
FROM CLASSICAL HODGE THEORY TO HODGE MODULES

DONU ARAPURA

These are my notes for the spring school in Algebraic Geometry in Beijing, March
2015. My goal is to give a rapid overview of Hodge theory from the beginning to
the notion of a Hodge module.

1. Classical Hodge theory

We start with a quick summary of classical Hodge theory. Proofs and further
details can be found in, for example, Griffiths-Harris [GH] or Wells [W].

1.1. Hodge and Lefschetz decompositions. Let X be a smooth projective va-
riety over C (with its classical topology). This implies that X is a compact oriented
C∞ manifold. So by de Rham’s theorem, we can represent singular cohomology
Hi(X,C) by differential forms

Theorem 1.2 (de Rham). If E i(X) denotes the space of complex valued C∞-forms,
then

Hi(X,C) ∼=
{α ∈ E i(X) | dα = 0}
{dβ | β ∈ E i−1(X)}

The most natural proof of this from our point of view is by sheaf theory. We
will assume that people are familiar with this, but it won’t hurt to do a quick
review. Given a sheaf F on a space X, we can associate a sequence of cohomology
groups Hi(X,F), i = 0, 1, 2 . . . such that H0(X,F) = Γ(X,F) is the space of global
section. The key point is that when X is paracompact and Hausdorff (and we will
always assume this), sheaf cohomology can computed by

Hi(X,F) =
ker[Γ(X,F i)→ Γ(X,F i+1)]

im[Γ(X,F i−1)→ Γ(X,F i)]
whenever F → F• is a resolution by fine sheaves. The power of this is given by the
fact that we can choose different resolutions for different purposes. Returning to
the case where X is an oriented manifold, Poincaré’s lemma gives an exact sequence
of sheaves

0→ CX → E0
X

d→ E1
X

d→ . . .

where CX is the sheaf of locally constant C-valued functions on X, and EpX is the
sheaf of p-forms. Since the latter sheaves are fine, this is a fine resolution. Therefore
we get an isomorphism between de Rham cohomology and sheaf cohomology of
CX . A different fine resolution gives an isomorphism between sheaf cohomology
and singular cohomology. And this concludes the outline of proof.

Since X is in fact a complex manifold, we can decompose forms into (p, q)-type:

(1) E i(X) =
⊕
p+q=i

Epq(X)
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where α ∈ Epq(X) if in local analytic coordinates

α =
∑

fi1...ip,j1,...,jqdzi1 ∧ . . . dzip ∧ dz̄j1 ∧ . . . dz̄jq

Theorem 1.3 (Hodge decomposition). There is a bigrading

Hi(X,C) =
⊕
p+q=i

Hpq(X)

where Hpq(X) is the subspace represented by (p, q)-forms. Moreover Hpq = Hqp.

We want to emphasize that this is not merely a formal consequence of (1). The
theorem yields nontrivial topological restrictions on smooth projective varieties,
which do not hold for general compact complex manifolds such as the Hopf manifold.

Corollary 1.4. The odd Betti numbers b1, b3, . . . are even integers.

Proof. b1 = 2 dimH10 etc. �

Here are the key ideas of the proof of the theorem.

(1) A Riemannian metric is a choice of C∞ family of inner products g on the
tangent spaces. If we choose a Riemannian metric on X, then we can
define a Laplacian ∆ = dd∗ + d∗d, where d∗ is the adjoint with respect
to the inner product determined by the metric. When X is compact and
Riemannian, Hodge (and Weyl) proved that any cohomology class has a
unique representative which is harmonic i.e. which lies in the kernel of ∆.
In broad outline, this involves first proving the statement for L2 forms using
some functional analysis, and using the fact that (weak) L2 solutions of ∆
are C∞ because it is elliptic.

(2) A metric g is Kähler if the complex structure J is orthogonal, which
means g(JX, JY ) = g(X,Y ), and the Kähler 2-form ω(X,Y ) = g(X, JY )
is closed. For such a metric, we have a so called Kähler identity ∆ =
2(∂̄∂̄∗ + ∂̄∗∂̄) where ∂̄ is the Cauchy-Riemann operator. This connects
the theory of harmonic forms to complex geometry. In particular, it fol-
lows that a form is harmonic if and only if all of its (p, q) components are
harmonic. This shows that the Hodge decomposition holds for a compact
Kähler manifold.

(3) The only thing left is to show that a smooth projective variety X is Kähler.
By definition X can be embedded into a complex projective space PNC as a
submanifold. PNC carries a natural hermitian metric called the Fubini-Study
metric. This metric, and its restriction to X are Kähler.

Fix an embedding X ⊂ PN . If H ⊂ PNC is a hyperplane, the homology class
[X ∩H] ∈ H2(X,Q) is well defined. By Poincaré duality, we can identify this with
a cohomology class [X ∩H] ∈ H2(X,Q). As a de Rham class it is represented by
the Kähler form of the Fubini-Study metric. Cup product with this class, or wedge
product with the Käher form, will be denoted by L. Let n = dimX denote the
dimension as a complex manifold (so 2n is the real dimension). The following is
proved with the help of further Kähler identities.

Theorem 1.5 (Hard Lefschetz).

(1) We have isomorphisms

Li : Hn−i(X,Q)
∼→ Hn+i(X,Q)
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(2) Let Pn−i(X,Q) = kerLi+1 : Hn−i(X,Q) → Hn+i+2(X,Q). This is called
primitive cohomology. Then

Hi(X,Q) = P i(X,Q)⊕ LP i−1(X,Q)⊕ L2P i−2(X,Q)⊕ . . .

This rather complicated statement has a number of important consequences.
For example, it implies that the even (and odd) Betti numbers form an increasing
sequence b0 ≤ b2 ≤ b4 . . . up to bn. We will use it construct a certain quadratic
form which will play an important role later. We define a pairing

Q(α, β) = (−1)
1
2k(k−1)

∫
X

Ln−kα ∧ β

on Hk(X). This is symmetric if k is even, and skew symmetric if k is odd. Let C
denote multiplication by ip−q on Hpq. This is called the Weil operator.

Theorem 1.6 (Hodge-Riemann bilinear relations).

(1) Q(Hpq, Hrs) = 0 if (p, q) 6= (r, s).
(2) Q(C−,−) is symmetric positive definite on P k(X,R)

It is convenient to abstract things a bit. A Hodge structure of weight i consists
of a finitely generated abelian group H together with decomposition

HC := H ⊗ C =
⊕
p+q=i

Hpq

such that Hpq = Hqp. We sometimes refer to this as pure Hodge structure, to
distinguish it from mixed Hodge structures introduced later. A rational Hodge
structure is defined similarly by replacing the abelian group by a finite dimensional
Q-vector space. A choice of quadratic form Q satisfying the Hodge-Riemann rela-
tions (theorem 1.6 (1) and (2)) is called a polarization. So this theorem says that
primitive cohomology carries a polarization. In fact, by combining this with the
hard Lefschetz theorem, we can build a polarization on the full cohomology.

1.7. Canonical Hodge structure. Since the proof of the Hodge decomposition
relied on a choice of Kähler metric, it is perhaps a bit surprising that it can be made
independent of it. First we make a definition. A morphism of Hodge structures
f : H → G of weight i is a homomorphism of abelian groups such that the extension
to C takes Hpq to Gpq. In this way, we get a category of Hodge structures for each
weight.

