
INTRODUCTION TO COMPLEX ALGEBRAIC

GEOMETRY/HODGE THEORY

DONU ARAPURA

I assume that everyone has some familiarity with basic algebraic geometry.
For our purposes, the main objects are complex quasiprojective algebraic varieties
(henceforth called varieties). These are solutions to

fi(x0, . . . , xn) = 0, gj(x0, . . . , xn) 6= 0

in complex projective space Pn = PnC, where fi, gj are finite collection of homoge-
neous polynomials. To simplify matters, assume that the variety X is projective,
which means that there are no gj ’s. For local questions, it is more convenient to
dehomogenize the equations and work in Cn. In particular, we say that X is nonsin-
gular or smooth (at p) if the Jacobian matrix, i.e. the matrix of partial derivatives ,
of the dehomogenized equations has expected rank everywhere (or just at p). When
X is nonsingular, then X is a manifold, and in fact a complex manifold by the usual
(or holomorphic) implicit function theorem. The dimension of X as an algebraic
variety equals the dimension as a complex manifold or twice the dimension as a real
manifold. Unless otherwise stated, you should assume I am talking about complex
dimension. Also, at least initially, I will assume that everything is nonsingular.

1. Algebraic curves

If X is a nonsingular projective algebraic curve, then it is a compact one dimen-
sional complex manifold by the above discussion. (Note these are usually called
Riemann surfaces, but I think it will be less confusing to adhere to the above rule
about dimensions.) Here we recall one of the basic theorems:

Theorem 1.1. As a topological space X is determined by a single integer g ≥ 0,
called the genus, where g = 0 corresponds to the 2-sphere S2, g = 1 to the 2-torus,
...

However, for each g > 0, there are infinitely many different (i.e. nonisomorphic)
curves. This begs the question, how do you actually tell them apart? The classical
answer is via the period matrix. Before getting to this we recall a few things. The
first homology group H1(X,Z) is very roughly the set of Z-linear combinations of
real closed curves on X modulo the equivalence relation that their difference is the
boundary of a (real) surface embedded in X. A basic course in algebraic topology
will tell you how to make this precise, and also how to compute it: H1(X,Z) ∼= Z2g.
Next we need to talk holomorphic 1-forms. These are expressions locally given by
f(z)dz where z is an analytic coordinate and f(z) a holomorphic. Again this is
not very precise, since I haven’t said what this means exactly, but never mind.
H0(X,Ω1

X) will denote the complex vector space of holomorphic 1-forms. Here is
a first miracle in the subject.
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Theorem 1.2 (Riemann, Weyl). 1 The dimension of H0(X,Ω1
X) equals the genus.

Assuming this, we can proceed to define the period matrix. First, choose 2g
closed curves γi ⊂ X which forms a basis for the first homology H1(X,Z) ∼= Z2g.
(Actually, we need to choose a particular kind of basis called a symplectic basis.)
Then choose a basis ωj of H0(X,Ω1

X). The period matrix is the g × 2g matrix
(
∫
γi
ωj).

Theorem 1.3 (Torelli). The period matrix (modulo changes of basis) determines
X.

Theorem 1.2 is a special case of the Hodge theorem, which well will get to shortly.
A proof of theorem 1.3 can be found in [GH].

2. Algebraic surfaces

By an algebraic surface X, we mean a 2 dimensional nonsingular projective vari-
ety. Remember, dimension is complex dimension, so this has 4 real dimensions. The
subject originated with the work of Castelnuovo, Enriques, Max Noether (Emmy’s
father), and Picard in the late 19th century. In a sense, they were ahead of there
time, so they did not have the tools to rigorously justify a lot of their arguments.
But this came later. The first result from this period, that I want to discuss is the
finiteness of the Picard number. Recall that a divisor D =

∑
niDi is a formal linear

combination of irreducible curves Di ⊂ X. For example, if f is a nonzero rational
function on X, div(f) is the sum of the zeros of f (counted with multiplicity) minus
the sum of poles. The set of divisors, which forms a group, modulo the ones of the
form div(f) is called the divisor class group Cl(X).

Theorem 2.1. There exists a symmetric bilinear form · : Cl(X) × Cl(X) → Z
such that if D and E are irreducible curves which meet transversally, then D ·E is
the number of points of intersection.

A proof can be found in [H]. We define two divisors D,D′ to be numerically
equivalent (or D ≡ D′) if D · E = D′ · E for all E.

