V-filtrations and vanishing cycles for \mathcal{D}_X -modules

Joe Knight

October 14, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let \mathcal{A} be an abelian category of "sheaf-like" objects on a smooth complex variety X.

For example, \mathcal{A} could be Sh(X), coherent \mathcal{D}_X -modules, the category of perverse sheaves on X, or the category of Hodge modules on X (which we haven't defined yet).

Definition

Let $Z \subset X$ be an irreducible closed subset. An object $M \in A$ has *strict support* Z if supp(M) = Z and M has no sub- or quotient objects with support properly contained in Z.

The \mathcal{D}_X -module \mathcal{O}_X has strict support X (it is simple and $\operatorname{supp}(\mathcal{O}_X) = X$). Note that \mathcal{O}_X typically does not have strict support X as an \mathcal{O}_X -module.

Example

Consider $M = \mathbb{C}[t^{\pm 1}]$ as a $\mathbb{C}[t, \partial_t]$ -module. We have supp(M) = X, yet M has $\mathbb{C}[t]$ as a subobject, and the quotient

$$\mathbb{C}[t^{\pm 1}]/\mathbb{C}[t] = \langle t^{-1}, t^{-2}, t^{-3}, \dots \rangle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is supported on [t = 0]. So *M* does not have strict support *X*.

We want to define the category of (pure) Hodge modules on a smooth complex variety X so that, loosely speaking, the following desiderata are true:

1. If *M* is a Hodge module, then $M \cong \bigoplus_Z M_Z$, where *Z* runs over irreducible closed subsets of *X*, and each M_Z has strict support *Z*. (we call this a *strict support decomposition*).

 If M is a Hodge module of strict support Z, then there is a nontrivial open embedding j : U → Z such that j*M "is a variation of Hodge structure". Moreover, M is uniquely determined by j*M.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 In addition, given an algebraic function f : X → C we want to define the nearby cycles "ψ_f(M)" of M. This object will have a monodromy filtration, whose graded pieces should again be (pure) Hodge modules (of the appropriate weights).

We're about to learn about V-filtrations. Why do this?

In the setting of (possibly filtered) coherent \mathcal{D}_X -modules M, V-filtrations

- 1. are used to define nearby and vanishing cycles for (possibly filtered) D_X -modules.
- 2. detect the existence of a strict support decomposition
- 3. can be used to give criteria for when objects are determined by their restriction to an open subset.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The plan:

- Now, we will discuss V-filtrations on (non-filtered)
 D_X-modules.
- Later, we will move to the setting of modules with a good filtration F[•].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References:

- Saito, "Modules de Hodge Polarisables", section 3.
- ▶ Popa, "Lecture notes on the V-filtration".

Setting

- X is an affine (for simplicity) smooth complex variety.
- ▶ $t: X \to \mathbb{C}$ is an algebraic function, such that $D \stackrel{i}{\hookrightarrow} X$, the vanishing locus of t, is smooth.
- $U \stackrel{j}{\hookrightarrow} X$ is the complement of D in X.
- ► *M* is a coherent (left) D_X-module. In general, we will say "D_X-module" when we mean "coherent (left) D_X-module".

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition of V-filtration

Definition

A (rational) V-filtration of M along t is a decreasing, exhaustive filtration V^{\bullet} of M by coherent $\mathcal{D}_X[t, \partial_t t]$ -submodules, indexed by the ordered group \mathbb{Q} ; it must satisfy the following conditions:

Discreteness

•
$$t \cdot V^{\alpha}M \subset V^{\alpha+1}M$$
, with equality if $\alpha > 0$.

$$\blacktriangleright \ \partial_t \cdot V^{\alpha} M \subset V^{\alpha-1} M$$

• Let
$$V^{>\alpha}M = \bigcup_{\alpha'>\alpha} V^{\alpha'}M$$
. The action of $\partial_t t - \alpha$ on

$$\operatorname{gr}^{\alpha} M = V^{\alpha} M / V^{>\alpha} M$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is nilpotent.

Remark: Each $\operatorname{gr}^{\alpha} M$ is naturally a coherent \mathcal{D}_X -module, supported on D.