Theorem 1.8 (Deligne). There is a contravariant functor X 7→ Hi
del(X) from the

category of smooth projective varieties over C to the category of polarizable Hodge
structures of weight i, such that for any choice of Kähler metric on X, Hi

del(X) is
isomorphic to the Hodge structure given by harmonic forms.

Before explaining the idea, we give an alternate definition which is often more
convenient. Given a Hodge structure H of weight i, define the Hodge filtration by

F p = Hpq ⊕Hp+1,q ⊕ . . .
We have the following easy lemma.

Lemma 1.9. For each p, HC = F p⊕F i−p+1. Conversely, any filtration satisfying
the last condition arises from the unique weight i Hodge structure given by Hpq =
F p ∩ F q.
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This becomes an equivalence of categories provided we declare morphisms in the
second instance to be filtration preserving maps.

Given a smooth projective variety X, let E•(X) denote the de Rham complex.
We filter this by

F pE i(X) =
⊕
i≥p

Er,i−r(X)

One easily checks that this is a subcomplex, i.e. dF pE•(X) ⊂ F pE•(X). Setting

F pHi(X) = im[Hi(F pE•(X))→ Hi(E•(X))]

we have

Lemma 1.10. Hi(X) with the filtration F pHi(X) is isomorphic to the space of
harmonic forms with its Hodge filtration with respect any Kähler metric.

Theorem 1.8 follows from this. It is convenient to say this in slightly fancier
terms. The constant sheaf is resolved by the holomorphic de Rham complex1

0→ CX → OX → Ω1
X → . . .

Even though this is not a fine resolution, we can still draw the useful conclusion
that Hi(X,C) is isomorphic to the hypercohomology group Hi(X,Ω•X). Recall that
given a bounded complex of sheaves F•, we can associate a group called the hyper-
cohomology group Hi(X,F•) with following properties:

(1) If F• consists of a single sheaf Fn concentrated in degree n, Hi(X,F•) =
Hi−n(X,Fn).

(2) If F• → G• is a morphism of complexes, then we have an induced map
Hi(X,F•)→ Hi(X,G•)

(3) If the map on complexes is a quasi-isomorphism, which means that it in-
duces an isomorphism between Hi(F•) ∼= Hi(G•) for all i where

Hi(F•) =
ker[F i → F i+1]

im[F i−1 → F i]

then the above map on hypercohomology is an isomorphism.
(4) If all of the sheaves F i are fine, then hypercohomology is cohomology of

the complex Γ(F•).
Returning to our original story, we can filter the holomorphic de Rham complex

by the so called stupid filtration

F pΩjX =

{
ΩjX if j ≥ p
0 otherwise

This induces a filtration on hypercohomology

F pHi(X,Ω•X) = im[Hi(X,F pΩ•X)→ Hi(X,Ω•X)]

Lemma 1.11. Under the isomorphism Hi(X,Ω•X) ∼= Hi(X,C) = Hi
del(X)C, the

filtration induced by F pΩ•X maps to the Hodge filtration of Hi
del(X).

1We use the symbols OX ,Ω1
X , . . . to stand for the sheaf of holomorphic functions, 1-forms etc.
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2. Mixed Hodge structures

Deligne gave a far reaching generalization of classical Hodge theory to arbitrary,
possibly singular or noncompact, complex algebraic varieties. He was partly moti-
vated with the analogy of what happens over finite fields. We start with an example.
If X is a projective curve with a single node. Let X̃ be the normalization. Topolog-
ically, X is obtained by identifying two points p, q ∈ X̃. One sees that X carries an
additional loop corresponding to a path γ from p to q. It follows that the first Betti
number b1(X) = b1(X̃) + 1 is odd, so H1(X) cannot carry a weight 1 Hodge struc-
ture. Nevertheless, we do have something resembling a Hodge structure. We define
a basis of H1(X,Q) = Hom(H1(X,Z),Q) to consist of γ∗ together with a basis α∗i
of H1(X̃,Q) dual to a basis of H1(X̃,Z). Any holomorphic 1-form ω ∈ H0(X̃,Ω1

X̃
)

can be expanded as

ω =

(∫
γ

ω

)
γ∗ +

∑(∫
αi

ω

)
α∗i ∈ H1(X,C)

Let F 1 ⊂ H1(X,C) denote the span of the holomorphic 1-forms as above, and let
W0 ⊂ H1(X,Q) be the span of γ∗. Notice if we take the quotient H1(X)/W0,

then we get H1(X̃) and F 1 projects onto the correct subspace of it. Now we are
ready for the general definition. A rational mixed Hodge structure consists of a
finite dimensional Q-vector space HQ, an increasing filtration W• on HQ called the
weight filtration, and a decreasing filtration F • on HC called the Hodge filtration
such that for each k, GrWk H = Wk/Wk−1 with the filtration im(F p ∩Wk ⊗ C) is
a pure Hodge structure of weight k. An integral mixed Hodge structure consists
of all of the above, plus a finitely generated abelian group HZ and an isomorphism
HZ ⊗Q ∼= HQ.

Here are some examples.

Example 2.1. Given a pure Hodge structure H of weight k, if we set Wk = HQ
and Wk−1 = 0 then this becomes a mixed Hodge structure.

Example 2.2. If X is a nodal curve as above, then H1(X,Z) carries an integral
mixed Hodge structure that we essentially described above. To finish the description,
set W1 = H1(X,Q), F 0 = H1(X,C) and HZ = H1(X,Z).

As should be clear from this description, the mixed Hodge structure on H1(X)
carries a lot of information which would be useful to understand. First of all, it
determines the Hodge structure H1(X̃) and therefore X̃ by Torelli’s theorem:

Theorem 2.3 (Torelli). A smooth projective curve Y is determined by H1(Y ),
together with the quadratic form Q and the Hodge structure on it.

This is usually stated as saying that Y is determined by the Jacobian variety
J(Y ) as a polarized abelian variety. A proof of the last statement can be found in
[GH]. Recall that as an abstract group J(Y ) is the divisor class group, which is
the free abelian group Div(Y ) generated by Y modulo a suitable subgroup. After
fixing a base point y0 ∈ Y , the Abel-Jacobi map which sends

∑
nipi ∈ Div(Y ) to∑

ni
∫ pi
y0

in

H1(Y,C)

F 1 +H1(Y,Z)

induces an isomorphism of abstract groups. This endows J(Y ) with the structure
of a complex torus, and eventually an abelian variety.
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Returning to our nodal curve X, we see that γ∗ =
∫
γ

projects ont the class

[p− q] ∈ J(X̃). With a bit more work, we obtain a Torelli theorem, due to Carlson,
that X is determined by H1(X) as a mixed Hodge structure, together with a
polarization on H1(X)/W0.

2.4. Deligne’s mixed Hodge structure. We define the category of mixed Hodge
structures, where the morphisms are Q-linear maps preserving both filtrations. The
basic structure is given by:

Theorem 2.5 (Deligne). The category of mixed Hodge structures is abelian, and
the functors (H,W,F ) 7→Wk and (H,W,F ) 7→ F p are exact.

To say that the category is abelian roughly means that it behaves very much like
the category of modules over a ring. This is far from obvious, since the categories
of filtered or bifiltered vector spaces are not abelian.

