
PURITY FOR INTERSECTION COHOMOLOGY AFTER

DELIGNE-GABBER

D. ARAPURA

These notes are my translation and slight expansion of Deligne’s unpublished
paper “Pureté de la cohomologie de MacPherson-Goresky” where Gabber’s purity
theorem was first written up. Although this paper was superseded by [BBD], it has
the advantage of brevity. The theorem says in effect that intersection cohomology
satisfies the Weil conjectures and therefore hard Lefschetz. In fact, I believe this
was the first proof of this fact. This is an interesting inversion of history: for
ordinary cohomology the first correct proof of Lefschetz’ s theorem was due Hodge;
Deligne’s arithmetic proof came much later. Here the arithmetic came first, and
seems to have influenced the subsequent Hodge theory, e.g. [CKS], [S].

I’ve included a few pages of introductory material, references, and probably
several errors, but otherwise it’s pretty much identical to the original. My thanks
to Shenghao Sun for suggesting various corrections.

0. Background

This is a quick synopsis of some background material, including some relevant
parts of [Weil2]. See also [KW].

0.1. `-adic sheaves. Given a scheme X the étale topology Xet is a Grothendieck
topology where the “open sets” are étale (= flat and unramified) maps U → X,
and covers are surjective families. A sheaf F is contravariant functor on Xet such
that elements of F (U) can be patched uniquely on a cover {Ui}, i.e. the diagram

F (U)→
∏

F (Ui) ⇒
∏

F (Ui ×X Uj)

is an equalizer. For example, given an abelian group A, the presheaf

A(U) = A# of components of U

with obvious restrictions is a sheaf, called the constant sheaf associated to A. For
another important example, if n is invertible in OX , then the presheaf µn(U) of
nth roots of unity in O(U) is a sheaf.

Standard sheaf theoretic constructions such as an inverse and direct images and
extension by zero exist for étale sheaves. A sheaf F is locally constant if there is
an étale cover π : Y → X such that π∗F is constant. For example, µn is locally
constant.

WhenX is a normal variety, the étale fundamental group πet1 (X) can be identified
with the Galois group of the union of function fields of étale extensions. In general,
there is a more abstract definition, which makes it clear that it depends on a choice
of geometric point x̄ → X (although the isomorphism class won’t) just as in the
topological case. This is a profinite group, which is the profinite completion of
the usual fundamental group when X is a complex variety. When X is connected,
the category of locally constant sheaves is equivalent to the category of continuous
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2 D. ARAPURA

representations of πet1 (X, x̄) via F 7→ Fx̄. This is analogous to the correspondence
representation of π1(X,x) and locally constant sheaves in the usual topology.

The category of sheaves of abelian groups on Xet is abelian with enough in-
jectives, so Hi(Xet, F ) can be defined as the ith derived functor of X 7→ F (X).
When X is a variety, cohomology with compact support is defined as Hi

c(Xet, F ) =
Hi(X̄et, j!F ), where j : X → X̄ is a compactification. It is independent of the
choice of X̄. When X is a complex variety, and F = Z/n, then these cohomology
groups coincide with singular cohomology.

In general, this cohomology will not work as expected unless F is a torsion sheaf
of exponent prime to charX. In order to get values over a field of characteristic
zero, we can use inverse limits. Fix a field k of characteristic p, and let ` be a
prime number coprime to p. Suppose that X is a k-scheme. Then `-adic cohomol-
ogy Hi(Xet,Z`) = lim←−H

i(Xet,Z/`n) by definition. More generally a Z`-sheaf is
really a special kind of pro-object . . . → K2 → K1 in the category of sheaves on
the étale site Xet, where each Ki is a Z/`i-module. Its cohomology is defined as
lim←−H

∗(X0,Ki). For our purposes, we can pretend as if we are working with lim←−Ki,
although the homological algebra is far from straight forward. We will mostly ignore
these subtleties. The systems K• are subject to a some addition constraints:

(1) Each Ki is constructible i.e. the stalks are finite and there exist a partition
of X into locally closed sets {Sj} such that Ki|Sj is locally constant.

