Basic Ref: Hotta, Takeuchi, Tanisaki= HTT

Let X be a smooth complex algebraic variety. Let D_X be the sheaf of (algebraic) differential operators on X. When $X = \mathbb{A}^n$, (the global sections of) D_X is the Weyl algebra

$$\mathbb{C}\langle x_1,\ldots,x_n,\partial_1,\ldots,\partial_n\rangle$$

$$[x_i, x_j] = [\partial_i, \partial_j] = 0, [\partial_i, x_j] = \delta_{ij}$$

We can filter D_X by $F_k D$ = sheaf of operators of order $\leq k$. When $X = \mathbb{A}^n$, $Gr_F D_X$ is the polynomial ring in the symbols x_i, ∂_i .

D-modules

In general,

Proposition

$$Gr_F D_X = \pi_* \mathcal{O}_{T_Y^*}$$
, where $\pi : T_X^* \to X$ is the cotangent bundle.

A *D*-module is a sheaf of left modules over D_X . Will generally assume it's quasicoherent over \mathcal{O}_X .

Example

Tautologically, D_X is a D-module.

Example

 \mathcal{O}_X is a D-module with obvious action. More generally, any vector bundle with integrable connection is a D-module. Such examples are coherent as \mathcal{O}_X -modules. Conversely, any \mathcal{O}_X -coherent D-module is of this form

Example

If $D \subset X$ is a smooth divisor, then $\mathcal{O}_X(*D) = \bigcup \mathcal{O}_X(nD)$ is a D-module. This is coherent (=locally finitely presented) over D_X but not over \mathcal{O}_X . (Call a D-module coherent if it coherent over D_X .)

Given a coherent *D*-module *M*, there exists a (non unique) filtration $F_{\bullet}M$ by \mathcal{O}_X -submodules such that $F_k D_X F_j M \subset F_{k+j}M$, and F_j is \mathcal{O}_X -coherent. This is called a good filtration.

Theorem

- Supp Gr_FM ⊂ T^{*}_X is independent of F. It is called the characteristic variety Char(M).
- **2** (Bernstein's inequality) If $M \neq 0$, then dim $Char(M) \ge \dim X$.

< □ > < □ > < □ > < □ > < □ > < □ >

Definition

A D-module is called holonomic if dim $Char(M) = \dim X$.

Example

Integrable connections, and $\mathcal{O}_X(*D)$ are holonomic, D_X isn't. The characteristic variety is, respectively, the zero section of T_X^* , the zero section union the conormal bundle to D, and the whole of T_X^* .

Theorem

The category of holonomic modules forms an Artinian abelian category. The simple objects are generically integrable connections on their support. From now on, let X be a smooth curve. We want to understand the structure of a holonomic *D*-module *M*. We may as well restrict to the case where *M* is simple. Then the support of *M* is either all of X or zero dimensional. Let's suppose it's the second. Then simplicity forces the support to be a point *p*. Again by simplicity, we must have $M = \mathbb{C}_p$.

So now we suppose that M is simple with X as its support. By the previous theorem, we can find a Zariski open $j: U \to X$ such that $V = M|_U$ is an integrable connection. Explicitly, this means that V is a locally free \mathcal{O}_U -module with a connection

$$abla : V o \Omega^1_U \otimes V$$

Integrability is automatic in this case because U is a curve.

The classical Riemann-Hilbert correspondence says that (V, ∇) is determined by the locally constant sheaf, or local system, $L = \ker \nabla^{an}$. (Notice that we switched to the analytic category, because differential equations won't have enough solutions otherwise.) This in turn is given by a representation of $\pi_1(U)$ (the monodromy of ∇). Simplicity of M forces irreducibility of this representation. Otherwise, a nontrivial subrepresentation of V would generate a nontrivial submodule of M. In general, there are several ways to extend a connection on U to a D-module on X.

Example

Let D = X - U. If $V = \mathcal{O}_U$, then \mathcal{O}_X and $\mathcal{O}_X(*D)$ are both extensions of V. What distinguishes them is that \mathcal{O}_X is simple, but $\mathcal{O}_X(*D)$ isn't because it contains \mathcal{O}_X .

Proposition

Given an irreducible local system V on U, there is a unique extension to X, which is a simple as D-module. This is called the minimal, or intermediate, extension.

This proves:

Theorem

A simple holonomic D_X -module is either a skyscraper sheaf \mathbb{C}_p , or a minimal extension of an irreducible connection from a Zariski open.

One says that M is regular if the connection ∇ is regular in Deligne's sense \Leftrightarrow the system of ODE is regular in the classical sense (solutions don't blow up worse than $O(|z|^{-n})$, for some n, on angular sectors).

It is also useful to understand what happens under de Rham. Given a D-module M, let

$$DR(M) = M^{an} o \Omega^1_{X^{an}} \otimes M^{an}$$

shifted so that it starts in degree -1. Notice that DR(M) is an object in the derived category $D^b(X^{an}, \mathbb{C})$. It is possible to characterize such objects.

Definition

An object F in the constructible derived category $D^b_c(X^{an},\mathbb{C})$ is a semiperverse sheaf if

 $\dim \operatorname{supp} \mathcal{H}^i(F) \leq -i,$

and perverse if additionally the Verdier dual $DF = \mathbb{RHom}(F, \mathbb{C}[2])$ is semiperverse.

Lemma

If F is perverse then $\mathcal{H}^i(F) = 0$ unless i = -1, 0 and that $\mathcal{H}^0(F)$ has zero dimensional support.

Proof.

Semiperversity of F implies that $\mathcal{H}^i(F) = 0$ for i > 0 and that $\mathcal{H}^0(F)$ has zero dimensional support. Semiperversity of DF implies $\mathcal{H}^i(F) = 0$ for $i \le -2$.

Theorem (Kashiwara)

If M is a regular holonomic holonomic D-module, then DR(M) is perverse. This gives gives an equivalence between the categories of these D-modules and perverse sheaves.

Sketch of first part.

Set F = DR(M). *M* is given by connection (V, ∇) on a Zariski open *U*. Then

$$DR(M)|_U = (\ker \nabla)[1]$$

This implies semiperversity of *F*. The module $M^* = Ext^1(M, D_X) \otimes \omega_X^{-1}$ is also regular holonomic, and $DF = DR(M^*)$. Therefore *DF* is also semiperverse.

Since we have an equivalence of categories, the category of perverse sheaves is also Abelian and Artinian. (This can be proved directly – perhaps, we'll do this later).

Proposition

The simple perverse sheaves are either skyscraper sheaves \mathbb{C}_p or of the form $j_*L[1]$, where L is an irreducible local system on a Zariski open $j: U \to X$.

All of these statements generalize to higher dimensions.