Theorem 2.6 (Deligne). There is a functor X 7→ Hi
del(X,Q) from the category of

complex algebraic varieties to the category of mixed Hodge structures. The under-
lying vector space is just singular cohomology. When X is smooth and projective,
this coincides with the pure Hodge structure given in theorem 1.8.

We will simply write Hi
del(X,Q) = Hi(X,Q) below. We want to describe the

filtrations in the important special case where X is quasiprojective and smooth. By
definition X possesses a projective compactification X̄. After applying Hironaka’s
theorem on resolution of singularities, we can assume X̄ is smooth and the com-
plement D = X̄ − X is a divisor with simple normal crossings. This means that
about any point of X, we can find local analytic coordinates z1, . . . , zn, such that
D is given by z1z2 . . . zk = 0, and each irreducible component of D is nonsingular.
Define Ω1

X̄
(logD) to be the sheaf of OX̄ -modules generated by the meromorphic

differentials
dz1

z1
, . . . ,

dzk
zk

, dzk+1, . . . , dzn

This is locally free of rank n. Let Ωp
X̄

(logD) denote the pth exterior power of

Ω1
X̄

(logD). Given α ∈ Γ(U,ΩpX(logD)), we can differentiate this as a meromorphic

form, and it is easy to see that dα ∈ Γ(U,Ωp+1
X̄

(logD)). Therefore we have a
complex of sheaves Ω•

X̄
(logD). The first step is the appropriate de Rham theorem:

Theorem 2.7. There is an isomorphism Hi(X,C) ∼= Hi(X̄,Ω•
X̄

(logD)).

With this in hand we can describe the filtrations. The Hodge filtration F pHi(X,C)
is induced using the stupid filtration F pΩ•

X̄
(logD) as before. For the weight filtra-

tion, we first define

WkΩp
X̄

(logD) = ΩkX̄(logD) ∧ Ωp−k
X̄

In other words, to be in Wk we allow products of at most k logarithmic differentials
dzi/zi. Now we filter

Wi+kH
i(X,C) = Hi(X,WkΩ•X̄(logD))

(note the shift on the left). A separate argument needs to be made to show that
this is defined over Q.
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It is still not clear why this yields a mixed Hodge structure. To explain this, we
make the further simplifying assumption that D is a smooth divisor. Then there is
a residue map

Ωp
X̄

(logD)→ Ωp−1
D

which sends dz1
z1
∧ α 7→ ±α|D. This induces a short exact sequence

0→ Ω•X̄ → Ω•X̄(logD)→ Ω•−1
D → 0

which gives a long exact sequence of hypercohomologies

. . .Hi(X̄,Ω•X̄)→ Hi(X̄,Ω•X̄(logD))→ Hi−1(D,Ω•D)→ Hi+1(X̄,Ω•X̄) . . .

This coincides with the Thom-Gysin sequence

. . . Hi(X̄,C)→ Hi(X,C)→ Hi−1(D,C)(−1)
γ→ Hi+1(X̄,C)→ . . .

The map labelled γ is the Gysin map which is Poincaré dual to the restriction. The
notation (−1) is called a Tate twist; it indicates that the filtration has been shifted
so that Hi−1(D)(−1) has weight i+ 1 and also the lattice is multiplied by a factor
of 1

2πi . Now comes the key point. Our filtrations are set up so that

Wi−1H
i(X) = 0, Wi+1H

i(X) = Hi(X)

WiH
i(X) ∼= coker[γ : Hi−2(D)(−1)→ Hi(X̄)]

Hi(X)/Wi
∼= ker[γ : Hi−1(D)(−1)→ Hi+1(X̄)]

where the isomorphisms are compatible with F . The right sides of the last two
equations carry Hodge structures of the expected weight.

For a more detailed treatment see [PS].

2.8. Limit mixed Hodge structure. Suppose that we are given a family of va-
rieties f : X → ∆ over a small disk with smooth fibres over ∆∗ = ∆ − {0}. Then
the restriction of X to ∆∗ is a fibre bundle, and we have a homotopy equivalence
between X0 and X. This leads to a map sp : Hi(X0) ∼= Hi(X)→ Hi(Xt) for t 6= 0,
called cospecialization which we would like to understand. As a topological space,
the restriction of X → ∆ to the circle of radius |t| is obtained by gluing the ends of
Xt×[0, 1] together. This gluing gives an automorphism T : Hi(Xt,Q)→ Hi(Xt,Q)
called monodromy. It is not hard to show that the image of sp lies in the invariant
part

Hi(Xt,Q)T = kerHi(Xt,Q)
T−1−→ Hi(Xt,Q)

Much deeper is the surjectivity.

Theorem 2.9 (Local invariant cycle theorem). The map

sp : Hi(X0,Q)→ Hi(Xt,Q)T

is surjective.

This theorem, due to Clemens and Schmid, was deduced from Schmid’s theorem
[Sc] on the existence of the so called limit mixed Hodge structure. There is a special
case which is fairly easy, and which goes back in some sense to the work of Picard
and Lefschetz. This is the situation where a smooth projective curve Xt degenerates
to a nodal curve X0. We can choose a loop α1(t) on Xt which shrinks to a point
as t → 0. We may complete this to a continuous family of cycles α1(t), β1(t), . . .,
forming a symplectic basis. In the limit the remaining cycles β1(0), α2(0), . . . would
give a basis ofH1(X0). Under specializationH1(Xt)→ H1(X0), α1(t) 7→ 0, β1(t) 7→
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β1(0) etc. Thus the image of sp is spanned by β1(t)∗, α2(t)∗, . . . in the dual basis.
The Picard-Lefschetz formula shows that this is also the space of invariant classes.
This example also shows that the cospecialization map is not a morphism of mixed
Hodge structures. However, it can be made into one provided we change the weight
filtration on H1(Xt) to W0 = 〈β1(t)∗〉, W1 = 〈β1(t)∗, α2(t)∗ . . .〉, W2 = H1(Xt).

The last example hints at the general picture, but there is one important change.
In general, we should not work with a specific Xt, but instead with an idealized
“nearby fibre”. This is the fibered product π : X̃ = ∆̃∗×∆X → X where ∆̃∗ → ∆∗

denotes the universal cover. It is the cohomology Hi(X̃), which is only noncanoni-

cally Hi(Xt), that carries the limit mixed Hodge structure. Note that Hi(X̃) also
carries a monodromy transformation which we also denote by T . Using Jordan
canonical form, we can decompose T = TuTs = TsTu where Tu is unipotent and Ts
is semisimple. An important theorem of Borel, Grothendieck, Landman... shows
that Ts has finite order, so that T is a so called quasi-unipotent transformation. The
information contained in the unipotent part is equivalent to the nilpotent trans-
formation N = log(Tu) = (Tu − I) − 1

2 (Tu − I)2 + . . . Next comes a bit of linear
algebra:

Theorem 2.10. Given a finite dimensional vector space V over a field of char-
acteristic 0 with a nilpotent endomorphism N and an integer m, there exists a
unique increasing filtration M• such that NMk ⊂ Mk−2 and the “hard Lefschetz”
isomorphism Nk : GrMm+k

∼= GrMm−k holds.