(2) The structure maps Ki ⊗ Z/`i−1 → Ki−1 are isomorphisms.

For example, we could require that Ki is locally constant, in which case the sheaf
is called lisse. Lisse sheaves correspond to continuous representations πet1 (X0) →
GLN (Z`). The Tate sheaf Z`(n) = . . . µ⊗n`2 → µ⊗n` on Spec(k) is lisse, and corre-
sponds to the nth power of the cyclotomic character.

We can formally tensor the category of (construcible, lisse) Z`-sheaves by Q` to
get the category of (constructible, lisse) Q`-sheaves. The notions of constructible
(or lisse) Q̄` sheaves are defined in a similar fashion. There is a triangulated cate-
gory D(X0) = Db

c(X0, Q̄`) which is morally the bounded derived category of con-
structible Q̄` sheaves [E]. This has the standard operations and usual properties.
Recently, Bhatt and Scholze [BS] have given a more natural definition of D(X0) as
a derived category of sheaves on their pro-étale topology.

0.2. Weil II. Here is a summary of Deligne’s second paper on the Weil conjectures
[Weil2].

Fix a scheme X0 of finite type over a finite field Fq with q elements. Let F be an
algebraic closure of Fq. We denote objects over Fq with subscript 0, suppression of
the subscript indicates the extension of scalars to F. Thus X = X0 × Spec F.

Next, we need to understand the Frobenius. Since ths is potentially confusing,
let us start with an example. Suppose X = A1

F = Spec F[x]. There are at least 3
different things which could rightfully called the Frobenius, the absolute Frobenius
FrX ∑

aix
i 7→ (

∑
aix

i)q

the relative Frobenius FrX/F ∑
aix

i 7→
∑

ai(x
i)q
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and the arithmetic Frobenius φ∑
aix

i 7→
∑

aqix
i

Such morphisms exist in general, and FrX = FrX/F ◦ φ. It turns out that FrX
acts trivially on étale cohomology. The interesting thing to consider is the action
of FrX/F or equivalently φ−1. This is the thing that we will refer to simply as
Frobenius and denote by F below. The basic result of Weil II is the following.

Theorem 1. Suppose that X is a variety. Then the eigenvalues of F on Hi
c(Xet,Q`)

are algebraic numbers all of whose eigenvalues have absolute value qw/2 with 0 ≤
w ≤ i; all of the eigenvalues satisfy w = i if X is proper and smooth.

By using Lefschetz pencils, there is no loss in assuming thatX admits a surjection
f : X → P1. Using this and the Leray spectral sequence,

E2 = Hi(P1, Rjf!Q`)⇒ Hi+j
c (X,Q`)

Deligne reduces the theorem to a statement on curves but with general coefficients.
Given a Q` vector space with F -action, call it pure of weight w if the eigenvalues
are algebraic numbers all of whose conjugates have absolute value qw/2. Given a
Q̄`-sheaf K0 on X0 and a closed point x ∈ X0, with x̄ = Spec(k(x))→ X, the stalk

Kx̄ carries an action by Gal(k(x)/k(x)). In particular, the N(x)th power Frobenius
acts on it, where N(x) = #k(x). K is pointwise pure of weight w ∈ Z if for each
closed point x ∈ X0 the eigenvalues of Frobenius at x on the stalk are algebraic
numbers having absolute value N(x)w/2. For instance, Q̄`(n) is pointwise pure of
weight −2n. A sheaf (vector space) is mixed (of weight ≤ w or ≥ w) if it is an
extension of pointwise pure sheaves (spaces) of this type.

The key estimate is:

Theorem 2 ([Weil2, 6.2.5c]). Let X0 be a smooth proper curve over Fq, j : U0 →
X0 the inclusion of an open dense set, and K0 a pointwise pure lisse sheaf of weight
n on U0, then Hi(Xet, j∗K) is pure of weight n+ i.