Remark on conventions: Given a V-filtration V^{\bullet} on M, one obtains an *increasing* filtration V_{\bullet} by setting

$$V_{\alpha} = V^{-\alpha}$$

This filtration satisfies e.g. $t \cdot V_{\alpha} \subset V_{\alpha-1}$, and the action of

$$\partial_t t + \alpha = t \partial_t + \alpha + 1$$

on $V^{\alpha}/V^{<\alpha}$ is nilpotent. It is common for "V-filtration" to refer to this kind of increasing filtration.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Take $M = \mathcal{O}_X$. Define

$$V^{lpha}\mathcal{O}_X = egin{cases} t^{\lceil lpha
ceil -1}\mathcal{O}_X, & ext{if } lpha > 0 \ \mathcal{O}_X, & ext{otherwise} \end{cases}$$

So this is the filtration

$$\cdots = [\mathcal{O}_X]^0 = [\mathcal{O}_X]^1 \supset [t\mathcal{O}_X]^2 \supset [t^2\mathcal{O}_X]^3 \supset \ldots$$

where $[-]^{\alpha}$ designates V^{α} , and we omit the non-integer steps. One easily checks that this is a V-filtration; the key point is that

$$\partial_t t(t^k) = (k+1)t^k$$

Interesting graded pieces: $gr_V^i = \langle [t^{i-1}] \rangle$, $i \ge 0$.

Now take $M = j_* j^* \mathcal{O}_X$, i.e. \mathcal{O}_U regarded as a \mathcal{D}_X -module. Define $V^{\alpha} \mathcal{O}_U$ to be the \mathcal{O}_X -submodule generated by $t^{\lceil \alpha \rceil - 1}$.

So this is the filtration

 $\cdots \supset [(t^{-2}, t^{-1}, 1, t, \dots)]^{-1} \supset [(t^{-1}, 1, t, \dots)]^0 \supset [(1, t, \dots)]^1 \supset \dots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

where $[-]^{\alpha}$ designates V^{α} . This is a V-filtration.

Interesting graded pieces: $gr_V^i = \langle [t^{i-1}] \rangle$, $i \in \mathbb{Z}$.

Take $X = \text{Spec}(\mathbb{C}[t])$, and let $M = \mathbb{C}\langle t^{\frac{k}{2}} : k \in \mathbb{Z} \rangle$, with t, ∂_t acting in the way you'd expect. Define $V^{\alpha}M$ to be the \mathcal{O}_X -submodule generated by $t^{\lceil \alpha - 1/2 \rceil - 1/2}$.

So this is the filtration

$$\cdots \supset [(t^{-\frac{3}{2}}, t^{-\frac{1}{2}}, t^{\frac{1}{2}}, \dots)]^{-\frac{1}{2}} \supset [t^{-\frac{1}{2}}, t^{\frac{1}{2}}, \dots)]^{\frac{1}{2}} \supset [t^{\frac{1}{2}}, t^{\frac{3}{2}}, \dots)]^{\frac{3}{2}} \supset \dots$$

where $[-]^{\alpha}$ designates V^{α} . This is a V-filtration.

Interesting graded pieces: $\operatorname{gr}^{-\frac{1}{2}}(M) = \langle [t^{-\frac{3}{2}}] \rangle, \operatorname{gr}^{\frac{1}{2}}(M) = \langle [t^{-\frac{1}{2}}] \rangle, \ldots$

Fix a $\beta \in \mathbb{Q}$. Let $M_{\beta,p}$ be the \mathcal{D}_X -module generated by expressions of the form

$$e_{j,k} := egin{cases} rac{t^{eta+j} \log^k(t)}{k!}, & ext{if } 0 \leq k \leq p \ 0, & ext{otherwise} \end{cases}$$

where $j, k \in \mathbb{Z}$, and t, ∂_t act in the way you'd expect. Then

$$\partial_t t \cdot e_{j,k} = \frac{1}{k!} [(\beta + j + 1)t^{\beta + j} \log^k(t) + kt^{\beta + j} \log^{k - 1}(t)] \\ = (\beta + j + 1)e_{j,k} + e_{j,k-1}$$

implying that each $e_{j,k}$ is annihilated by a power of $\partial_t t - \beta - j - 1$. There is a V-filtration such that

$$|\mathsf{gr}_V^{eta+j+1}M_{eta,oldsymbol{
ho}}=\langle [e_{j,0}],\ldots,[e_{j,oldsymbol{
ho}}]
angle$$

Example Take $X = \text{Spec}(\mathbb{C}[t])$, and $M = \mathbb{C}[t, \partial_t]/\mathbb{C}[t, \partial_t]t = \mathbb{C}[\partial_t]$.