Theorem 2.2. The rank, called the Picard number, of Cl(X)/ ≡ is finite.

Outline. The second homology H2(X,Z) is the set of 2-cycles in X modulo the
equivalence relation modulo that differences should bound a 3-chain. Moreover, it
is known to be finite dimensional from topology. Thus any divisor D =

∑
niDi

gives an element [D] =
∑
ni[Di] ∈ H2(X,Z). If D − D′ = div(f), the preimage

under f of a real curve joining 0 to∞ in P1 gives a 3-chain with D−D′ as boundary.
Thus [D] = [D′]. Therefore we have a well defined map Cl(X) → H2(X,Z). The
pairing on Cl(X) is also compatible with the intersection pairing on H2 (which dual
the cup product pairing on H2). Thus Cl(X)/ ≡ injects into H2(X,Z). �

Given the proof, the next natural question is every element of H2(X,Z) repre-
sented by divisors. We will see that the answer is usually no. But first we need to
discuss the Hodge decomposition.

1While I’m not a historian, I think this was certainly known to and used by Riemann, but I
suspect Weyl gave the first rigorous proof along with the modern definition of Riemann surface

in his 1913 book Der Idee die Riemannfläche [= The idea of a Riemann surface].
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3. Hodge decomposition

Let us return briefly to the case of X a smooth projective algebraic curve of
genus g. We want to understand the basic idea behind the proof of theorem 1.2.
A C∞ 1-form α is an expression given locally by f(x, y)dx + g(x, y)dy, where x, y
are the real and imaginary parts of a complex coordinate z. We say it is closed if
dα = (gx− fy)dx∧ dy = 0, and exact if α = dh = hxdx+hydy for some h. Clearly,
exact implies closed, but not the converse in general. The failure is measured by
the first de Rham group

H1(X,C) =
{ closed C-valued 1-forms}

{exact 1-forms}
Note that we have a map

H1(X,C)→ Hom(H1(X,Z),C)

sending a form α to the functional γ 7→
∫
γ
α.

Theorem 3.1 (de Rham). This is an isomorphism; in particular dimH1(X,C) =
2g.

The key point is that we have a good set of representatives. Call a 1-form α har-
monic if locally it equals dh, where h is harmonic in the usual sense. Then clearly
harmonic forms are closed, and holomorphic forms as well as their complex con-
jugates (called antiholomorphic forms) are harmonic. What Riemann understood,
Weyl proved, is this.

Theorem 3.2 (Riemann-Weyl). Under the obvious map,

{harmonic 1-forms} ∼= H1(X,C)

Theorem 1.2 is a pretty immediate corollary, because we can decompose a har-
monic 1-form uniquely into sum of a holomorphic and antiholomorphic forms.

When we go to higher dimensions, the naive definition of harmonic form we used
above doesn’t work. The correct thing to do is to first define the Laplacian. First,
we need choose a Riemannian metric g(−,−) which is C∞ family of inner products
on the tangent spaces. The choice of g will allow us to define inner products on
the spaces of k-forms. (So for the moment, we may let X be a compact oriented
Riemannian manifold.) Let d∗ denote the adjoint to the exterior derivative d with
respect to this inner product. Then set ∆ = dd∗+ d∗d (you should compare this to
∆ = div grad that we learn in calculus).

Theorem 3.3 (Hodge theorem I). The kth de Rham group Hk(X,C), which ker d
on k-forms modulo im d, is isomorphic to ker ∆ acting on k-forms.

A self contained stripped down proof can be found in [Wa]. Other proofs can be
found in [GH, W]. I tried to explain the heat equation proof in [A2] but it’s only
an outline. Now let us return to the case where X is a smooth projective variety of
arbitrary dimension. It turns out, that if we use an arbitrary Riemannian metric,
then harmonic theory will not interact well with the holomorphic structure, which is
the whole point for us. The solution is to use a special kind of metric called a Kähler
metric. There are several ways to say what this means. Here is one. Since X is a
complex manifold, it comes with an operator J which corresponds to multiplication
by i on the real tangent spaces (more explicitly ∂

∂xj
→ ∂

∂yj
, ∂
∂yj
→ − ∂

∂xj
). We first
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of all require that J is orthogonal with respect to g, i.e. g(ξ, η) = g(Jξ, Jη). Then
ω(ξ, η) = g(ξ, Jη) is skew symmetric matrix, i.e. a 2-form. We also require dω = 0.
At first glance, this looks a crazy condition, but here is another way to understand
it: In Riemannian geometry, it is always possible to choose C∞ coordinates about
any point so that g becomes Euclidean up to second order. But if we insist on
doing this with analytic coordinates then it is not always possible. In fact this is
equivalent to the Kähler condition [GH]. These special coordinates can be used to
help verify the Kähler identities discussed below. Here are the key points:

(1) Every smooth projective variety carries a Kähler metric inherited from its
embedding into Pn. Note the choice is far from unique.

