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Chapter 0

Review of schemes

In the classical approach to algebraic geometry, one considers the basic objects,
called varieties, as sets of solutions to a polynomial equations in affine or pro-
jective space. There are however some limitations:

• One would like to be able to construct spaces by gluing simpler pieces
together, as one does in other parts of geometry and topology.

• When working over nonalgebraically closed fields – which is important for
applications to number theory and also within algebraic geometry – there
may not be any points at all.

• Even in classical arguments, one sometimes has to keep track of multi-
plicities. For example, one might view the double line y2 = 0 as the
different from the x-axis. So one would like a framework where this kind
of distinction makes sense.

Grothendieck’s theory schemes gave a solution to all of these problems. Of
course there is a price to be paid in the extra abstraction. Here is a quick
overview. See Hartshorne’s text [H] for more details. The ultimate source is
[EGA]. In a nutshell, a scheme is built by gluing together simpler pieces called
affine schemes. Affine schemes are determined by the rings of functions on them.

0.1 Coordinate rings

In classical algebraic geometry, the basic objects can be thought of sets of points.
Over an algebraically closed field this is reasonable, but consider the equations

X : x2 + y2 = −1

Y : x2 + y2 = 3

These have no solutions in A2
R and A2

Z/4Z respectively, and therefore no solutions

over Z. Since they both define the empty set in A2
Z, should they be regarded as
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the same? The answer is no. An isomorphism should be given by an invertible
transformation x 7→ f(x, y), y 7→ g(x, y), given by a pair of integer polynomials,
which takes the first equation to the second. In other words, what we really
want is an isomorphism of rings

O(X) = Z[x, y]/(x2 + y2 + 1) ∼= Z[x, y]/(x2 + y2 − 3) = O(Y )

Such an isomorphism would guarantee a bijection between the sets X(R) ∼=
Y (R) of solutions to x2 + y2 + 1 = 0 and x2 + y2 + 3 = 0 respectively, for any
ring R. Taking R = R shows that this impossible.

In general, the affine “variety” X ⊆ AnR, over some ring R, defined by
polynomials fi = 0 is completely determined by the coordinate ring

S = O(X) = R[x1, . . . xn]/(f1, . . . fN )

The set of solutions X(R′) in any R-algebra R′ can be identified with

HomR-alg(S,R′)

because any homomorphism h : S → R′ is uniquely determined by the point
(h(x1), . . . h(xn)) ∈ X(R′). When R = R′ is an algebraically closed field, we
can identify this with the set of maximal ideals in S by Hilbert’s nullstellensatz.
All the other familiar constructions: dimension, tangent spaces, ... can be read
off from S as well.

0.2 Spectrum

Before going further, it may be useful to have a basic model from analy-
sis/topology. Given a compact Hausdorff space X, let C(X) denote the set
of continuous complex valued functions. This is a commutative ring (always
with 1 for us). When endowed with the sup norm, it becomes a so called unital
C∗-algebra. (Since this is just for motivation, we won’t bother writing down
the axioms.)

A special case of Gelfand duality says that we can reconstruct X from C(X).
This is what we want to understand. Given a commutative ring R, let MaxR
denote the set of maximal ideals of R. This is the maximal ideal spectrum. We
make this into a topological space by equipping it with the Zariski topology:
the closed sets are the sets

{m | I ⊆ m}

for ideals I ⊂ R. To every x ∈ X, define

mx = {f ∈ C(X) | f(x) = 0}

This is a maximal ideal such that C(X)/mx
∼= C. The reconstruction result

now follows from the next theorem.

Theorem 0.2.1. The map X →MaxC(X) is a homeomorphism.

5



Given a continuous map of spaces f : X → Y , we get a homomorphism
C(Y )→ C(X) given by g 7→ g◦f . Thus C(X) can be regarded as contravariant
functor, or equivalently a covariant functor of the category of C∗-algebras with
arrows reversed. This is called the opposite category. The full form of Gelfand
duality says

Theorem 0.2.2 (Gelfand). The functor X 7→ C(X) induces an equivalence
between the category of compact Hausdorff spaces and the opposite category of
commutative unital C∗-algebras.

Now let us return to algebraic geometry. Following Grothendieck, we can
make the bold leap

Affine Algebraic Geometry = (Commutative Algebra)opposite

We need to understand how to get a geometric object out of a general com-
mutative ring. Given a such ring R, we have already defined MaxR. The
problem is that given a homomorphism of rings h : R → S, there is in general
no natural way to get a map MaxS → MaxR. If however, we relax the con-
ditions from maximal ideals to prime ideals, then there is a way. Let Spec R
denote the set of prime ideals of R. It is called the spectrum of R. We do get a
map SpecS → SpecR given by p 7→ h−1p.

So now we have a set SpecR. We need to give it more structure.

Proposition 0.2.3. There is a topology, called the Zariski topology, on SpecR
whose basic open sets are D(f) = {p ∈ SpecR | f /∈ p} with f ∈ R. The closed
sets are V (I) = {p ∈ SpecR | I ⊂ P} for ideals I ⊂ R.

The map SpecS → SpecR defined above is easily seen to be continuous. We
make an observation that will be useful below. If R[1/f ] = R[x]/(xf − 1) is the
localization of R at f . Then

Lemma 0.2.4. The maps SpecR[1/f ] → SpecR and SpecR/I → SpecR are
injective and the images are D(f) and V (I) respectively.

We now have a contravariant functor from the category of commutative
rings to the category of topological spaces. However, there is still not enough
structure to set up the equivalence given above. The missing ingredient is the
structure sheaf.

0.3 Affine schemes

The intuition coming form Gelfand duality is bit too coarse for what happens
next. A better model for us comes from manifolds. The basic example is
X = Rn. Consider the collection C∞ real valued functions on X and its open
subsets. The key thing to observe is that the C∞ condition is local. This means
that a function is C∞ if and only if its restriction to the neighbourhood of every
point is C∞. Or equivalently this means that f ∈ C∞(X) if and only for any
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open cover {Ui}, f |Ui ∈ C∞(Ui). There are plenty of other classes of functions
with this property. Abstracting this leads to the notion of a sheaf.

Given a topological space X, a presheaf of sets (groups, rings...), F , is a
collection of sets (groups, rings...) F(U) for each open set U ⊆ X, together
with maps (homomorphisms...) ρUV : F(U)→ F(V ) for each pair U ⊆ V such
that

1. ρUU = id

2. ρWV ◦ ρV U = ρWU whenever U ⊆ V ⊆W .

We usually denote ρUV (f) = f |V .
A presheaf is called a sheaf if for any open cover {Ui} of an open U ⊆ X

and sections fi ∈ F(Ui) such that fi|Ui∩Uj = fj |Ui∩Uj , there exists a unique
f ∈ F(U) satisfying fi = f |Ui .

It will help to think of a scheme, when we get to it, as something like a C∞

manifold. In additional to a topological space, we have a sheaf of commutative
rings. The building blocks are given as follows:

Theorem 0.3.1. Given a commutative ring R, there exists a sheaf of commu-
tative rings OSpecR on SpecR such that

1. OSpecR(D(f)) ∼= R[1/f ].

2. The diagram

OSpecR(D(f))
ρ //

∼=
��

OSpecR(D(fg))

∼=
��

R[1/f ]
k // R[1/fg]

commutes, where the map labelled k is the canonical localization map.

This sheaf is characterized up to isomorphism by these properties.

A pair (X,OX) consisting of a topological space and a sheaf of commutative
rings is called a ringed space. For example, (Rn, C∞Rn) is a ringed space. The
pair (SpecR,OSpecR) is called the affine scheme associated to R. The symbol
SpecR is also used to denote the whole thing. Given SpecR, we can recover
the ring by taking O(SpecR).

0.4 Schemes

The collection of (pre)sheaves on a topological spaceX form a category (PSh(X))
Sh(X). A morphism η : F → G is collection of maps or homomorphisms

ηU : F(U)→ G(U)
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compatible with restriction i.e. such that

F(U)
ηU //

ρ

��

G(U)

ρ

��
F(V )

ηV // G(V )

commutes whenever V ⊆ U . We say that η is an isomorphism, if each ηU is an
isomorphism. An isomorphism of ringed spaces (X,OX)→ (Y,OY ) consists of
a homeomorphism f : X → Y , and a collection of isomorphisms ηU : OY (U) ∼=
OX(f−1U) compatible with restriction.

A scheme is a ringed space (X,OX) which is locally an affine scheme. This
means that there exists an open cover {Ui} and rings Ri along with isomor-
phisms (Ui,OX |Ui) ∼= (SpecRi,OSpecRi). {Ui} is called an affine open cover.
Here the restriction is defined by OX |Ui(V ) = OX(V ) for V ⊆ Ui. Examples
of nonaffine schemes can be constructed taking open subsets of a given affine
scheme with the restriction of the sheaf. For example, if k is field then A2

k−{0}
is not affine.

More interesting examples can be constructed by gluing. If X1 and X2 are
schemes with opens sets X12 ⊂ X1, X21 ⊂ X2 together with an isomorphism
φ : X12 → X21, we can construct a new scheme X = X1 ∪φ X2 as follows. As
a space X is obtained by first taking the disjoint union of X1 and X2 and then
identifying x ∈ X12 with φ(x). A section of OX(U) is given by a pair of section
fi ∈ OXi(Ui) such that φ(f1) = φ(f2). A basic example is the projective line
P1
R over a ring R. It can be constructed by gluing the two lines SpecR[x] and

SpecR[x−1] along the common open set SpecR[x, x−1]. One can glue several
Xi via isomorphisms

Xi ⊃ Xij
φij−→ Xji ⊂ Xj

subject to appropriate compatibilities [H, p 80]. We can construct PnR gluing
the n+ 1 affine spaces

SpecR

[
x0

xi
, . . .

xn
xi

]
⊃ Spec

[
x0

xi
, . . .

xn
xi
,
xi
xj

]
∼= Spec

[
x0

xj
, . . .

xn
xj
,
xj
xi

]
⊂ SpecR

[
x0

xj
, . . .

xn
xj

]
This can also be described using the Proj construction [H]. Note that all
quasiprojective varieties in the classical sense can be viewed as schemes.

0.5 Localization

Given a property P of rings (e.g. the property of being an integral domain), we
may ask when does it extend to schemes. Clearly we want to say that a scheme
X has P if it has open affine cover by spectra of rings satisfying P . Of course,
we need to make sure that this does not depend on the cover, and we would also
know that when applied to affine schemes we recover the original definition.
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Given a commutative ring R, a subset S ⊂ R is called multiplicative if it
contains 1 and is closed under multiplication. The localization S−1R = R[S−1]
is obtained by formally adjoining inverses the elements of S. For example,
{fn | n ∈ N} is multiplicative, and S−1R = R[1/f ].

Let us say that a property P is local if

1. P holds for S−1R whenever it holds for R.

2. P holds for R if there exists f1, . . . fn generating the trivial ideal such that
P holds for R[1/fi].

We can state the following basic principle:

Principle: A property of commutative rings extends to schemes if it is lo-
cal

For example, a ring is reduced if it has no nilpotent elements. This property
is easily seen to be local.

Given a prime ideal p ⊂ R, the complement S = R − p is multiplicative.
Define Rp = S−1R. This is a local ring in the sense that it has a unique maximal
ideal m = pRp. It is easy to see that a property P is local whenever P holds
for R ⇔ P holds for all Rp.

The localization at p has a direct interpretation in terms of sheaf theory
Given a point x ∈ X on a space with a sheaf of rings F , we get a system of
rings

F(U)

%%
F(X)

;;

//

%%

F(V ) // F(U ∩ V )

. . .

where U, V, . . . run over neighbourhoods of x. The stalk Fx, which is the direct
limit, gives local behaviour of this sheaf near x. When X is a scheme, x has
a neighbourhood isomorphic to the spectrum of a ring, say R. The set of the
form D(f) with f /∈ x (regarded as prime ideal) form a cofinal system in the
above, so that the direct limit is the same. Therefore

Lemma 0.5.1. The stalk OX,x is isomorphic to lim−→R[1/f ] which is isomorphic
to the localization Rx.

0.6 Morphisms

A scheme is locally the spectrum of ring, so a morphism of schemes should be
locally determined by the map on spectra induced by a homomorphism of rings.
However, making this into a precise definition requires some work.
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Given a continuous map f : X → Y and a sheaf F on X, the direct image
f∗F is a sheaf of Y defined by f∗F(U) = F(f−1U). A morphism f : (X,OX)→
(Y,OY ) of schemes consists of

1. A continuous map f : X → Y

2. A morphism of sheaves of rings f# : OY → OX such that for each x ∈ X,
the induced homomorphism OX,x → OY,f(x) is local in the sense that the
preimage of mf(x) is mx.

