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Hodge structures

From the Hodge decomposition for smooth projective varieties (or more
generally compact Kähler manifolds), one extracts the following notion.

A (integral) Hodge structure

of weight n consists of a finite Q-vector space HQ (or lattice HZ) and a
decomposition

H = HQ ⊗ C =
⊕

p+q=n

Hpq

such that H
pq

= Hqp

In addition to geometric examples, it is easy to construct artificial
examples by hand.
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The category of Hodge structures

A morphism of Hodge structures

f : H → G is a Q-linear map preserving the bigrading,

Remarks:

1 Up to isomorphism, there is a unique one dimensional Hodge
structure of weight 2n denoted by Q(−n).

2 A map between Hodge structures of different weights is 0.

3 The category of Hodge structures is abelian.

4 The Hodge filtration is defined by

F pH = Hp,n−p ⊕ Hp+1,n−p−1 ⊕ . . .

This determines the bigrading. Morphisms can equivalently defined as
maps preserving the filtration.
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Given two Hodge structures H and G of weight n and m, the vector space
tensor product H ⊗ G carries a natural Hodge structure of weight n + m.
Many deeper results about Hodge structures require:

A polarization

on a Hodge structure of weight n is a morphism

Q : H ⊗ H → Q(−n)

satisfying the Hodge-Riemann relations. Explicitly, if C acts by ip−q on
Hpq, then inQ(−,C−) is positive definite symmetric.

Ex: The nth cohomology of projective manifold carries a polarization.
When n = 1, it is

Q(α, β) =

∫
X
c1(O(1))dimX−1 ∧ α ∧ β
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Period domains

Theorem (Griffiths)

Fix a lattice HZ, a quadratic form Q on it, and a collection of natural
numbers hp,n−p whose sum is rank HZ. Then set of Hodge structures of
weight n on HZ polarized by Q with given Hodge numbers forms a
homogeneous complex manifold D, called the period domain.

By construction D is an open subset of a flag variety Ď called the compact
dual.

Example

When HZ = Z2 with Q =

(
0 −1
1 0

)
and h10 = h01 = 1, Ď = P1, and D is

the unit disk.

Donu Arapura HM seminar Sept 23 5 / 20



Smooth families

Suppose that f : X → Y is a family of smooth projective varieties over a
smooth base. Then

f is topologically a fibre bundle, therefore the direct images
Li = R i f∗Z are local systems.

Consequently
Vi = OY ⊗ Li

becomes a vector bundles withan integrable connection ∇, called the
Gauss-Manin connection.

This can be identified with relative de Rham cohomology

Vi = Ri f∗Ω
•
X/Y

Define the decreasing filtration

F pVi = imRiΩ≥pX/Y → Vi
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Theorem

1 (Strictness) The map RiΩ≥pX/Y → Vi is injective for each p.

2 F pVi ⊂ Vi are subbundles, called Hodge bundles.

3 (Griffiths transversality) ∇(F p) ⊂ Ω1
Y ⊗ F p−1

Remarks:

1 Strictness of the filtration might seem merely technical, but it is
essential for the rest of the theorem, and many other things. The only
proofs are via ordinary or p-adic Hodge theory.

2 If we define FpV = F−pV , then Griffiths transversality just says that
F• is a good filtration on the D-module Vi .

3 One gets an equivariant holomorphic maps from the universal cover
Ỹ to period domain D. Griffiths transversality does in fact say this
period map is transverse to a certain fibration.
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VHS

Abstracting the previous example.

A variation of Hodge structures

of weight n is a collection (L,V ,∇,F •V ) consisting of a local system etc.
satisfying the conditions of the previous slide, such that, in addition, F •V
induces a Hodge structure of weight n on the fibres. A polarization of
VHS is a flat map Q : L⊗ L→ Z polarizing the fibres.

The defintion goes back to Griffiths in the late 1960’s. 20 years later,
Saito took it as the prototype of a Hodge module. For the general notion,
L is replaced by a perverse sheaf, and (V ,∇,F ) by a filtered D-module.
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VHS on a punctured disk

Let 0 ∈ ∆ be a disk with coordinate z = re iθ, and ∆∗ = ∆− {0} Let
(L, . . .) be a polarized VHS on ∆∗.

Theorem (Borel)

The monodromy transformation of L is quasi-unipotent, i.e. the
eigenvalues are roots of unity.

Ref. Schmid,Variations of Hodge structure..., Inventiones 1973

In the geometric setting, this was independently due to Brieskorn,
Grothendieck, Landman...
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In view of the last theorem, after passing to an unramified cover we can
assume that the monodromy T is unipotent.

Theorem (Schmid)

In the unipotent case, there is a good asymptotic description of the period
map.

I purposely kept this vague. However, I would like to spell out one specific
result needed later. The bundle V , viewed as a C∞ vector bundle, carries
a Hermitian metric || − ||Hodge called the Hodge metric induced by the
polarization. Schmid gives precise estimates on the norm of sections of V
in terms of monodromy.
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N = logT is nilpotent. Assume, for simplicity, that N2 = 0. Choose
t ∈ ∆∗, then we have filtration

M−1 = imN ⊆ M0 = kerN ⊆ M1 = Vt

called the monodromy (weight) filtration. More generally, M• exists for any
nilpotent N such that NMi ⊆ Mi−2 and a hard Lefschetz property holds.