(2) On any Kähler manifold, we get a magic identity (called a Kähler identity)
that ∆ = 2(∂̄∂̄∗ + ∂̄∗∂̄), where ∂̄ is the Cauchy-Riemann operator and
∂̄ is the adjoint. In essence this says exactly what were hoping that the
harmonic and holomorphic aspects mesh well.

Details can be found in [GH, W]. Putting this together, we get

Theorem 3.4 (Hodge theorem II). If X is compact Kähler manifold, then there
is a bigrading

Hk(X,C) =
⊕
p+q=k

Hpq(X)

such that
Hpq = H̄qp

Proof. Let Hpq(X) be the space of harmonic forms of type (p, q), that is which are
locally expressible as∑

fi1...ip,j1...jqdzi1 ∧ . . . dzip ∧ dz̄j1 ∧ . . . dz̄jp
The first Hodge theorem, and the Kähler identity does the rest. �

Corollary 3.5. The odd Betti numbers of a compact Kähler manifold, e.g. smooth
projective variety, are even.

The notion of harmonic form depends on a choice of metric, which not unique.
However, the decomposition itself can be made independent of the metric. As a
first step, we recall [GH, W]

Theorem 3.6 (Dolbeault). Hpq(X) is isomorphic to the qth sheaf cohomology of
the sheaf of holomorphic p-forms Hq(X,ΩpX)

Thus we have an abstract isomorphism

Hk(X,C) ∼=
⊕
p+q=k

Hq(X,ΩpX)

where the right side is independent of the metric, but this isn’t quite good enough.
A Hodge structure of weight k is a finitely generated abelian group HZ with a
bigrading on H = HZ ⊗ C as in theorem 3.4. This can be made into a category in
an obvious way.

Theorem 3.7 (Deligne). There is functor from the category of smooth projective
varieties to Hodge structures which is abstractly isomorphic to the one above.

Deligne [D2] proved a much more general result, that I say a few words about
later.
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4. Back to surfaces

We now apply the above story to an algebraic surface X. When D is a divisor, we
have associated a class [D] ∈ H2(X,Z). It is convenient to switch to cohomology,
we can do this because of

Theorem 4.1 (Poincaré duality). Let X be a compact oriented 4 (real) dimen-
sional manifold (e.g. a surface), then there is a (specific) isomorphism Hi(X,Z) ∼=
H4−i(X,Z). In particular, H4(X,Z) ∼= H0(X,Z) = Z and H2(X,Z) ∼= H2(X,Z).

See [Hr] for a proof. Given a divisor D, we can therefore associate a cohomology
class, with the same symbol, [D] ∈ H2(X,Z). We can now map this into de Rham
cohomology. If α ∈ H2(X,C) is another class represented by a 2-form. Then we
can cup α with [D] to a class in H4(X,C) = C and hence a number after integrating
over X. This works out to ∫

X

[D] ∪ α =

∫
D

α

(if D is singular, pull it back to the normalization and then integrate). It follows
that if α is an (anti)holomorphic 2-form, then this is zero. With a bit more playing
around, this leads to

Proposition 4.2. [D] ∈ H11(X).

Alternatively, one prove this using the first Chern class. If D is given locally on
an open set Ui by equations fi = 0. Then fi/fj gives a cocycle, which you can use
to build a line bundle OX(D). The key point is that this cocycle defines a class in
H1(X,O∗X), and an element of c1(OX(D)) ∈ H2(X,Z) under the connecting map

c1 : H1(X,O∗X)→ H2(X,Z)

associated to the exponential sequence.

0→ Z→ OX
exp 2πi−→ O∗X → 1

We see almost immediately that the composite

H1(X,O∗X)→ H2(X,OX) ∼= H02(X)

is zero. Thus im c1 ⊂ H11 ⊕H02. But it is invariant under conjugation, so it lies
in the first factor. The only thing left to observe is

Theorem 4.3. c1(O(D)) = [D].

