V-filtrations and vanishing cycles for \mathcal{D}_{X}-modules

Joe Knight

October 14, 2020

Let \mathcal{A} be an abelian category of "sheaf-like" objects on a smooth complex variety X.

For example, \mathcal{A} could be $\operatorname{Sh}(X)$, coherent \mathcal{D}_{X}-modules, the category of perverse sheaves on X, or the category of Hodge modules on X (which we haven't defined yet).

Definition

Let $Z \subset X$ be an irreducible closed subset. An object $M \in \mathcal{A}$ has strict support Z if $\operatorname{supp}(M)=Z$ and M has no sub- or quotient objects with support properly contained in Z.

Example

The \mathcal{D}_{X}-module \mathcal{O}_{X} has strict support X (it is simple and $\left.\operatorname{supp}\left(\mathcal{O}_{X}\right)=X\right)$. Note that \mathcal{O}_{X} typically does not have strict support X as an \mathcal{O}_{X}-module.

Example

Consider $M=\mathbb{C}\left[t^{ \pm 1}\right]$ as a $\mathbb{C}\left[t, \partial_{t}\right]$-module. We have $\operatorname{supp}(M)=X$, yet M has $\mathbb{C}[t]$ as a subobject, and the quotient

$$
\mathbb{C}\left[t^{ \pm 1}\right] / \mathbb{C}[t]=\left\langle t^{-1}, t^{-2}, t^{-3}, \ldots\right\rangle
$$

is supported on $[t=0]$. So M does not have strict support X.

We want to define the category of (pure) Hodge modules on a smooth complex variety X so that, loosely speaking, the following desiderata are true:

1. If M is a Hodge module, then $M \cong \bigoplus_{Z} M_{Z}$, where Z runs over irreducible closed subsets of X, and each M_{Z} has strict support Z. (we call this a strict support decomposition).
2. If M is a Hodge module of strict support Z, then there is a nontrivial open embedding $j: U \hookrightarrow Z$ such that $j^{*} M$ "is a variation of Hodge structure". Moreover, M is uniquely determined by $j^{*} M$.
3. In addition, given an algebraic function $f: X \rightarrow \mathbb{C}$ we want to define the nearby cycles " $\psi_{f}(M)$ " of M. This object will have a monodromy filtration, whose graded pieces should again be (pure) Hodge modules (of the appropriate weights).

We're about to learn about V-filtrations. Why do this?
In the setting of (possibly filtered) coherent \mathcal{D}_{X}-modules M, V-filtrations

1. are used to define nearby and vanishing cycles for (possibly filtered) D_{X}-modules.
2. detect the existence of a strict support decomposition
3. can be used to give criteria for when objects are determined by their restriction to an open subset.

The plan:

- Now, we will discuss V-filtrations on (non-filtered) \mathcal{D}_{X}-modules.
- Later, we will move to the setting of modules with a good filtration F^{\bullet}.

References:

- Saito, "Modules de Hodge Polarisables", section 3.
- Popa, "Lecture notes on the V-filtration".

Setting

- X is an affine (for simplicity) smooth complex variety.
- $t: X \rightarrow \mathbb{C}$ is an algebraic function, such that $D \stackrel{i}{\hookrightarrow} X$, the vanishing locus of t, is smooth.
- $U \stackrel{j}{\hookrightarrow} X$ is the complement of D in X.
- M is a coherent (left) \mathcal{D}_{X}-module. In general, we will say " \mathcal{D}_{X}-module" when we mean "coherent (left) \mathcal{D}_{X}-module".