M is called the monodromy (weight) filtration shifted by m. We apply this with

V = Hi(X̃,Q), N as above, and m = i.

Theorem 2.11 (Schmid). There exists a mixed Hodge structure on Hi(X̃) with
weight filtration M .

The Hodge filtration is the limit limt→0 F
pHi(Xt), where the limit is taken in a

sense that will be made precise in the next lecture. By Griffiths transversality, to be
discussed later, NF p ⊂ F p−1. Therefore N preserves the Hodge and weight filtra-
tions up to a shift of −1 and −2 respectively. If Hi(X̃)(1) denotes the mixed Hodge

structure gotten by shifting the filtrations in this way, N : Hi(X̃)→ Hi(X̃)(1) be-
comes a morphism. Clemens and Schmid in fact proved that

Hi(X0)→ Hi(X̃)
N→ Hi(X̃)(1)

is an exact sequence of mixed Hodge structures.

2.12. Hodge-Lefschetz structures. Steenbrink [St] gave a geometric construc-
tion of the limit mixed Hodge structure, which gives further insight into it. Suppose
that Y =

⋃
Yi = f−1(0) is a reduced divisor with normal crossings. Then his con-

struction shows that the associated graded of the limit mixed Hodge structure, can
be understood in terms of the Hodge structures associated to the unions Y (i) of
intersections of components of Y . We want to discuss one rather technical point,
since we will need this later on. Steenbrink realized H∗(X̃,C) as the cohomology of
a filtered double complex constructed using logarithmic differential forms. The as-
sociated spectral sequence degenerates at the second page. In more explicit terms,
he constructed a family of complexes (the first page of the spectral sequence, but
written in a nonstandard way)

. . . Hi
j → Hj+1

i−1 → . . . ,
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where
Hj
i =

⊕
k

Hj+n−i−2k(Y (2k+i+1))(−i− k), n = dimX − 1

whose cohomology is the associated graded of H∗(X̃) for some filtration, say L. In
fact, L turns out to be the monodromy filtration. To prove this, one should note
that

(HL1) The spaces Hj
i carry Hodge structures of weight n+ i+ j.

and the differentials of the above complexes are compatible with this structure.
Furthermore, Steenbrink constructed

(HL2) an operator N : Hj
i → Hj

i−2(−1) satisfying hard Lefschetz N i : Hj
−i
∼=

Hj
i (−i). The usual Lefschetz operator ` : Hj

i → Hj+2
i (1) commutes with

N and also satisfies hard Lefschetz `i : H−ji
∼= Hj

i (j).

Moreover this is compatible with N on Hi(X̃), and NLi ⊂ Li−2. What remains is
to show that the hard Lefschetz property persists for the cohomology of the complex
H∗∗ . Steenbrink’s proof of this was incomplete, and fact the fix required new ideas.

A polarized bigraded Hodge-Lefschetz structure of weight n is a collection Hj
i , . . .

satisfying (HL1), (HL2) and the following

(HL3) A quadratic form Q such that such that Q(−, N i`j−) gives a polarization
on the “bi-primitive” part kerN i+1 ∩ `j+1.

The following theorem can be used to complete the argument.

Theorem 2.13. Suppose that H =
⊕
Hj
i is a polarized bigraded Hodge-Lefschetz

module with a differential d : Hj
i → Hj+1

i−1 commuting with ` and N and satisfying
〈x, dy〉 = ±〈dx, y〉. Then the cohomology ker d/ im d carries an induced polarized
Hodge-Lefschetz structure.

Proof. See [S1, 4.2.2] or [GN, 4.5]. �
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3. Variations of Hodge structures on a curve

3.1. Variations of Hodge structure. Given a family of smooth projective va-
rieties f : X → Y over a complex manifold, we can consider the family of Hodge
structures

⋃
Hi(Xy), Xy = f−1(y). The first thing to note X → Y is a C∞ fibre

bundle by Ereshmann’s theorem, this implies that the sheaf Rif∗Q which is the
sheaf associated to the presheaf U 7→ Hi(f−1U,Q), is locally constant. It need not
be constant however. The nontriviality is measured by the monodromy represen-
tation π1(Y, y)→ Aut(Hi(Xy,Q)). At this point, we should recall

Theorem 3.2 (Riemann-Hilbert I). Let Y be a complex manifold and k a field.
There is an equivalence between the categories of:

(1) locally constant sheaves of k-vector spaces,
(2) k-linear representations of the fundamental group,
(3) and when k = C, holomorphic vector bundles V with an integrable connec-

tions ∇ : V → Ω1
X ⊗ V .

The last item needs a bit more explanation. A connection is a C-linear map sat-
isfying the Leibnitz rule ∇fv = df⊗v+f∇v. In local coordinates, ∇ is determined
by the endomorphisms ∇∂i given by ∇v =

∑
dxi ⊗∇∂iv. Integrability is the con-

dition that ∇∂i commute. Existence and uniqueness theorems for PDE guarantee
that if ∇ is integrable, then ker∇ is a locally constant sheaf of the same rank as V .
Conversely, given a locally constant sheaf L of C-vector spaces, OX ⊗C L is a holo-
morphic vector bundle. It carries an integrable connection ∇ such that ker∇ = L.
Integrability has another interpretation which we recall. The sheaf of rings DX

of holomorphic differential operators is locally generated by x1, . . . , xn, ∂1, . . . , ∂n
subject to the Weyl relations [xi, xj ] = [∂i, ∂j ] = 0 and [xi, ∂j ] = δij . Integrability
is precisely the condition for the action of vector fields on V , given by ∂i ·v = ∇∂iv,
to extend to a left DX -module structure.

Returning to our example, V = OX ⊗Q R
if∗Q carries an integrable connection

∇ such ker∇ = Rif∗C. This is called the Gauss-Manin connection. The Hodge
filtrations form subbundles F p ⊆ V . These are not generally stable under ∇.
Instead we have a weaker property called Griffiths transversality:

∇(F p) ⊂ Ω1
X ⊗ F p−1

This has a natural interpretation in the context of D-modules. The ring DX has
filtration by order. FkDX is the subsheaf of operators with locally at most k
partial derivatives. If we set F`V = F−`V . Then Griffiths transversality is just the
compatibility condition

(2) FkDX · F`V ⊂ Fk+`V

We now give a name to this sort of structure. A rational variation of Hodge
structure of weight i on a manifold Y consists of a locally constant sheaf L of Q-
vector spaces, subbundle F p ⊂ V = OX ⊗L satisfying Griffiths transversality such
that for each y, (Ly, F •y ⊂ Vy ∼= C⊗Ly) is a pure Hodge structure of weight i. For
all the deeper properties, it is important to require the existence of a polarization,
which a quadratic form Q on the local system L which gives a polarization, in the
previous sense, on all the fibres.
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3.3. Variations of Hodge structure on the disk. Let ∆ ⊂ C be a small disk
around 0, and let ∆∗ = ∆ − {0} with j : ∆∗ → ∆ the inclusion. Suppose that
(L, F •, Q) is a polarized variation of Hodge structures of weight m on ∆∗. We
have an integrable connection ∇ : V → Ω∆∗ ⊗ V . This is known to have regular
singularities. This means roughly that the solutions∇v = 0 grow at worst like |t|−N
for some N where t is the local parameter. More precisely, we want the multivalued
section v to satisfy ||v||2 = Q(Cv, v̄) ≤ |t|−N on angular sectors {θ1 ≤ arg(t) ≤ θ2}.
An equivalent statement, going back to Fuchs, is that there is a local basis vi of V so
that the connection matrix A, determined by ∇vi =

∑
aijvj , has simple poles. Or

to put it another way, there exist a vector bundle V̄ ⊂ j∗V on ∆ with an operator
∇̄ : V̄ → Ω1

∆(log 0) ⊗ V̄ such that (V̄ , ∇̄) extends (V,∇). This does not uniquely

determine the extension. If we expand A = R dt
t + higher order terms, then it is

known that R = − 1
2πi log(T ), where T is the monodromy transformation associated

to the local system. But this leaves an ambiguity in the choice of the branch of the
logarithm We can make a unique choice by further requiring the eigenvalues of the
residue R to lie in a half open unit interval. Let V b (respectively V >b) denote the
bundle corresponding to [b, b+1) (respectively (b, b+1]) . Our preferred choice will
be V̄ = V >−1.