Sketch for i 6= 1. The case i = 1 is really the heart of the proof. A simplified proof
due to Laumon can be found in the book by Kiehl-Weissauer [KW], and for another
see [K]. The remaining cases of the first purity statement for i = 0, 2 are not that
difficult. The case of i = 2 can be reduced to the case of i = 0 by duality. So we turn
to this case. The basic idea is to show that the eigenvalues of F on H0(X, j∗K) are
among the eigenvalues of the stalks which have the correct weight by hypothesis.
In particular, if the support of K is zero dimensional, there is nothing to prove.

In general, note that the statement is unaffected by an extension of the ground
field Fq. After such an extension, we can choose a nonempty j′ : U0 ⊂ U0 so that
K|U ′ is lisse. There is an exact sequence 0 → L → j∗K → j∗j

′
∗j
′∗K, where L

is pure weight n with zero dimensional support. Therefore we can assume that
U = U ′. Choose a F-rational point x̄ ∈ U , We have an exact sequence

0→ πet1 (U, x̄)→ πet1 (U0, x̄)→ Gal(F/Fq)→ 1

After identifying

H0(X, j∗K) = L
πet1 (U,x̄)
x̄

we see that the eigenvalues of φ−1 ∈ Gal(F/Fq) are among the eigenvalues of Lx̄. �
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Corollary 1. With the same hypothesis as above, Hi
c(Uet,K) (resp. H1(Uet,K))

is mixed of weight ≤ n+ 1(resp. ≥ n+ 1)

Proof. The exactness

H0(X, j∗K/j!K)→ H1
c (U,K)→ H1(X, j∗K)

together implies the bounds on the weight of Hi
c(U,K) . The second part follows

from this by Poincaré-Verdier duality. �

There are some variations on these notions. Instead of assuming the eigenval-
ues are algebraic, we can measure the norms using a fixed (highly noncanonical!)
isomorphism ι : Q̄` ∼= C, in which case we speak of ι-purity etc. A complex K is
mixed of weight ≤ w if each sheaf Hi(K) is mixed of weight ≤ w + i. It is pure
of weight w if both K and the Verdier dual DK are mixed of weight ≤ w and
≤ −w respectively. When X is smooth DK = RHom(K, Q̄`(dimX)[2 dimX]), so
a pointwise pure lisse sheaf is pure of the same weight.

The earlier results are refined as follows:

Theorem 3 ([Weil2, 3.2.1]). If f0 : X0 → S0 is a morphism of schemes of finite
type over Fq, and K0 is a mixed sheaf with weights ≤ n. Then for each i, Rif!K is
mixed with weights ≤ n+ i.

Corollary 2. Rf! takes mixed complexes of weight ≤ w to mixed complexes of
weight ≤ w.

Corollary 3. If f is proper, Rf∗ takes pure complexes to pure complexes of the
same weight.

Proof. Apply the identity DRf∗ = Rf∗D and the previous corollary. �

0.3. Topological consequences. In addition to arithmetic applications, Deligne
deduces a number of topological consequences. Among these are an arithmetic
proof of the hard Lefschetz theorem. The corresponding statement for intersection
cohomology was originally proved this way by Gabber.

Theorem 4. Let K be a pure lisse `-adic sheaf on a smooth connected variety X.
Then the corresponding representation of πet1 (X) is semisimple.

Sketch. First we can reduce to the case where X is curve by an appropriate form
of weak Lefschetz. The group G = πet1 (X0), which is an extension of Gal(Fq) by
H = πet1 (X), acts on V = Kx̄. We proceed by induction by the length of a Jordan-
Hölder series as a G-module. If V is an irreducible G-module, then the Zariski
closure of G ⊂ GL(V ) is reductive. Since the closure of H is a normal subgroup of
the closure of G, it is also reductive. Therefore V is a semisimple H-module.