Definition of V-filtration

Definition

A (rational) V-filtration of M along t is a decreasing, exhaustive filtration V^{\bullet} of M by coherent $\mathcal{D}_{X}\left[t, \partial_{t} t\right]$-submodules, indexed by the ordered group \mathbb{Q}; it must satisfy the following conditions:

- Discreteness
- $t \cdot V^{\alpha} M \subset V^{\alpha+1} M$, with equality if $\alpha>0$.
- $\partial_{t} \cdot V^{\alpha} M \subset V^{\alpha-1} M$
- Let $V^{>\alpha} M=\bigcup_{\alpha^{\prime}>\alpha} V^{\alpha^{\prime}} M$. The action of $\partial_{t} t-\alpha$ on

$$
\operatorname{gr}^{\alpha} M=V^{\alpha} M / V^{>\alpha} M
$$

is nilpotent.
Remark: Each $\operatorname{gr}^{\alpha} M$ is naturally a coherent \mathcal{D}_{X}-module, supported on D.

Remark on conventions: Given a V-filtration V^{\bullet} on M, one obtains an increasing filtration V_{\bullet} by setting

$$
V_{\alpha}=V^{-\alpha}
$$

This filtration satisfies e.g. $t \cdot V_{\alpha} \subset V_{\alpha-1}$, and the action of

$$
\partial_{t} t+\alpha=t \partial_{t}+\alpha+1
$$

on $V^{\alpha} / V^{<\alpha}$ is nilpotent. It is common for " V-filtration" to refer to this kind of increasing filtration.

Example

Take $M=\mathcal{O}_{X}$. Define

$$
V^{\alpha} \mathcal{O}_{X}= \begin{cases}t^{\lceil\alpha\rceil-1} \mathcal{O}_{X}, & \text { if } \alpha>0 \\ \mathcal{O}_{X}, & \text { otherwise }\end{cases}
$$

So this is the filtration

$$
\cdots=\left[\mathcal{O}_{x}\right]^{0}=\left[\mathcal{O}_{x}\right]^{1} \supset\left[t \mathcal{O}_{x}\right]^{2} \supset\left[t^{2} \mathcal{O}_{x}\right]^{3} \supset \ldots
$$

where $[-]^{\alpha}$ designates V^{α}, and we omit the non-integer steps.
One easily checks that this is a V-filtration; the key point is that

$$
\partial_{t} t\left(t^{k}\right)=(k+1) t^{k}
$$

Interesting graded pieces: $\operatorname{gr}_{V}^{i}=\left\langle\left[t^{i-1}\right]\right\rangle, i \geq 0$.

Example

Now take $M=j_{*} j^{*} \mathcal{O}_{X}$, i.e. \mathcal{O}_{U} regarded as a \mathcal{D}_{X}-module. Define $V^{\alpha} \mathcal{O}_{U}$ to be the \mathcal{O}_{x}-submodule generated by $t^{\lceil\alpha\rceil-1}$.

So this is the filtration
$\cdots \supset\left[\left(t^{-2}, t^{-1}, 1, t, \ldots\right)\right]^{-1} \supset\left[\left(t^{-1}, 1, t, \ldots\right)\right]^{0} \supset[(1, t, \ldots)]^{1} \supset \ldots$
where $[-]^{\alpha}$ designates V^{α}. This is a V-filtration.
Interesting graded pieces: $\operatorname{gr}_{V}^{i}=\left\langle\left[t^{i-1}\right]\right\rangle, i \in \mathbb{Z}$.

Example

Take $X=\operatorname{Spec}(\mathbb{C}[t])$, and let $M=\mathbb{C}\left\langle t^{\frac{k}{2}}: k \in \mathbb{Z}\right\rangle$, with t, ∂_{t} acting in the way you'd expect. Define $V^{\alpha} M$ to be the \mathcal{O}_{X}-submodule generated by $t^{\lceil\alpha-1 / 2\rceil-1 / 2}$.

So this is the filtration
$\left.\left.\cdots \supset\left[\left(t^{-\frac{3}{2}}, t^{-\frac{1}{2}}, t^{\frac{1}{2}}, \ldots\right)\right]^{-\frac{1}{2}} \supset\left[t^{-\frac{1}{2}}, t^{\frac{1}{2}}, \ldots\right)\right]^{\frac{1}{2}} \supset\left[t^{\frac{1}{2}}, t^{\frac{3}{2}}, \ldots\right)\right]^{\frac{3}{2}} \supset \ldots$
where $[-]^{\alpha}$ designates V^{α}. This is a V-filtration.
Interesting graded pieces:
$\operatorname{gr}^{-\frac{1}{2}}(M)=\left\langle\left[t^{-\frac{3}{2}}\right]\right\rangle, \operatorname{gr}^{\frac{1}{2}}(M)=\left\langle\left[t^{-\frac{1}{2}}\right]\right\rangle, \ldots$.

