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We now move to the setting of (as always, coherent) DX -modules
equipped with a good (increasing) filtration F•. We call refer to
these as “filtered DX -modules”. Here is the key example:

Example

Let (L,∇,F •) be a variation of Hodge structure on X . Recall that
∇ is a flat connection on the vector bundle E := L⊗OX , giving it
a DX -module structure. Here F is a decreasing filtration on E , but

Fp := F−p

is increasing and good. The pair (E ,F•) is a filtered DX -module.



Every Hodge module will have an underlying filtered DX -module.
But in order for the category of Hodge modules to have the desired
properties from the introduction, we have to put conditions on the
possible filtrations F .

For example, in the setting of non-filtered DX -modules we verified
that

j∗M ′ ∼= j∗M =⇒ M ′ ∼= M

for M,M ′ strictly supported on Z and a nontrivial open embedding
j : U → Z . This fails, however, in the filtered case, as the following
example demonstrates.



Example

Let M = C[t] (as a C[t, ∂t ]-module) with the filtration

· · · = [0]0 = [t2C[t]]1 ⊂ [C[t]]2 = . . .

where [−]p designates Fp; this is a good filtration. But notice that
it induces the same filtration on M|t 6=0 as the good filtration

· · · = [0]0 = [C[t]]1 ⊂ [C[t]]2 = . . .
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Setting

I X is an affine (for simplicity) smooth complex variety.

I t : X → C is an algebraic function, such that D
i
↪−→ X , the

vanishing locus of t, is smooth.

I U
j
↪−→ X is the complement of D in X .

I (M,F ) is a coherent DX -module equipped with a good
(increasing) filtration F . We will always assume that M
admits a (rational) V -filtration.



Given (M,F ), define

I FpV
αM := FpM ∩ V αM

I FpV
>αM := FpM ∩ V>αM

I F pgrαVM := (FpV
αM)/(FpV

>αM)



Lemma C
The following are equivalent:

1. The inclusion
FpV

>0M ⊂ V>0M ∩ j∗j
∗F pM := {u ∈ V>0 : j∗(u) ∈ j∗FpM}

is an equality

2. For all α > 0, t : F pV αM → F pV α+1M is surjective.

Proof (1 implies 2): Using the hypothesis, it is enough to show the
surjectivity of

t : V αM ∩ j∗j
∗F pM → V α+1M ∩ j∗j

∗F pM

This in turn follows from the surjectivity of

t : V αM → V α+1M

(part of the definition of V -filtration) plus the invertibility of t on
U.



Lemma C
The following are equivalent:

1. The inclusion
FpV

>0M ⊂ V>0M ∩ j∗j
∗F pM := {u ∈ V>0 : j∗(u) ∈ j∗FpM}

is an equality

2. For all α > 0, t : F pV αM → F pV α+1M is surjective.

Proof (2 implies 1): Conversely, if for α > 0

m ∈ V>0 ∩ j∗j
∗F pM

then for some N > 0

tNm ∈ F pV>0M

We conclude by recalling that t : V>0M → V>0M is bijective.



Lemma D
Assume that ∂t : gr1VM → gr0VM is surjective. Then the following
are equivalent:

1. The inclusion FpM ⊃
∑

i≥0 ∂
i
t · Fp−iV>0M is an equality.

2. For all α ≤ 1,

∂t : F pgrαVM → F p+1grα−1V M

is surjective



Before stating the next lemma, recall from last time that if M is
supported inside D, then the V -filtration on M has a simple
description. Kashiwara’s equivalence gives us an isomorphism

φ : M
∼−→
⊕
n≤0

Mn = M0 ⊗ C[∂t ]

where Mn = ker(∂tt − n) = ∂−nt M0. It is worth noting that

M0 = ker(∂tt : M → M) = ker(t : M → M)

We have that
V αM = φ−1

( ⊕
n≥dαe

Mn
)

In particular V 0M = M0, and GrαVM 6= 0 only if α ∈ Z≤0.



Lemma E
Assume that (M,F ) is supported within D. Let
FpM = FpM ∩M0. The following are equivalent

1. FpM =
∑

i≥0 ∂t · Fp−iM0

2. ∂t : FpGrαVM → Fp+1Grα−1M is surjective (α < 1).

