Fix a small disk Δ around 0. ("Small" just means that singularities in the discussions below occur only at 0.) Let z be a coordinate, and $\Delta^* = \Delta - \{0\}$ with inclusion j.

Recall that an object F in $D_c^b(\Delta, \mathbb{Q})$ is a **perverse sheaf** if

dim supp $\mathcal{H}^i(F) \leq -i$,

and the same holds for the Verdier dual $DF = \mathbb{RHom}(F, \mathbb{Q}[2])$.

$Perv(\Delta)$

Fix a perverse sheaf F on Δ . We know (or can assume w.l.o.g.) the following facts.

P1
$$\mathcal{H}^i(F) = 0$$
 for $i \neq -1, 0$.

P2 $\mathcal{H}^0(F)$ is supported at 0.

P3 $\mathcal{H}^{-1}(F)$ has no sections supported at 0.

P4 $\psi = \mathcal{H}^{-1}(F)|_{\Delta^*}$ is a local system.

Proof of P3 (which wasn't discussed earlier): Since $\mathcal{H}^1(DF) = 0$, Verdier duality implies local cohomology $H_0^{-1}(F) = 0$. This forces $H_0^0(\mathcal{H}^{-1}(F)) = 0$. Therefore $H^0(\Delta^*, \mathcal{H}^{-1}(F)) \to H^0(\Delta, \mathcal{H}^{-1}(F))$ is injective.

Let $Perv(\Delta)$ denote the category of objects satisfying above conditions.

The first goal is to give an elementary description of this category.

 ψ can (and will) be viewed as a $\mathbb{Q}[T, T^{-1}]$ -module, with T given by the monodromy.

Proposition

There is an essentially surjective functor from $Perv(\Delta)$ to the category \mathcal{T} of triples

$$(\psi, \alpha^{-1} : V^{-1} o \mathsf{ker}[\psi \xrightarrow{T-1} \psi], \alpha^0 : V^0 o \mathsf{coker}[\psi \xrightarrow{T-1} \psi])$$

where ψ is a $\mathbb{Q}[\mathcal{T}, \mathcal{T}^{-1}]$ -module, which is finite dimensional over \mathbb{Q} , α^i are linear maps from finite dim vector spaces, such that α^{-1} is injective.

(I think it's an equivalence but didn't check carefully.)

The functor from $Perv(\Delta) \to \mathcal{T}$ is given as follows. Given a perverse sheaf F, ψ is given as above, $V^i = \mathcal{H}^i(F|_0)$. The maps α^i are induced by the adjunction $F \to (\mathbb{R}j_*j^*F)$. The first map α^{-1} is injective by P3.

Given an object $(\psi, \alpha^{-1}, \alpha^0)$ in \mathcal{T} , we can find a complex of vector spaces W^{\bullet} , and a morphism $\alpha : W^{\bullet} \to \mathbb{R}j_*\psi[1]|_0$ such that $\alpha^i = \mathcal{H}(\alpha)$. Let F fit into the distinguished triangle

$$F \to W \oplus Rj_*\psi[1] \to Rj_*\psi[1]|_0$$

One can see that $F \in Perv(\Delta)$ and that it maps to the given object.

Verdier's theorem (set up)

Given an object of \mathcal{T} , set

$$\phi = (\psi/\operatorname{\mathsf{im}} lpha^{-1}) \oplus V^0$$

Projection to the first factor gives the (canonical) map

 $\mathit{can}:\psi
ightarrow \phi$

We have a map $T - 1 : \psi \to \psi$. Since V^{-1} lies in the kernel of this, T - 1 factors through ϕ . So we have the (variation) map

$$\mathit{var}:\phi
ightarrow \psi$$

such that the composite

$$\psi \stackrel{\mathsf{can}}{\to} \phi \stackrel{\mathsf{var}}{\to} \psi$$

is T-1

Theorem (Verdier)

 $Perv(\Delta)$ is equivalent to the category Q of quivers $(\psi, \phi, can : \psi \rightarrow \phi, var : \phi \rightarrow \psi)$, such that $var \circ can + 1$ is an automorphism of ψ .

Ref: Verdier, Extension of a perverse sheaf over a closed subspace.

Corollary

Given a local system ψ on Δ^* , its extensions to $Perv(\Delta)$ are parameterized by factorizations $\psi \rightarrow \phi \rightarrow \psi$ of T - 1.

