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Let A be an abelian category of “sheaf-like” objects on a smooth
complex variety X .

For example, A could be Sh(X ), coherent DX -modules, the
category of perverse sheaves on X , or the category of Hodge
modules on X (which we haven’t defined yet).

Definition
Let Z ⊂ X be an irreducible closed subset. An object M ∈ A has
strict support Z if supp(M) = Z and M has no sub- or quotient
objects with support properly contained in Z .



Example

The DX -module OX has strict support X (it is simple and
supp(OX ) = X ). Note that OX typically does not have strict
support X as an OX -module.

Example

Consider M = C[t±1] as a C[t, ∂t ]-module. We have
supp(M) = X , yet M has C[t] as a subobject, and the quotient

C[t±1]/C[t] = 〈t−1, t−2, t−3, . . . 〉

is supported on [t = 0]. So M does not have strict support X .



We want to define the category of (pure) Hodge modules on a
smooth complex variety X so that, loosely speaking, the following
desiderata are true:

1. If M is a Hodge module, then M ∼=
⊕

Z MZ , where Z runs
over irreducible closed subsets of X , and each MZ has strict
support Z . (we call this a strict support decomposition).



2. If M is a Hodge module of strict support Z , then there is a
nontrivial open embedding j : U ↪−→ Z such that j∗M “is a
variation of Hodge structure”. Moreover, M is uniquely
determined by j∗M.



3. In addition, given an algebraic function f : X → C we want to
define the nearby cycles “ψf (M)” of M. This object will have
a monodromy filtration, whose graded pieces should again be
(pure) Hodge modules (of the appropriate weights).



We’re about to learn about V -filtrations. Why do this?

In the setting of (possibly filtered) coherent DX -modules M,
V -filtrations

1. are used to define nearby and vanishing cycles for (possibly
filtered) DX -modules.

2. detect the existence of a strict support decomposition

3. can be used to give criteria for when objects are determined
by their restriction to an open subset.



The plan:

I Now, we will discuss V -filtrations on (non-filtered)
DX -modules.

I Later, we will move to the setting of modules with a good
filtration F •.

References:

I Saito, “Modules de Hodge Polarisables”, section 3.

I Popa, “Lecture notes on the V-filtration”.



Setting

I X is an affine (for simplicity) smooth complex variety.

I t : X → C is an algebraic function, such that D
i
↪−→ X , the

vanishing locus of t, is smooth.

I U
j
↪−→ X is the complement of D in X .

I M is a coherent (left) DX -module. In general, we will say
“DX -module” when we mean “coherent (left) DX -module”.



Definition of V-filtration

Definition
A (rational) V -filtration of M along t is a decreasing, exhaustive
filtration V • of M by coherent DX [t, ∂tt]-submodules, indexed by
the ordered group Q; it must satisfy the following conditions:

I Discreteness

I t · V αM ⊂ V α+1M, with equality if α > 0.

I ∂t · V αM ⊂ V α−1M

I Let V>αM =
⋃
α′>α V

α′
M. The action of ∂tt − α on

grαM = V αM/V>αM

is nilpotent.

Remark: Each grαM is naturally a coherent DX -module, supported
on D.



Remark on conventions: Given a V -filtration V • on M, one
obtains an increasing filtration V• by setting

Vα = V−α

This filtration satisfies e.g. t · Vα ⊂ Vα−1, and the action of

∂tt + α = t∂t + α + 1

on V α/V<α is nilpotent. It is common for “V -filtration” to refer
to this kind of increasing filtration.



Example

Take M = OX . Define

V αOX =

{
tdαe−1OX , if α > 0
OX , otherwise

So this is the filtration

· · · = [OX ]0 = [OX ]1 ⊃ [tOX ]2 ⊃ [t2OX ]3 ⊃ . . .

where [−]α designates V α, and we omit the non-integer steps.
One easily checks that this is a V -filtration; the key point is that

∂tt(tk) = (k + 1)tk

Interesting graded pieces: griV = 〈[t i−1]〉, i ≥ 0.



Example

Now take M = j∗j
∗OX , i.e. OU regarded as a DX -module. Define

V αOU to be the OX -submodule generated by tdαe−1.

So this is the filtration

· · · ⊃ [(t−2, t−1, 1, t, . . . )]−1 ⊃ [(t−1, 1, t, . . . )]0 ⊃ [(1, t, . . . )]1 ⊃ . . .

where [−]α designates V α. This is a V -filtration.

Interesting graded pieces: griV = 〈[t i−1]〉, i ∈ Z.



Example

Take X = Spec(C[t]), and let M = C〈t
k
2 : k ∈ Z〉, with t, ∂t

acting in the way you’d expect. Define V αM to be the
OX -submodule generated by tdα−1/2e−1/2.