Proof: Let F ′pM :=
∑

i≥0 ∂t · Fp−iM0. We have that

F ′ = F ⇐⇒ F ′pGr−iV M = FpGr−iV M

for all i . By design, if i ∈ Z≥0 then F ′pGr−iV M = ∂i · Fp−iGr0VM. So

F ′ = F ⇐⇒ FpGr−iV M = ∂ i · Fp−iGr0VM

By induction on i one sees this is equivalent to condition 2.



Definition
We say that a filtered (coherent) DX -module (M,F ) has a
V -filtration along D = [f = 0] if for each p:

I Mf has a V -filtration along X0 = [t = 0]

I t : FpV
αMf → FpV

α+1Mf is surjective (α > 0)

I ∂t : FpGrαVMf → Fp+1Grα−1Mf is surjective (α > 1)

Definition
We say that a filtered (coherent) DX -module (M,F ) is regular and
quasiunipotent along D if (M,F ) has a V -filtration along D and
each

GrF•GrWi GrαVM

is coherent over GrF•DX0 . Here W is the monodromy filtration
induced by the nilpotent map

(∂tt − α) : GrαVM → GrαVM



As a consequence of lemmas C and D, we have the following:

Corollary

Let (M,F ) be regular and quasiunipotent along t. Assume in
addition that

I ∂t : gr1VMf → gr0VMf is surjective

I ∂t : FpGrαVMf → Fp+1Grα−1Mf is surjective (for each p)

Then
FpM =

∑
i≥0

∂ it · (V>0M ∩ j∗j
∗Fp−iM)



canf : ψf ,1M � φf ,1M : varf

Proposition

Assume that (M,F ) is regular and quasi-unipotent with respect to
all f : X → C. Then (M,F ) has a strict support decomposition iff
for all f ,

φf ,1M = ker(varf )⊕ im(canf )

Proof:
Suppose first that (M,F ) has a strict support decomposition.
Given a D = [f = 0], we want to show that

φf ,1M = gr0VMf = ker(varf )⊕ im(canf )

(as filtered modules).



Proof (cont.): We proceed much as in the nonfiltered case. We
reduce to the case where M has strict support Z .

I If D contains Z , then

gr1VMf = 0

implying that gr0VMf = ker(varf ) and im(canf ) = 0. The
filtrations obviously coincide.

I If D does not contain Z , we already know (ignoring
filtrations) that

gr0VMf = im(canf ) and ker(varf ) = 0

So we have a filtered iso if the RHS is given the “induced”
filtration. (Question: does this agree with the filtration
induced by gr0VMf ? We would need to know that each
induced map

∂t : Fp(gr1VM)→ Fp+1(gr0VM)

is surjective...)



Proof (cont.): For the converse, suppose that for all f ,

gr0VMf = ker(varf )⊕ im(canf )

compatibly with the filtrations induced by F . We know from last
time that

Mf = M ′ ⊕H0
X0
Mf

where M ′ has no sub- or quotient objects supported in X0

(equivalently, in ιf (D)). We need to see that the filtrations agree.

(The filtrations on the summands are the induced filtrations; it is
not automatic that this gives a filtered direct sum.)



As a start, we claim that

FpV
0Mf = FpV

0M ′ ⊕ FpV
0H0

X0
Mf

for all p. Given m ∈ FpV
0Mf , by uniqueness of V we have

m = m1 + m2 for some m1 ∈ V 0M and m2 ∈ V 0H0
X0
Mf . It is

enough to show that m2 ∈ FpV
0H0

X0
Mf . Because

Fpgr0VMf = Fpker(varf )⊕ Fp im(canf )

this follows from the fact that the isomorphism

ker(t : M → M)
∼−→ ker(t : gr0VM → gr1VM)

from last time is filtered. (We omit the straightforward proof of
this, which uses the assumption on t : FpV

αMf → FpV
α+1Mf .)



We have shown so far that

FpV
0Mf = FpV

0M ′ ⊕ FpV
0H0

X0
Mf

for all p. Using the discreteness of V , and the condition that

∂t : FpgrαVMf → Fp+1grα−1V Mf

is surjective for α < 1, we can deduce a similar decomposition for
all α < 0: if m ∈ FpV

αMf , then m = ∂tm
′ + m′′ for

m′ ∈ Fp−1V
α+1Mf and m′′ ∈ FpV

>αMf . By induction m′ and m′′

have the desired decomposition, giving one for m.



