Applications Hodge Modules

Donu Arapura

Nov 4

	•		
onu	/\r-	n	123

I want to explain a part of the following paper:

[PS] Popa, Schnell, Viehweg's hyperbolicity conjecture for families with maximal variation, Inventiones 2017

I want to explain a part of the following paper:

[PS] Popa, Schnell, Viehweg's hyperbolicity conjecture for families with maximal variation, Inventiones 2017

Their main result is

Theorem 1 (PS)

Let $f : Y \to X$ be surjective morphism of smooth projective varieties with connected fibres. Suppose $D \subset X$ is divisor such that f is smooth over X - D. Suppose that f has maximal variation* and the smooth fibres have general type, then (X, D) has log general type, i.e. $\omega_X(D)$ is big**

*The image of the map of X - D to moduli of fibres is big as possible. ** A line bundle L is big if $h^0(L^{\otimes k}) \sim Ck^{\dim X}$ (the fastest possible rate). The idea of applying variations of Hodge structures to geometric problems is not new, but the novelty of [PS] is the use of Hodge modules. I want to mention an earlier result in this direction.

The idea of applying variations of Hodge structures to geometric problems is not new, but the novelty of [PS] is the use of Hodge modules. I want to mention an earlier result in this direction.

Theorem 2 (Zuo, 2000)

If $D \subset X$ is an snc divisor, such that X - D carries a polarized VHS for which the period map is injective somewhere, then (X, D) is log general type.

The proof hinges on a positivity result that will be explained later.

Recall that a Hodge module consists of a perverse sheaf plus a filtered D-module M satisfying a bunch of conditions. I'll always work with a left D-module M, and I'll conflate it with the Hodge module.

Recall that a Hodge module consists of a perverse sheaf plus a filtered D-module M satisfying a bunch of conditions. I'll always work with a left D-module M, and I'll conflate it with the Hodge module.

Recall also the main example is given as follows. Given a polarizable variation of Hodge structure M^o on a Zariski open $U \subset X$, there is a unique way to extend it a Hodge module M on X, with no nonzero factors on X - U.

Recall that a Hodge module consists of a perverse sheaf plus a filtered D-module M satisfying a bunch of conditions. I'll always work with a left D-module M, and I'll conflate it with the Hodge module.

Recall also the main example is given as follows. Given a polarizable variation of Hodge structure M^o on a Zariski open $U \subset X$, there is a unique way to extend it a Hodge module M on X, with no nonzero factors on X - U. One says that M has strict support on X. The underlying D_X -module of M is just the minimal extension of the the D_U -module M^o . The Hodge filtration F is more complicated and given by Saito's formula involving F and V discussed earlier. Recall also that if the VHS has weight k, then the Hodge module will have weight $k + \dim X$.

Let $f: Y \to X$ be surjective map of smooth projective varieties, and let $r = \dim Y - \dim X$ be the relative dimension. Let M is the minimal extension of the VHS associated to the rth cohomology $R^r f_* \mathbb{Q}|_{X-\Delta}$, where $\Delta \subset X$ is the discriminant.

Let $f: Y \to X$ be surjective map of smooth projective varieties, and let $r = \dim Y - \dim X$ be the relative dimension. Let M is the minimal extension of the VHS associated to the rth cohomology $R^r f_* \mathbb{Q}|_{X-\Delta}$, where $\Delta \subset X$ is the discriminant.

Proposition 1

$$Gr_k^F M = \begin{cases} 0 & k < -r \\ f_* \omega_{Y/X} & k = -r \end{cases}$$

		•			
 $\sim n$		<i>Δ</i> •	· ` 1	n 11	12.5
\mathbf{o}	u	~ I	а.	υu	

Sketch.

Let \mathbb{Q}_Y be regarded as a VHS of weight 0, and \mathbb{Q}_Y^H denote the corresponding Hodge module . Then $M' = \mathcal{H}^d f_* \mathbb{Q}_Y^H$, where $d = \dim Y$, and \mathbb{Q}_Y^H . By Saito, M' is a sum $M \oplus M''$, where M has strict support X, and M'' is supported on the discriminant Δ . Although the statement is about M, it suffices to prove it for M' because $f_*\omega_{Y/X}$ is torsion free, and any contribution from M'' would be torsion.

The filtered *D*-module associated to M' is the direct image of $(\mathcal{O}_Y, F_{\bullet}\mathcal{O}_Y)$, where *F* is the trivial filtration, in the filtered derived category. Combined with various other results of Saito, we obtain that

$$Gr_k^F M' = \mathbb{R}f_*(\omega_{Y/X} \otimes_{\mathcal{O}_Y} Gr_{k+r}^F \mathcal{O}_Y \otimes_{\mathcal{S}_Y}^{\mathbb{L}} f^* \mathcal{S}_X)$$

where $S_X = S^* \mathcal{T}_X$, and furthermore the complex on right is splits or is formal in the sense it is a sum of its cohomology. By computing the cohomology of this complex by a Koszul complex one can verify the proposition.