Now suppose that V is not irreducible, so it fits into an extension

0→ L→ V → B →M → 0

of G-modules. By induction, both L and M are semisimple H-modules, so it suffices
to prove that this sequence splits as H-modules. But the extension class ξ defines
a Gal(Fq)-invariant element of

Ext1H(M,L) ∼= H1(Xet,M
∗ ⊗ L)

However, M∗ ⊗ L is pointwise pure of weight zero. So its cohomology has weights
≥ 1, which forces ξ = 0. �
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Corollary 4. Given a complex smooth projective family X → Y . The monodromy
representation π1(Y )→ GL(Hi(Xy,Q)) is semisimple.

Proof. This follows by specialization and comparison theorems for classical and
étale cohomology. �

Consider an n dimensional smooth complex projective variety X ⊂ PN . Blowing
up the base locus of a Lefschetz pencil on X yields a map X̃ → P1. Remove the
discriminant D to get an open U ⊂ P1. Fix a base point s ∈ U . Topologically the
singular fibres X̃d, d ∈ D are obtained by collapsing an embedded sphere δd ⊂ X̃s,
called vanishing cycle, to a point. One form of the hard Lefschetz theorem says

Theorem 5.

Hn−1(X̃s,Q) = Hn−1(X̃s,Q)π1(U,s) ⊕ V
where V is the span of the classes of vanishing cycles.

Sketch. Classical Picard-Lefschetz theory shows that V is irreducible and that
dimV and dimHn−1(X̃s)

π1(U) are complementary. The previous semisimplicity
result shows that we have a direct sum. �

The above statement is closer to the way Lefschetz would have formulated it in
the 1920’s. It implies the more familiar cohomological statement

c1(O(1))i : Hn−i(X,Q) ∼= Hn+i(X,Q)

Using these ideas, Deligne’s gave the following strong form:

Theorem 6. Let X ⊂ PN be a projective scheme, η ∈ H2(X,Z`(1)) be the first
Chern class of O(1) and K a pure complex. Let n be an integer, and suppose that
K and DK satisfy the following condition: for each i, the dimension of the support
of Hi(K) is ≤ n− i.

Then, for all i ≥ 0, the iterated cup product

ηi : Hn−i(X,K)→ Hn+i(X,K)(i)

is an isomorphism.

0.4. Invariant Cycle Theorem. The usual form of the local invariant cycle the-
orem says that given a family of complex projective varieties f : X → ∆ over a
disk, the specialization map

Hi(X0,Q)→ Hi(Xt,Q)π1(∆∗)

is surjective. The following gives a strong form of this theorem, in the algebraic
setting.

Theorem 7 ([Weil2, 6.2.9]). Suppose that f : X → S is a morphism to the spec-
trum of a strict henselian DVR, obtained by base change from a morphism over
Fq to a smooth curve f : X0 → S0. Let s ∈ S denote the closed point and η the
generic point. Suppose that K is obtained from a pure complex K0 on X0. Set
I = Gal(η̄/η). Then the specialization map

Hi(Xs,K)→ Hi(Xη̄,K)I

is surjective.
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Let us modify the notation of the previous theorem, by supposing that S is the
henselization rather strict henselization at s. We now have an exact sequence

1→ I → Gal(η̄/η)→ Gal(F/Fq)→ 1

Thus the Frobenius lifts to the group in the middle. The inertia group I = Gal(η̄/η)
can be identified with the group I occurring in theorem 7. I acts on V = Hi(Xη̄,K)
quasiunipotently. Let N : V (1) → V be the logarithm of the unipotent part of
local monodromy [Weil2, 1.7.2]. Then the associated monodromy filtration M on

V is characterized by NMi ⊆ Mi−2 and Nk : GrMk V
∼→ GrM−kV [Weil2, 1.6].

These properties show that kerN ⊂ M0. The filtration is stable under the lift of
Frobenius, so we may talk about the weights of GrMV (the norms of eigenvalues
are independent of choices).

Specializing [Weil2, 1.8.4] to the situation at hand:

Theorem 8. Suppose that K0 is pointwise pure of weight 0, then GrMk (V ) is pure
of weight i+ k.