Example

Fix a $\beta \in \mathbb{Q}$. Let $M_{\beta, p}$ be the \mathcal{D}_{X}-module generated by expressions of the form

$$
e_{j, k}:= \begin{cases}\frac{t^{\beta+j} \log ^{k}(t)}{k!}, & \text { if } 0 \leq k \leq p \\ 0, & \text { otherwise }\end{cases}
$$

where $j, k \in \mathbb{Z}$, and t, ∂_{t} act in the way you'd expect. Then

$$
\begin{aligned}
\partial_{t} t \cdot e_{j, k} & =\frac{1}{k!}\left[(\beta+j+1) t^{\beta+j} \log ^{k}(t)+k t^{\beta+j} \log ^{k-1}(t)\right] \\
& =(\beta+j+1) e_{j, k}+e_{j, k-1}
\end{aligned}
$$

implying that each $e_{j, k}$ is annihilated by a power of $\partial_{t} t-\beta-j-1$. There is a V-filtration such that

$$
\operatorname{gr}_{V}^{\beta+j+1} M_{\beta, p}=\left\langle\left[e_{j, 0}\right], \ldots,\left[e_{j, p}\right]\right\rangle
$$

Example

Take $X=\operatorname{Spec}(\mathbb{C}[t])$, and $M=\mathbb{C}\left[t, \partial_{t}\right] / \mathbb{C}\left[t, \partial_{t}\right] t=\mathbb{C}\left[\partial_{t}\right]$.
Define $V^{\alpha} M=\left\{\partial_{t}^{k}: 0 \leq k \leq-\lceil\alpha\rceil\right\}$.
So this is the filtration

$$
\cdots \supset\left[\left(\partial_{t}^{2}, \partial_{t}, 1\right)\right]^{-2} \supset\left[\left(\partial_{t}, 1\right)\right]^{-1} \supset[(1)]^{0} \supset[0]^{1}=\ldots
$$

where $[-]^{\alpha}$ designates V^{α}. This is a V-filtration.
Interesting graded pieces: $\operatorname{gr}_{V}^{i}=\left\langle\left[\partial_{t}^{-i}\right]\right\rangle, i<0$. (Notice e.g. that

$$
\left.\partial_{t} t\left[\partial_{t}\right]=\left[\partial_{t} t \partial_{t}\right]=\left[\partial_{t}\left(\partial_{t} t-1\right)\right]=\left[-\partial_{t}\right]\right)
$$

Example

Generalizing the previous example, suppose that $\operatorname{supp}(M) \subset D=[t=0]$. Recall that Kashiwara's equivalence gave us an isomorphism

$$
\phi: M \xrightarrow{\sim} \bigoplus_{n \leq 0} M^{n}=M^{0} \otimes \mathbb{C}\left[\partial_{t}\right]
$$

where $M^{n}=\operatorname{ker}\left(\partial_{t} t-n\right)=\partial_{t}^{-n} M^{0}$. Define the V-filtration:

$$
V^{\alpha} M=\phi^{-1}\left(\bigoplus_{n \geq\lceil\alpha\rceil} M^{n}\right)
$$

Key facts: Note that $V^{>0} M=0$; conversely, one easily checks that $\operatorname{supp}(M) \subset D$ if $V^{>0} M=0$. Also note that M is determined by $V^{0} M=M^{0}$.

Lemma

There is at most one V-filtration (with respect to t) on M.

Corollary

Let $\phi: M \rightarrow N$ be a morphism of \mathcal{D}_{X}-modules equipped with V-filtrations along t. Then ϕ is strictly compatible with these filtrations, namely,

$$
\phi\left(V^{\alpha} M\right)=\phi(M) \cap V^{\alpha} N
$$

Proof (Cor.): One immediately checks that both sides of the equation define a V-filtration on $\operatorname{im}(\phi)$.