So this is the filtration

· · · ⊃ [(t−
3
2 , t−

1
2 , t

1
2 , . . . )]−

1
2 ⊃ [t−

1
2 , t

1
2 , . . . )]

1
2 ⊃ [t

1
2 , t

3
2 , . . . )]

3
2 ⊃ . . .

where [−]α designates V α. This is a V -filtration.

Interesting graded pieces:

gr−
1
2 (M) = 〈[t−

3
2 ]〉, gr

1
2 (M) = 〈[t−

1
2 ]〉, . . . .



Example

Fix a β ∈ Q. Let Mβ,p be the DX -module generated by expressions
of the form

ej ,k :=

{
tβ+j logk (t)

k! , if 0 ≤ k ≤ p

0, otherwise

where j , k ∈ Z, and t, ∂t act in the way you’d expect. Then

∂tt · ej ,k =
1

k!
[(β + j + 1)tβ+j logk(t) + ktβ+j logk−1(t)]

=(β + j + 1)ej ,k + ej ,k−1

implying that each ej ,k is annihilated by a power of
∂tt − β − j − 1. There is a V -filtration such that

grβ+j+1
V Mβ,p = 〈[ej ,0], . . . , [ej ,p]〉



Example

Take X = Spec(C[t]), and M = C[t, ∂t ]/C[t, ∂t ]t = C[∂t ].

Define V αM = {∂kt : 0 ≤ k ≤ −dαe}.

So this is the filtration

· · · ⊃ [(∂2t , ∂t , 1)]−2 ⊃ [(∂t , 1)]−1 ⊃ [(1)]0 ⊃ [0]1 = . . .

where [−]α designates V α. This is a V -filtration.

Interesting graded pieces: griV = 〈[∂−it ]〉, i < 0. (Notice e.g.
that

∂tt[∂t ] = [∂tt∂t ] = [∂t(∂tt − 1)] = [−∂t ]
)



Example

Generalizing the previous example, suppose that
supp(M) ⊂ D = [t = 0]. Recall that Kashiwara’s equivalence gave
us an isomorphism

φ : M
∼−→
⊕
n≤0

Mn = M0 ⊗ C[∂t ]

where Mn = ker(∂tt − n) = ∂−nt M0. Define the V -filtration:

V αM = φ−1
( ⊕

n≥dαe

Mn
)

Key facts: Note that V>0M = 0; conversely, one easily checks
that supp(M) ⊂ D if V>0M = 0. Also note that M is determined
by V 0M = M0.



Lemma
There is at most one V -filtration (with respect to t) on M.

Corollary

Let φ : M → N be a morphism of DX -modules equipped with
V -filtrations along t. Then φ is strictly compatible with these
filtrations, namely,

φ(V αM) = φ(M) ∩ V αN

Proof (Cor.): One immediately checks that both sides of the
equation define a V -filtration on im(φ).



Corollary

For each α ∈ Q, the following functors are exact:

I M 7→ V αM

I M 7→ grαM



The following result is a prototype of desideratum 2 from the
introduction:

Proposition 1

Let M,N be coherent DX -modules equipped with V -filtrations
along t. Assume that M,N have strict support X . Then any
isomorphism φU : j∗M

∼−→ j∗N extends to an isomorphism
φ : M → N.

Before proving this, we give two lemmas that are useful more
broadly.



Lemma A
Let M ′ ⊂ M be an inclusion of DX -modules equipped with
V -filtrations along t. Assume that j∗M ′ → j∗M is an isomorphism.
Then for all α > 0,

V αM ′ = V αM

Proof: The previous corollary gives an an exact sequence

0→ V αM ′ → V αM → V α
(
M/M ′

)
→ 0

But M/M ′ is supported on D, and we have seen that this implies
that

V α
(
M/M ′

)
= 0

when α > 0.



Lemma B
Let M be a DX -module equipped with V -filtration along t.
Assume that M has strict support X . Then

M = DX · V>0M

Proof: The quotient satisfies

V>0
(
M/
(
DX · V>0M

))
= 0

implying that it is supported within D.



Now we return to prove the proposition:

Proposition 1

Let M,N be coherent DX -modules equipped with V -filtrations
along t. Assume that M,N have strict support X . Then any
isomorphism φU : j∗M

∼−→ j∗N extends to an isomorphism
φ : M → N.

Proof: Consider the composite morphism

φ : M ↪−→ j∗j
∗M

∼−→ j∗j
∗N

where the second arrow is induced by φU . The first arrow is
injective because its kernel is supported on D, and yet M has strict
support X . We claim that im(φ) = N. Indeed, by our lemmas,

im(φ) = DX · V>0im(φ) = DX · V>0N = N

(the middle equality uses that j∗im(φ) = j∗N).