1. Gabber’s purity theorem

We continue the notational conventions of section 0.2. So X0 is defined over Fq,
X denotes the extension to F = F̄q etc.

A perverse sheaf on X0 is an object K0 of D(X0) such that for every irreducible
subvariety i : Y ↪→ X, with generic point η, one has

(A) (HnRi∗K)η = 0 for n > −dimY

and

(B) (HnRi!K)η = 0 for n < −dimY

The condition (A) can also be expressed as dimSuppHiK ≤ −i. A systematic
account can be found in [BBD]. For example, the category of perverse sheaves is
abelian. On a few occasions, it will be convenient to work with perverse sheaves up
to translation. If K is perverse, K[−N ] will be called N -perverse.

For j : V0 ↪→ X0 an open subset of X0, one has the intermediate direct image
functor j!∗ from perverse sheaves on V0 to perverse sheaves on X0. By definition
H∗(X, j!∗Q`) is the intersection cohomology of X [BBD, GM] (up to a shift in
indices for the second reference). If the complement i : Y0 ↪→ X0 of V0 is smooth,
pure of dimension d, and the i∗Rnj∗K are lisse, one has

(1) j!∗K0 = τY0

≤−d−1Rj∗K0

where τY0

≤k is the functor which to a complex L0 attaches the subcomplex of L0

which coincides with L0 outside of Y0 and τ≤k on Y0. The general case can be built
up from this by working stratum by stratum. An explicit formula can be found in
[BBD, 2.1.11].

Let a be the projection from X0 to Spec(Fq). The dualizing complex DX0
=

Ra!Q̄`. For X0 smooth and pure of dimension N , this is the constant sheaf Q̄`
in degree −2N . The duality functor D is the functor K0 7→ RHom(K0, DX0). It
interchanges the conditions (A) and (B), so that the category of perverse sheaves
is stable under D. The functor j!∗ is self dual: Dj!∗ = j!∗D.

Of course, the preceding discussion is geometric, and it works as well for F as
for Fq.
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Theorem 9. Let j : U0 ↪→ X0 be an open subset of X0, and K0 an N -perverse
sheaf on U0. If K0 is pure of weight w, j!∗K0 is pure of the same weight.

Corollary 5. If X is proper, the complex conjugates of eigenvalues of Frobenius
on Hi(X, j!∗K) have absolute value q(i+w)/2.

Corollary 6. If X is projective and if η is the first Chern class of an ample
invertible sheaf, the iterated cup product

ηi : HN−i(X, j!∗K)→ HN+i(X, j!∗K)

is an isomorphism.

Proof. Apply theorem 6. �

Corollary 7. The hard Lefschetz holds for intersection cohomology of complex
projective varieties.

Proof. This follows from the previous corollary by specialization, cf. [BBD, chap
6]. �

2. Preliminary reductions

For simplicity, we will assume that X is equidimensional. There is no loss in
generality in assuming that N = w = 0. The proof is by induction on dimX0. For
dimX0 = 0, the assertion is trivial. For dimX0 = 1, this is theorem 2.

The problem is local, one can suppose that X0 is affine, and then projective.
Choose a projective embedding X ⊂ P. We have the following weak Lefschetz
property:

Lemma 1. For H a general hyperplane section of X, the restriction of K[−1]
(check) to U ∩H is an perverse sheaf on U ∩H, pure of weight 0. The intermediate
direct image of this on H coincides with the shifted restriction of j!∗K to H.

Proof. The perversity of the restriction follows from the definition (A), (B) because
dim suppHi(K|H) drops by 1. Also purity is clear, as it is a pointwise condition
and the stalks of K|H are isomorphic to stalks of K along H.