Define
$$V^{\alpha}M = \{\partial_t^k : 0 \le k \le -\lceil \alpha \rceil\}.$$

So this is the filtration

$$\cdots \supset [(\partial_t^2, \partial_t, 1)]^{-2} \supset [(\partial_t, 1)]^{-1} \supset [(1)]^0 \supset [0]^1 = \dots$$

where $[-]^{\alpha}$ designates V^{α} . This is a V-filtration.

Interesting graded pieces: $gr_V^i = \langle [\partial_t^{-i}] \rangle$, i < 0. (Notice e.g. that

$$\partial_t t[\partial_t] = [\partial_t t \partial_t] = [\partial_t (\partial_t t - 1)] = [-\partial_t])$$

Generalizing the previous example, suppose that $supp(M) \subset D = [t = 0]$. Recall that Kashiwara's equivalence gave us an isomorphism

$$\phi: M \xrightarrow{\sim} \bigoplus_{n \leq 0} M^n = M^0 \otimes \mathbb{C}[\partial_t]$$

where $M^n = \ker(\partial_t t - n) = \partial_t^{-n} M^0$. Define the V-filtration:

$$V^{\alpha}M = \phi^{-1}\Big(\bigoplus_{n \ge \lceil \alpha \rceil} M^n\Big)$$

Key facts: Note that $V^{>0}M = 0$; conversely, one easily checks that supp $(M) \subset D$ if $V^{>0}M = 0$. Also note that M is determined by $V^0M = M^0$.

Lemma

There is at most one V-filtration (with respect to t) on M.

Corollary

Let $\phi: M \to N$ be a morphism of \mathcal{D}_X -modules equipped with V-filtrations along t. Then ϕ is strictly compatible with these filtrations, namely,

 $\phi(V^{\alpha}M) = \phi(M) \cap V^{\alpha}N$

Proof (Cor.): One immediately checks that both sides of the equation define a V-filtration on $im(\phi)$.

Corollary

For each $\alpha \in \mathbb{Q},$ the following functors are exact:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$\blacktriangleright M \mapsto V^{\alpha}M$$

•
$$M \mapsto \operatorname{gr}^{\alpha} M$$

The following result is a prototype of desideratum 2 from the introduction:

Proposition 1

Let M, N be coherent \mathcal{D}_X -modules equipped with V-filtrations along t. Assume that M, N have strict support X. Then any isomorphism $\phi_U : j^*M \xrightarrow{\sim} j^*N$ extends to an isomorphism $\phi : M \to N$.

Before proving this, we give two lemmas that are useful more broadly.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma A

Let $M' \subset M$ be an inclusion of \mathcal{D}_X -modules equipped with V-filtrations along t. Assume that $j^*M' \to j^*M$ is an isomorphism. Then for all $\alpha > 0$,

$$V^{lpha}M' = V^{lpha}M$$

Proof: The previous corollary gives an an exact sequence

$$0 \rightarrow V^{\alpha}M' \rightarrow V^{\alpha}M \rightarrow V^{\alpha}(M/M') \rightarrow 0$$

But M/M' is supported on D, and we have seen that this implies that

$$V^{lpha}(M/M')=0$$

when $\alpha > 0$.

Lemma B

Let M be a \mathcal{D}_X -module equipped with V-filtration along t. Assume that M has strict support X. Then

$$M = \mathcal{D}_X \cdot V^{>0}M$$

Proof: The quotient satisfies

$$V^{>0}\Big(M/\big(\mathcal{D}_X\cdot V^{>0}M\big)\Big)=0$$

implying that it is supported within D.

Now we return to prove the proposition:

Proposition 1

Let M,N be coherent \mathcal{D}_X -modules equipped with V-filtrations along t. Assume that M,N have strict support X. Then any isomorphism $\phi_U : j^*M \xrightarrow{\sim} j^*N$ extends to an isomorphism $\phi : M \to N$.

Proof: Consider the composite morphism

$$\phi: M \hookrightarrow j_*j^*M \xrightarrow{\sim} j_*j^*N$$

where the second arrow is induced by ϕ_U . The first arrow is injective because its kernel is supported on D, and yet M has strict support X. We claim that $im(\phi) = N$. Indeed, by our lemmas,

$$\operatorname{im}(\phi) = \mathcal{D}_X \cdot V^{>0} \operatorname{im}(\phi) = \mathcal{D}_X \cdot V^{>0} N = N$$

(the middle equality uses that $j^* \text{im}(\phi) = j^* N$).