Theorem (Schmid)

A nonzero element v of Mi viewed as a multivalued section of the Deligne
extension V̄ = V≥0 satisfies

||v ||Hodge = O(| log r |i/2)

Donu Arapura HM seminar Sept 23 11 / 20



Zucker’s theorem

Let X be compact Riemann surface, S ⊂ X a finite set, and U = X − S
with inclusion j : U → X . Let L be a local system on U. Define the
intersection cohomology

IH i (X , L) = H i (X , j∗L)

(Recall j∗L[1] is the minimal extension of the perverse sheaf L[1]. This is
also called the intersection cohomology complex IC (L), up to shift
depending on who you ask.)
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Fix a polarized VHS (L,V , . . .) of weight n on U.

Theorem (Zucker)

IH i (X , L) carries a natural Hodge structure of weight i + n.

Ref. Zucker, Hodge theory with degenerating coefficients..., Annals 1979.
Remarks.

1 Saito uses this result in an essential way to prove the category of
Hodge modules is stable under direct images.

2 One can view this as a Hodge theoretic analogue of Deligne’s purity
theorem (thm 2, La conjecture de Weil II).

3 When X is a modular curve, and L comes from the m symmetric
power of the standard representation of SL2(R), the bigraded
components IH1(X , L) are the modular forms of weight m + 2 or their
conjugates. This was first observed – in different language – by
Shimura.
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The way I stated Zucker’s theorem is too imprecise to be useful. Let me
describe the the story in more detail.

What he shows is that there is a subcomplex Ω•L2 of

V≥0 → Ω1
X (log S)⊗ V≥0

with an isomorphism
IH i (X , L) = Hi (Ω•L2)

Furthermore, the Hodge filtration is induced from a filtration on Ω•L2 .

To see where this comes from, we need to realize this by harmonic forms.
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Assume without too much loss of generality, that U is hyperbolic. This
together with the Hodge metric determines and inner product on a space
of V -valued forms E•L2(X ). Let ∇∗ be the adjoint to the connection, and
define the Laplacian ∆ = ∇∇∗ +∇∗∇ as usual.

Theorem

IH i (X , L)⊗ C is isomorphic to the space of harmonic forms in E iL2(X ).

This comes down to usual Hodge theorem for elliptic operators, plus

Theorem
1 (Poincaré lemma) j∗L⊗ C is resolved by the complex of sheaves E•L2

of locally L2 C∞-forms.

2 (Dolbeault lemma) j∗L⊗ C is resolved by the complex of sheaves Ω•L2

of locally L2 holomorphic forms.
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Sketch of proof of Dolbeault.

It suffices to check exactness at each 0 ∈ S . So we may replace X by a
disk of radius ε centered at 0, with local parameter z .
There are 3 steps.

1 Reduce to the unipotent case.

2 Identify Ω•L2 with

0→ j∗LC → (M0 + zV̄ )→ dz

z
(M−2 + zV̄ )→ 0

where V̄ = V≥0 is the Deligne extension, and M• is the monodromy
filtration.

3 Show that this complex is exact. This follows from the formal
properties of M•.
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Proof Cont.

I just explain step 2. Given a section v of V , with v ∈ Mk −Mk−1, by
Schmid’s norm estimates given earlier,

||znv ||Hodge ∼ r2n| log r |k

Therefore

||znv ||2 ∼
∫ 2π

0

∫ ε

0
r2n| log r |k︸ ︷︷ ︸
||znv ||2Hodge

drdθ

r | log r |2︸ ︷︷ ︸
Poincaré vol

<∞

iff k ≤ 0, n ≥ 0, or k > 0, n > 0. This implies the space of L2 sections of
V is isomorphic to M0 + zV̄ as claimed.
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Proof Cont.

A similar estimate holds

||zn dz
z
v ||Hodge ∼ r2n| log r |k−2

proves the result for differentials.

Given a local section of v of j∗LC, it is invariant under monodromy. So it
lies M0.

Corollary (of proof)

The complex Ω•L2 has an algebraic description independent of the metric.
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We define a bigrading on E•L2(X ) by total bidegree, i.e. a (p, q) form with

coefficients in V p′q′ has bidgree (p + p′, q + q′). The space of harmonic
forms inherits this bigrading by a version of the Kähler identities.
Therefore we get a Hodge structure

In more detail, V has a second connection ∇metric such that it preserves
the Hodge metric and ∇01

metric = ∂̄.
The difference can be written as

∇−∇metric = θ + θ̄

where θ is a holomorphic section of Ω1
U ⊗V called (by Simpson) the Higgs

field.
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Define a new Laplacian by

� = (∂̄ + θ)(∂̄ + θ)∗ + (∂̄ + θ)∗(∂̄ + θ)

One has a generalization of the classical Kähler identities

Proposition

∆ = 2�.

It follows that a form in EL2 is harmonic ⇔ its bigraded components are
harmonic ⇔ its conjugate is harmonic. Therefore we get a Hodge
structure.
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