 : K = ideal A^2;

o6 : Ideal of R

i7 : rK = radical K;

o7 : Ideal of R

i8 : Jac = jacobian I;

9 3
o8 : Matrix R <--- R

i9 : J = minors(3, Jac);

o9 : Ideal of R

i10 : Sing = J + I;

o10 : Ideal of R

i11 : rSing = radical Sing;

o11 : Ideal of R

i12 : rK == rSing

o12 = true
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5.4 Bertini-Sard theorem

Sard’s theorem states that the set of critical points of a C∞ map is small in the
sense of Baire category or measure theory. We state an analogue in algebraic
geometry whose sister theorem due to Bertini is actually much older. Given
a morphism of affine varieties f : X → Y and a ∈ X, we get a linear map
dfa : TaX → Tf(a)Y defined by v 7→ v ◦ f∗.

Exercise 5.4.1. Show that for f : An → Am, dfa can be represented by the
Jacobian of the components evaluated at a.

Theorem 5.4.2. Let f : X → Y be a dominant morphism of nonsingular
varieties defined over a field of characteristic 0, then there exists a nonempty
open set U ⊂ Y such that for any y ∈ U , f−1(y) is nonsingular and for any
x ∈ f−1(y), dfx is surjective.

A proof can be found in [Ht, III 10.7]. This is the first time that we have
encountered the characteristic zero assumption. The assumption is necessary:

Example 5.4.3. Suppose k has characteristic p > 0. The Frobenius morphism
F : A1 → A1 is given by x 7→ xp. Then dF = pxp−1 = 0 everywhere.

A hyperplane of Pn is a subvariety of the form H = PV (f) where f is linear
polynomial. It is clear that H depends only on f up to a nonzero scalar multiple.
Thus the set of hyperplanes forms an n dimensional projective space in its own
right called the dual projective space P̌n.

Lemma 5.4.4. If X ⊂ Pn is a subvariety of positive dimension then X∩H 6= ∅
for any hyperplane.

Proof. If X ∩H = ∅ then X would be contained in the affine space Pn−H.

Theorem 5.4.5 (Bertini). If X ⊂ Pn is a nonsingular variety, there exists a
nonempty open set U ⊂ P̌n such that X ∩H is nonsingular for any H ∈ U .

Although this theorem is valid in any characteristic, the proof we give only
works in characteristic 0.

Proof. Let
I = {(x,H) ∈ X × P̌n | x ∈ H}

be the so called incidence variety with projections p : I → X and q : I → P̌n.
In more explicit, terms

I = {([x0, . . . xn], [y0, . . . y − n]) |
∑

xiyi = 0}

So the preimage

p−1({x0 6= 0}∩X) = {([1, x1, . . . xn], [−x1y1−x2y2−. . . , y1, . . . yn])} ∼= An×Pn−1
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A similar isomorphism holds for p−1({xi 6= 0} ∩X) for any i. Thus I is nonsin-
gular. The map q is surjective by the previous lemma. Therefore by theorem
5.4.2, there exists a nonempty open U ⊂ P̌n such that X ∩ H = q−1(H) is
nonsingular for every H ∈ U .
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