The last statement requires some work. By induction on the number of strata, we
can reduce to the case where formula (1) applies. Let X̃ = {(x,H) ∈ X×P̌ | x ∈ H}
be the incidence variety, where P̌ is the dual space . Consider the cartesian diagram

Ũ
π //

j̃
��

U

j

��
X̃

π // X

Since π is smooth, the smooth base change theorem shows that π∗Rj∗K = Rj̃∗π∗K.
As j̃ is a map of P̌-schemes, the generic base change theorem ([SGA41/2] Th.
finitude) shows that

(π∗Rj∗K)|H = RjH∗π∗(K|H)

for general H, where jH : U ∩H → H is the inclusion. Whence

(τY≤−d−1π
∗Rj∗K[−1])|H = τY≤−d−2RjH∗(π∗K|H)

�
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Returning to the proof of the theorem, from the lemma and induction assump-
tion, one deduces that j!∗K0 is pure on the complement of a finite set E0 of X0.
Replacing U0 by X − E0, and K0 by the restriction of j!∗K0 to X0 − E0; we can
suppose that U0 is the complement of a finite set E0 in X0. It is also helpful to
keep in mind the basic model case is where U0 is smooth and K0 is a lisse sheaf
concentrated in degree − dimX.

Purity is invariant under finite extensions of the base field, and we will tacitly
make the required extensions of scalars for the utilized objects to be defined over
the base field. For example, we may suppose the points of E0 are rational over
Fq. Let P0 ∈ E0. The subscript P will indicate the henselization at P ; one may
view this as the analogue of passing to the analytic germ. Since the functor j!∗ is
selfdual, it suffices to verify for that j!∗K0 = τE0

≤−1Rj∗K0 is mixed of weight ≤ 0.

At P0, this means that for n ≤ −1, the cohomology of the “link” Hn(XP − P,K)
has weights ≤ n. Here’s is the dual statement

Lemma 2. Hn(XP −P,K) has weights ≤ n if and only if the weights of Hn(XP −
P,DK) are ≥ n+ 1 for n ≥ 0.

Proof. Not yet.
�

Let H be a hyperplane section passing through P . One knows that Hn(XP −
HP , DK) = 0 for n > 0 (as XP −Hp is affine, [SGA4, XIV §3]), so that the map

Hn
HP−P (XP − P,DK)→ Hn(XP − P,DK)

is bijective for n > 1, and surjective for n = 1. If H is general, one has a Gysin
isomorphism

Hn−2(HP − P, (DK)(1))
∼→ Hn

HP−P (XP − P,DK),

the restriction of DK0 to H0 − P0 is an (−1)-perverse sheaf pure of weight 0, and
the induction hypothesis yields the desired conclusion for n ≥ 1.

Let V0 be an affine neighbourhood of P0 in U0 ∪ {P0}. The obstruction to
extending a class α ∈ Hn(VP − P,DK) to V − P is in Hn+1(V,Rj!DK). As V is
affine, this is zero for n ≥ 0. The group

Hn(V − P,DK) = H2N−n
c (V − P,K)∨

has weight ≥ n, one finds that for n ≥ 0, Hn(VP − P,DK) has weight ≥ n.
Dualizing, we see that for n = −1, Hn(VP − P,K) has weight ≤ 0. It remains

to eliminate the weight 0 part, and the rest of the argument is devoted to this.

3. An extension lemma

Let H be a general hyperplane section passing through P . The theorem to be
proved implies that the restriction map from HN−1(XP −P,K) (weights ≤ N − 1)
to HN−1(HP − P,K) (weights ≥ N) is zero.

Lemma 3. Let α ∈ HN−1(XP − P,K). The restriction of α to HP − P extends
to H − P .

We prove the equivalent statement that α ∈ HN−1(j!∗K)P extends to an element
of HN−1(H, j!∗K). Let k be the inclusion of H − P into H and iP the inclusion of
P . For every L ∈ Db

c(H) one has a distinguished triangle

k!k
∗L→ L→ iP∗i

∗
PL→ k!k

∗L[1]
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Taking L to be the restriction of j!∗K to H, and passing to cohomology, one finds
as the obstruction to extending α the class

∂α ∈ HN
c (H − P,K) = HN (H, k!K|H−P )

The image of ∂α in HN (H, j!∗K) is zero by the exact sequence.
LetH ′ be a general hyperplane section different fromH. The varietyH−(H∩H ′)

is affine, so one has HN (H − (H ∩H ′), k!KH−P ) = 0. Thus there is no obstruction
to extending α to H − (H ∩H ′), and ∂α is the image under Gysin of a class

ξ ∈ HN−2(H ∩H ′,K)(−1)
∼→ HN

H∩H′(H,K).