Corollary
For each $\alpha \in \mathbb{Q}$, the following functors are exact:

- $M \mapsto V^{\alpha} M$
- $M \mapsto \operatorname{gr}^{\alpha} M$

The following result is a prototype of desideratum 2 from the introduction:

Proposition 1
Let M, N be coherent \mathcal{D}_{X}-modules equipped with V-filtrations along t. Assume that M, N have strict support X. Then any isomorphism $\phi_{U}: j^{*} M \xrightarrow{\sim} j^{*} N$ extends to an isomorphism
$\phi: M \rightarrow N$.

Before proving this, we give two lemmas that are useful more broadly.

Lemma A
Let $M^{\prime} \subset M$ be an inclusion of \mathcal{D}_{X}-modules equipped with V-filtrations along t. Assume that $j^{*} M^{\prime} \rightarrow j^{*} M$ is an isomorphism. Then for all $\alpha>0$,

$$
V^{\alpha} M^{\prime}=V^{\alpha} M
$$

Proof: The previous corollary gives an an exact sequence

$$
0 \rightarrow V^{\alpha} M^{\prime} \rightarrow V^{\alpha} M \rightarrow V^{\alpha}\left(M / M^{\prime}\right) \rightarrow 0
$$

But M / M^{\prime} is supported on D, and we have seen that this implies that

$$
V^{\alpha}\left(M / M^{\prime}\right)=0
$$

when $\alpha>0$.

Lemma B

Let M be a \mathcal{D}_{X}-module equipped with V-filtration along t. Assume that M has strict support X. Then

$$
M=\mathcal{D}_{X} \cdot V^{>0} M
$$

Proof: The quotient satisfies

$$
V^{>0}\left(M /\left(\mathcal{D}_{X} \cdot V^{>0} M\right)\right)=0
$$

implying that it is supported within D.

Now we return to prove the proposition:

Proposition 1

Let M, N be coherent \mathcal{D}_{X}-modules equipped with V-filtrations along t. Assume that M, N have strict support X. Then any isomorphism $\phi_{U}: j^{*} M \xrightarrow{\sim} j^{*} N$ extends to an isomorphism $\phi: M \rightarrow N$.

Proof: Consider the composite morphism

$$
\phi: M \hookrightarrow j_{*} j^{*} M \xrightarrow{\sim} j_{*} j^{*} N
$$

where the second arrow is induced by ϕ_{U}. The first arrow is injective because its kernel is supported on D, and yet M has strict support X. We claim that $\operatorname{im}(\phi)=N$. Indeed, by our lemmas,

$$
\operatorname{im}(\phi)=\mathcal{D}_{X} \cdot V^{>0} i m(\phi)=\mathcal{D}_{X} \cdot V^{>0} N=N
$$

(the middle equality uses that $j^{*} \mathrm{im}(\phi)=j^{*} N$).

Now we'd like to pause and discuss how nearby and vanishing cycles along the hypersurface $[t=0$] are defined using V.

Definition

- $\psi_{t, 1} M=\operatorname{gr}_{V}^{1} M$ (unipotent nearby cycles)
- $\phi_{t, 1} M=\operatorname{gr}_{V}^{0} M$ (unipotent vanishing cycles)

Caveats: these are only the "unipotent parts" of nearby/vanishing cycles; also, we want to define these objects even when [$t=0$] is not smooth; finally, we'd like to know what relation these objects have with the previous notions of nearby/vanishing cycles. We will address all of these issues later. For now, note that we have morphisms

$$
\operatorname{can}:=\partial_{t}: \psi_{t, 1} M \rightleftarrows \phi_{t, 1} M: t=: \operatorname{var}
$$

such that can \circ var and var \circ can are nilpotent (using $\left[\partial_{t}, t\right]=1$.