Here is the basic example. Given a homomorphism of rings h : R → S.
There exists a continuous map f : SpecS → SpecR given by f(p) = h−1p. We
have a map of sheave f# : OSpecS → OSpecS which on basic open sets is given
by

O(D(r)) //

∼=
��

O(f−1D(r))

∼=
��

R[1/r] // S[1/h(r)]

where the bottom map is the canonical map given by x/rn 7→ f(x)/h(r)n.
It is easy see that the map Rh−1p → Sp is local, because the preimage of
maximal for Sp is pSp is precisely h−1pRh−1p. Conversely, any morphism of
schemes SpecS → SpecR arises from the homomorphism of R → S given by
O(SpecR)→ O(SpecS).

For general schemes X and Y a morphism can be described as follows. A
continuous map f : X → Y , an affine open cover Ui = SpecRi of Y , an
affine open cover SpecSij of each f−1Ui, and homomorphisms hij : Ri → Sij
subject to the appropriate compatibilities. The principle stated in the previous
section can be extend to morphisms: A property P of homomorphisms of rings
h : R→ S extends to morphisms of schemes if P can be characterized in terms
of the local homomorphisms Rh−1p → Sp.

Given two morphisms of schemes X → S and Y → S, there exists a third
morphism X ×S Y called the fibre product. It fits into a commutative diagram

X ×S Y //

��

X

��
Y // S

and for any Z fitting into a similar diagram, there is a unique morphism f
rendering the following diagram commutative

Z

f

## ))

��

X ×S Y //

��

X

��
Y // S

10



For affine schemes, the fibre product is just the spectrum of the tensor product
of the corresponding rings. As a simple example, we have the fibre product

SpecZ[x1, . . . xn]/(f1, . . . fN )×SpecZ SpecZ/pZ
= Spec(Z[x1, . . . xn]/(f1, . . . fN )⊗Z Z/pZ)

= SpecZ/pZ[x1, . . . xn]/(f1, . . . fN )

is the reduction mod p.

0.7 Schemes as functors

We made a big deal that the set of solutions over a fixed ring need not determine
the geometric object. However, if we allow the rings to vary then it does. Given
the affine scheme

X = SpecZ[x1, . . . xn]/(f1, . . . fN )

we can form the set

X(R) = {(a1 . . . an) ∈ Rn | fi(a1, . . . an) = 0}

of solutions in any commutative ring. If h : R → S is a homomorphism, then
we get an induced map X(R) → X(S) given by (a1, . . .) 7→ (h(a1), . . .). Thus
X defines a functor from commutative rings to sets. The following is straight
forward

Lemma 0.7.1. (ai) ∈ X(R) iff xi 7→ ai defines a homomorphism from Z[x1, . . . xn]/(f1, . . . fN )
to R. Therefore X(R) = Hom(Z[x1, . . . xn]/(f1, . . . fN ), R)

In view of this, we define X(R) = Hom(S,R) whenever X = SpecR. A
familiar example is the scheme

SLn = SpecZ[x11, . . . xnn]/(det(xij)− 1)

Then SLn(R) is the set of n × n matrices over R with determinant 1, exactly
as the notation suggests.

Given affine schemes X,Y , a collection of maps φR : X(R) ∼= Y (R) is a
natural if

X(R) //

φR

��

X(S)

φR

��
Y (R) // Y (S)

commute for every homomorphism R→ S. Here is basic fact.

Theorem 0.7.2 (Yoneda’s lemma). Given affine schemes X = SpecS, Y =
SpecT , if a natural bijection X(R) ∼= Y (R) exists, then X ∼= Y . More gener-
ally, a natural map is induced by a morphisms of affine schemes Y → X, or
equivalently a homomorphism S → T .
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In fact, this result has nothing to do with rings or schemes, but is a general
result of category theory [Ma].

Given an arbitrary scheme X, we define

X(R) = Homschemes(SpecR,X)

The above theorem generalizes to these functors. Thus schemes can be identified
with certain kinds of functors on the category of commutative rings. I know of
at least one book [DG] that introduces schemes this way, but it is in my opinion
not a good starting point for learning the theory. Nevertheless, this point of
view is very powerful, and we will use it from time to time. Functors that arise
this way, are pretty special. We shall see later that they are sheaves in the
appropriate sense.
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Chapter 1

Differential Calculus of
Schemes

Given an affine variety X = V (f1, . . . fN ) ⊂ Ank over a field, by imitating the
usual constructions from calculus, we define the tangent space TX,p at p ∈ X as
the set of vectors (vi) ∈ kn such that∑

i

∂fj
∂xi

(p)vi = 0

Given a morphism h : X → Y ⊆ Am given by polynomials hi the Jacobian
matrix ∂hi

∂xj
(p) can be seen (with some work) to define a linear transformation

TX,p → TY,h(p) called the derivative. We want to refine this in the context of
scheme theory. It turns out that the dual object is the more fundamental, and
we start with that.

1.1 Étale maps

An affine variety X ⊂ Ank is smooth if the Jacobian has the expected rank. Be-
fore giving the precise definition, recall that the Krull dimension of a ring/scheme
gives measure of size. For example

dimAnk = dim k[x1, . . . xn] = n

for any field.

Definition 1.1.1. A domain R = k[x1, . . . xn]/(f1, . . . fN ) or SpecR is smooth

if and only if the rank of
(
∂fj
∂xi

(p)
)

is n − dimR for all p ∈ MaxR. (The

expression f(p) denotes the image of f in R/p.)

When k is algebraically closed, then this condition is also referred to as
nonsingularity. This condition is equivalent to the regularity of the local rings
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[E], and in general this is so after extending scalars to k̄. So smoothness is
independent of the equations. We can define the tangent space TX,p of SpecR

at p as the kernel of the matrix
(
∂fj
∂xi

(p)
)

. Smoothness is equivalent to the

equality dimTX,p = dimR for all p. A point is called nonsmooth or singular if
equality fails.

Example 1.1.2. If the equations fi are linear polynomials, then R is smooth.

Example 1.1.3. A hypersurface R = k[x1, . . . xn]/(f) is smooth if and only if
the partials ∂f

∂xj
(p) are not simultaneously zero for any p ∈ V (f). This follows

from the Krull’s principal ideal theorem dimR = n− 1.

We come now to the basic notion. An étale map should be something like
a covering space in topology. Such a map is a continuous function f : X → Y
for which every point of X has neighbourhood U such that U → f(U) is a
homeomorphism. For manifolds, we can use the inverse function theorem to
test this condition. We can take a suitable algebrization of the hypothesis of
the inverse function theorem as our definition.

Definition 1.1.4. An R-algebra S = R[x1, . . . xn]/(f1, . . . fn) is called étale if

it is smooth of relative dimension 0, if det
(
∂fi
∂xj

)
is a unit in S

Using a different characterization to be given later, étaleness turns out to
be independent of the choice of presentation i.e. if the Jacobian is a unit for
one set of equations then it is for any set of equations. If S is étale, then for
every prime ideal p ∈ SpecS we have an isomorphism Tp SpecS ∼= Tp∩R SpecR
of tangent spaces via the derivative. For smooth varieties, this is an equivalent
condition.

Example 1.1.5. A seperable field extension is given by L = k[x]/(f(x)), where
f is an irreducible polynomial such that f ′(x) and f(x) are coprime. It follows
that L is étale.

Example 1.1.6. Let k have characteristic p > 0 and suppose a ∈ k is not a
pth power. Then the inseperable field extension k(a1/p) = k[x]/(xp − a) is not
étale. This is clear with the given presentation.

These examples can be refined as follows:

Proposition 1.1.7. If k is a field, an algebra over k is étale if and only if it is
a finite cartesian product of seperable field extensions.

Example 1.1.8. Suppose n is an integer not divisible by the characteristic of
a field k. Let R = k[x, x−1], then S = R[y]/(yn − x) is étale.

Example 1.1.9. R[1/f ] is an étale algebra.

Proposition 1.1.10. Then tensor product of two étale algebras is étale.

14



Proof. If S = R[x1, . . . xn]/(f1, . . . fn) and T = R[y1, . . . ym]/(g1, . . . gm) are
étale, then

S ⊗R T = R[x1, . . . xn, y1, . . . ym]/(f1(x), . . . fn(x), g1(y), . . . gm(y))

where x, y denote strings of variables. The Jacobian determinant for the latter

is the product of the determinants det
(
∂fi
∂xj

)
det
(
∂gi
∂yj

)
so it’s a unit.

Proposition 1.1.11. If S is étale over R, and T is étale over S, then T is
étale over R.

Proof. The proof is similar to the one above. Write S = R[x1, . . . xn]/(f1, . . . fn)
and T = S[y1, . . . ym]/(g1, . . . gm). Then

T = R[x1, . . . xn, y1 . . . ym]/(f1(x), . . . fn(x), g1(x, y) . . . gm(x, y))

and the Jacobian determinant is again the product det
(
∂fi
∂xj

)
det
(
∂gi
∂yj

)
1.2 Kähler differentials

Given a commutative ring R and an R-algebra S and an S-module M , an R-
linear derivation from S to M is a map δ : S →M satisfying

δ(s1 + s2) = δ(s1) + δ(s2)

δ(s1s2) = s1δ(s2) + s2δ(s1)

δ(r) = 0

for r ∈ R, si ∈ S. (Combining these rules shows that δ is in fact R-linear.) For
example, the derivatives ∂

∂xi
are R-linear derivations from S = R[x1, . . . xn] to

itself.

Proposition 1.2.1. There exists an S-module ΩS/R with a universal R-linear
derivation d : S → ΩS/R. Universality means that given any derivation δ : S →
M there exists a unique S-module map u : ΩS/R →M such that δ = u ◦ d.

Proof. For the sake of expedience, we do this by generators and relations. How-
ever, this is a bit less useful than the usual construction. Let F be free S-module
generated by symbols {ds | s ∈ S}. Let K be the submodule of F generated by
the elements in the set

{d(s1 + s2)− d(s1)− d(s2), d(s1s2)− s1d(s2) + s2d(s1), d(r) = 0 | si ∈ S, r ∈ R}

Then set ΩS/R = F/K. The map s 7→ ds is easily seen to satisfy the above
conditions.

15



Example 1.2.2. Let S = R[x1, . . . xn]. Then ΩS/R is the free S-module gener-
ated by the symbols dx1, . . . dxn and

df =
∑ ∂f

∂xi
dxi

Proof. To see the above description is correct, it is enough to check that for
any (M, δ) δ(f) satisfies a formula similar to the one above. Therefore the map
dxi 7→ δxi on the free module takes df to δ(f).

Given p ∈ SpecS, let (ΩS/R)p = Sp ⊗S ΩS/R denote the localization of the
module of differentials. This is a rank n free module over the local ring Sp.
Let k(p) = Sp/pSp denote the residue field at this prime. The cotangent space,
which is by definition

T ∗S/R,p = k(p)⊗S ΩS/R

is therefore a vector space of dimension n for each p.

Proposition 1.2.3. Let T = S/I, then there is an exact sequence

I/I2 → T ⊗S ΩS/R → ΩT/R → 0

where f 7→ 1⊗ df in the first map.

Example 1.2.4. Let S = R[x1, . . . xn]/(f1, . . . fN ). Then ΩS/R is the quotient
of the free module generated by the symbols dx1, . . . dxn by the submodule gen-
erated by df1, . . . dfN . In particular, when R = k is a field, we see that the
cotangent space

T ∗S/k,p
∼= coker

(
∂fi
∂xj

(p)

)
is dual to the space given in the introduction.

The module ΩS/R is almost never free. There is however a weaker property
which often holds. An R-module M is locally free (of rank n) if for any if there
exist an open cover of SpecR by basic open sets {D(fi)} such that M [1/fi] =
R[1/fi]⊗RM is free (of rank n).

Theorem 1.2.5. If M is a finitely generated module over a noetherian ring R,
then the following are equivalent

(1) M is locally free.

(2) Mp = Rp ⊗M is free for each p ∈ SpecR

(3) M is projective (i.e. a direct summand of a free module).

When R is reduced, these are equivalent to

(4) The function m 7→ dim k(m)⊗M f from MaxR→ Z is locally constant.

Proof. [E, p 475]. For the last statement, see [Mu, III§2]
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Since k(m)⊗ΩR/k is the dimension of the (co)tangent space at m, we obtain
an intrinsic characterization of smoothness.