We now want to bring the Hodge filtration into play. Let fp = rankF p. Fix
a reference vector space U with a quadratic form P such that (Lt, Qt) ∼= (U,P )
for all t ∈ ∆∗. The collection of Hodge structures F pU on U polarized by P with
dimF pU = fp is parameterized by a complex manifold D called a (Griffiths) period
domain. This is a noncompact manifold on which the groupGR = Aut((UR, Q)) acts
transitively. We can embed D as an open subset of the smooth projective variety Ď
parametrizing flags on F pU satisfying dimF p = fp and one of the Hodge-Riemann
relations Q(F p, Fm−p+1) = 0. We can identify the universal cover ∆̃∗ with the
upper half plane H. The variation of Hodge structure L determines a holomorphic
map from the universal cover p : H → D called the period map. We can view
the monodromy T as lying in GR. The transformation T is known to be quasi-
unipotent. This means that after replacing ∆ by a finite cover branched at 0, T
becomes unipotent. Let us assume this for now, and let N = log T . We define
p̃(t) = exp(−tN)p(t). We have p(t + 1) = Tp(t), therefore p̃(t) is invariant. Since
Ď is compact, p̃ extends to holomorphic map ∆ → Ď. In particular, p̃(0) ∈ Ď
corresponds to a filtration on U . This is the Hodge filtration that is put on the
limit mixed Hodge structure. This also implies that F pV̄ = j∗F

p∩V̄ is a subbundle
of V̄ . This is still true in general, assuming that T is only quasi-unipotent.

In preparation for the next lecture, let us view this through the lens of D-module
theory. Since V has an integrable connection it is naturally a D∆∗ -module. The
sheaf j∗V becomes a left D∆ module with the rule ∂tvi =

∑
〈∂t, aij〉vj , where 〈, 〉

denotes contraction of vector fields and 1-forms. However, it is very big. It is more
useful to focus on the D∆-submodule Ṽ ⊂ j∗V generated by V̄ = V >−1. This
D-module is sometimes called the minimal extension of V because it has no sub or
quotient D-module supported on 0. This will be explained in the next lecture.

Consider the map ∂t : Ṽ → Ṽ . We can see it is surjective and that the kernel
coincides with the sheaf j∗L ⊗ C. Thus we have a quasi-isomorphism

j∗L ⊗ C ∼= (Ṽ
∂t−→ Ṽ )
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We can view the complex on the right as a de Rham complex associated to Ṽ . It
is better to write this in a more invariant way as

(3) j∗L ⊗ C ∼= DRu(Ṽ ) := Ṽ
∇−→ Ω1

∆ ⊗O Ṽ
where the differential sends ∇(v) = dt ⊗ ∂tv. (The subscript u, which is nonstan-
dard, stands for “unshifted”. The significance of this will be clear later.)

We extend F p to a filtration of Ṽ by the rule

(4) F pṼ =

∞∑
i=0

∂itF
p+iV̄

This formula guarantees that ∂tF
pṼ = F p−1Ṽ as we would like. We note also that

the sheaves F pṼ are coherent over O∆, although Ṽ itself is not.

3.4. Zucker’s Hodge decomposition. Suppose that (L, F •V,Q) is a polarized
variation of Hodge structure of weight k on a smooth projective curve X. We have
a fine resolution

0→ L⊗ C→ E0 ⊗ V ∇→ E1 ⊗ V ∇→ E2 ⊗ V → 0

Therefore the cohomology of L ⊗ C can be represented by V -valued differential
forms. We use the polarization combined with a Kähler metric on X to introduce
an inner product on such forms. This allows us to define the Laplacian ∆ =
∇∇∗+∇∗∇ which is again elliptic. The Hodge theorem applied to this shows that
the cohomology of L ⊗ C is isomorphic to ker ∆.

As a C∞ bundle, V can be decomposed as V =
⊕

p+q=k V
pq where V pq =

F p/F p+1. This introduces a multigrading on forms which gets reduced to a bigrad-
ing as follows:

(E0 ⊗ V )pq = E00 ⊗ V pq

(E1 ⊗ V )pq = E10 ⊗ V p−1,q ⊕ E01 ⊗ V p,q−1

(E2 ⊗ V )pq = E11 ⊗ V p−1,q−1

We formally split ∇ = D′ + D′′, where D′ is of type (1, 0) and (0, 1) with respect
to this bigrading. A refinement of the earlier Kähler identity shows that ∆ =
2(D′′(D′′)∗+(D′′)∗D′′), so it preserves the bigrading. Combining these observations
leads to:

Theorem 3.5 (Deligne). Hi(X,L) carries a pure polarized Hodge structure of
weight i+ k.

Unfortunately, one is rarely in a situation where this can be applied. In practice,
one usually has an L defined on a Zariski open subset j : U → X. In order to get a
Hodge theorem, we need to work with V -valued forms with L2 growth conditions.
Since L2 cohomology, unlike ordinary cohomology, is sensitive to the metric, we
need to choose it with care. Zucker chooses it to be asymptotic to the Poincaré
metric around each puncture. With this choice, he proves that the sheaf of locally
L2-forms is a fine resolution of j∗L ⊗ C. So that:

Theorem 3.6 (Zucker). Hi(X, j∗L) carries a pure polarized Hodge structure of
weight i+ k.

Also using appropriate Kähler identities, one gets a hard Lefschetz theorem (cf
[KK]).
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Theorem 3.7. Cup product with the Kähler class induces an isomorphism

H0(X, j∗L)→ H2(X, j∗L)

We need a more explicit description of the Hodge filtration. Here we use the D-
module approach of Saito. Let Ṽ be the minimal extension of V to a DX -module.
We filter this as in (4). We can also filter the de Rham complex by

(5) F pDRu(Ṽ ) = F pṼ → Ω1
X ⊗ F p−1Ṽ

Theorem 3.8 (Saito-Zucker). Under the isomorphism Hi(X, j∗L)⊗C ∼= Hi(DRu(Ṽ )),
the Hodge filtration on the left coincides with the filtration induced by (5).