Remark: It can be shown that the following maps are isomorphisms:

- $t: \operatorname{gr}^{\alpha} M \xrightarrow{\sim} \operatorname{gr}^{\alpha+1} M$, if $\alpha \neq 0$;
- $\partial_{t}: \operatorname{gr}^{\alpha} M \xrightarrow{\sim} \operatorname{gr}^{\alpha-1} M$, if $\alpha \neq 1$.

$\operatorname{can}:=\partial_{t}: \psi_{t, 1} M \rightleftarrows \phi_{t, 1} M: t=:$ var

The following result is an important step towards Desideratum 1 from the introduction.

Proposition 2
Let $M^{\prime}=\mathcal{D}_{X} \cdot V>0 M \subset M$. Let $\mathcal{H}_{D}^{0} M \subset M$ be the subobject generated by sections supported within D. Then:

1. M^{\prime} is the smallest subobject of M satisfying $j^{*} M^{\prime} \cong j^{*} M$.
2. $M / M^{\prime} \cong \int_{i}^{0} \operatorname{coker}(\operatorname{can})=i_{+} \operatorname{coker}(\operatorname{can})$, and
3. $\mathcal{H}_{D}^{0} M \cong \int_{i}^{0} \operatorname{ker}(\operatorname{var})=i_{+} \operatorname{ker}(\operatorname{var})$.

Proof (1): If $M^{\prime \prime} \subset M$ satisfies $j^{*} M^{\prime \prime}=j^{*} M$, then by Lemma A, $V^{>0} M=V>0 M^{\prime \prime}$, implying

$$
\mathcal{D}_{X} \cdot V^{>0} M \subset \mathcal{D}_{X} \cdot V^{>0} M^{\prime \prime} \subset M^{\prime \prime}
$$

$\operatorname{can}:=\partial_{t}: \psi_{t, 1} M \rightleftarrows \phi_{t, 1} M: t=:$ var

We will indicate a proof of the third statement:
Goal
$\mathcal{H}_{D}^{0} M \cong \int_{i}^{0} \operatorname{ker}(\mathrm{var})=i_{+} \operatorname{ker}(\mathrm{var})$
Proof (3): We claim that the obvious map $V^{0} M \rightarrow \operatorname{gr}_{V}^{0} M$ induces an isomorphism

$$
\operatorname{ker}(t: M \rightarrow M) \xrightarrow{\sim} \operatorname{ker}\left(t: \operatorname{gr}_{V}^{0} M \rightarrow \operatorname{gr}_{V}^{1} M\right)
$$

Claim
$\operatorname{ker}(t: M \rightarrow M) \xrightarrow{\sim} \operatorname{ker}\left(t: \operatorname{gr}_{V}^{0} M \rightarrow \operatorname{gr}_{V}^{1} M\right)$
Proof (3,cont.): First we need to see that

$$
\operatorname{ker}(t: M \rightarrow M) \subset V^{0} M
$$

If $t m=0$ and $m \in V^{\alpha} M$ for $\alpha<0$, we have that

$$
(-\alpha)^{p} m=\left(\partial_{t} t-\alpha\right)^{p} m \in V^{>\alpha} M
$$

for some $p>0$. Repeating this process, and using the discreteness of V, we obtain $m \in V^{0} M$.

Claim
$\operatorname{ker}(t: M \rightarrow M) \xrightarrow{\sim} \operatorname{ker}\left(t: \operatorname{gr}_{V}^{0} M \rightarrow \operatorname{gr}_{V}^{1} M\right)$
Proof (3,cont.): Next we need to see that our map is injective. This follows from the equivalence

$$
\operatorname{supp}(N) \subset D \Longleftrightarrow V^{\alpha} N=0 \text { for all } \alpha>0
$$

applied to $N=\mathcal{D}_{X} \cdot \operatorname{ker}(t: M \rightarrow M)$.