Proposition 1.2.6. A domain R = k[x1, . . . xn]/(f1, . . . fN ) is smooth if and
only if ΩR/k is locally free of rank equal to the Krull dimension d = dimR.

1.3 Flat maps

“ The concept of flatness is a riddle that comes from algebra, but which techni-
cally is the answer to many prayers.”

- D. Mumford

Given a module M over a commutative ring R. The functor N 7→M ⊗N is
right exact, i.e. given an exact sequence of modules

0→ N1
ι→ N2 → N3 → 0

we have an exact sequence

M ⊗N1
M⊗ι−→ M ⊗N2 →M ⊗N3 → 0

The map M ⊗ ι need not be injective. M is called flat if M ⊗ ι is injective
for any ι. Suppose that R is a domain and that M has a element such that
rm = 0 with r 6= 0. If we take ι to be multiplication by r on R, then M ⊗ ι is
multiplication by r on M . This is not injective. Therefore, we conclude that a
flat module is torsion free. When R is a PID, the converse is true as well.

Example 1.3.1. A locally free module is flat. In fact, a finitely generated
module over a noetherian ring is flat if and only if it is locally free.

Example 1.3.2. The polynomial ring R[x1, . . . xn] viewed as an R-module is
flat.

Proposition 1.3.3. Let S be an R-algebra. Suppose that M is an S-module,
f ∈ S an element such that multiplication by f is injective on M ⊗ k(m) for all
m ∈MaxR, and M is flat over R. Then M/fM is flat over R.

We omit the proof which follows easily from properties of the Tor functors.
An R-algebra is called smooth of relative dimension m if it is has a presen-

tation
S = R[x1, . . . xn+m]/(f1 . . . fn)

with rank
(
∂fi
∂xj

)
= n. Note that étale is the same as smooth of relative dimen-

sion 0. From the Jacobian criterion for nonsingularity, we obtain

Lemma 1.3.4. A smooth algebra of relative dimension m over an algebraically
closed field is the coordinate ring of a disjoint union of m-dimensional varieties.

Proposition 1.3.5. A smooth algebra is flat.
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Proof. Set Ri = R[x1, . . . xn]/(f1, . . . fi). We use induction to prove that each
Ri is flat. For R0 this clear. Let m ⊂ R be maximal ideal, and k = R/m.
Suppose Ri is flat. Then we can use proposition 1.3.3 to check flatness of
Ri+1 = Ri/fi+1Ri, provided that we can show that fi+1 is a nonzero divisor in
k[x1, . . . xn]/(f1, . . . fi). Then by proposition 1.3.5, Vi = Spec k̄[x1, . . . xn]/(f1, . . . fi)
is a union of n − i dimensional varieties. In particular, k̄[x1, . . . xn]/(f1, . . . fi)
is a product of integral domains. Since all components of Vi+1 have lower di-
mension, it follows that fi+1 does not vanish on any component of Vi. So in
particular, fi+1 is a nonzero divisor in k̄[x1, . . . xn]/(f1, . . . fi) and therefore in
k[x1, . . . xn]/(f1, . . . fi).

We have the following coordinate free characterization of étale maps.

Theorem 1.3.6. Suppose R is noetherian. A homomorphism R → S is étale
if and only if the following hold

(1) S is finitely generated as an algebra.

(2) S is flat as an R-module.

(3) ΩS/R = 0.

Proof. Suppose that S = R[x1, . . . xn]/(f1, . . . fn) is étale. Then finite gener-
ation is automatic. Flatness follows from proposition 1.3.5. ΩS/R vanishes
because it is the cokernel of the Jacobian matrix.

The converse can be found in [A, chap I] or [Mu, chap III§10].

One application of this is that the Jacobian condition for étaleness is inde-
pendent of the presentation. Smoothness has a similar characterization where
the last property is replaced by is locally freeness of ΩS/R.

The next example shows that flatness cannot be omitted.

Example 1.3.7. Let R = C[x, y]/(y2 − x2(x − 1)) be the coordinate ring of a
nodal curve. Its normalization is R̃ = C[t] with R→ R̃ given by

x 7→ t2 − 1, y 7→ t(t2 − 1)

With the classical topology Spec R̃ → SpecR is not a covering space, so it
shouldn’t be étale. To justify this, write

R̃ = R[t]/(x− (t2 − 1), y − t(t2 − 1))

From this it follows that it is finitely generated and that ΩR̃/R = 0. R̃ is also

finitely generated as an R-module. However, it is not locally free. Therefore R̃
is not flat, and so not étale.

We give a refinement of an earlier result.

Proposition 1.3.8. If S is a flat (resp. étale) R-algebra, and T is a flat (resp.
étale) S-algebra, then T is a flat (resp. étale) R-algebra.
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Proof. Writing T ⊗R N = T ⊗S S ⊗R N makes it clear that T is flat over R
under the above conditions. The Kähler differentials fit into an exact sequence

ΩS/R → ΩT/R → ΩT/S → 0

Therefore the middle term vanishes if the outer two do. Finally, fnite generation
of T over R is clear.

1.4 Extension to schemes

Given an R-module M , recall we can form a sheaf M̃ on SpecR such that
M̃(D(f)) = M [1/f ] = M ⊗R R[1/f ]. Sheaves which arise this way are called
quasi-coherent. More generally, a sheaf on a scheme is quasi-coherent if it is
with respect to some (equivalently any) affine open cover.

Lemma 1.4.1. Given a morphism f : X → Y , there exists a quasi-coherent
sheaf ΩX/Y such that ΩX/Y |SpecSij = Ω̃Sij/Ri for open affine covers SpecRi =
Ui of Y and SpecSij of f−1Ui.

Flatness is a local condition. Therefore we can extend it to schemes: A
morphism X → Y is called flat if OX,x is a flat module OY,f(x) for each x ∈ X.
For étale, we take theorem 1.3.6 as the definition. A morphism of noetherian
schemes is étale if the following condition holds

(1) It is locally of finite type

(2) It is flat.

(3) ΩX/Y = 0.

Putting together earlier results shows that

• The class of étale morphisms includes open immersions

• The class of étale morphisms is stable under composition.

• The class of étale morphisms is stable under fibre products.
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Chapter 2

Étale fundamental group

2.1 Profinite groups and Galois theory

Given a sequence of groups and homomorphisms

. . .→ G1
f1→ G0

their inverse limit is the group

lim←−
n

Gn = {(gn) ∈
∏

Gn | fn(gn) = gn−1}

One can consider more general inverse limits parametrized by ordered sets. The
construction is similar. A group is called profinite if it is an inverse limit of
finite groups.

Example 2.1.1. The additive group of p-adic integers

lim←−
n

Z/pnZ

is profinite.

Example 2.1.2. Given a group G, the profinite completion is

Ĝ = lim←− (finite quotients of G)

If each finite group is given the discrete topology, then the limit becomes a
topological group, i.e. it carries a topology such that the group operations are
continuous.

Proposition 2.1.3. A topological group is profinite if and only if it is compact
Hausdorff and totally disconnected. The last condition means that there is a
basis given by sets which are both open and closed.
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An infinite field extension L/K is Galois if it is a union of finite Galois
extensions. The Galois group G can be identified with the inverse limit of the
Galois groups of all the finite intermediate extensions. So in particular, it is
profinite. The fundamental theorem of Galois theory for infinite extensions says

Theorem 2.1.4. There is a one to one correspondence between closed subgroups
of Gal(L/K) and intermediate field extensions: H ⊆ Gal(L/K) corresponds to
LH = {f ∈ L | ∀h ∈ H,hf = f}. Galois extensions correspond to closed normal
subgroups.

2.2 Étale fundamental group

Recall that the topological fundamental group π1(X) of a connected topological
space is the group of homotopy classes of loops in X with a given base point.
There is another characterization which is more convenient for us. A map
π : Y → X is called a covering space if it is a locally a homeomorphism. The
universal cover π : X̃ → X is a covering space such that X̃ is connected and
simply connected π1(X̃) = {1}. Then π1(X) can be identified with the group
of self-homeomorphisms of X̃ commuting with π.

When X is a scheme, we would like an algebraic geometric analogue of the
fundamental group. If X is say a quasi-projective variety defined over C, we
can give X give the usual topology (induced from the Euclidean topology on
projective space) and then form the fundamental group as above. This does not
generalize. The root of the problem is that the universal cover has no meaning
in algebraic geometry. However, we can consider finite approximations to it.
The key point is

Theorem 2.2.1 (“Riemann’s existence theorem”). Any étale morphism Y → X
is a finite to one covering space of X with the usual topology. Conversely, every
finite to one covering space arises this way from a unique étale cover.

Proof. The correspondence between étale covers of X and of the associated
analytic space is given in [SGA1, XII, 5.2], and the latter covers are easily seen
to correspond to covering spaces in the topological sense.

Thus we should be able to build a kind of fundamental group from the
collection of étale covers. To simplify the discussion assume that X is a normal
scheme. This means that X is irreducible as a topological space, and it is
covered by spectra of normal (= integrally closed) rings. If X = ∪SpecRi, then
the field of fractions of each Ri is independent of i. It is called the function field
of X and denoted by K(X). If L ⊃ K(X) is a finite extension. Let R̃i denote
the integral closure of Ri in L. Then we can glue Spec R̃i to get a new normal
scheme XL → X with function field L. We define the maximal unramified
extension

K(X)unr =
⋃
{L ⊃ K(X) | XL → X is étale}
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Define the étale fundamental group

πet1 (X) = Gal(K(X)unr/K(X))

Example 2.2.2. If X = Spec k, where k is a field. K(X)unr = ksep is the
seperable closure. Therefore πet1 (X) = Gal(k) = Gal(ksep/k) is the absolute
Galois group.

As a corollary to the previous theorem, we can deduce.

Theorem 2.2.3 (Grothendieck). If X a scheme of finite type over C, then
πet1 (X) is the profinite completion of π1(X)

This allows the computation of these groups by topological methods.

Example 2.2.4. Let X be a smooth complex projective curve of genus g. There
is a well known presentation for the fundamental group

π1(X) = 〈a1, . . . a2g | [a1, a2] . . . [a2g−1, a2g] = 1〉

where [a, b] = aba−1b−1 is the commuator. Thus πet1 (X) is given as the profinite
completion of this group.

When X is a smooth curve defined over a field of characteristic p > 0, the
structure of πet1 (X) is somewhat mysterious. Even for the line, πet1 (A1) is not
well understood. It is clear that it is nontrivial since the Artin-Scheier covers
yp − y − f(x) = 0 of A1 = Spec k[x] are étale. However, we can understand a
part of this quite well. Define the tame fundamental group

πtame1 (X) = Gal(
⋃
{L | L ⊃ K(X) unramified of deg prime to p}/K(X)

Theorem 2.2.5 (Grothendieck). If X is a smooth curve over an algebraically
closed field of characteristic p > 0, πtame1 (X) is the the pro-prime to p comple-
tion

lim←−Γ/N, N / Γ of index coprime to p

of the corresponding topological fundamental group Γ. That is Γ = 〈a1, . . . a2g |
[a1, a2] . . . [a2g−1, a2g] = 1〉 if X is projective of genus g, and Γ is free on 2g+r−1
generators if X is the complement of r points in a genus g curve.

2.3 First homology

Returning to the topological case, recall that Hurewic’s theorem says that the
abelianization of the fundamental group π1(X)/[π1(X), π1(X)] is isomorphic
to the first homology H1(X,Z). Combining this with the universal coefficient
theorem, we see that the first cohomology with coefficients in an abelian group
A is

H1(X,A) ∼= Hom(H1(X,Z), A) ∼= Hom(π1(X), A)

22



By imitating this, we can define the first étale cohomology

H1(Xet, A) = Hom(πet1 (X), A)

for finite A. When X is defined over C, this does coincide with the usual coho-
mology. This is because any homomorphism from π1(X) to A factors uniquely
through the profinite completion, so that

Hom(π1(X), A) = Hom(π̂1(X), A)

This isn’t true when A is infinite, and this is part of the reason for making the
finiteness restriction.