These results – without D-modules – are proved in [Z]. A nice account of this
from the present viewpoint can be found in Sabbah [Sb1].
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4. Hodge modules on a curve

4.1. D-modules and perverse sheaves on curves. At this point, we need to use
the language of derived categories. Very roughly, we want to work with complexes
up to quasi-isomorphism. Let X be a topological space and A a commutative
ring. An object of Db(X,A) is a bounded below complex of sheaves of A-modules
with finitely many nonzero cohomology groups. A morphism from A• → B• is
represented by a diagram

A•
∼← C• → B•

where the first arrow is a quasi-isomorphism. To complete the description, we
would have to say when two diagrams represent the same morphism, and also how
to compose. These details can be found in [GeM] for example. Here a few examples
to keep in mind. Any sheaf of A-modules gives an object in Db(X,A). Suppose we
are given a continuous map f : Y → X of sufficiently nice topological spaces and
a sheaf F of A-modules on X such that Rif∗F = 0 for i � 0 (this will hold in
all cases we consider). Then we let Rf∗F• ∈ Db(X,A) denote f∗F• for some fine
resolution F• of F . This is well defined up to isomorphism.

Now suppose that X is a smooth projective curve. We want to describe a special
class of DX -modules called regular holonomic modules. We start with the basic
building blocks.

Example 4.2. Given a point i : p→ X, local parameter t (although it is indepen-
dent of this) and a finite dimensional C-vector space H, we define

i+Hp =

∞⊕
n=0

∂nt Hp

where Hp is the skyscraper sheaf at p and ∂t is just treated as a symbol. This
becomes a DX-module where t acts trivially on elements of H and ∂t is applied
formally.

The next class of examples comes from the following proposition.

Proposition 4.3. Let (V,∇) be a vector bundle with an integrable connection with
regular singularities on a Zariski open set j : U → X. There exists a unique DX-
submodule Ṽ ⊂ j∗V which restricts to V and which has no sub or quotient modules
supported on the complement D = X − U . This is called the minimal extension of
V .

A DX -module is called regular holonomic if it has a finite filtration such that
the successive quotients are isomorphic to modules in one of the above two classes
(4.2, 4.3). Let us say that the module is decomposable if it is a direct sum of such
modules.

Given a D-module M we can form the de Rham complex DRu(M) as we did
in (3). People usually shift this so that DR(M) := DRu(M)[1] has M in degree
−1, because it makes it more symmetric under duality. We define an object of
Db(X,C) to be a (decomposable) perverse sheaf if it arises as DR(M) with M a
(decomposable) regular holonomic module. Note that for the sake of expedience,
we are turning what is usually stated as theorem (the Riemann-Hilbert correspon-
dence) into a definition. We refer to [HTT] for the detailed story. We define an
object of Db(X,Q) to be perverse if it perverse after tensoring by C. By definition,
perverse sheaves are built from the following basic examples.
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Example 4.4. If M = i+Hp, then we see almost immediately that DR(M) = Hp.

Example 4.5. Let M = Ṽ be as in proposition 4.3, then DR(M) = j∗L[1], where
L = ker∇.

The structure of perverse sheaves is summarized by:

Theorem 4.6. The full category Perv(X) ⊂ Db(X,Q) of perverse sheaves is
abelian. Any perverse sheaf has a finite filtration such that the successive quo-
tients are either Qp for some p, or j∗L[1] where L is a locally constant sheaf of
finite dimensional Q-vector spaces on a Zariski open j : U → X.

Corollary 4.7. A perverse sheaf has at most two nonzero cohomology sheaves H0

and H−1 and the first is supported on a finite set and the second is locally constant
on the complement of a finite set.

The corollary together with a dual condition gives a complete characterization of
perverse sheaves. For decomposable perverse sheaves the characterization is even
easier. They are exactly sums of objects in the above two classes (4.4, 4.5). Not all
perverse sheaves are decomposable.

Example 4.8. Given a Zariski open j : U → X, Rj∗QU [1] is a perverse sheaf
which is not decomposable.

4.9. Kashiwara-Malgrange filtration. We want to say a little more about how
the minimal extension of proposition 4.3 is constructed when (the local system
associated to) V has quasi-unipotent monodromy. This is the important case for
Hodge theory. We localize to the case of a disk ∆ ⊂ X such that ∆∗ ⊂ U . Given
a rational number b, let V b be the vector bundle on X such that (V,∇) extends to
∇̄ : V b → Ω1

X(logD) ⊗ V b such that the real parts of the eigenvalues of residues
lie in [b, b + 1). We define V >b in the same way except that we take the interval
as (b, b+ 1]. Let us make this more explicit. Let T be the local monodromy about
a puncture p ∈ D. Decompose it as a product T = TsTu = TuTs, where Tu is
unipotent and Ts is semisimple. Let {vj} be a local basis of (multivalued) solutions
to ∇v = 0 which diagonalizes Ts, i.e. Tsvj = λjvj . Then, if t is a local coordinate
at p, V b is locally generated by sections

exp

(
− log t log Tu

2πi

)
tαjvj ∈ Γ(∆, j∗V )

where αj ∈ [b, b + 1) and exp(−2πiαj) = λj . Likewise for V >b. We can see that

as subsheaves of j∗V , we have inclusions V >b
′ ⊂ V b

′ ⊂ V b whenever b′ > b. We
define Ṽ ⊂ j∗V to be the DX -module generated by V >−1.

Proposition 4.10. Ṽ has no no sub or quotient module supported at 0 i.e. anni-
hilated by t.

Proof. Since the connection matrix can be assumed to be upper triangular, we have
a filtration on V such that the successive quotients have rank one. Using this, we
can reduce to the case where V has rank one. So we can identify V >−1 = O∆t

α,
where α ∈ (−1, 0] and ∂t acts in the usual way. Then Ṽ = O∆ if α = 0, and

Ṽ = O∆[t−1]tα otherwise. In either case Ṽ is a simple D∆-module supported on
∆, and this implies the proposition. �
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The previous proposition also follows from more general considerations that we
want to explain. The module Ṽ inherits a decreasing filtration V bṼ = Ṽ ∩ V b,
indexed by Q, called the Kashiwara-Malgrange filtration. Such filtrations ex-
ist more generally, and are characterized by the properties tV αM ⊂ V α+1M ,
∂tV

αM ⊂ V α−1M , and V αM/V >αM is a finte dimensional space on which t∂t−α
acts nilpotently. Define the unipotent nearby cycle, nonunipotent nearby cycle
and unipotent vanishing cycle functors on the class of modules possessing such a
filtration by

ψutM = V 0M/V >0M

ψ 6=ut M =
⊕

−1<α<0

V αM/V >αM

φut = V −1M/V >−1M

These functors really do depend on t, but when it is understood we suppress it from
the notation. We can get some sense of what information these functors give about
the module from the next couple of examples.

Example 4.11. V αO∆ = t[α]O∆ if α ≥ 0 and V αO∆ = O∆ if α < 0. So that
ψuO∆ = φuO∆ = C and ψ 6=uO∆ = 0.

Example 4.12. If M is the module of example 4.2, then

(6) V αM =
⊕

0≤n≤−1−α

∂nt Hp

so that V αM = 0 if α > −1, ψuM = ψ 6=uM = 0 and φuM = H.

Proposition 4.13. A D∆-module M has no sub or quotient module supported at
0 if only the following two conditions hold:

(1) The map can : ψuM → φuM induced by −∂t is surjective.
(2) The map var : φuM → ψuM induced by t is injective.