When X is nonuniruled, theorem 1 is reduced to theorems 3 and 4 below. First some terminology. Say that M is large wrt a divisor $D \subset X$ if

- **1** Contains "singularities" of M, i.e. it's a VHS away from D.
- There exists a big line bundle A such that

 $A \subset F_p M \otimes \mathcal{O}(\ell D)$

where $\ell \geq 0$, and p is the minimal index for which $F_p M$ is nonzero.

When X is nonuniruled, theorem 1 is reduced to theorems 3 and 4 below. First some terminology. Say that M is large wrt a divisor $D \subset X$ if

- **1** Contains "singularities" of M, i.e. it's a VHS away from D.
- There exists a big line bundle A such that

$$A \subset F_p M \otimes \mathcal{O}(\ell D)$$

where $\ell \geq 0$, and p is the minimal index for which $F_p M$ is nonzero.

It will be necessary to extend the notion to where one can speak of largeness of a graded submodule $G \subseteq Gr^F(M)$. I'll say (M, G) is large,

Theorem 3

Let $f : Y \to X$ be a surjective map with connected fibres between smooth projective varieties, with discriminant divisor $D \subset X$. Assume that det $f_*\omega_{Y/X}^{\otimes m}$ is big for some m > 0. Then there exists a Hodge module M, and a graded submodule $G \subseteq Gr^F(M)$ such that (M, G) is large wrt D.

Theorem 3

Let $f : Y \to X$ be a surjective map with connected fibres between smooth projective varieties, with discriminant divisor $D \subset X$. Assume that det $f_*\omega_{Y/X}^{\otimes m}$ is big for some m > 0. Then there exists a Hodge module M, and a graded submodule $G \subseteq Gr^F(M)$ such that (M, G) is large wrt D.

Theorem 4

Let X be a smooth nonuniruled projective variety. Assume there exists (M, G) as above which is large wrt D. Then $\omega_X(D)$ is big.

Sketch of proof of theorem 3.

After a series of geometric reductions, one can assume that the mth power of

$$B = \omega_{Y/X} \otimes f^* L^{-1}$$

has a nonzero section s, where $L = A(-\ell D)$, with A an ample line bundle, and $m > 0, \ell \ge 0$.

Sketch of proof of theorem 3.

After a series of geometric reductions, one can assume that the mth power of

$$B = \omega_{Y/X} \otimes f^* L^{-1}$$

has a nonzero section s, where $L = A(-\ell D)$, with A an ample line bundle, and $m > 0, \ell \ge 0$.

Let $Y' \to X$ be the *m*-fold cyclic cover branched over s = 0. Let Z be a desingularization of Y'. Let $h: Z \to X$ be the obvious composition, and h^o the smooth part. Let M be the minimal extension of $R^{\dim Z} h^o_* \mathbb{Q}$.

Prop 1 shows that the minimal p = -r and

$$Gr_p(M) = h_*\omega_{Z/X}$$

Combined with the previous assumptions, we see that when m = 1, in which case we can take Z = Y, this implies that M is large.

Prop 1 shows that the minimal p = -r and

$$Gr_p(M) = h_*\omega_{Z/X}$$

Combined with the previous assumptions, we see that when m = 1, in which case we can take Z = Y, this implies that M is large.

The general case, involves an extra step to choose a $G \subset Gr^F(M)$ whose lowest piece satisfies $G_p = f_* \omega_{Y/X}$. Then (M, G) is large.

The proof of theorem 4 hinges on certain positivity results. A divisor is pseudo-effective if it lies in the closure of the cone of effective divisors. Viehweg has extended the notions of bigness and pseudo-effectivity from divisors to torsion free coherent sheaves. The latter is called weak positivity.

The proof of theorem 4 hinges on certain positivity results. A divisor is pseudo-effective if it lies in the closure of the cone of effective divisors. Viehweg has extended the notions of bigness and pseudo-effectivity from divisors to torsion free coherent sheaves. The latter is called weak positivity. This summarizes what we need:

Lemma 1

Let E and F be divisors.

- A quotient of a weakly positive sheaf is weakly positive.
- **2** If $\mathcal{O}(E)$ contains a weakly positive sheaf, then E is pseudo-effective.
- The tensor product of a big line bundle with a weakly positive sheaf is big. In particular, if E is pseudo-effective, and F is big, then E + F is big.

Let M be a Hodge module on X (resp. a polarized VHS on X - D with unipotent monodromy around D, which is an snc divisor). We have an associated filtered D-module $(M, F_{\bullet}M)$. This gives maps

$$\theta_k: \operatorname{Gr}_k^F M \to \operatorname{Gr}_{k+1}^F \otimes \Omega^1_X$$

or

$$\theta_k: \operatorname{Gr}_k^{\operatorname{F}} M \to \operatorname{Gr}_{k+1}^{\operatorname{F}} \otimes \Omega^1_X(\log D)$$

Let $K_k(M)$ denote the kernel in either case.