Example 2.3.1. When X is complex smooth projective curve of genus g, we
see

H1(Xet, A) = Hom(〈a1, . . . a2g | [a1, a2] . . . [a2g−1, a2g] = 1〉, A) = A2g

When X is a smooth projective curve defined over any algebraically closed
field k, and A is a finite abelian group of order coprime to the characteristic,
then

H1(Xet, A) = Hom(πtame1 (X), A) ∼= A2g

still holds. So it does give a good generalization of usual cohomology. In some
ways, it is better because there is more structure. If X defined over a non
algebraically closed field k with seperable closure ksep. Then there is a tower
k ⊂ ksep ⊂ K(X)unr giving rise to an exact sequence

1→ Gal(K(X)unr/k
sep)→ πet1 (X)

p→ Gal(k)→ 1

The group on the left can be identified with étale fundamental group of the
corresponding scheme X̄ = X ×Spec k k

sep over ksep. If we choose a continuous
section to p, we get an action of Gal(k) on πet1 (X̄), which induces a well defined
action on H1(Xet, A). So this is not just a group, but a Galois module. This
structure is very important in number theoretic applications.
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Chapter 3

Étale topology

3.1 Grothendieck topologies

One of Grothendieck’s insights is that by generalizing the definition of a topolog-
ical space, one gets many other interesting examples such as the étale topology.
The starting point is to observe that given a topological space X, the collection
of open sets Open(X)

• is a partially ordered set,

• and it has is a notion of open coverings U = ∪Ui.

We replace Open(X) by a category C with fibre products which plays the
role of intersections. A Grothendieck topology on C is a collection of families
of morphisms {Ui → U} called coverings satisfying

1. The family consisting of a single isomorphism {U ∼= U} is a covering.

2. If {Ui → U} and {Vij → Ui} are coverings, then so is the composition
{Vij → U} is a covering.

3. If {Ui → U} is a covering and V → U is a morphism, then {Ui×U V → V }
is a covering.

A category with a Grothendieck topology is called a site.

Example 3.1.1. Open(X) can be regarded as a category, where U → V means
U ⊆ V . A covering {Ui ⊂ U} is just an open covering in the usual sense.

Example 3.1.2. Let X be a scheme. Let Et(X) denote the category have as
objects étale morphisms U → X and as morphisms commuting triangles

U //

  

V

��
X
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We say that {πi : Ui → U} is a covering if ∪πi(Ui) = U . Et(X) with this
Grothendieck topology is called the étale site of X. We denote this by Xet.

Example 3.1.3. Let X be a noetherian scheme. Let Flat(X) denote the cate-
gory having as objects flat morphisms U → X subject to the finiteness condition
that the preimage of any affine open in X is covered by finitely many affine opens
in U . Morphisms commuting triangles as above. We say that {πi : Ui → U}
is a covering if the images cover U . We call Flat(X) with this Grothendieck
topology the flat site1 of X. We denote this by Xflat.

The for a scheme X, we have a choice of 3 topologies. In order of increasing
fineness, we have the Zariski Xzar, étale Xet, and flat Xflat topologies.

3.2 Sheaves

Given a site C, a presheaf of sets, groups... is a contravariant functor F from
C to the category of sets, groups.... For any covering {Ui → U}, we define the
set of patchable sections by

Ȟ0({Ui → U}, F ) = {(fi) ∈
∏

F (Ui) | the image of fi = the image of fj in F (Ui×UUj)}

There is a canonical map

F (U)→ Ȟ0({Ui → U}, F )

given by sending f ∈ F (U) to the collection of its images in F (Ui). F is called
a sheaf if for any covering {Ui → U}

F (U) ∼= Ȟ0({Ui → U}, F )

For Open(X) this is the usual condition, so there are plenty of examples.
We give a criterion for checking something is a sheaf for the flat site. This can
be used for the étale site also since it is coarser.

Proposition 3.2.1. A presheaf F on Xflat or Xet is a sheaf if and only

1. F is sheaf on the Zariski topology Xzar

2. For any covering U ′ → U of affine schemes in Xflat or Xet

F (U) ∼= Ȟ0({U ′ → U}, F )

Proof. See [M1, p 50].

Let X = Spec k where k is a field. The Zariski topology is trivial, but the
étale topology is far from it. Recall that elements of Xet are given by Spec

∏
Li

where Li are seperable extensions. Let K = ksep and G = Gal(K/k), then we

1This is usually called the fpqc (= fidèlement plat quasi-compact ) site
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can write this as Spec
∏
KGi for some open Gi ⊂ G. By a G-module, we mean

an abelian group M with discrete topology on which G acts continuously. The
last condition is equivalent to requiring that every element of M has a finite
orbit. Given M define

FM (Spec
∏

KGi) =
⊕

MGi

Then

Theorem 3.2.2. FM is a sheaf on Xet. The correspondence M 7→ FM gives an
equivalence between the category of G-modules and sheaves of abelian groups.

Proof. The conditions of proposition 3.2.1 can be checked for FM .
Suppose that F is a sheaf on Xet. For any Galois extension L/k, Gal(L/k)

acts on F (SpecL). Therefore M = lim−→F (L), as L runs over finite Galois exten-
sions of k in K, becomes a G-module. F 7→M gives an inverse. See [M1, p 53]
for further details.

The above construction can be refined for more general schemes.

Example 3.2.3. Suppose that X is normal and M is a πet1 (X)-module. If
U → X is étale and connected, πet1 (U) will act on M via the homomorphism
πet1 (U)→ πet1 (X). Then

FM (U) = Mπet1 (U)

determines a sheaf on Xet. Not all sheaves arise this way in general. A sheaf
which does is called locally constant. FM is constant if the πet1 (X) action is
trivial.

Example 3.2.4. Let i : x̄ = Spec k(x)sep → X be a geometric point by which
we mean the seperable closure of the residue field of closed point. Given a group
M , the skycraper sheaf

i∗M(U) = M#U×X x̄

will not be locally constant unless X = x̄.

3.3 Faithfully flat descent

An R-algebra S is faithfully flat if it is flat and SpecS → SpecR is surjective.
This is different from the usual definition. For the equivalence and the following
lemma, see [AK, chap V].

Lemma 3.3.1. If S is faithfully flat then R→ S is injective.

We need the following weak version of faithfully flat descent in order to
construct certain basic examples of sheaves.

Theorem 3.3.2 (Faithfully flat descent ). Let S be a faithfully flat R-algebra.
Then
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1. For any R-module M ,

0→M →M ⊗R S
d→M ⊗R ⊗S ⊗R S

is exact where d(m⊗ s) = m⊗ 1⊗ s−m⊗ s⊗ 1

2. For any R-algebra T ,

0→ HomR-alg(T,R)→ HomR-alg(T, S)→ HomR-alg(T, S ⊗R S)

is exact.

Proof. For 1, see [M1, p 17]. It follows that

0→ HomR-mod(T,R)→ HomR-mod(T, S)→ HomR-mod(T, S ⊗R S)

is exact. To finish the proof of 2, we observe that an f ∈ HomR-mod(T,R) is
an algebra homomorphism if its image lies in HomR-alg(T, S) because R → S
is injective.

Corollary 3.3.3. Let M be a quasi-coherent sheaf on Xzar. Given π : U → X
in Xflat, let Mflat(U) = π∗M(U). Then Mflat is sheaf on Xflat. Therefore
Mflat restricts to a sheaf on Xet.

Theorem 3.3.4. If Y → X is a morphism of schemes, then

Y (U) = HomSchemes/X(U, Y )

is a sheaf on the flat site, and therefore on the étale site.

Proof. This is more or less proved in [M1, pp 16-18], or a complete proof can
be found in [SGA3, IV 6.3.1]. For Y affine, this pretty much follows from prop
3.2.1 and theorem 3.3.2. The general case can be reduced to this.

Example 3.3.5. For any set S = {s1, . . . sn}, let Y = S × X ∼=
∐n
i X. If U

is connected, then Y (U) = S, otherwise it’s bigger. We denote this sheaf by S
when there is no confusion. This is by definition a constant sheaf. Note that if
S is a group, the corresponding sheaf is a sheaf of groups.

Example 3.3.6. Let Y = A1
X . Then Y (U) = OU (U) is the just the structure

sheaf in the flat topology. The fact that this is a sheaf also follows from corollary
3.3.3. We usually write this simply as Ga.

Example 3.3.7. The multiplicative group scheme Gm = SpecZ[x, x−1]. Let
Y = Gm × X. Then Y (U) = O∗U is the sheaf of units. We usually write this
simply as Gm.

Example 3.3.8. The group scheme of roots of unity µn = SpecZ[x]/(xn − 1).
Let Y = µn ×X. Then Y (U) = {f ∈ O(U) | fn = 1}. We usually denote this
by µn. This is locally constant. When X is covered by spectra of rings having
n distinct roots of unity, µn is constant and µn ∼= Z/nZ noncanonically.
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When X is the spectrum of a field k with K,G as above. We can describe
the restrictions of these sheaves to Xet in terms of G-modules.

1. S ↔ S with trivial G-action on the right.

2. Ga ↔ K with the usual G-action on the right.

3. Gm ↔ K∗ with the usual G-action on the right.

4. µn ↔ µn(K) = {f ∈ K | fn = 1} with the usual G-action on the right.

3.4 Schemes modulo equivalence relations

As general as schemes are, it turns out that schemes are sometimes not general
enough. It’s not that one wants generalizations for their own sake, but rather
because one wants certain constructions to make sense. For example, in many
situations one would like to form quotients by group actions. However, Hironaka
has given an example of a variety X with a fixed point free action by finite group
G for which the quotient X/G does not exist as a scheme (see [K]). There are
other issues as well. In complex geometry, Grauert showed that one can contract
subvarieties with negative normal bundle. While such a result would be desirable
in the algebraic world, it not always possible within schemes. However, Artin
gave an enlargement of the category of schemes called algebraic spaces, where
these kinds of constructions do exist. In rough terms it is a scheme modulo a
suitable equivalence relation. The problem is to make the last part precise.

As starting point recall that a functor represented by scheme is sheaf on
the étale site of SpecZ, and this functor determines the scheme. In particular,
we can identify X with the corresponding sheaf. This would suggest that all
sheaves, not just representable ones, could play the role of generalized schemes.
However, these objects can be pretty wild. Artin singled a good subclass of
these sheaves. Given a category with products an pair of morphisms R⇒ X is
equivalent to a single morphism R→ X×X. This is called an equivalence rela-
tion if for each Y , the map Hom(Y,R)→ Hom(Y,X)×Hom(Y,X) is injective
and the image is an equivalence relation in the usual sense. The quotient, if it
exists, is a morphism X → X/R such that the composition of both projections
R ⇒ X with X → X/R coincide, and such that this is the universal morphism
with this property. Quotients by equivalence relations exist in the category of
étale sheaves. A sheaf F is an algebraic space if F = X/R, where X is a scheme
and R ⊂ X ×X is subscheme which is equivalence relation such that the pro-
jections R → X are étale. So by definition X/G is an algebraic space when G
is a finite group acting without fixed points. In particular, Hironaka’s example
is an algebraic space. A systematic development can be found in [A, K].
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Chapter 4

Cohomology

4.1 Exact sequences

Let C be a site, and let PSh(C) denote the category of presheaves of abelian
groups. The objects are presheaves, i.e. contravariant functors from C to the
category of abelian groups. The morphisms are natural transformations, that
is collections of homomorphisms ηU : F (U)→ G(U) such that

F (U)
ηU //

��

G(U)

��
F (V )

ηV // G(V )

commutes. The category of PSh(C) is a so called abelian category [Ma] so it
comes with a notion of exactness. To make this explicit, a sequence of presheaves

. . . F → G→ H . . .

is exact precisely when

. . . F (U)→ G(U)→ H(U) . . .

is exact for each U ∈ C. Alternatively, define the presheaf kernel and image
associated to a morphism η by

pker(η)(U) = ker(ηU ), pim(η)(U) = im(ηU )

The condition for exactness amounts to pim of each morphism in the sequence
to coincide with pker of the next morphism.

The category Sh(C) has as its objects sheaves of abelian groups, and mor-
phisms are defined as above. This is also an abelian category, but the notion
of exactness in Sh(C) is different from PSh(C). In other words the inclusion
Sh(C) ⊂ PSh(C) is not an exact functor. The source of the problem is this.
If η : F → G is a morphism of sheaves ker(η) = pker(η) is a sheaf but pim(η)
usually isn’t.
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Example 4.1.1. Let X = S1 = R/Z be the circle with its usual topology. Let
d : C∞X → C∞X take f to its derivative. The constant function 1 /∈ d(C∞(X)),
even though its restriction to any covering by intervals is the image. So pim(d)
is not a sheaf.

The solution is replace pim by the sheaf image

im(η)(U) = {f ∈ F (U) | ∃ a covering {Ui} such that f |Ui ∈ im(ηUi)}

Then exactness amounts to the condition ker = im as above. Returning to the
previous example, we can see that

0→ RX → C∞X
d→ C∞X → 0

is an exact sequence of sheaves although not of presheaves. Here RX is the sheaf
of locally constant real valued functions.