We propose a canonical choice of ξ. For H general, the restriction of K to (H −P )
is (N − 1)-perverse and pure of weight 0. We have

HN (H, k!K|H−P ) ∼= HN (H, k!∗K|H−P )

and we denote the image of ∂α by (∂α)′. Let H ′ = H ′0 vary in a general pencil
{H ′t}t∈P1 . The theorem of the fixed part (cf. theorem 7) says that the restriction
map identifies HN−2(H, k!∗KH−P ) with the invariant part HN−2(H ∩H ′,K)π1(U),
where 0 ∈ U ⊂ P1 is Zariski open. As t varies over U , the groups HN−2(H∩H ′t,K)
form a semisimple local system [Weil2, 6.2.6, 3.4.1(iii)]. Dually, the Gysin morphism
sends the invariant part of HN−2(H ∩H ′,K)(−1) = HN

H∩H′(H,K) isomorphically
toHN (H, k!∗KH−P ). We normalize ξ by taking it in the invariant part, then it maps
bijectively to (∂α)′ in HN (H, k!∗KH−P ) and therefore to ∂α in HN (H, k!KH−P ).
Thus if ∂α 6= 0, we have ξ 6= 0.

Now fix a general H ′, and vary H in a general pencil of hyperplanes containing
P . Over a proper open of the projective line parameterizing the pencil, ξ provides
a global section of the local system whose fibres are HN−2(H ∩ H ′,K)(−1), and
an application of the theorem of the fixed part shows that if ξ 6= 0, its image
ξ′ ∈ HN (H ′,K) under Gysin is nonzero. Finally, HN+1(X −H ′, j!∗K) = 0 and if
ξ′ 6= 0, its image ξ′′ ∈ HN+2(X, j!∗K)(1) under Gysin is not zero.

The cohomology classes (with support) in H ∩H ′ in H and H ′, and of H,H ′ in
X give rise to a diagram

Q̄`(−1)[−2]H∩H′ //

��

Q̄`H′

��
Q̄`H // Q̄`(1)[2]

Tensoring with j!∗K and applying HN yields a commutative diagram

HN−2(H ∩H ′,K)(−1) //

��

HN (H ′,K)

��
HN (H, j!∗K) // HN+2(X, j!∗K)(1)

We see that the image of ξ in HN (H, j!∗K) is zero, and one can conclude that
ξ = 0, whence the lemma.
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4. End of proof

Let S0 be a smooth curve over Fq, s0 ∈ S0(Fq), (T0, s0, η) the henselization
of S at s0, (T, s, η) the strict henselization, η̄ a geometric generic point of T and
I = Gal(η̄/η) the local monodromy group or inertia group. We denote by subscripts
T, η̄, . . . base change with respect to T, η̄, . . .

Lemma 4. Given f : Y0 → S0 and K0 a pure complex on Y0. If the induced map f :
f−1(S0−s0)→ S0−s0 is proper, the restriction morphism Hn(YT ,K)→ Hn(Yη̄,K)
has as its image the subgroup Hn(Yη̄,K)I of invariants of local monodromy.

The proof is the same as that in [Weil2, 6.2.9] (theorem 7). When f is proper,
we can replace Hn(YT ,K) by Hn(Ys,K).