Proof. We prove one direction assuming the exactness of the above functors. If
N ⊆ M is supported at 0. The formulas in example 4.12 show that tφu(N) ⊂
ψu(N) = 0. Therefore φuN ⊆ φuM lies in the kernel of var. If N is the quotient
of M supported at 0, then φuN is a quotient of coker can for similar reasons. �

We can use this to give another proof of proposition 4.10. It also implies the
next proposition.

Proposition 4.14. A regular holonomic D∆-module M is decomposable if and only
if φuM = im can⊕ ker var.

The above functors have topological interpretations (which is where the names
come from). For example, ψuM and ψ 6=uM are respectively isomorphic to the kernel

and cokernel of Ts − I on the space of multivalued flat sections {v ∈ Γ(∆̃∗,M) |
∂tv = 0}.

4.15. Hodge modules on curves (simple definition). A Hodge module is a
generalization of a variation of Hodge structure so as to allow singularities. The
underlying vector bundle with connection is replaced by a D-module. The precise
set up is as follows. Let us say that a pre-Hodge module on a curve X consists
of a tuple M = (M,F •,L, α) where M is regular holonomic DX -module, F • is a
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filtration of M by OX -submodules satisfying (2) such that F p/F p+1 is coherent,
and L is a perverse sheaf over Q with an isomorphism α : L ⊗ C ∼= DR(M). Here
are some basic examples.

Example 4.16. Given a pure polarizable Hodge structure H and a point i : p→ X,
we can associate a pre-Hodge module supported at p. The D-module is

i+H =
⊕

∂nt H

with filtration

(7) F p(i+H) =
⊕

∂nt F
p+n

The perverse sheaf is i∗HQ.

Example 4.17. Given a pure polarizable variation of Hodge structure (V, F •,L)

on a Zariski open set j : U → X, the minimal extension Ṽ gives a D-module with
filtration given by (4). Together with the perverse sheaf j∗L[1], we get a pre-Hodge
module.

We define a (polarizable) Hodge module to be a pre-Hodge module which can
be written as direct sum of modules in the previous two classes (4.16, 4.17). So
the underlying D-module is decomposable. The collection of pre-Hodge modules
becomes category where morphisms are compatible families of maps between pairs
of perverse sheaves and pairs of D-modules, where the D-module maps should
preserve filtrations. The full subcategory of Hodge modules is easily seen to be
abelian, although the bigger category is not.

We can define the weight of a Hodge module to be k if all the summands of type
4.16 arise from weight k Hodge structures and all the summands of type 4.17 arise
from weight k−1 variations of Hodge structure. As a corollary of Zucker’s theorem
we obtain.

Corollary 4.18. If L is a perverse sheaf which is part of a Hodge module of weight
k, then Hi(X,L) carries a Hodge structure of weight i+ k.

4.19. Hodge modules on curves (actual definition). We were really cheating
in defining Hodge modules the way we did. This was not Saito’s original definition,
but rather a consequence. The point really is that Saito was working in arbitrary
dimensions. The naive definition we gave does not generalize in any obvious way.
We describe Saito’s conditions for a fixed pre-Hodge module (M,F •,L, α). First of
all, we need conditions which guarantee that the V and F filtrations behave well
together. For every local coordinate t, Saito’s requires that

(HM1) L should be quasi-unipotent about t = 0, so we have a V -filtration on M .

(HM2) t : F pV αM
∼→ F pV α+1M for α > −1.

(HM3) ∂t : F pV αM/V >αM
∼→ F p−1V α−1M/V >α−1M for α < 0.

We want to say a few words about these rather technical conditions (HM2) and
(HM3). These hold trivially for M in example 4.16 using (6) and (7). These
conditions also hold – less trivially – for example 4.17. In fact, for a module
generated by V >−1, these are equivalent to (4) (cf [S1, prop 3.2.2]).

Next, Saito requires a refinement of the conditions of proposition 4.14 to hold in
the filtered setting.

(HM4) For every local parameter t, Gr−1
V (M,F ) = im can ⊕ ker var as filtered

modules.
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The last two axioms are inductive axioms, where he uses induction on support.

(HM5) A pre-Hodge module with zero dimensional support is a Hodge module if
and only if it arises from Hodge structure as in example 4.16.

The final axiom is rather subtle. Roughly speaking, we want restriction ofM =
(M,F •, . . .) to any point p ∈ X to be a Hodge structure; however, this is too
naive for a couple of reasons. First of all, instead of restriction we need to use
nearby/vanishing cycle functors with respect to some parameter t at p. Secondly,
when we apply ψut we are exactly in the situation of Schmid’s theorem, and the
resulting object is really a mixed Hodge structure. We need to apply the associated
graded with respect to the monodromy filtration relative to N = 1

2πi log Tu to get
pure Hodge structures.

(HM6) The associated graded objects of ψutM with respect to the monodromy
filtration associated to N is a pure Hodge structure of expected weight.

Similar statements should apply to φutM and ψ 6=ut M.

Thus far we have described possibly nonpolarizable Hodge modules. In order
to get a really useful theory, we need to require polarizations. A polarization is
a pairing on the D-module which satisfies certain inductive conditions. Roughly
speaking, we want the notion to agree with the usual one for Hodge structures, and
be compatible with nearby and vanishing cycle functors in an appropriate sense.
We omit the precise details. With a few modifications, this gives the definition
of polarizable Hodge modules for smooth varieties of arbitrary dimension. Saito
even allows the ambient variety to be singular, essentially by taking modules on a
larger smooth variety supported on the original variety. To simplify terminology
we assume that all Hodge modules from now on are polarizable. The structure of
this category is given by the next result.

Theorem 4.20 (Saito). Let X be a projective variety, and Z ⊂ X an irreducible
closed subvariety. A polarizable variation of Hodge structure on a Zariski open
subset of Z extends to a Hodge module supported on Z such that the underlying
D-module is the minimal extension. Every simple Hodge module is of this form.
Every Hodge module is a direct sum of simple modules.

When X is a curve, we recover the description of Hodge modules given in the
previous section.

4.21. Direct image. We want to consider one basic example. Let f : Y → X be
a surjective map from a smooth projective variety onto a curve. Let n = dimY
and let M = (OY , F •,QY [n], α) be the pre-Hodge module on Y , where the Hodge
filtration is F 0 = OY , F 1 = 0 and α is the isomorphism with the de Rham complex

CY ∼= OY → Ω1
Y → . . .︸ ︷︷ ︸

DRu(OY )

translated by n. Since OY is a simple DY -module with trivial filtration, it is not
difficult to check that this is a Hodge module.