Now we’d like to pause and discuss how nearby and vanishing
cycles along the hypersurface [t = 0] are defined using V .

Definition
I ψt,1M = gr1VM (unipotent nearby cycles)

I φt,1M = gr0VM (unipotent vanishing cycles)

Caveats: these are only the “unipotent parts” of nearby/vanishing
cycles; also, we want to define these objects even when [t = 0] is
not smooth; finally, we’d like to know what relation these objects
have with the previous notions of nearby/vanishing cycles. We will
address all of these issues later. For now, note that we have
morphisms

can := ∂t : ψt,1M � φt,1M : t =: var

such that can ◦ var and var ◦ can are nilpotent (using
[∂t , t] = 1).



Remark: It can be shown that the following maps are
isomorphisms:

I t : grαM
∼−→ grα+1M, if α 6= 0;

I ∂t : grαM
∼−→ grα−1M, if α 6= 1.



can :=∂t : ψt,1M � φt,1M : t =: var

The following result is an important step towards Desideratum 1
from the introduction.

Proposition 2

Let M ′ = DX · V>0M ⊂ M. Let H0
DM ⊂ M be the subobject

generated by sections supported within D. Then:

1. M ′ is the smallest subobject of M satisfying j∗M ′ ∼= j∗M.

2. M/M ′ ∼=
∫ 0
i coker(can) = i+coker(can), and

3. H0
DM
∼=
∫ 0
i ker(var) = i+ker(var).

Proof (1): If M ′′ ⊂ M satisfies j∗M ′′ = j∗M, then by Lemma A,
V>0M = V>0M ′′, implying

DX · V>0M ⊂ DX · V>0M ′′ ⊂ M ′′



can :=∂t : ψt,1M � φt,1M : t =: var

We will indicate a proof of the third statement:

Goal
H0

DM
∼=
∫ 0
i ker(var) = i+ker(var)

Proof (3): We claim that the obvious map V 0M → gr0VM
induces an isomorphism

ker(t : M → M)
∼−→ ker(t : gr0VM → gr1VM)



Claim
ker(t : M → M)

∼−→ ker(t : gr0VM → gr1VM)

Proof (3,cont.): First we need to see that

ker(t : M → M) ⊂ V 0M

If tm = 0 and m ∈ V αM for α < 0, we have that

(−α)pm = (∂tt − α)pm ∈ V>αM

for some p > 0. Repeating this process, and using the discreteness
of V , we obtain m ∈ V 0M.



Claim
ker(t : M → M)

∼−→ ker(t : gr0VM → gr1VM)

Proof (3,cont.): Next we need to see that our map is injective.
This follows from the equivalence

supp(N) ⊂ D ⇐⇒ V αN = 0 for all α > 0

applied to N = DX · ker(t : M → M).



Claim
ker(t : M → M)

∼−→ ker(t : gr0VM → gr1VM)

Proof (3,cont.): Finally, we need to see that our map is surjective.
There is a morphism of short exact sequences

0 // V>0M

t

��

// V 0M

t

��

// gr0VM

t
��

// 0

0 // V>1M // V 1M // gr1VM
// 0

Part of the definition of V -filtration was that t : V>0M → V>1M
is surjective. Using the snake lemma, the claim is proved.



Recall that we are trying to prove that

H0
DM
∼=
∫ 0

i
ker(var) = i+ker(var)

What we know is that

ker(t : M → M)
∼−→ ker(t : gr0VM → gr1VM)

(this is a morphism of DD-modules). Under
∫ 0
i , the left side

becomes H0
DM by Kashiwara’s theorem; the right side is∫ 0

i ker(var). Part two of the proposition is proved.



In the discussion so far, the hypersurface D = [t = 0] has been
smooth. We would like to start making claims about arbitrary
hypersurfaces, using the tools developed so far.

To this end, suppose we have a function f : X → C (where
D = [f = 0] need not be smooth). Let

ιf = (idX , f ) : X ↪−→ X × C

be the graph morphism, and let t : X × C→ C be the projecion.
Since X ∼= X0 := [t = 0] is smooth, given a DX module M, we can
consider V -filtrations along [t = 0] for the DX×C-module∫ 0

ιf
M = ιf+M



If Γf = ιf (X ) ⊂ X × C, then Γf ∩ X0 = ιf (D) ⊂ X0. So using
Kashiwara’s theorem we have the following:

Key Observation

The functor ιf+ induces an equivalence between DD-modules and
DX×C-modules supported on ιf (D) = Γf ∩ X0.