Let (Ht)t∈P1 be a general pencil of hyperplane sections of X, H0 = Hs0 the
section which contains P0 (we assume it is defined over Fq), and take S0 to be a

small neighbourhood of s0 in P1. Let X̃ be the incidence variety {(x, t) | x ∈ X, t ∈
S, x ∈ Ht}. It is defined over Fq, and the Ht are the fibres of the proper morphism

f : X̃0 → S0. The projection of X̃0 to X0 identifies the fibre X̃0s0 with H0, (P0, s0)

(denoted simply by s0) with P0, the henselization X̃0P0
with X0P0

. The inverse

image K̃0 of K0 over X̃0 − P0 is also an N -perverse sheaf of weight 0.
Fix the notation

H0 − P0
u //

��

X̃T0 − P0

f0

��

X̃0 −H0
voo

��
s0

u′ // T0 η0
v′oo

We have u′
∗Rv′∗Q` = Q`[0]⊕Q`[−1](−1); the canonical morphism of K̃0⊗f∗0Rv′∗Q`

to Rv∗(v∗K̃0) induces a morphism

(2) u∗K̃0 ⊕ Ru∗K̃0[−1](−1)→ u∗Rv∗v∗K̃0

For a general pencil, this is an isomorphism.
Let α ∈ HN−1(XP − P,K) be a pure class of weight N . To show that α = 0, it

suffices to check that the restriction αη to XPη = XP −HP is zero: the induction

hypothesis ensures that the image of HN−3(HP−P,K)(−1) under Gysin has weight
≤ N − 1.

From Hochshild-Serre, we have a short exact sequence

0→ H1(I,HN−2(Xη̄,K))→ HN−1(Xη,K)→ HN−1(Xη̄,K)I → 0

For every representation L of I, we have H1(I, L) = LI(−1), whence a morphism
LI(−1)→ H1(I, L) that we can interpret as cup product with a fundamental class
ε ∈ H1(I,Q`(1)). Lemma 1 yields an extension of α to

α̃ ∈ HN−1(H, j!∗K)
∼← HN−1(X̃T , j!∗K)

(the last identification by the proper base change theorem). We can assume that α̃

has weight N . From the discussion in section 0, we see that HN−1(X̃η̄, K̃)I lies in
M0, where M is the monodromy filtration. From theorem 8, we can conclude that
HN−1(X̃η̄, K̃)I has weight ≤ N − 1, so the restriction α̃η of α̃ to HN−1(X̃η̄, K̃)

dies in HN−1(X̃η̄, K̃)I . Therefore α̃η is the image βη̄ ∪ ε of a unique element

βη̄ ∈ HN−2(X̃η̄, K̃)I(−1) of weight N . Lemma 2 shows that βη̄ can be lifted to

β ∈ HN−2(X̃T̄ − P, K̃)(−1). Let βη be the restriction of β to HN−2(Xη, K̃)(−1).
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We have a commutative diagram

HN−2(XP − P,K)(−1) // HN−2(XPη ,K)(−1) // HN−1(XPη ,K) HN−1(XP − P,K)oo

HN−2(XT − P, K̃)(−1) //

OO

��

HN−2(X̃η, K̃)(−1)
ε∪ //

OO

HN−2(X̃η, K̃)

OO

��

HN−1(X̃T , j!∗K̃)oo

OO

��
HN−2(H − P, K̃)(−1) // HN−2(H − P,Rv∗K̃) HN−1(H − P, K̃)oo

in which the last line corresponds to the decomposition (2) of u∗Rv∗Rv∗K̃. The
elements constructed so far, which lie in the above groups, can be represented
schematically by

β′′ // αη αoo

β //

OO

��

βη // α̃η

OO

��

α̃oo

OO

��
β′ // α̃′η α̃′oo

The primed elements β′, . . . , β′′ denote the images of the elements already defined
in the middle row. The classes β′ and α̃′ cannot have the same image α̃′η unless they
are zero because they lie in complementary subspaces induced by (2). Therefore
we have β′ = 0. The restriction map from HN−2(XP − P,K)(−1) to HN−2(HP −
P,K)(−1) is injective. The vanishing of β′ implies the vanishing for the image of
β′′ ∈ HN−2(XP − P,K)(−1), and therefore that αη = 0.
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