(I wrote up a proof in [A2].) The advantage of doing it with c1 is that the
argument can be run backwards to obtain:

Theorem 4.4 (Lefschetz (1, 1) theorem). An integral class whose image lies in
H11(X) must come from a divisor.

Initially, we started out with the class group Cl(X), and then we passed to
Cl(X)/ ≡. We can ask, how different are they?

Theorem 4.5. Cl(X) ∼= Cl(X)/ ≡ if the first Betti number of X is zero.

Sketch. It turns out that Cl(X) ∼= H1(X,O∗X). Therefore we have a sequence

H1(X,OX)→ Cl(X)→ Cl(X)/ ≡→ 0

It follows that if H1(X,OX) = 0, then. Dolbeault’s theorem tells us that this is the
same has H01(X) = 0. By the Hodge theorem this is equivalent to the vanishing
of b1. �
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5. Problems and Directions

This a pretty incomplete list of where to go from here. While some of the low
hanging fruit has been picked in these areas, I think there is a lot more.

5.1. Vanishing theorems. This is probably the most useful topic in Hodge theory
to algebraic geometers working outside the area. The point is that sheaf cohomology
often contains the obstructions to proving what you want, so it’s good if you can
get rid of it. The classic vanishing theorem, which goes back to Kodaira in the
1950’s, says that an ample line bundle tensored with the canonical line bundle has
no higher cohomology. The proof can be found in the standard textbooks [GH, W].
Since the 1980’s a number of important descendants of this theorem have been
found by Kawamata, Viehweg and others. A good account is in [L]. There is a
really general vanishing theorem due to Saito [S] that is starting to get applied
only now, probably because few people understood what it said. I think there
some interesting possibilities here that I would be happy to discuss it further with
anyone.

5.2. Noether-Lefschetz. The classical NL theorem says if you take a sufficiently
general surface of degree≥ 4 in P3 then the Picard number is 1 (which is the smallest
it can be). “Sufficiently general” means that you have to throw away a countable
union of proper Zariski closed sets from the moduli space of hypersurfaces. There
has been some work on refining it, e.g. in finding roughly what is being thrown
away, and also in generalizing it. See [CMP, V] for further discussion.

5.3. Period map and Torelli theorems. One way to phrase the classical Torelli
theorem is that the “universal cover” of the moduli space of algebraic curves
of genus g injects into the moduli of polarized Hodge structures of type H =
H10 ⊕ H01,dimH10 = g; this can be identified with the Siegel upper half plane
of g × g matrices with positive definite imaginary part. In the early 1970’s Grif-
fiths generalized this picture to arbitrary Hodge structures. There has been a great
deal of work trying to study these spaces (called Griffiths period domains), and in
finding generalizations of the classical Torelli theorem from curves to other classes
of varieties. Period domains are homogeneous manifolds, so not surprisingly the
techniques involve a lot of representation theory. Again see [CMP, V] for more.

5.4. Topology of varieties. Hodge theory leads to many interesting and deep
restrictions on the topology of algebraic varieties. I have already given one example
about the Betti numbers, but there is much more. For example, Deligne, Griffiths,
Morgan and Sullivan proved smooth projective varieties have the simplest possible
structure from the point of view of rational homotopy theory (they are formal
[GM]). One special problem that has attracted a certain amount of attention
is understanding what fundamental groups can arise [ABC]. Note that by the
Lefschetz hyperplane theorem [M], any such group would have to arise from a
surface. So in particular, this is an obstruction to classifying algebraic surfaces up
to homeomorphism, unlike the case of curves which is trivial. The problem is hard,
nevertheless, it is possible to do things here. (This is an old stomping ground for
me, and I have had at least two students write theses in this area.)
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5.5. Hodge conjecture and friends. Solve it and you get a million bucks plus
any job you want, but seriously there are realistic and interesting things that can be
done in this area. The conjecture is that higher dimensional version of the Lefschetz
(1, 1) should hold. Here is the precise statement:

Conjecture 5.6 (Hodge conjecture). If X is a smooth projective variety, and
α ∈ H2p(X,Q) ∩Hpp(X), then α is the fundamental class of an algebraic cycle.

Let me make a few comments.