From now on, for an algebraic function f : X → C and a
DX -module M, by

“V -filtration along f for M”

we will mean

“V -filtration along X0 for ιf+M”

One checks that when [f = 0] is smooth this is compatible with
everything we’ve done so far. Also, we denote

Mf := ιf+M



To illustrate the use of the Key Observation, recall a proposition
from earlier about modules with a V -filtration along smooth D:

Proposition 2

Let M ′ ⊂ M be the smallest subobject satisfying j∗M ′ ∼= j∗M. Let
H0

DM ⊂ M be the subobject generated by sections supported
within D. We have maps

can := ∂t : gr1VM � gr0VM : t =: var

1. M/M ′ ∼=
∫ 0
i coker(can) = i+coker(can), and

2. H0
DM
∼=
∫ 0
i ker(var) = i+ker(var).



We can improve this to the following statement:

Proposition 2 (improved)

Let M be a DX -module admitting a V -filtration along D = [f = 0]
(which may not be smooth). We then have maps

can := ∂t : gr1VMf � gr0VMf : t =: var

1. M has no nonzero subobject supported on D iff ker(var) = 0.

2. M has no nonzero quotient supported on D iff coker(can) = 0.

(If D is smooth, these are immediate from the old statement.) If
D is not smooth and (say) ker(var) = 0, the old statement says
that H0

X0
ιf+M = 0; Kashiwara implies that H0

DM = 0.



We can improve this to the following statement:

Proposition 2 (improved)

Let M be a DX -module admitting a V -filtration along D = [f = 0]
(which may not be smooth). We then have maps

can := ∂t : gr1VMf � gr0VMf : t =: var

1. M has no nonzero subobject supported on D iff ker(var) = 0.

2. M has no nonzero quotient supported on D iff coker(can) = 0.

Remark: We have generally that

gr0V (M ′) = im(canf )

gr0V (H0
X0
ιf+M) = ker(varf )



canf := ∂t : gr1
VMf � gr0

VMf : t =: varf

Now we can characterize modules with strict support
(decompositions) using V -filtrations.

Theorem
Let M be a DX -module admitting a V -filtration along every
hypersurface.

1. M has strict support X iff for all f :

ker(varf ) = coker(canf ) = 0

2. M has a strict support decomposition iff for all f :

gr0VMf = ker(varf )⊕ im(canf )



canf := ∂t : gr1
VMf � gr0

VMf : t =: varf

Proof (part 1): Immediate from (improved) Proposition 2.

Proof (part 2): Suppose first that M has a strict support
decomposition. Given a D = [f = 0], we want to show that

gr0VMf
∼= ker(varf )⊕ im(canf )

We can reduce to the case where M has strict support Z .

I If D does not contain Z , improved Proposition 2 implies that

gr0VMf = im(canf ) and ker(varf ) = 0

I If D contains Z , then

gr1VMf = 0

implying that gr0VMf = ker(varf ) and im(canf ) = 0.



canf := ∂t : gr1
VMf � gr0

VMf : t =: varf

Proof (part 2, cont.): For the converse, suppose that for all f ,

gr0VMf = ker(varf )⊕ im(canf )

Let M ′ be the minimal subobject of Mf satisfying

M ′|t 6=0
∼= (Mf )|t 6=0

We claim that M ′′ := M ′ ∩H0
X0
Mf = 0. Our assumption, together

with Proposition 2, implies that

gr0VM
′′ ⊂ ker(varf ) ∩ im(canf ) = 0

implying that M ′′ itself is zero (since V>0M ′′ = 0), proving the
claim. Additionally, it is immediate that M ′ has no quotients
supported in X0.



canf := ∂t : gr1
VMf � gr0

VMf : t =: varf

Proof (part 2, cont.): Now consider the short exact sequence

0→ M ′ ⊕H0
X0
Mf → Mf → Q → 0

defining Q. We see immediately that Q|t 6=0 = 0. Applying gr0V ,
and using Prop. 2, we get

0→ im(canf )⊕ ker(varf )→ gr0VMf → gr0VQ → 0

implying that also gr0VQ = 0; this implies Q = 0.

We have shown that, for any f , we have

Mf = M ′ ⊕H0
X0
Mf

where M ′ has no sub- or quotient objects supported in X0

(equivalently, in ιf (D)).



canf := ∂t : gr1
VMf � gr0

VMf : t =: varf

Proof (part 2, cont.): Now because M is noetherian, there is a
divisor D = [f = 0] such that any subobject of M supported on a
proper subset of X is supported within D. As above, write

Mf = M ′ ⊕H0
X0
Mf

for this f . Assume for simplicity that Z := supp(M) is irreducible.

We claim that M ′ has strict support Z . If M ′ has a quotient Q
supported within D ′ but not within D, we have a decomposition as
above:

M ′ = M ′′ ⊕H0
X0
ιf

′
+M

′

where M ′′ has no quotients supported on D ′; but H0
D′ιf

′
+M

′ must
be zero as it gives a submodule of M supported within D ′ but not
within D. By induction, the proposition is proved.