Claim
$\operatorname{ker}(t: M \rightarrow M) \xrightarrow{\sim} \operatorname{ker}\left(t: \operatorname{gr}_{V}^{0} M \rightarrow \operatorname{gr}_{V}^{1} M\right)$
Proof (3, cont.): Finally, we need to see that our map is surjective. There is a morphism of short exact sequences

Part of the definition of V-filtration was that $t: V^{>0} M \rightarrow V^{>1} M$ is surjective. Using the snake lemma, the claim is proved.

Recall that we are trying to prove that

$$
\mathcal{H}_{D}^{0} M \cong \int_{i}^{0} \operatorname{ker}(\operatorname{var})=i_{+} \operatorname{ker}(\operatorname{var})
$$

What we know is that

$$
\operatorname{ker}(t: M \rightarrow M) \xrightarrow{\sim} \operatorname{ker}\left(t: \operatorname{gr}_{V}^{0} M \rightarrow \operatorname{gr}_{V}^{1} M\right)
$$

(this is a morphism of \mathcal{D}_{D}-modules). Under \int_{i}^{0}, the left side becomes $\mathcal{H}_{D}^{0} M$ by Kashiwara's theorem; the right side is $\int_{i}^{0} \operatorname{ker}(\mathrm{var})$. Part two of the proposition is proved.

In the discussion so far, the hypersurface $D=[t=0]$ has been smooth. We would like to start making claims about arbitrary hypersurfaces, using the tools developed so far.

To this end, suppose we have a function $f: X \rightarrow \mathbb{C}$ (where $D=[f=0]$ need not be smooth). Let

$$
\iota^{f}=\left(\mathrm{id}_{X}, f\right): X \hookrightarrow X \times \mathbb{C}
$$

be the graph morphism, and let $t: X \times \mathbb{C} \rightarrow \mathbb{C}$ be the projecion. Since $X \cong X_{0}:=[t=0]$ is smooth, given a \mathcal{D}_{X} module M, we can consider V-filtrations along [$t=0$] for the $\mathbb{D}_{X \times \mathbb{C}}$-module

$$
\int_{\iota^{f}}^{0} M=\iota_{+}^{f} M
$$

If $\Gamma_{f}=\iota^{f}(X) \subset X \times \mathbb{C}$, then $\Gamma_{f} \cap X_{0}=\iota^{f}(D) \subset X_{0}$. So using Kashiwara's theorem we have the following:

Key Observation

The functor ι_{+}^{f} induces an equivalence between $\mathcal{D}_{D^{-}}$-modules and $\mathcal{D}_{X \times \mathbb{C}}$-modules supported on $\iota^{f}(D)=\Gamma_{f} \cap X_{0}$.

From now on, for an algebraic function $f: X \rightarrow \mathbb{C}$ and a \mathcal{D}_{X}-module M, by
" V-filtration along f for M "
we will mean
" V-filtration along X_{0} for $\iota_{+}^{f} M$ "
One checks that when [$f=0$] is smooth this is compatible with everything we've done so far. Also, we denote

$$
M_{f}:=\iota_{+}^{f} M
$$

To illustrate the use of the Key Observation, recall a proposition from earlier about modules with a V-filtration along smooth D :

Proposition 2

Let $M^{\prime} \subset M$ be the smallest subobject satisfying $j^{*} M^{\prime} \cong j^{*} M$. Let $\mathcal{H}_{D}^{0} M \subset M$ be the subobject generated by sections supported within D. We have maps

$$
\operatorname{can}:=\partial_{t}: \operatorname{gr}_{V}^{1} M \rightleftarrows \operatorname{gr}_{V}^{0} M: t=: \text { var }
$$

1. $M / M^{\prime} \cong \int_{i}^{0} \operatorname{coker}($ can $)=i_{+} \operatorname{coker}($ can $)$, and
2. $\mathcal{H}_{D}^{0} M \cong \int_{i}^{0} \operatorname{ker}(\mathrm{var})=i_{+} \operatorname{ker}(\mathrm{var})$.