4.2 Stalks in the étale topology

On a topological space X, there is a simple and useful criterion for exactness:
A sequence of sheaves

. . . F → G→ H . . .

is exact if and only if for every x ∈ X, the corresponding sequence of stalks

. . . Fx → Gx → Hx . . .

in the usual sense. The bad news/good news is that there is no analogue of this
for sites in general, but there is for the étale site.

If X is a scheme, a geometric point consists of a point x ∈ X together with
a choice of seperable closure k(x)sep of the residue field k(x) = Ox/mx. Equiva-
lently, it is simply a morphism x̄ = Spec k(x)sep → X. An étale neighbourhood
of this point is a commutative diagram

x̄ //

��

U

π

��
X

where π is étale. Given sheaf F on Xet, define the stalk at x̄ by

Fx̄ = lim−→F (U)

where U runs over all étale neighbourhoods. This clearly gives a functor Sh(Xet)→
Sets. The key fact [M1, II 2.15] is

Theorem 4.2.1. A sequence of sheaves

. . . F → G→ H . . .
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on Xet is exact if only
. . . Fx̄ → Gx̄ → Hx̄ . . .

exact for all geometric points x̄.

The stalk OX,x̄, called the strict Henselization of the local ring OX,x, can be
described directly in terms of commutative algebra, although it is not something
one sees in a basic course.

Theorem 4.2.2. For any local ring R with residue field k, the strict Henseliza-
tion Rsh is a local ring with residue field ksep. Moreover, Rsh satisfies Hensel’s
lemma which says that given f(x) ∈ Rsh[x] with a simple root r̄ ∈ ksep, there
exists a root r ∈ Rsh mapping to r̄.

Example 4.2.3. Let R be local ring of Ank at the origin, i.e. the localization
of k[x1, . . . xn] at (x1, . . . xn). The strict Henselization Rsh is isomorphic to the
ring of algebraic power series

{f ∈ ksep[[x1, . . . xn]] | ∃p ∈ k[t]− {0}, p(f) = 0}

See [A, p 45].

An extraordinarily useful exact sequence of sheaves in complex manifold
theory is the exponential sequence

0→ ZX → OX
e2πi→ O∗X → 1

Since it uses the exponential function, there is no way to make it algebraic, but
there is a good substitute called the Kummer sequence.

Proposition 4.2.4. Let X be a scheme such that n does not divide the char-
acteristic of any of the residue fields, then the Kummer sequence

1→ µn → Gm
f 7→fn−→ Gm → 1

is exact on Xet.

Proof. We can check exactness on stalks. If R = OshX,x, then it comes down to
verifying

1→ µn(R)→ R∗
n→ R∗ → 1

is exact. The only nontrivial issue is the surjectivity of the last map. Given
r ∈ R∗, f(x) = xn − r will have a simple root in the separably closed field ksep.
By Hensel’s lemma this lifts to a root in R.

4.3 Cohomology

Given a site C, as we mentioned earlier the presheaf kernel is already a sheaf.
Therefore
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Lemma 4.3.1. Given a site C, a short exact sequence of sheaves

0→ F1 → F2 → F3 → 0

and an object X ∈ C, there is an exact sequence

0→ F1(X)→ F2(X)→ F3(X)

In general, as we saw the last map usually isn’t surjective ex 4.1.1. Here’s
another example

Example 4.3.2. The Kummer sequence for n = 2 on Q yields

1→ {±1} → Q∗ x 7→x
2

−→ Q∗

The last map is not surjective of course.

There is a way to handle this, which is part of a familiar pattern in homolog-
ical algebra [W]. Suppose we are given a functor F from one abelian category
to another which is additive in the sense it takes sums to sums. Suppose also
that F is also left exact which means that it takes a short exact sequence

0→ A→ B → C → 0

to an exact sequences

0→ F(A)→ F(B)→ F(C)

Under some additional assumptions about the abelian categories that every
object embeds into an injective we can prolong this to a long exact sequence in
a canonical way. These assumptions hold in our case, so to summarize a rather
long story:

Theorem 4.3.3. There exists a sequence of additive functors Hi(X,−), i =
0, 1, 2, . . . from Sh(C) to abelian groups such that H0(X,F ) = F (X) and a
short exact sequence of sheaves

0→ F1 → F2 → F3 → 0

leads to a long exact sequence

0→ H0(X,F1)→ H0(X,F2)→ H0(X,F3)→ H1(X,F1)→ H1(X,F2) . . .

Of course the details can be found in the references at end, but simply
treating everything as a black box is not terribly enlightening. Let us at least
try to discover the meaning of some special cases.
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4.4 Torsors

Let {Ui → X} be a covering on a site C. Let Uij = Ui ×X Uj etc. Given a
sheaf of not necessarily abelian groups G, by definition a collection gi ∈ G(Ui)
such that gi|Uij = gj |Uij patches to a unique g ∈ G(X). Let us suppress the

restriction symbols and simply write this as gig
−1
j = 1. We refer to this as the 0-

cocycle condition. Perhaps this suggests the next step. A collection gij ∈ G(Uij)
satisfies the (Cech) 1-cocycle condition if

gijg
−1
ik gjk = 1

The pattern is perhaps clearer if we write

gijk̂g
−1

iĵk
gîjk = 1

By considering degenerate cases such i = j = k we get

gii = 1, gji = g−1
ij

Such cocycles come up naturally in the theory of fibre bundles. Let say that
C is the site associated to a topological space X, and G is a topological group,
and G(U) is the group of continuous maps from U to G. Given 1-cocycle gij ,
and a space F on which G acts we can build a new topological space F by gluing
F×Ui to F×Uj by (f, x) 7→ (gij(x)f, x). There are some consistency issues, but
these are taken care of by the cocycle rule. F comes with a map to X, and is an
example of a locally trivial fibre bundle. In particular the construction applies
when F = G the usual action of G on itself. We obtain a principal fibre bundle
F = P. A version of this can be carried entirely in setting of sheaves over a
site C. Thus to G and a cocycle gij we obtain a sheaf of sets P with an action
P×G→ P such that the restriction P (Ui) becomes isomorphic to to G(Ui) with
usual action of G(Ui) on itself. P is called a torsor or principal homogeneous
space. Given a torsor and fixed choice of isomorphisms P (Ui) ∼= G(Ui) – such
a set of isomorphism is called a trivialization – we can reverse everything and
obtain a cocycle.

Let us now assume that G is a sheaf of abelian groups. Let Z1({Ui → X}, G)
denote the set of 1-cocycles. It is now an abelian group. We have subgroup of
1-coboundaries B1({Ui → X}, G) consisting of gij = hih

−1
j for hi ∈ G(Ui). We

define the first Cech cohomology group

Ȟ1({Ui → X}, G) = Z1/B1

Taking the direct limit over coverings gives

Ȟ1(XG) = lim−→ Ȟ1({Ui → X}, G)

Theorem 4.4.1. Ȟ1(X,G) ∼= H1(X,G)
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To see why is reasonable. Consider an exact sequence of sheaves of abelian
groups

0→ G→ F → K → 0

According to the theorem, the obstruction to lifting k ∈ K(X) to F (X) is given
by an element δ(k) ∈ Ȟ1(X,G). By definition of exactness of sheaves, there is
a covering {Ui → X} and an elements fi ∈ F (Ui) mapping onto k|Ui . Then
the elements gij = fif

−1
j is a 1-cocycle representing δ(k). If δ(k) = 0 one can

show that gij is a coboundary because the maps in above the direct limit are
injective. In this case, we can correct the fi so that they patch to a section of
F (X). Therefore δ(k) is the obstruction as claimed.

As see saw, elements of Z1({Ui → X}, G) correspond to torsors with fixed
trvialization over the covering. Dividing by B1 gets rid of the choice of trivial-
ization, so Ȟ1({Ui → X}, G) is the set of bundles which can be trivialized on
the given covering. Taking the limit, eliminates the last choice. Thus

Corollary 4.4.2. The elements of H1(X,G) correspond to isomorphism classes
of torsors for G, with 0 corresponding to the trivial torsor G.

Here is a basic example. Let X be normal scheme and G be a finite quotient
of πet1 (X). Then we have an étale cover Y → X with Galois group G. We wish
to show that Y , or more accurately the sheaf Y (−), is a torsor for G on Xet.
By definition G acts on Y . So it remains to check local triviality. This comes
down to

Lemma 4.4.3. G× Y ∼= Y ×X Y .

Proof. Define a map (g, y) 7→ (gy, y). This can be checked to be an isomorphism.

We can refine this a bit. Suppose G is a finite group with a homomorphism
h : πet1 (X) → G. Let H = im(h). Then we can form an H-torsor Y as above.
Let P = G × Y/H where H acts by (g, y) 7→ (h−1g, yh). Then P becomes a
G-torsor. Note that P need not be connected. Any G-torsor can be seen to
arise this way. When G is abelian, then we have bijections

Hom(πet1 (X), G) ∼= {G-torsors} ∼= H1(Xet, G)

as sets. This partially justifies our earlier description of cohomology.
One can define higher Cech cohomology for a site by refining the above

proceedure. A Cech n-cocycle in a sheaf of abelian groups F with respect to a
covering {Ui → X} is a collection

gi0,...gn ∈ F(Ui0,...in)

satisfying

δ(g) =
∑

(−1)rgi0,...̂ir,...in = 0
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One then defines Ȟn({Ui → X},F) by taking the space of cocycles modulo the
image of δ. Ȟn(X,F) is defined as the direct limit over all coverings. Unfor-
tunately, this need not be the same as Hn(X,F) even when X is a topological
space. Useful criteria for when these are isomorphic can be found in the refer-
ences. For our purposes, the following is sufficient.

Theorem 4.4.4. If X is a quasiprojective scheme, then

Hi(Xet,F) ∼= Ȟi(Xet,F)

Proof. [M1, III, 2.17].

4.5 Galois cohomology

Let X = Spec k, where k is a field, K = ksep and G = Gal(K/k). Then we saw
that the category of sheaves on Xet is equivalent to the category of G-modules.
Under this correspondence

F (X) = MG

Thus as, one would expect, the higher cohomology can be described in these
terms. Given M , a (Galois) n-cocyle is a continuous map f : Gn →M satisfying

δ(f)(g1, . . . gn+1) =

g1f(g2, . . . gn+1) +
∑

(−1)if(g1, . . . , gigi+1, . . . gn) + (−1)n+1f(g1, . . . gn) = 0

It sometimes convenient to add a normalization condition that f vanishes when-
ever one of the gi = 1. Let Zn(G,M) (Znorm(G,M)) denote the group of
(normalized) cocycles. One checks that δ2 = 0 so elements in the image of δ,
called coboundaries, are in particular cocycles. Let Bn(G,M) (Bnorm(G,M))
denote the group of (normalized) n-coboundaries. Then define the nth Galois
cohomology by

Hn(G,M) = Zn(G,M)/Bn(G,M)

One can use normalized cocycles above without changing the outcome.

Theorem 4.5.1. If F ∈ Xet corresponds to M , then

Hi(Xet, F ) ∼= Hi(G,M)

This can proved easily once one has set up the general homological machinery
[W]. The above functors are isomorphic because they are derived functors of
isomorphic functors.

Corollary 4.5.2. If F is a constant sheaf corresponding to a module M , then
H1(Xet, F ) ∼= Homcont(G,M).
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Proof. A 1-cocycle satisfies

f(g1g2) = g1f(g2) + f(g1)

in general. In this case, M has trivial action, so it is just a homomorphism.
Moreover the coboundaries are trivial.

It is sometimes convenient to note that Galois cohomology can be expressed
as a limit.

Lemma 4.5.3.

Hi(G,M) = lim−→Hi(Gal(L/k),MGal(K/L))

as L/k runs over finite Galois extensions. (The right hand cohomology is defined
as above. Cocycles are automatically continuous.)

Theorem 4.5.4 (Hilbert’s theorem 90). H1(G,K∗) = 0

Proof. By the lemma, we have

H1(G,K∗) = lim−→H1(Gal(L/k), L∗)

as L/k runs over finite Galois extensions. Fix L/k and set G = Gal(L/k). Given
a 1-cocycle φ ∈ Z1(G,L∗) and λ ∈ L, set

β =
∑
g∈G

φ(g)g(λ)

By Galois theory, λ can be chosen so that β 6= 0 [L, p 303]. Furthermore in this
case, one has φ(g) = β/g(β) which shows that φ is a coboundary.