Extending local systems

Given a local system ψ on Δ^* , we list the following extensions to $Perv(\Delta)$ in regular sheaf notation, BBD (Beilinson-Bernstein-Deligne) notation, along with characterizations of the corresponding quivers:

- *j*₁ψ[1] (= ^{*p*}*j*₁ψ[1] in BBD) corresponds to the quiver (ψ, ψ, can = id, var = T - 1).
- S the minimal extension j_{*}ψ[1] (= ^pj_{!*}ψ[1] in BBD) corresponds to the quiver

$$\mathsf{im}(\psi,\psi,\mathsf{can}=\mathsf{id},\mathsf{var}=\mathsf{T}-1) o (\psi,\psi,\mathsf{can}=\mathsf{T}-1,\mathsf{var}=\mathsf{id})$$

under the morphism (id, T-1).

The construction I gave for ϕ above was totally ad hoc. So it may be good to explain what it really means. The name of the game is vanishing cycles [SGA7]. Since this will be discussed later in the seminar, I will be sketchy.

Let $\tilde{\Delta}^* \to \Delta$ be the universal cover, and let $\tilde{\Delta} = \tilde{\Delta}^* \cup \{0\}$ as a set with inclusion $\tilde{j} : \tilde{\Delta}^* \to \tilde{\Delta}$. We can give this a topology so that the map $p : \tilde{\Delta} \to \Delta$ looks like an infinite sheeted branched cover ramified at 0.

Nearby cycles

Given $F \in D^b(\Delta)$, let

$$\Psi F = (\mathbb{R}\tilde{j}_*\tilde{j}^*p^*F)|_0$$

be the "nearby cycles" functor.

The terminology is suggestive. When $f : X \to \Delta$ is a family of complex projective varieties and $F = \mathbb{R}f_*\mathbb{Z}$, ΨF is a complex of sheaves at 0 which computes the cohomology of the nearby fibres $X_t, t \neq 0$.

Vanishing cycles

Given $F \in D^b(\Delta)$, we have a natural map

 $F|_0 \rightarrow \Psi F$

induced by adjunction. We can complete this to a distinguished triangle

$$F|_0 \rightarrow \Psi F \rightarrow \Phi F \rightarrow F|_0[1]$$

The middle term in red is called the "sheaf" of vanishing cycles.

This measures the difference between $H^*(X_t)$ and $H^*(X_0)$ in the geometric example.

The following is not hard.

Lemma

When F is perverse,

$$\Psi F = \psi[1]$$
$$\Phi F = \phi[1]$$

where ψ and ϕ were constructed earlier.

The corresponding statement in higher dimensions is that $\Psi F[-1]$ and $\Phi F[-1]$ are perverse if F is. This is a nontrivial theorem due to Gabber.

Ref. Brylinkski, *Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques*

Key Insight

In Saito's theory of (mixed) Hodge modules, Gabber's theorem is turned into a definition!

Regular holonomic *D*-modules on the disk

From Verdier's theorem, we obtain

Corollary

The category of regular holonomic D-modules on a "small" disk Δ is equivalent the category $Q = \{(\psi, \phi, can, var)\}$ above.

It's good to understand things more explicitly. Let us start with a (finite rank) a vector bundle V with a connection ∇ . This corresponds to a local system on Δ^* .

Can we describe some (or all) the regular holonomic D_{Δ} -modules extending (V, ∇) ?

We note that j_*V is a D_{Δ} -module, but it is not quasi-coherent, so it is not admissible for our purposes.

Regularity means that we can find an extension of (V, ∇) to a bundle \overline{V} with logarithmic connection

$$ar{
abla}:ar{V} o \Omega^1_\Delta(\log 0)\otimesar{V}$$

The extension is not unique, and it is useful to understand this. \bar{V} is necessarily trivial. If we choose a basis for it, then $\bar{\nabla}$ can be represented by a matrix of 1-forms

$$A = R \frac{dz}{z} + holomorphic part$$

R is called the residue.

Proposition (Deligne)

For each interval [r, r + 1) (resp. (r, r + 1]), there exists unique extension $V^{\geq r}$ (resp. $V^{>r}$) $\subset j_*V$ such that the eigenvalues of the residue R lie in that interval.

Ref. Deligne, Équations différentielles à points singuliers réguliers

Note that $V^{>r}$ is generally not a *D*-module. However, $\partial V^{>r} \subseteq V^{>r-1}$. Therefore we get at least one extension of the desired type.

Lemma

 $M = \bigcup_r V^{>r}$ is a (quasicoherent) D_{Δ} -module extending V.

This typically won't be the minimal extension, but it does contain it. Notice that M comes with a filtration V^{\bullet} , which is essentially the Kashiwara-Malgrange filtration discussed later.