We can improve this to the following statement:
Proposition 2 (improved)
Let M be a \mathcal{D}_{X}-module admitting a V-filtration along $D=[f=0]$ (which may not be smooth). We then have maps

$$
\text { can }:=\partial_{t}: \operatorname{gr}_{V}^{1} M_{f} \rightleftarrows \operatorname{gr}_{V}^{0} M_{f}: t=: \text { var }
$$

1. M has no nonzero subobject supported on D iff $\operatorname{ker}(\operatorname{var})=0$.
2. M has no nonzero quotient supported on D iff $\operatorname{coker}(\operatorname{can})=0$.
(If D is smooth, these are immediate from the old statement.) If
D is not smooth and (say) $\operatorname{ker}(\mathrm{var})=0$, the old statement says that $\mathcal{H}_{X_{0}}^{0}{ }^{f}{ }_{+}^{f} M=0$; Kashiwara implies that $\mathcal{H}_{D}^{0} M=0$.

We can improve this to the following statement:
Proposition 2 (improved)
Let M be a \mathcal{D}_{X}-module admitting a V-filtration along $D=[f=0]$ (which may not be smooth). We then have maps

$$
\operatorname{can}:=\partial_{t}: \operatorname{gr}_{V}^{1} M_{f} \rightleftarrows \operatorname{gr}_{V}^{0} M_{f}: t=: \text { var }
$$

1. M has no nonzero subobject supported on D iff $\operatorname{ker}(\operatorname{var})=0$.
2. M has no nonzero quotient supported on D iff $\operatorname{coker}(\operatorname{can})=0$.

Remark: We have generally that

$$
\begin{gathered}
\operatorname{gr}_{V}^{0}\left(M^{\prime}\right)=\operatorname{im}\left(\operatorname{can}_{f}\right) \\
\operatorname{gr}_{V}^{0}\left(\mathcal{H}_{X_{0}}^{0} \iota_{+}^{f} M\right)=\operatorname{ker}\left(\operatorname{var}_{f}\right)
\end{gathered}
$$

$\operatorname{can}_{f}:=\partial_{t}: \operatorname{gr}_{V}^{1} M_{f} \rightleftarrows \operatorname{gr}_{V}^{0} M_{f}: t=: \operatorname{var}_{f}$

Now we can characterize modules with strict support (decompositions) using V-filtrations.
Theorem
Let M be a \mathcal{D}_{X}-module admitting a V-filtration along every hypersurface.

1. M has strict support X iff for all f :

$$
\operatorname{ker}\left(\operatorname{var}_{f}\right)=\operatorname{coker}\left(\operatorname{can}_{f}\right)=0
$$

2. M has a strict support decomposition iff for all f :

$$
\operatorname{gr}_{V}^{0} M_{f}=\operatorname{ker}\left(\operatorname{var}_{f}\right) \oplus \operatorname{im}\left(\operatorname{can}_{f}\right)
$$

$\operatorname{can}_{f}:=\partial_{t}: \operatorname{gr}_{V}^{1} M_{f} \rightleftarrows \operatorname{gr}_{V}^{0} M_{f}: t=: \operatorname{var}_{f}$

Proof (part 1): Immediate from (improved) Proposition 2.
Proof (part 2): Suppose first that M has a strict support decomposition. Given a $D=[f=0]$, we want to show that

$$
\operatorname{gr}_{V}^{0} M_{f} \cong \operatorname{ker}\left(\operatorname{var}_{f}\right) \oplus \operatorname{im}\left(\operatorname{can}_{f}\right)
$$

We can reduce to the case where M has strict support Z.

- If D does not contain Z, improved Proposition 2 implies that

$$
\operatorname{gr}_{V}^{0} M_{f}=\operatorname{im}\left(\operatorname{can}_{f}\right) \text { and } \operatorname{ker}\left(\operatorname{var}_{f}\right)=0
$$

- If D contains Z, then

$$
\operatorname{gr}_{V}^{1} M_{f}=0
$$

implying that $\operatorname{gr}_{V}^{0} M_{f}=\operatorname{ker}\left(\operatorname{var}_{f}\right)$ and $\operatorname{im}\left(\operatorname{can}_{f}\right)=0$.