・ロト・(四)・(川)・(日)・(日)・(日)

Now we'd like to pause and discuss how nearby and vanishing cycles along the hypersurface [t = 0] are defined using V. Definition

•
$$\psi_{t,1}M = \operatorname{gr}_V^1 M$$
 (unipotent nearby cycles)

•
$$\phi_{t,1}M = \operatorname{gr}_V^0 M$$
 (unipotent vanishing cycles)

Caveats: these are only the "unipotent parts" of nearby/vanishing cycles; also, we want to define these objects even when [t = 0] is not smooth; finally, we'd like to know what relation these objects have with the previous notions of nearby/vanishing cycles. We will address all of these issues later. For now, note that we have morphisms

can :=
$$\partial_t : \psi_{t,1}M \rightleftharpoons \phi_{t,1}M : t =:$$
 var

such that can \circ var and var \circ can are nilpotent (using $[\partial_t, t] = 1$).

Remark: It can be shown that the following maps are isomorphisms:

•
$$t: \operatorname{gr}^{\alpha} M \xrightarrow{\sim} \operatorname{gr}^{\alpha+1} M$$
, if $\alpha \neq 0$;

$$\blacktriangleright \ \partial_t : \operatorname{gr}^{\alpha} M \xrightarrow{\sim} \operatorname{gr}^{\alpha-1} M, \text{ if } \alpha \neq 1.$$

can := $\partial_t : \psi_{t,1} M \rightleftharpoons \phi_{t,1} M : t =:$ var

The following result is an important step towards Desideratum 1 from the introduction.

Proposition 2

Let $M' = \mathcal{D}_X \cdot V^{>0} M \subset M$. Let $\mathcal{H}_D^0 M \subset M$ be the subobject generated by sections supported within D. Then:

1. M' is the smallest subobject of M satisfying $j^*M' \cong j^*M$. 2. $M/M' \cong \int_i^0 \operatorname{coker}(\operatorname{can}) = i_+\operatorname{coker}(\operatorname{can})$, and 3. $\mathcal{H}_D^0 M \cong \int_i^0 \operatorname{ker}(\operatorname{var}) = i_+\operatorname{ker}(\operatorname{var})$.

Proof (1): If $M'' \subset M$ satisfies $j^*M'' = j^*M$, then by Lemma A, $V^{>0}M = V^{>0}M''$, implying

$$\mathcal{D}_X \cdot V^{>0} M \subset \mathcal{D}_X \cdot V^{>0} M'' \subset M''$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

can := $\partial_t : \psi_{t,1} M \rightleftharpoons \phi_{t,1} M : t =:$ var

We will indicate a proof of the third statement:

$$\begin{array}{l} \mathsf{Goal} \\ \mathcal{H}^0_D M \cong \int_i^0 \ker(\mathsf{var}) = i_+ \ker(\mathsf{var}) \end{array}$$

Proof (3): We claim that the obvious map $V^0M \to \operatorname{gr}^0_V M$ induces an isomorphism

$$\ker(t:M\to M)\xrightarrow{\sim} \ker(t:\operatorname{gr}^0_VM\to\operatorname{gr}^1_VM)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\frac{\mathsf{Claim}}{\mathsf{ker}(t:M\to M)\xrightarrow{\sim}\mathsf{ker}(t:\mathsf{gr}_V^0M\to\mathsf{gr}_V^1M)$$

Proof (3,cont.): First we need to see that

$$\ker(t:M\to M)\subset V^0M$$

If tm = 0 and $m \in V^{\alpha}M$ for $\alpha < 0$, we have that

$$(-\alpha)^{p}m = (\partial_{t}t - \alpha)^{p}m \in V^{>\alpha}M$$

for some p > 0. Repeating this process, and using the discreteness of V, we obtain $m \in V^0 M$.

Claim ker $(t: M \to M) \xrightarrow{\sim}$ ker $(t: gr_V^0 M \to gr_V^1 M)$

Proof (3,cont.): Next we need to see that our map is injective. This follows from the equivalence

 $supp(N) \subset D \iff V^{\alpha}N = 0$ for all $\alpha > 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

applied to $N = \mathcal{D}_X \cdot \ker(t : M \to M)$.

Claim
ker
$$(t: M \to M) \xrightarrow{\sim}$$
ker $(t: \operatorname{gr}_V^0 M \to \operatorname{gr}_V^1 M)$

Proof (3,cont.): Finally, we need to see that our map is surjective. There is a morphism of short exact sequences

$$\begin{array}{cccc} 0 \longrightarrow V^{>0}M \longrightarrow V^{0}M \longrightarrow \operatorname{gr}_{V}^{0}M \longrightarrow 0 \\ & t & & \downarrow & & \downarrow t \\ 0 \longrightarrow V^{>1}M \longrightarrow V^{1}M \longrightarrow \operatorname{gr}_{V}^{1}M \longrightarrow 0 \end{array}$$

Part of the definition of V-filtration was that $t: V^{>0}M \rightarrow V^{>1}M$ is surjective. Using the snake lemma, the claim is proved.