Theorem (Malgrange, Kashiwara)

Let M be a regular holonomic DX -module such that pψf (DR(M))
has quasi-unipotent monodromy. Then M has a (rational)
V -filtration along t.

Moreover, in this case each grαVM is a regular holonomic
DX0-module.



Now we want to compare the DX -module version of vanishing
cycles with the “previous” notion, on the perverse sheaf side.
Actually, it is nontrivial that the “previous” notion makes sense for
perverse sheaves:

Theorem (Gabber)

Let K • be a perverse sheaf. Then for any f : X → C, the following
complexes are perverse:

pψf (K •) := ψfK
•[−1]

pφf (K •) := φfK
•[−1]



There are morphisms

canf : pψf (K •)→ pφf (K •)

varf : pφf (K •)→ pφf (K •)(−1)

and a monodromy action

T : pψf (K •)→ pψf (K •)

Here for a perverse sheaf (with Q-coefficients) P we write

P(k) := P ⊗Q Q(k)

where Q(k) := (2π
√
−1)kQ ⊂ C. This is called the “k-th Tate

twist of P”.



Lemma
Let τ : M → M be a morphism in an F -linear abelian category, for
a field F . Assume that g(τ) = 0 for some nonzero g(T ) ∈ F [T ]. If

g = g1g2

for relatively prime g1,g2, then ker(g1(τ)) ↪−→ M is a direct
summand.

Proof: Application of the Chinese remainder theorem.



As a consequence, over C there are decompositions

pψf (K •) ∼=
⊕
λ∈C×

pψf ,λ(K •)

pφf (K •) ∼=
⊕
λ∈C×

pφf ,λ(K •)

where ψf ,λ and φf ,λ are the “generalized eigenspaces” of
eigenvalue λ.

Remark: If 0 < λ < 1 then

canf : pψf ,λ → pφf ,λ

is an isomorphism.



Theorem (Kashiwara, Malgrange, ...)

Let M be a regular holonomic DX -module. Denote
e(α) := exp(−2πiα). There are canonical isomorphisms

DR(grαVMf )
∼−→ pψf ,e(α)(DR(M)), for 0 < α ≤ 1

DR(grαVMf )
∼−→ pφf ,e(α)(DR(M)), for 0 ≤ α < 1

such that under these isomorphisms

DR(∂t : gr1VMf → gr0VMf ) = canf : pψf ,1 → pφf ,1

and

DR(t : gr0VMf → gr1VMf (−1)) = varf : pφf ,1 → pψf ,1(−1)

(We will comment on the “Tate twist” in the last line
momentarily.)



In particular,

DR(∂tt) = canf ◦ varf = N : pψf ,1 → pψf ,1(−1)

where

N =
log(T )

2π
√
−1

(here T is restriction of the monodromy operator to pψf ,1).



Definition
A regular holonomic DX -module with Q-structure is a tuple
(M,F ,P, θ) where (M,F ) is a filtered regular holonomic
DX -module, P is a perverse sheaf over Q on X , and

θ : P ⊗Q C ∼−→ DR(M)

is an isomorphism.

Tate twists: By definition the k-th Tate twist of (M,F•,P, θ) is

(M,F•−k ,P(k), (2π
√
−1)kθ)



Definition
Let M = (M,F ,P) be a regular holonomic DX -module with
Q-structure.

I ψfM := ⊕0<λ≤1(grαVMf ,F•−1grαVMf ,
pψf ,e(α)P)

I ψf ,1M := (gr1VMf ,F•−1gr1VMf ,
pψf ,1P)

I φf ,1M := (gr0VMf ,F•gr0VMf ,
pφf ,1P)

Remark: The shift F•−1 in the definition of ψf comes from the
fact that we “only” have

∂t : Fpgr1VMf → Fp+1gr0VMf

After making this shift, varf becomes a morphism

t : gr0VMf → gr1VMf (−1)



Theorem (Kashiwara, Malgrange, ...)