$\operatorname{can}_{f}:=\partial_{t}: \operatorname{gr}_{V}^{1} M_{f} \rightleftarrows \operatorname{gr}_{V}^{0} M_{f}: t=: \operatorname{var}_{f}$

Proof (part 2, cont.): For the converse, suppose that for all f,

$$
\operatorname{gr}_{V}^{0} M_{f}=\operatorname{ker}\left(\operatorname{var}_{f}\right) \oplus \operatorname{im}\left(\operatorname{can}_{f}\right)
$$

Let M^{\prime} be the minimal subobject of M_{f} satisfying

$$
\left.\left.M^{\prime}\right|_{t \neq 0} \cong\left(M_{f}\right)\right|_{t \neq 0}
$$

We claim that $M^{\prime \prime}:=M^{\prime} \cap \mathcal{H}_{X_{0}}^{0} M_{f}=0$. Our assumption, together with Proposition 2, implies that

$$
\operatorname{gr}_{V}^{0} M^{\prime \prime} \subset \operatorname{ker}\left(\operatorname{var}_{f}\right) \cap \operatorname{im}\left(\operatorname{can}_{f}\right)=0
$$

implying that $M^{\prime \prime}$ itself is zero (since $V^{>0} M^{\prime \prime}=0$), proving the claim. Additionally, it is immediate that M^{\prime} has no quotients supported in X_{0}.

$\operatorname{can}_{f}:=\partial_{t}: \operatorname{gr}_{V}^{1} M_{f} \rightleftarrows \operatorname{gr}_{V}^{0} M_{f}: t=: \operatorname{var}_{f}$

Proof (part 2, cont.): Now consider the short exact sequence

$$
0 \rightarrow M^{\prime} \oplus \mathcal{H}_{X_{0}}^{0} M_{f} \rightarrow M_{f} \rightarrow Q \rightarrow 0
$$

defining Q. We see immediately that $\left.Q\right|_{t \neq 0}=0$. Applying $\operatorname{gr}_{V}^{0}$, and using Prop. 2, we get

$$
0 \rightarrow \operatorname{im}\left(\operatorname{can}_{f}\right) \oplus \operatorname{ker}\left(\operatorname{var}_{f}\right) \rightarrow \operatorname{gr}_{V}^{0} M_{f} \rightarrow \operatorname{gr}_{V}^{0} Q \rightarrow 0
$$

implying that also $\operatorname{gr}_{V}^{0} Q=0$; this implies $Q=0$.
We have shown that, for any f, we have

$$
M_{f}=M^{\prime} \oplus \mathcal{H}_{X_{0}}^{0} M_{f}
$$

where M^{\prime} has no sub- or quotient objects supported in X_{0} (equivalently, in $\iota^{f}(D)$).

$\operatorname{can}_{f}:=\partial_{t}: \operatorname{gr}_{V}^{1} M_{f} \rightleftarrows \operatorname{gr}_{V}^{0} M_{f}: t=: \operatorname{var}_{f}$

Proof (part 2, cont.): Now because M is noetherian, there is a divisor $D=[f=0]$ such that any subobject of M supported on a proper subset of X is supported within D. As above, write

$$
M_{f}=M^{\prime} \oplus \mathcal{H}_{X_{0}}^{0} M_{f}
$$

for this f. Assume for simplicity that $Z:=\operatorname{supp}(M)$ is irreducible.
We claim that M^{\prime} has strict support Z. If M^{\prime} has a quotient Q supported within D^{\prime} but not within D, we have a decomposition as above:

$$
M^{\prime}=M^{\prime \prime} \oplus \mathcal{H}_{X_{0}}^{0} \iota_{+}^{f^{\prime}} M^{\prime}
$$

where $M^{\prime \prime}$ has no quotients supported on D^{\prime}; but $\mathcal{H}_{D^{\prime}}^{0} f_{+}^{f^{\prime}} M^{\prime}$ must be zero as it gives a submodule of M supported within D^{\prime} but not within D. By induction, the proposition is proved.