(1) It is easy to see that this is a necessary condition to be an algebraic cycle.
(2) You may wonder why I didn’t use Z as coefficients. In fact, Hodge [Ho]

originally formulated it this way, but this was quickly shown to be false by
Atiyah and Hirzebruch [AH] who showed that there are additional obstruc-
tions coming from Steenrod operations. These obstructions were refined
clarified and Totaro [T]. Later Kollár, Soulé and Voisin found a totally
different set of obstructions. So the fact that it’s false is actually pretty
interesting!

(3) To appreciate how hard the conjecture is, start with a smooth projective
n dimensional variety X. Take X ×X, and decompose the diagonal [∆] ∈
Hn(X ×X,Q) into its components under the Kunneth decomposition

Hn(X ×X,Q) ∼=
⊕
i+j=n

Hi(X,Q)⊗Hj(X,Q)

These components satisfy the conditions of the Hodge conjecture, but it’s
far from obvious why they are algebraic in general. Incidentally, this special
case is one of Grothendieck’s standard conjectures [Gr].

(4) A good question is why is there so much fuss. Grothendieck reformulated
the question in a way that seems more fundamental (at least to me). Given
smooth projective varieties X and Y , a correspondence from X to Y is a
cohomology class of an algebraic cycle on X×Y . Think of it as multivalued
function from X to Y . In particular, like functions these can be composed in
a natural way. So we get a category. Grothendieck’s idea was to complete
this to an abelian category of so called (pure) motives, which would be
the universal cohomology theory. Grothendieck did in fact construct the
category of motives, but it fell short of what he wanted.2. He needed his
standard conjectures to be true to prove it was abelian. This would all
follow (in char 0) from the Hodge conjecture. From the point of view
of motives, the Hodge conjecture is equivalent to the statement that the
category of pure motives has a fully faithful embedding into the category
of Hodge structures.

(5) A reasonable follow up question is what is the essential image of category
of motives in Hodge structures? I don’t think anyone even has a clue –
not even a conjecture. By contrast, Fontaine and Mazur [FM] have at least
made a conjecture on the p-adic Hodge theory side.

(6) There are alternative theories of motives, which lead to their own Hodge-
like conjectures. I don’t want to say much more about this, except to say
that some of these seem to be easier to prove things about (e.g. see André
[An]).

2Grothendieck never published anything about motives, but it was clear he was thinking about
them since the early 1960’s [GS]
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(7) I realize I haven’t talked about the things that one can realistically do.
The point is that although proving these conjectures for all varieties would
(presumably) require totally new ideas. Proving them for some varieties
is doable, and frequently a lot of fun. There is a body of techniques for
doing this in some cases. Some details can be found [A1, Le, V]. The kind
of technique often depends on the nature of the variety. There has been a
lot of interesting work for abelian varieties, where the main tool involves
Mumford-Tate groups which to be really vague are what corresponds to
Galois groups in Hodge theory. Another really interesting class to look at
(for people with a background in automorphic forms) are Shimura varieties.
Some nontrivial cases of the Hodge conjecture have been checked for these
[R].

5.7. Mixed Hodge structures etc. I have said next to nothing about this, but
this is pretty fundamental. Deligne [D2] generalized classical Hodge theory to arbi-
trary complex varieties (and even if one is interested primarily in smooth projective
varieties, this is useful to understand). He showed that the kth cohomology of any
variety carries a so called mixed Hodge structure which may be built up from pure
Hodge structures of several different weights. As a simple example, take an elliptic
curve E and pinch two points together to get a nodal curve X, then H1(X) is 3
dimensional, with one part of weight 1 coming from E and the remaining part of
weight 0 comes from the singularity. Deligne was thinking about the Weil conjec-
tures around the same time, and these ideas are connected [D1]. At about the same
time, Griffiths [G] introduced the notion of variations of Hodge structure which is
the right notion of a family of Hodge structures. These ideas were merged in the
work of Saito [S] whose notion of mixed Hodge module includes both earlier notions
as special cases. It was meant to be the mirror image in Hodge theory of the work
of Beilinson, Bernstein, Deligne and Gabber [BBD] in étale cohomology. This stuff
is incredibly technical, so I am a bit hesitant to recommend people to jump into
this area, but if you want to look at it, probably the best place to start is [PS].

References

[ABC] Amoros, Burger, Corlette, Kotschick, Toledo, Fundamental groups of compact Kähler man-

ifolds, AMS (1996)
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