When f is smooth, we have already seen that Rif∗Q is part of a polarizable
variation of Hodge structure, and therefore it is gives rise to a Hodge module. We
want to redo the construction so that it works even when f has singularities. The
first step to take the direct image of OY in the category of D-modules. Before
writing down formulas, we should explain the big picture. We want a complex of
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regular holonomic modules Rf+OY (or more accurately an object in the appropriate
derived category) such that DR(Rf+OY ) = Rf∗Q[n]. Taking ith cohomology yields
a regular holonomic module that we denote by Rif+OY . We can apply DR again
to Rif+OY to obtain a perverse sheaf which we denote by pHiRf∗C[n]. This is
the same as Rn−1+if∗C[1] when f is smooth but not in general. This begs the
question: is there are direct construction of this perverse sheaf that avoids going
through the Riemann-Hilbert correspondence? The answer is yes, and is provided
by the theory of perverse t-structures [BBD, HTT]. To make a long story short,
we get a sequence of functors pHi, i ∈ Z, from subcategory of Db(X,Q), called
the constructible derived category, to Perv(X) with certain nice properies. One
important consequence of all of this is that we obtain a natural rational perverse
sheaf pHiRf∗Q[n] ∈ Perv(X) such that (pHiRf∗Q[n])⊗ C = pHiRf∗C[n].

We now give the explicit construction. This can be done in two steps. First
we factor f as the inclusion ι : Y → Y × X given by the graph followed by the
projection p : Y ×X → X. The direct image under the inclusion

ι+OY =

∞⊕
j=0

∂jι∗OY

Then
Rif+OY = Rif∗(Ω•Y×X/X ⊗ ι+OY [n])

This is obviously an OX -module, and less obviously a DX -module (I assume this
will covered in other lectures). This is filtered by

F pι+OY =

−p⊕
j=0

∂jOY

F pRif+OY = imRif∗(Ω•Y×X/X ⊗ F
p−•ι+OY [n])

Together with pHiRf∗Q[n] this forms a pre-Hodge module, and in fact a Hodge
module. These statements are far from trivial using either definition of Hodge
module.
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5. Conclusion

5.1. Decomposition theorem. We now come to one of the main applications
which is a new proof and refinement of the decomposition theorem of Beilinson,
Bernstein, Deligne, and Gabber [BBD]. Their original proof used characteristic p
methods.

Theorem 5.2 (Saito). Let f : X → Y be a morphism of complex projective va-
rieties. If L is a perverse sheaf which is part of a Hodge module, then Rf∗L de-
composes in Db(X,Q) as a direct sum of translates of perverse sheaves which arise
from Hodge modules.

In particular:

Corollary 5.3. If X is smooth, then Rf∗Q decomposes in Db(Y,Q) as a direct
sum of translates of perverse sheaves.

A detailed discussion of the theorem and various applications can be found in
de Cataldo and Migliorini [dCM]. We note that the same authors have found a
different Hodge theoretic proof of the last result. As a corollary [BBD, cor 6.2.9],
we get a strong form of the local invariant cycle theorem.

Corollary 5.4. Let U ⊂ Y be the complement of the discriminant, y0 ∈ Y , B ⊂ Y
is a small ball centered at y0, if y1 ∈ U ∩B, then the restriction

Hi(Xy0 ,Q)→ Hi(Xy1 ,Q)π1(U∩B)

is surjective.

It had been conjectured for some time that the intersection cohomology of
Goresky-Macpherson [GM] should carry a natural Hodge structure. In terms of
D-module theory, the complex that computes intersection cohomology is the reg-
ular holonomic module given by the minimal extension of O on the smooth locus.
This is part of a Hodge module.

Corollary 5.5. The cohomology of the perverse sheaf underlying a pure Hodge mod-
ule carries a pure Hodge structure. In particular, intersection cohomology carries
a pure Hodge structure.

Earlier we indicated that we can construct certain perverse sheaves pHiRf∗L
corresponding to direct image D-modules to curves. In fact, this works in any
dimension. The key point for proving the decomposition theorem is to establish
the hard Lefschetz theorem for perverse sheaves (also originally due to [BBD] in
the geometric case).

Theorem 5.6 (Saito). Let f : X → Y be a morphism of projective varieties. If L
is a perverse sheaf which is part of a Hodge module, then cup product with the ith
power of an ample class induces an isomorphism

`i : pH−iRf∗L
∼→ pHiRf∗L

Combined with Deligne theorem [D1], this would give

(8) Rf∗L =
⊕

pHiRf∗L[−i]

We know that the perverse sheaves on right side come from Hodge modules and
this will imply theorem 5.2.
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So the only thing left to do is to prove theorem 5.6. We give a broad outline of
the proof when X is a surface, Y is a smooth curve and L = Q[dimX] based on
what we asserted (but didn’t prove!) in the previous lecture. This will at least give
a sense of how the theory works. To begin with, let us assume that n = dimX − 1
is arbitrary. We can assume that f is surjectve, since it is trivial otherwise. We
can make things more explicit. If j : U → Y is the complement of the discriminant
D of f , then

(9) pH−iRf∗L = j∗j
∗Rn−if∗Q[1]⊕

⊕
p∈D

K−ip

where the sheaf Ki
p is a skyscraper sheaf supported at p. Product with `i will

respect these decompositions. The usual hard Lefschetz theorem applied to the
fibres implies that

`i : j∗j
∗Rn−if∗Q[1]

∼→ j∗j
∗Rn+if∗Q[1]

So we just have to prove that

(10) `i : K−ip → Ki
p

is an isomorphism. At this point, vanishing cycles come into play. In rough terms,
K∗p comes from the part of the cohomology of f−1(p) not appearing in the nearby
fibres. (To avoid getting overwhelmed with notation, we will be somewhat imprecise
about indices and weights for the remaining discussion.) To make this precise, let
t be a local parameter at p, and g its pull back to X. By the axioms, we can
decompose φugL = im can ⊕ ker var. Let M correspond to the second factor. We
have an isomorphism H∗(M) ∼= K∗p . Thus we need to establish the hard Lefschetz
for the cohomology of M . The perverse sheaf M is equipped with a nilpotent
endomorphism N . Again from the axioms, the associated graded of M , with respect
to the monodromy filtration W associated to N , is a Hodge module. Now let us
suppose that n = 1. Then GrWM is supported on the curve f−1(p). After pulling
back to the normalization, we can apply theorem 3.7 to conclude that the hard
Lefschetz holds for H∗(GrWM). This is not quite what we want. To finish we first
need to observe that by standard homological algebra, there is a spectral sequence

E1 = H∗(GrWM)⇒ H∗(M)

The first page E1 together with the polarized Hodge structure on it (theorem 3.6)
and the actions of ` and N constitutes a complex of polarized bigraded Hodge-
Lefschetz structures. Thus theorem 2.13 shows that E2 = H∗(E1) is a also a
Hodge-Lefschetz structure, and in particular it satisfies hard Lefschetz with respect
to `. The final step is the to show that this degenerates at E2, again for Hodge
theoretic reasons. So that E2 = GrWH∗(M) satisfies hard Lefschetz. Then the
same goes for H∗(M) by linear algebra.

5.7. Further developments. We do not have time to discuss subsequent develop-
ments, so we merely mention them. Saito also developed a theory of mixed Hodge
modules which are to Hodge modules what mixed Hodge structures are to pure
Hodge structures [S2]. Mochizuki, building on earlier work of Sabbah, Saito and
Simpson, has taken these ideas further with his work on twistor D-modules [Sb2].
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IHES 35 (1968)

[GH] Griffiths, Harris, Principles of algebraic geometry, Wiley (1978)

[GeM] S. Gelfand, Y. Manin, Methods of homological algebra, Springer (2003)
[HTT] Hotta, Takeuchi, Tanasaki, D-modules, perverse sheaves, and representation theory,

Birkauser (2008)
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