There are some important cases, where higher cohomology has a concrete
interpretation. The Brauer group Br(k) is the set of isomorphism classess of
finite dimensional noncommutative algebras over k which become isomorphic
to matrix algebra after extending scalars to some finite Galois extension. The
group operations is tensor product. The Brauer group is often highly nontrivial.
The determination for Q is one of the achievements of class field theory. For
the reals, Br(R) = Z/2Z with the generator given by the quaternions.

We can express

H2(G,K∗) = lim−→H2(Gal(L/k), L∗)

Fix L/k and set G = Gal(L/k). Given normalized 2-cocycle φ ∈ Z2
norm(G,L∗),

we can define a noncommutative K-algebra Aφ = {
∑
ag ∗ g | ag ∈ L, g ∈ G},

called the crossed product, with multiplication law ∗ determined by the rules

(a ∗ 1) ∗ (b ∗ 1) = (ab) ∗ 1, a, b ∈ L

g ∗ a = g(a) ∗ g, a ∈ L, g ∈ G
g ∗ h = φ(g, h)gh, g, h ∈ G

where g(a) is given by the action of G on L. A few facts can be seen readily
from these formulas
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• The algebra is associative (this uses the cocycle property).

• The centre of this algebra is precisley k

• When φ = 1, we can identify Aφ with the matrix algebra Endk(L).

For general φ, one can show that after extending scalars L ⊗k Aφ becomes a
matrix algebra. Therefore Aφ determines an element of Br(k).

Theorem 4.5.5. The map φ 7→ Aφ yields an isomorphism H2(G,K∗) ∼= Br(k)
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Chapter 5

Cohomology of Curves

Given a smooth projective curve X of genus g, the usual (singular) cohomology
has the following shape

Hi(X,A) =


A if i = 0

A2g if i = 1

A if i = 2

0 otherwise

So in particular, this holds when A = Z/nZ ∼= µn. Our goal is to show that
étale cohomology gives essentially the same answer.

5.1 Picard group

Fix a smooth projective curve X over an algebraically closed field k A divisor is
a finite sum

∑
nipi where ni ∈ Z and pi ∈ X(k). They form an abelian group

Div(X). The degree deg(
∑
nipi =

∑
ni defines a surjective homomorphism

deg : Div(X) → Z. Given a rational function f ∈ k(X)∗, define the principal
divisor

div(f) =
∑

ordp(f)p

where ordp is the discrete valuation measuring the order of the zero of f at p.
One has div(fg) = div(f) + div(g), so the the set of principal divisors form a
subgroup Princ(X). The Picard group or the divisor class group

Pic(X) = Div(X)/Princ(X)

The degree of prinicipal divisor is zero, therefore deg factors through Pic(X).
Let Pic0(X) be the kernel.

Theorem 5.1.1. Pic(X) is isomorphic to the Zariski cohomology group H1(Xzar,O∗X).
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Proof. Let Zp denote the skyscraper sheaf

Zp(U) =

{
Z if p ∈ U
0 otherwise

If we write k(X)∗ for the constant sheaf k(X)∗(U) = k(X)∗, then we have an
exact sequence

0→ O∗X → k(X)∗
div−→

⊕
p

Zp → 0 (5.1)

on Xzar, where div is defined as above but with the sum over points restricted
to the given U . Then we get a long exact sequence

H0(X, k(X)∗)→ H0(X,
⊕

Zp)→ H1(X,O∗X)→ H1(X, k(X)∗)

The cohomology group on the right vanishes because k(X)∗ is flasque [H].
Therefore this sequence becomes

k(X)∗ → Div(X)→ H1(Xzar,O∗X)→ 0

and the theorem follows.

There is another natural interpretation of this group. An element ofH1(Xzar,O∗)
is given by a cocycle gij . This gives a so-called line bundle, which is a fibre bun-
dle with fibre k. For our purposes, it is more convenient to the sheaf theoretic
analogue of this. A line bundle L is for us a rank one locally free sheaf on X,
i.e. it is a sheaf of OX -modules such that L|Ui ∼= OUi for some Zariski open
covering. From the cocycle we can construct L by

L(U) = {fi ∈
∏
OX(U ∩ Ui) | fi = gijfj}

We can also construct a line bundle directly from a divisor by

O(
∑

nipi) =
∏

m−nipi

where mp is the maximal ideal sheaf at p. So to summarize the discussion

Theorem 5.1.2. There is an isomorphism

Pic(X) ∼= H1(Xzar,O∗X) ∼= {line bundles}/ ∼=

The group operation on the right is tensor product.

The Picard group has a well known structure of an abelian variety, which is
a projective variety which has a structure of an algebraic group [Mu1]. Over C
an abelian variety is a complex torus.

Theorem 5.1.3. The group Pic0(X) is the set of rational points of a g dimen-
sional abelian variety called the Jacobian, where g = dimH1(Xzar,OX) is the
genus.
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From the structure of abelian varieties

Corollary 5.1.4. Pic0(X) is a divisible abelian group. If n is prime to the
characteristic of k, then the n-torsion of Pic0(X), Pic0(X)n is isomorphic to
(Z/nZ)2g.

5.2 Etale cohomology of Gm

Let X be a smooth projective curve over an algebraically closed field k.

Theorem 5.2.1 (Tsen). If K = k(X), then Hi(Gal(Ksep/K),K∗) = 0 for
i > 0.

Proof. The vanishing for i = 1 is Hilbert’s theorem 90. For the more usual form
of Tsen’s theorem and why the present result follows see [S, chap II, §3].

Let j : Spec k(X) → X denote the inclusion of the generic point. We can
define the so called direct image sheaf j∗Gm on Xet by

j∗Gm(U) = k(U)∗

Corollary 5.2.2. Hi(X, j∗Gm) = 0 for i > 0.

Proof. There are two things going on here. An isomorphism Hi(X, j∗Gm) ∼=
Hi(Gal(Ksep/K),K∗) and the theorem. The first statement follows from an
analysis of the Leray spectral sequence. See [SGA4.5, p 33] for details.

Note that j∗Gm restricts to the sheaf k(X)∗ on Xzar. We have an analogue
of (5.1)

0→ Gm → j∗Gm →
⊕
p

Zp → 0 (5.2)

where Zp is the étale version of a skyscraper sheaf (ex 3.2.4).

Lemma 5.2.3. Hi(Xet,Zp) = 0 for i > 0.

Proof. One checks that Hi(Xet,Zp) = Hi(Spec k(p),Zp) = 0 for i > 0. See
[SGA4.5, p 34].

Putting these results together yields

Theorem 5.2.4.

Hi(Xet,Gm) =


k∗ if i = 0

Pic(X) if i = 1

0 if i > 1
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Proof. From (5.2), and corollary 5.2.2, we deduce

0→ H0(Xet,Gm)→ H0(Xet, j∗Gm)→ H0(Xet,
⊕

Zp)→ H1(Xet,Gm)→ 0

This can be identified with

0→ H0(Xet,Gm)→ k(X)∗ →
⊕
p

Z→ H1(Xet,Gm)→ 0

Therefore H0(Xet,Gm) and H1(Xet,Gm) can be identified with kernel and cok-
ernel of k(X)∗ → Div(X) respectively. The kernel is the set of rational functions
on X without poles or zeros, which is known to be exactly k∗. The cokernel of
k(X)∗ → Div(X) is Pic(X) as we have seen. The higher cohomologies of Gm
are zero by corollaries 5.2.2 and 5.2.3.

We can now deduce analogues of the calculations of singular cohomology
stated earlier.

Corollary 5.2.5. Suppose that n is prime to char k. Then

Hi(Xet,µn) =


µn(k) if i = 0

Pic0(X)n if i = 1

Z/nZ if i = 2

0 if i > 2

Proof. From the Kummer sequence, we obtain

0→ H0(Xet,µn)→ k∗
n→ k∗ → H1(Xet,µn)→ Pic(X)

n→ Pic(X)→ H2(Xet,µn)→ 0

The corollary follows by combining this with the exact sequence

0→ Pic0(X)→ Pic(X)→ Z→ 0

and corollary 5.1.4.

We deduce from this that there are noncanonical isomorphisms

Hi(Xet,Z/nZ) ∼=


Z/nZ if i = 0

(Z/nZ)2g if i = 1

Z/nZ if i = 2

0 if i > 2

(5.3)

When X is defined over a subfield k0 ⊂ k, the Galois group Gal(k/k0) will act
on étale cohomology. The isomorphisms given in the above corollary are better
for this purpose, since they respect the Galois action. Discarding this for now,
notice the symmetry rank(H0(Xet,Z/nZ)) = rank(H2(Xet,Z/nZ)). This is an
instance of Poincaré duality. In order to put this in a more canonical footing,
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we need to explain products. Given sheaves F,G, their tensor product F ⊗ G
is the sheaf associated to the presheaf U 7→ F (U)⊗G(U). There are products

∪ : Hn(Xet, F )⊗Hm(Xet, G)→ Hn+m(Xet, F ⊗G)

called cup products, which can be described explicitly using Cech cocycles.
Given cocycles fi0,...in and gi0,...im , their product is given by

(f ∪ g)i0,...in+m
= fi0,...in ⊗ gin,...in+m

Theorem 5.2.6. Let
tr : H2(Xet,µn) ∼= Z/nZ

denote the canonical isomorphism given above. The pairing

tr ◦ ∪ : Hi(X,µn)⊗Z/nZ H
2−i(X,Z/nZ)→ Z/nZ

is perfect i.e. it induces an isomorphism

Hi(X,µn) ∼= Hom(H2−i(X,Z/nZ),Z/nZ)

Proof. The only nontrivial case is i = 1. Here the proof hinges on an explicit
description of the product [SGA4.5, Dualité §3]. Fix a base point x0 of X then
one has the Abel-Jacobi map α : X → Pic0(X) given by x 7→ x − x0. This
map induces an isomorphism on the first étale homology by class field theory.
Therefore a Z/nZ-torsor of X is the pullback of a Z/nZ-torsor of Pic0(X) along
α. Multiplication by n

Pic0(X)
n→ Pic0(X)

determines a Pic0(X)n-torsor of Pic0(X). This determines a class

ξ ∈ H1(Pic0(X)et, P ic
0(X)n)

Every Z/nZ-torsor of Pic0(X) is the image of ξ under a unique homomorphism
Hom(Pic0(X)n,Z/nZ). Therefore, we have an identification

H1(Xet,Z/nZ) ∼= Hom(Pic0(X)n,Z/nZ)

The product H1(X,µn)⊗H1(X,Z/nZ)→ Z/nZ coincides with the evaluation
map

Pic0(X)n ⊗Hom(Pic0(X)n,Z/nZ)→ Z/nZ
up to sign, which is perfect by definition.

5.3 Constructible Sheaves

Let X be as in the last last section. It is convenient to extend the finiteness
statements for H∗(Xet,µn) to more general coefficients. An étale sheaf F of
Z/nZ-modules on the curve X is called constructible if it has finite stalks and
there exists a nonempty Zariski open set U ⊆ X such that F |U is locally con-
stant. (We can understand the restriction simply as restriction of functors to
the subcategory Uet ⊂ Xet.) Of course, µn and Z/nZ are both constructible,
as are sky scraper sheaves 3.2.4 i∗A where A is finite.
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Theorem 5.3.1. If F is constructible then Hi(Xet, F ) is finite for all i and
zero when i > 2.

Proof. We make a series of reductions to the case we understand, corollary 5.2.5.
This style of proof, called devissage or untwisting, is classic Grothendieck.

(1) The theorem is trivially true for skyscraper sheaves.

(2) When F is constant, this follows from corollary 5.2.5.

(3) Suppose that F |U is constant for some nonempty j : U → X. Let Z =
X − U and let i : Z → X denote the inclusion. We have canonical
surjection (or more acurately epimorphism)

F → i∗
⊕
x∈Z

Fx

We denote the kernel by j!F |U . Then the theorem holds for j!F |U by usual
the long exact sequence and (1) and (2).

(4) Suppose that F |U is locally constant. Let j be as above. Then there
exists an étale cover π : U ′ → U such that FU ′ is constant. In fact, we
can assume that π is Galois. We can choose smooth compactification X ′

of U ′ and extend π to a morphisms X ′ → X. Let j′ : U ′ → U denote the
inclusion. We obtain a long exact sequence

. . . Hi(X, j!F |U )→ Hi(X ′, j′!F |U ′)→ Hi(X, j′!F
′′|U ) . . .

where F ′′ is again constant. Therefore the theorem holds for j!F |U .

(5) For the general case. Choose U so that F |U is locally constant. Use the
exact sequence

0→ j!FU → F → i∗
⊕
x∈Z

Fx → 0

and the previous cases to conclude the theorem.