Recall that we are trying to prove that

$$\mathcal{H}^0_D M \cong \int_i^0 \ker(\operatorname{var}) = i_+ \ker(\operatorname{var})$$

What we know is that

$$\ker(t: M \to M) \xrightarrow{\sim} \ker(t: \operatorname{gr}_V^0 M \to \operatorname{gr}_V^1 M)$$

(this is a morphism of \mathcal{D}_D -modules). Under \int_i^0 , the left side becomes $\mathcal{H}_D^0 M$ by Kashiwara's theorem; the right side is $\int_i^0 \ker(var)$. Part two of the proposition is proved.

In the discussion so far, the hypersurface D = [t = 0] has been smooth. We would like to start making claims about arbitrary hypersurfaces, using the tools developed so far.

To this end, suppose we have a function $f : X \to \mathbb{C}$ (where D = [f = 0] need not be smooth). Let

$$\iota^f = (\mathsf{id}_X, f) : X \hookrightarrow X \times \mathbb{C}$$

be the graph morphism, and let $t : X \times \mathbb{C} \to \mathbb{C}$ be the projecion. Since $X \cong X_0 := [t = 0]$ is smooth, given a \mathcal{D}_X module M, we can consider V-filtrations along [t = 0] for the $\mathbb{D}_{X \times \mathbb{C}}$ -module

$$\int_{\iota^f}^0 M = \iota^f_+ M$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If $\Gamma_f = \iota^f(X) \subset X \times \mathbb{C}$, then $\Gamma_f \cap X_0 = \iota^f(D) \subset X_0$. So using Kashiwara's theorem we have the following:

Key Observation

The functor ι_+^f induces an equivalence between \mathcal{D}_D -modules and $\mathcal{D}_{X\times\mathbb{C}}$ -modules supported on $\iota^f(D) = \Gamma_f \cap X_0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

From now on, for an algebraic function $f: X \to \mathbb{C}$ and a \mathcal{D}_X -module M, by

"V-filtration along f for M"

we will mean

"V-filtration along X_0 for $\iota^f_+ M$ "

One checks that when [f = 0] is smooth this is compatible with everything we've done so far. Also, we denote

$$M_f := \iota_+^f M$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

To illustrate the use of the Key Observation, recall a proposition from earlier about modules with a V-filtration along smooth D:

Proposition 2

Let $M' \subset M$ be the smallest subobject satisfying $j^*M' \cong j^*M$. Let $\mathcal{H}_D^0 M \subset M$ be the subobject generated by sections supported within D. We have maps

$$\operatorname{can} := \partial_t : \operatorname{gr}^1_V M \rightleftharpoons \operatorname{gr}^0_V M : t =: \operatorname{var}$$

1.
$$M/M' \cong \int_i^0 \operatorname{coker}(\operatorname{can}) = i_+\operatorname{coker}(\operatorname{can})$$
, and
2. $\mathcal{H}_D^0 M \cong \int_i^0 \operatorname{ker}(\operatorname{var}) = i_+\operatorname{ker}(\operatorname{var})$.

We can improve this to the following statement:

Proposition 2 (improved)

Let *M* be a \mathcal{D}_X -module admitting a *V*-filtration along D = [f = 0] (which may not be smooth). We then have maps

$$\operatorname{can} := \partial_t : \operatorname{gr}^1_V M_f \rightleftharpoons \operatorname{gr}^0_V M_f : t =: \operatorname{var}$$

- 1. *M* has no nonzero subobject supported on *D* iff ker(var) = 0.
- 2. *M* has no nonzero quotient supported on *D* iff coker(can) = 0.

(If *D* is smooth, these are immediate from the old statement.) If *D* is not smooth and (say) ker(var) = 0, the old statement says that $\mathcal{H}_{X_0}^0 \iota_+^f M = 0$; Kashiwara implies that $\mathcal{H}_D^0 M = 0$.