Let M be a Hodge module on X (resp. a polarized VHS on X - D with unipotent monodromy around D, which is an snc divisor). We have an associated filtered D-module $(M, F_{\bullet}M)$. This gives maps

$$\theta_k : \operatorname{Gr}_k^F M \to \operatorname{Gr}_{k+1}^F \otimes \Omega^1_X$$

or

$$\theta_k : \operatorname{Gr}_k^{\operatorname{F}} M \to \operatorname{Gr}_{k+1}^{\operatorname{F}} \otimes \Omega^1_X(\log D)$$

Let $K_k(M)$ denote the kernel in either case.

Zuo's theorem stated earlier was refined by Brunebarbe (2018) to show that with the same assumptions $\Omega^1_X(\log D)$ is big. These results were deduced with the help of the first half of the next theorem.

Theorem 5

- (Zuo) If M is a polarized VHS on X − D (D an snc divisor), then the dual K_k(M)[∨] is weakly positive for any k.
- (Popa-Wu) The same holds for any Hodge module with strict support X.

Theorem 5

- (Zuo) If M is a polarized VHS on X − D (D an snc divisor), then the dual K_k(M)[∨] is weakly positive for any k.
- (Popa-Wu) The same holds for any Hodge module with strict support X.

Part 2 is reduced to part 1. The polarization gives a Hodge metric on $K_k(M)^{\vee}$ with singularities along D. Zuo proves 1 by showing the curvature of the Hodge metric is nonnegative. By a theorem of Kollár, the singularities are mild enough that Chern-Weil still works. (Brunebarbe gave a different proof of a strengthened form of part 1.)

Proof of theorem 4

Theorem 4

Let X be a smooth nonuniruled projective variety. Assume there exists (M, G) as above which is large wrt D. Then $\omega_X(D)$ is big.

Theorem 4

Let X be a smooth nonuniruled projective variety. Assume there exists (M, G) as above which is large wrt D. Then $\omega_X(D)$ is big.

Sketch.

Assume for simplicity that M is large. Then we have a big line bundle A and $\ell \ge 0$ with an inclusion

$$A(-\ell D) \to F_p M = Gr_p^F M$$

with p minimal. We can compose with θ_p to get a map

$$(*) \quad A(-\ell D) \to \operatorname{Gr}_{p+1}^F M \otimes \Omega^1_X$$

We consider two cases where (*) is zero, or not zero.

(1) Start with the first case. Then we get an injection

 $A(-\ell D) \to K_p(M)$

Since $A(-(\ell + 1)D) \subset A(\ell D)$, we can assume wlog that $\ell > 0$, and in fact, bigger than any constant. Dualizing gives a nonzero map

$$K_p(M)^{ee} o A^{-1}(\ell D)$$

Since the sheaf on the left is weakly positive, this forces $A^{-1}(\ell D)$ to be pseudo-effective by the lemma. Since A is big, ℓD , and therefore D, is big by the lemma. Since X is not uniruled, a theorem of Bouksom-Demailly-Paun-Peternell implies that ω_X is pseudo-effective. Therefore $\omega_X(D)$ is big.

< □ > < 同 > < 回 > < 回 > < 回 >

(2) The remaining case is where (*)

$$A(-\ell D) o Gr^F_{p+1}M \otimes \Omega^1_X$$

is nonzero. The strategy is broadly similar. Composing the above map with successive maps in the chain

$$Gr_{p+1}^{\mathcal{F}}M\otimes\Omega_X^1\stackrel{ heta_{p+1}}{\to}Gr_{p+2}^{\mathcal{F}}M\otimes(\Omega_X^1)^{\otimes 2}\stackrel{ heta_{p+2}}{\to}$$

we eventually get 0 (because the $A(-\ell D)$ is locally free but the sheaves above are eventually 0 on U). This results in an injection

$$\mathcal{A}(-\ell D) o \mathcal{K}_{p+s}(M) \otimes (\Omega^1_X)^{\otimes s}$$

for some s.

Dualizing, and using weak positivity of ${\cal K}_{p+s}$ and bigness of A results in a big subsheaf of

 $(\Omega^1_X)^{\otimes s}(\ell D)$

One can deduce from this (with some work) that its top exterior power

$$\det[(\Omega^1_X)^{\otimes s}(\ell D)] = \omega_X^{\otimes s}(kD), \quad k = \ell s \dim X,$$

is big. Therefore

$$(\omega_X(D))^{\otimes k} = \underbrace{\omega_X^{\otimes k-s}}_{\mathsf{psd. eff.}} \otimes \underbrace{\omega_X^{\otimes s}(kD)}_{\mathsf{big}}$$

is big. So $\omega_X(D)$ is big.