One also has a version of Poincaré duality for constructible sheaves. See
[FK, M1, M2, SGA4.5].
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Chapter 6

Cohomology of surfaces

The goal of this chapter is apply the machinery of étale cohomology to surfaces.
Among other things, we give one of Weil’s proofs [Wl] of his bound on the
number of points of a curve over a finite field. The proof relies on the geometry
of the surface C × C.

6.1 Finiteness of Cohomology

Fix a smooth projective surface (i.e. two dimensional variety) X over an alge-
braically closed field k. The first key result is the finiteness of the cohomology
of X. Let n be coprime to char k.

Theorem 6.1.1. The groups Hi(Xet,µn) are finitely generated Z/nZ-modules.

Sketch. For curves the analagous statement was obtained by direct calculation.
For surfaces things are more complicated. The basic idea is to reduce things
down to curves by fibering them. Here is a broad outline. The first step is
to reduce to the case where X admits a surjection onto P1. Embed X into
projective space. Choose a pencil of hyperplanes {Ht}t∈P1 so that H0 and H∞
meet in general position. We can form a new smooth surface

X ′ = {(x, t) ∈ X × P1 | x ∈ Ht}

which maps onto both X and P1. The cohomology of X injects into the coho-
mology of X ′, so we may replace X by X ′.

Now consider cohomology along the fibres. More formally these are higher
direct image sheaves Rif∗µn which are the sheaves associated to the presheaves

U 7→ Hi((U ×P1 X)et,µn)

The cohomology of X can be computed using the Leray spectral sequence

Hi(P1
et, R

jf∗µn)⇒ Hi+j(Xet,µn)
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which we won’t explain. The important thing for now is that it reduces the
theorem to proving finiteness of Hi(P1

et, R
jf∗µn) for all i, j. Finiteness will

follow from theorem 5.3.1, once we prove

Claim: Rjf∗µn are constructible.

The claim can be proved by a relative version of the arguments used to prove
corollary 5.2.5. Let U ⊂ P1 be an open set over which f has no singular fibres.
Then

Rif∗µn|U =


µn if i = 0

n-torsion of the Picard scheme if i = 1

Z/nZ if i = 2

0 otherwise

There is also a version of Poincaré duality in this setting. This can be proved
by refining the previous analysis.

Theorem 6.1.2. We have an isomorphism

tr : H4(X,µ⊗2
n ) ∼= Z/nZ

where µ⊗2
n = µn ⊗ µn The pairing

tr ◦ ∪ : Hi(X,µn)⊗Z/nZ H
4−i(X,µn)→ Z/nZ

is perfect.

Proof. [M1, chap VI, §2, §11].

To dispel some of the mystery here, we can deduce these theorems from a
more elementary result in the case we are mainly interested in. Let Ci be a
smooth projective curves over k. Set X = C1 × C2. Then

Theorem 6.1.3 (Künneth formula). The cohomology of X, as a graded group,
is the tensor product of the cohomology of C with itself. More explicitly,

Hi(Xet,µ
⊗(c+d)
n ) =

⊕
a+b=i

Ha(C1,et,µ
⊗c
n )⊗Hb(C2,et,µ

⊗d
n )

A tensor α ⊗ β on the right corresponds to the product p∗1α ∪ p∗2β on the left,
where pi are the projections.

6.2 Divisors on a surface

Let X be as above. A divisor is a finite integral linear combination
∑
niCi of

irreducible curves on X. As before, these form a group Div(X). The Picard
group

Pic(X) = Div(X)/Princ(X)

where Princ(X) is the group of divisors of the form div(f) =
∑
ordC(f)C,

f ∈ k(X)∗. Arguments similar to those used earlier show that
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Theorem 6.2.1. Pic(X) ∼= H1(Xzar,O∗X) ∼= H1(Xet,Gm).

Suppose that n is coprime to char k. The Kummer sequence yields a map
called the mod n first Chern class

c1 : Pic(X)⊗ Z/nZ→ H2(Xet,µn)

For a divisor D, we denote the image by [D]. Unlike the case of curves, this
map is generally not surjective. Another new feature in the surface case, is the
intersection pairing. Given two distinct irreducible curves C,D ⊂ X, defined
locally by f, g at p ∈ X, their intersection number at p is

(C ·D)p = dimOp/(f, g)

Their intersection number is

C ·D =
∑
p

(C ·D)p

Theorem 6.2.2. There exists a symmetric bilinear form on Pic(X) extending
· above.

Proof. See [H, chap V,§1].

The above product induces a nondegenerate Z/nZ-valued bilinear form 〈, 〉
on H2(X,µn).

Theorem 6.2.3. This pairing is compatible with the intersection pairing on
divisors i.e. 〈[C] · [D]〉 = (C ·D) mod n.

Going mod n involves loosing information. The usual way to recover this is
to take the limit. Fix a prime ` 6= char k. The `-adic cohomology

Hi(Xet,Z`(a)) = lim←−
N

Hi(Xet,µ
⊗a
`N

)

(N.B. This is not étale cohomology with coefficients in lim←−µ⊗a
`N

. If a < 0, we
should use the |a|th power of the dual of µ`n .) The finiteness statements above
can be refined to show finite generation of `-adic cohomology as a Z`-module.
The maps

Pic(X)→ H2(Xet,µ`N )

pass to the limit
Pic(X)→ H2(etX,Z`(1))

and then to

Pic(X)→ H2(Xet,Q`(1)) := H2(Xet,Z`(1))⊗Ql

The pairing 〈, 〉 also lifts a Q`-valued pairing to the right. Since Z injects into Q`,
we now get 〈C ·D〉 = (C ·D) on the nose. The Picard group can be very large.
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It is useful to cut it down to something more manageable. A divisor (class)
D is numerically equivalent to 0 if D · D′ = 0 for all D′. The Neron-Severi
group NS(X) is the quotient of Pic(X) by the group of divisors numerically
equivalent to 0. (Normally one divides by a slightly smaller subgroup, but this
is immaterial for our purposes.)

Theorem 6.2.4. NS(X) is a finitely generated abelian group.

Proof. The space H2(Xet,Q`(1)) is finite dimensional. Therefore the image of
Pic(X) spans a finite dimensional subspace. Let C1, . . . CN be a basis of this
subspace. Then the map NS(X) → QN given by D 7→ (Ci · D) is necessarily
injective.

By definition the intersection pairing descends to a pairing on NS(X).

6.3 The Lefschetz trace formula

Let C be a smooth projective curve of genus g defined over an algebraically
closed field k. Set X = C × C. Then by the Künneth formula

Hi(Xet,Q`(c+ d)) =
⊕
a+b=i

Ha(Cet,Q`(c))⊗Hb(Cet,Q`(d))

Corollary 6.3.1. The dimensions of Hi(X) for i = 0, 1, 2, 3, 4 are 1, 2g, 4g +
2, 2g, 1 respectively.

Note that dimH∗(Cet,Q`(a)) is independent of the Tate twist parameter
a. So it’s convenient to disregard the twist for what follows. In fact, we will
suppress coefficients completely. Let f : C → C be an endomorphism. Let
Γf ⊂ C denote the graph. This is a divisor. For the identity Γid = ∆ is the
diagonal. When the graph Γf is transverse to ∆, Γf ·∆ is precisely the number
of fixed points of f . In general, we can view Γf · ∆ as the number of fixed
points of f counted correctly. Note that f induces an endomorphism f∗|Hi(C]
of cohomology. For i = 0 and i = 2, this is just the identity and the degree
respectively.

Theorem 6.3.2 (Lefschetz trace formula).

Γf ·∆ =
∑

(−1)itrace[f∗|Hi(Cet,Q`)] = 1− trace[f∗|H1(Cet,Q`)] + deg f

Proof. The proof uses Poincaré duality along with formal properties of coho-
mology. By Poincaré duality we have a nondegenerate pairing 〈α, β〉 = tr(α∪β)
on H∗(C). This identifies cohomology H∗(C) with its dual. In particular,

H∗(X) = H∗(C)⊗H∗(C) ∼= Hom(H∗(C), H∗(C))

Under this identification the class of the diagonal [∆] corresponds to the identity.
To write this explicitly, choose a basis α0 ∈ H0(C,Q`), α1, . . . α2g ∈ H1(C,Q`)
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α2g+1 ∈ H2(C,Q`) for the total cohomology, and let α0, α1, . . . α2g+1 be the
dual basis. We two natural bases of H∗(X) given by {αi ⊗ αj} and {αi ⊗ αj}
and these are dual to each other. Then

[∆] =
∑

αi ⊗ αi

Therefore
[Γf ] = (f × id)∗∆ =

∑
f∗(αi)⊗ αi

We can expand this further by substituing

f∗αi =
∑

fijαj

Note that f00 = 1 and f2g+2,2g+2 = q by the earlier remarks. above. For the
next step we need to switch factors. The cup product is graded commutative
which means

α ∪ β = (−1)degα deg ββ ∪ α
Thus we can write

[∆] = α0 ⊗ α0 −
2g∑
1

αi ⊗ αi + α2g+1 ⊗ α2g+1

Now
Γf ·∆ = 1−

∑
fii + q

Let C be defined over a finite field Fq with q elements. We write C̄ for the
corresponding curve over the algebraic closure Fq. Then for each integer n > 0,
let Nn denote the number of points #C(Fqn). We can assemble these numbers
into a generating function called the zeta function

Z(t) = exp(

∞∑
1

Nnt
n

n
) (6.1)

The significance of this somewhat peculiar expression can be explained by chang-
ing variables. Then after a bit of work, we get an expression [D]

ζ(s) = Z(q−s) =
∏
x∈C

1

1− 1/N(x)s
, N(x) = #k(x)

which looks very much like an Euler product for a classical zeta function. Let
F : C̄ → C̄ denote the qth power Frobenius morphism, which naively is given
by raising the coordinates to q. We can identify Nn with the number of fixed
points of Fn, and this can be computed by Lefschetz:

Nn = 1− trace[Fn∗|H1(C̄)] + qn = 1 + qn −
∑

λni

where λi are the eigenvalues of [F ∗|H1(C̄)]. Substituting into (6.1) and simpli-
fying yields
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Corollary 6.3.3.

Z(t) =

∏
(1− λit)

(1− t)(1− qt)
=

det(1− Ft|H1(C̄))

(1− t)(1− qt)

6.4 Riemann hypothesis for curves

Let X be a smooth projective surface over an algebraically closed field. A divisor
is called ample if a positive multiple of it has the same class in Pic(X) as X∩H
for some hyperplane H in a projective space containing X. One can see that an
ample divisor has positive self intersection.

Theorem 6.4.1 (Hodge Index theorem). If H is the class of an ample divisor
in NS(X), then D · H = 0 implies D2 < 0. In other words, the orthogonal
complement of H in NS(X)⊗ R is negative definite.

Proof. [H, V, 1.9].

Corollary 6.4.2 (Castelnuovo-Severi inequality). If D is a divisor on a product
of curves X = C1 × C2,

D2 ≤ 2ab

where a = D · (C1 × p2), b = D · (p1 × C2), pi ∈ Ci(k).

Proof. Apply the following lemma to the divisors (C1×p2), (p1×C2) and D.

Lemma 6.4.3. Let 〈, 〉 denote a symmetric bilinear form on Rn of type (1, n−1).
In other words, suppose that it is represented by a matrix with one positive
eigenvalue and the rest negative. If 〈x, x〉 = 〈y, y〉 = 0 and 〈x, y〉 = 1 for some
x, y ∈ Rn. Then for any z, 〈z, z〉 ≤ 2〈z, x〉〈z, y〉.

Proof. As x is in the closure of the cone of vectors with positive square, any
vector u orthogonal to x must satisfy 〈u, u〉 ≤ 0. Set u = 〈x, z〉y−〈x, y〉z. Then
〈u, x〉 = 0. Expanding 〈u, u〉 ≤ 0 this yields the proof.

Theorem 6.4.4 (Hasse-Weil). If C is a smooth projective curve of genus g
defined over Fq. Then

|N − 1− q| ≤ 2g
√
q

where N = #C(Fq)

Proof. Let C̄ be the extension of C to the closure. Let ∆ and Γ denote the
diagonal and the graph of the Frobenius on X = C̄ × C̄. Then N = ∆ ·Γ. Note
that ∆2 = 2 − 2g by the Lefschetz trace formula. Since Γ = (F × id)∗∆ and
F × id has degree q, we can deduce Γ2 = q(2− 2q). Let p be a rational point of
C̄. One checks also that

∆ · (C̄ × p) = ∆ · (p× C̄) = Γ · (C̄ × p) = 1

and
Γ · (p× C̄) = q
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Let D = rΓ + s∆ with variable real coefficients. The Castelnuovo-Severi in-
equality implies that 2(r + s)(rq + s)−D2 ≥ 0. This simplifies to

(2gq)r2 + 2(1 + q −N)rs+ 2gs2 ≥ 0

for all r, s. This implies that the discriminant of the quadratic form

(q + 1−N)2 − 4qg2 ≤ 0

This proves the theorem.