We can improve this to the following statement:

Proposition 2 (improved)

Let *M* be a \mathcal{D}_X -module admitting a *V*-filtration along D = [f = 0] (which may not be smooth). We then have maps

$$\mathsf{can} := \partial_t : \mathsf{gr}_V^1 M_f \rightleftharpoons \mathsf{gr}_V^0 M_f : t =: \mathsf{var}$$

M has no nonzero subobject supported on D iff ker(var) = 0.
 M has no nonzero quotient supported on D iff coker(can) = 0.
 Remark: We have generally that

emark. We have generally that

$${\operatorname{gr}}_V^0({\mathcal M}')=\operatorname{im}(\operatorname{can}_f)$$
 ${\operatorname{gr}}_V^0({\mathcal H}^0_{X_0}\iota_+^f{\mathcal M})=\operatorname{ker}(\operatorname{var}_f)$

Now we can characterize modules with strict support (decompositions) using *V*-filtrations.

Theorem

Let M be a \mathcal{D}_X -module admitting a V-filtration along every hypersurface.

1. *M* has strict support *X* iff for all f:

$$ker(var_f) = coker(can_f) = 0$$

2. M has a strict support decomposition iff for all f:

$$\operatorname{gr}_V^0 M_f = \operatorname{ker}(\operatorname{var}_f) \oplus \operatorname{im}(\operatorname{can}_f)$$

Proof (part 1): Immediate from (improved) Proposition 2.

Proof (part 2): Suppose first that M has a strict support decomposition. Given a D = [f = 0], we want to show that

$$\operatorname{gr}_V^0 M_f \cong \operatorname{ker}(\operatorname{var}_f) \oplus \operatorname{im}(\operatorname{can}_f)$$

We can reduce to the case where M has strict support Z.

If D does not contain Z, improved Proposition 2 implies that

$$\operatorname{gr}_V^0 M_f = \operatorname{im}(\operatorname{can}_f)$$
 and $\operatorname{ker}(\operatorname{var}_f) = 0$

If D contains Z, then

$$\operatorname{gr}_V^1 M_f = 0$$

implying that $\operatorname{gr}_V^0 M_f = \operatorname{ker}(\operatorname{var}_f)$ and $\operatorname{im}(\operatorname{can}_f) = 0$.

Proof (part 2, cont.): For the converse, suppose that for all f,

$$\operatorname{gr}_V^0 M_f = \operatorname{ker}(\operatorname{var}_f) \oplus \operatorname{im}(\operatorname{can}_f)$$

Let M' be the minimal subobject of M_f satisfying

$$M'|_{t
eq 0}\cong (M_f)|_{t
eq 0}$$

We claim that $M'' := M' \cap \mathcal{H}^0_{X_0} M_f = 0$. Our assumption, together with Proposition 2, implies that

$$\operatorname{gr}_V^0 M'' \subset \operatorname{ker}(\operatorname{var}_f) \cap \operatorname{im}(\operatorname{can}_f) = 0$$

implying that M'' itself is zero (since $V^{>0}M'' = 0$), proving the claim. Additionally, it is immediate that M' has no quotients supported in X_0 .

Proof (part 2, cont.): Now consider the short exact sequence

$$0 o M' \oplus \mathcal{H}^0_{X_0} M_f o M_f o Q o 0$$

defining Q. We see immediately that $Q|_{t\neq 0} = 0$. Applying gr_V^0 , and using Prop. 2, we get

$$0
ightarrow \operatorname{im}(\operatorname{can}_f) \oplus \operatorname{ker}(\operatorname{var}_f)
ightarrow \operatorname{gr}_V^0 M_f
ightarrow \operatorname{gr}_V^0 Q
ightarrow 0$$

implying that also $gr_V^0 Q = 0$; this implies Q = 0.

We have shown that, for any f, we have

$$M_f = M' \oplus \mathcal{H}^0_{X_0} M_f$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where M' has no sub- or quotient objects supported in X_0 (equivalently, in $\iota^f(D)$).

Proof (part 2, cont.): Now because M is noetherian, there is a divisor D = [f = 0] such that any subobject of M supported on a proper subset of X is supported within D. As above, write

$$M_f = M' \oplus \mathcal{H}^0_{X_0} M_f$$

for this f. Assume for simplicity that Z := supp(M) is irreducible.

We claim that M' has strict support Z. If M' has a quotient Q supported within D' but not within D, we have a decomposition as above:

$$M'=M''\oplus \mathcal{H}^0_{X_0}\iota_+^{f'}M'$$

where M'' has no quotients supported on D'; but $\mathcal{H}_{D'}^{0}\iota_{+}^{f'}M'$ must be zero as it gives a submodule of M supported within D' but not within D. By induction, the proposition is proved.