In view of the formula

N = 1 + q +
∑

λi

obtained earlier, this theorem can be reinterpreted as a bound on the eigenvalues
λi. From this one can deduce an analogue of the Riemann hypothesis for the
zeta function of C defined earlier. This says that the zeros of ζ(s) lie on the line
s = 1/2.

The original theorem of Hasse concerns genus one. This was generalized
to abitrary genus by Weil [Wl], who gave two proofs including the the one
above. This argument really only requires intersection theory for divisors. For
the analogous statements in higher dimensions, however, étale cohomology is
indispensable.
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Chapter 7

Comparison with classical
cohomology

In this chapter, we assume that the underlying field k is the field of complex
numbers C. The main result, due to Artin, is that étale cohomology of a variety
X, with finite coefficients, coincides with singular cohomology or equivalently
with cohomology of X equipped with classical Hausdorff topology Xan.

7.1 The comparison theorem for curves

In the ensuing discussion it will be convenient to suppress Tate twists, and
identify Z/nZ ∼= µn (noncanonically of course). Given a complex variety X, we
let Xan denote the usual topology, which on affine opens U ⊂ X coincides with
the Euclidean topology induced from embedding U ⊂ CN . We claim that there
is a natural map

Hi(Xet,Z/nZ)→ Hi(Xan,Z/nZ) (7.1)

which we refer to as the comparison map. To construct it, we construct a new
Grothendieck topology on X, denoted by Xcl, where the open sets are local
homeomorphisms Y → X. Covers are surjective families. We can see that Xcl

refines both Xet and Xan. Consequently, we have maps

Hi(Xet,Z/nZ)→ Hi(Xcl,Z/nZ)← Hi(Xan,Z/nZ)

Lemma 7.1.1. The second arrow is an isomorphism.

Theorem 7.1.2. The comparison map (7.1) is an isomorphism, when X is a
smooth curve.

Proof. We will be content to prove that there is an abstract isomorphism be-
tween the two cohomology groups in each degree. For i = 0, we see that both
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groups are isomorphic to Z/nZ and the map is the identity. For i = 1, this is a
consequence of theorem 2.2.3 and the subsequent discussion. We have

H1(Xan,Z/nZ) ∼= Hom(π1(X),Z/nZ)

H1(Xet,Z/nZ) ∼= Hom(π̂1(X),Z/nZ)

For higher i, the comparison was given in (5.3) when X was smooth and pro-
jective. So now assume that X is smooth but not projective. It is known that
Hi(Xan,Z/nZ) = 0 for i > 1. For etale cohomology, we use the Kummer
sequence as in the proof of corollary 5.2.5 to see that

Pic(X)
n→ Pic(X)→ H2(Xet,Z/nZ)→ 0

and
Hi(Xet,Z/nZ) = 0, for i > 2

In this case, Pic(X) is divisible, so H2 also vanishes.

We wish to extend this to singular projective curves. We first define com-
pactly supported etale cohomology of smooth curve U , which is an analogue
of the compactly supported cohomology of a manifold defined using differential
forms with compact support. Let X denote the unique smooth compactification,
and let j : U → X denote the inclusion, then define

Hi
c(Uet,Z/nZ) = Hi(Xet, j!Z/nZ)

where j! is defined in section 5.3. Hi
c(Uan,Z/nZ) can be defined in the same

way. We note X can be replaced by any compactification:

Lemma 7.1.3. For any (possibly singular ) compactification k : U → Y ,

Hi
c(Uet,Z/nZ) ∼= Hi(Yet, k!Z/nZ)

Poincaré duality (theorem 5.2.6) extends to a smooth curve U in the form

H2−i(Uet,Z/nZ) ∼= Hi(Uet,Z/nZ)

and similarly for Hi
c(Uan,Z/nZ) Thus as a corollary of the previous theorem,

we obtain

Corollary 7.1.4. If U is a smooth curve, there is a natural isomorphism

Hi
c(Uet,Z/nZ) ∼= Hi

c(Uan,Z/nZ)

Theorem 7.1.5. The comparison map (7.1) is an isomorphism, when X is a
projective possibly reducible curve.
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Proof. Let j : U → X be the complement of the set of singular points Z. Then
there is a commutative diagram with exact rows

. . . // Hi
c(Uet) //

cU

��

Hi(Xet) //

cX

��

Hi(Zet) //

cZ

��

. . .

. . . // Hi
c(Uan) // Hi(Xan) // Hi(Zan) // . . .

The map labelled cu is an isomorphism by the previous corollary, and cz is
trivially an isomorphism. Therefore cX is an isomorphism by the 5-lemma.

7.2 The comparison theorem for surfaces

Theorem 7.2.1. The comparison map (7.1) is an isomorphism when X is a
smooth projective surface.

We will outline the proof. The full details can be found in [SGA4, exp XI].
Here is the first reduction:

Proposition 7.2.2. Suppose that the following condition holds: if i > 0 and η ∈
Hi(Xan), then there exists an etale cover Uj → X such that η|Uj ∈ Hi(Uj,an)
is 0. Then the theorem holds.

This follows by analyzing the Leray spectral sequence for the map of sites
Xcl → Xet. The condition above amounts to the vanishing of the direct image
associated to this map. Now fix η ∈ Hi(Xan) as above. We need to construct
a cover as above. This is based on the following geometric construction.

Lemma 7.2.3 (Artin). Given x ∈ X. There exists an open set x ∈ V ⊂ X
obtained by removing a curve, such that there is a smooth projective map f :
V → C to a smooth affine curve and a divisor D ⊂ V étale over C with x /∈ D.

Let U = V −D. This is a Zarski open neighbourhood of x usually called an
Artin neighbourhood. By collecting these, we get a Zariski open cover of X. If
for each U , we can find an étale U ′ → U for which the restriction of η vanishes,
then we are done. The map f : U → C is a fibration, with affine curves as base
and fibre. The standard exact sequence for homotopy groups [Sp] implies that
the fundamental group is an extension of free groups

1→ π1(f−1(x))→ π1(U)→ π1(C)→ 1

and that the higher homotopy groups vanish. Thus U is a so called K(π, 1)
space. In particular, standard results in algebraic topology show that

Hi(Uan,Z/nZ) ∼= Hi(π1(U),Z/nZ)

where the right side is group cohomology [B]. Given a group Γ, Hi(Γ,Z/nZ) is
defined as in section 4.5 but without requiring continuity for cocycles. We can
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also define the cohomology of the profinite group Hi(Γ̂,Z/nZ) using continuous
cocycles. Alternatively

Hi(Γ̂,Z/nZ) = lim−→Hi(Γ/N,Z/nZ)

as N runs over normal subgroups of finite index. There is a natural map

Hi(Γ̂,Z/nZ)→ Hi(Γ,Z/nZ)

Let us call Γ Serre (who calls this good) if this is an isomorphism for all i and n.
He shows that extensions of free groups by free groups are Serre [S, pp 13-14].
Thus

Hi(π̂1(U),Z/nZ) ∼= Hi(π1(U),Z/nZ)

Now take η, its restriction to U defines an element on the left. But this class
must die after restriction Hi(π1(U)/N) for some normal subgroup N of finite
index. N determines an étale cover U ′ → U such that η|U ′ = 0, so the theorem
is proved.

7.3 Base change

We can extend the results to other fields using the following special case of the
smooth base change theorem ([M1, M2])

Theorem 7.3.1. Suppose that K/k is an extension of separably closed fields, let
n be prime to chark. If X is a scheme defined over k, then there is a canonical
isomorphism

Hi(Xet,Z/nZ) ∼= Hi((X × SpecK)et,Z/nZ)

Corollary 7.3.2. If X is a curve or surface defined over an algebraically closed
subfield K ⊂ C, then the ranks of the etale cohomology of X are precisely the
Betti numbers of X × SpecC.
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Chapter 8

Main Theorems

Here we state some of the main results. Proofs and further elaborations can be
found in the references, especially [FK, M1, M2].

For a manifold, compactly supported de Rham cohomology can be defined
using differential forms with compact support. It is convenient to have an
algebraic version. Fix a field k, and a prime ` 6= char k. Let X be a variety k.
Then by a theorem of Nagata, there exists a complete variety X̄ which contains
X as a dense open set. When X is quasiprojective, we can simply take X̄ to
be the closure of X in a projective space containing it. Let Z = X̄ − X. and
let j : X → X̄ i : Z → X̄ denote the inclusions. We can define j!µ`n to be the
kernel of the natural restriction map µ`n → i∗µ`n .

(1) The space
Hi
c(Xet,Ql(a)) = lim←−H

i(X̄et, j!µ
⊗a
`n )⊗Q`

depends only on X and not on X̄. This is called compactly supported
`-adic cohomology. Clearly it is the same as ordinary cohomology if X
is complete. As vectors spaces, these are noncanonically the same for
different a. However, if X is defined over a subfield of k, the Galois group
will act on these spaces. The Galois module structures depend on a.

(2) Hi
c(Xet,Q`(a)) is finite dimensional for all i, and it vanishes when i >

2 dimX.

(3) When X is nonsingular of dimension n, Poincaré duality

Hi
c(Xet,Q`(a)) ∼= H2n−i(Xet,Q`(a− n))∗

holds.

(4) The Künneth formula holds. The statement is same as in theorem 6.1.3
but with Hc.

(5) The Lefschetz trace formula holds for H∗c when X is smooth.
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(5) If k = C, then Hi
c(Xet,Q`(a)) is isomorphic to compactly supported sin-

gular cohomology with coefficents in Q`. A similar statements holds if
char k = p > 0, and X smooth and lifts to characteristic 0.

When X is smooth and complete the Lefschetz formula can be deduced
directly from the previous properties by the same method we used earlier. A
consequence of these properties are the first few of Weil’s conjectures.

Theorem 8.0.3 (Grothendieck). Suppose that X is a smooth d-dimensional
variety over Fq defined over Fq.

1. The zeta function

Z(t) = exp(
∞∑
1

Nnt
n

n
) =

∏
[1− Ft|Hi

c(Xet,Q`)](−1)i

2. If X is complete, Z(t) satisfies the functional equation

Z(1/qdt) = ±qdχ/2tχZ(t)

where χ =
∑

(−1)i dimHi(Xet,Q`).

Corollary 8.0.4 (Dwork). Z(t) is a rational function.

The final Weil conjecture, which is the analogue of the Riemann hypothesis,
was proved by Deligne [D].

Theorem 8.0.5 (Deligne). If X is a smooth complete variety over Fq defined
over Fq. The eigenvalues of the qth power Frobenius on Hi(Xet,Q`) are alge-
braic integers with absolute value qi/2.

A concrete consequence is a refinement of the Hasse-Weil bound.

Corollary 8.0.6. Let X ⊂ Pn+1 be a smooth degree d hypersurface defined over
Fq. Then

|#X(Fq)− (1 + q + . . .+ qn)| ≤ bqn/2

where b is the nth Betti number (minus 1 if n is even) of a degree d hypersurface
in Pn+1(C).
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[A] M. Artin, Théorèmes de Representabilte pour les Espaces Algebriques
Montreal (1973)

[B] K. Brown, Cohomology of groups, Springer

[SGA4.5] P. Deligne et. al., Cohomologie Etale, Springer LNM 569

[D] P. Deligne, La conjecture de Weil I, IHES (1974)

[D] P. Deligne, La conjecture de Weil II, IHES (1980)

[DG] M. Demazure, P. Gabriel, Introduction to algebraic geometry and alge-
braic groups, North Holland (1980)

[SGA3] M. Demazure, A. Grothendieck, Schemas en Groupes Springer LNM
151... (1970)

[E] D. Eisenbud, Commutative algebra, Springer (1994)

[FK] E. Freitag, R. Kiehl, Etale cohomology and the Weil conjecture Springer
(1987)

[SGA1] A. Grothendieck, M. Raynaud, Revêtments étale et groupe fondemental,
Springer LNM 224

[EGA] A. Grothendieck, J. Dieudonné, Élements de géometrie algébrique, IHES
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