Let M be a regular holonomic DX -module. Denote
e(α) := exp(−2πiα) There are canonical isomorphisms

DR(grαVMf )
∼−→ pψf ,e(α)(DR(M)), for 0 < α ≤ 1

DR(grαVMf )
∼−→ pφf ,e(α)(DR(M)), for 0 ≤ α < 1
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Main steps of the proof of the Theorem:

1. Construct certain DX -modules Mα,p by “adjoining” elements
of the form tβ+j logk(t)/k! for j ∈ Z and 0 ≤ k ≤ p.

2. Construct a canonical isomorphism of DX -modules

grαVM
∼−→ colim−−−→

p

i∗Mα,p[−1] =: ψmod
t,e(α)M

(i∗ := D ◦ i† ◦ D)

3. Construct a canonical isomorphism of perverse sheaves

i−1DR(Mmod
α )

∼−→ pψf ,e(α)(DR(M))

(Mmod
t,α = colim−−−→

p

Mα,p)



On Step 1:

Fix a α ∈ Q. Let Nα,p be the DA1-module generated by
expressions of the form

eα,k :=

{
t−αlogk (t)

k! , if 0 ≤ k ≤ p

0, otherwise

where t, ∂t act in the way you’d expect. Then

∂tt · ej ,k =
1

k!
[(−α + 1)t−αlogk(t) + kt−αlogk−1(t)]

=(−α + 1)eα,k + eα,k−1

implying that each eα,k is annihilated by a power of ∂tt + α− 1.

Let
Nα = colim−−−→

p

Nα,p



On Step 1:

We view Nα,p as a DA1-module (where A1 has coordinate t). For a
DX -module M, and a function t : X → A1 let

Mα,p = M[t−1]⊗t−1(OA1 )
t−1(Nα,p)

Here, we abuse notation by identifying the function t : X → A1

with the coordinate t on A1. The DX -module structure on Mα,p is
specified as follows: given a derivation Θ,

Θ(m ⊗ s) = Θ(m)⊗ s + m ⊗ Θ̃(s)

where Θ̃ is the image of Θ under the canonical map

TX → t∗TA1



On Step 1:

Notice that we then have the following key formula:

∂tt(m ⊗ eα,k) = (∂ttm)⊗ eα,k + m ⊗ (∂tt · eα,k)

= (∂tt − α + 1)m ⊗ eα,k + m ⊗ eα,k−1

Mα,p has the following V -filtration:

V βMα,p =
⊕

0≤k≤p
V β+α−1(M[t−1])⊗ eα,k

Let
Mmod

t,α = colim−−−→
p

Mα,p



On Step 2:

Define a map V αM → V 1Mα,p

m 7→
∑

0≤k≤p
[−(∂tt − α)]km ⊗ eα,k

To see why this is plausible, suppose that (∂tt − α)2 ·m = 0.
Then, using the key formula,

(∂tt − 1)(m ⊗ eα,0 − (∂tt − α)m ⊗ eα,1)

= (∂tt −α)m⊗ eα,0 − (∂tt −α)2m⊗ eα,1 − (∂tt −α)m⊗ eα,0 = 0

This map induces a map

ρp : grαVM → gr1VMα,p



On Step 2:

Lemma
For N admitting a V -filtration, there is an isomorphism

i∗N
∼−→ [0→ gr1VN

∂t−→ gr0VN → 0]

where gr0VN is in degree 0.

Remark: Proving this lemma requires an understanding of how V
and grαV interact with duality. Modulo that, it is equivalent to the
claim that

i†N
∼−→ [0→ gr0VN

t−→ gr1VN → 0]

half of which was proved last time.



On Step 2:

In view of this lemma, we can regard ρp : grαVM → gr1VMα,p as a
morphism

ρp : grαVM −→ i∗(Mα,p)[−1]

Claim: For p sufficiently large, ρp is a quasi-isomorphism.

There are two parts to this claim:

1. grαVM
∼= H0(i∗(Mα,p)[−1]) (p >> 0)

2. H1(i∗(Mα,p)[−1]) = 0 (p >> 0)

We will prove the first part and omit proof of the second part.



We have that

H0(i∗(Mα,p)[−1]) = ker(∂t : gr1VMα,p → gr0VMα,p)

= ker(t∂t : gr1VMα,p → gr1VMα,p)

The key formula tells us that

t∂t(m ⊗ eα,k) = (∂tt − α)m ⊗ eα,k + m ⊗ eα,k−1

Therefore
∑p

k=0mk ⊗ eα,k ∈ ker(t∂t) iff (for 0 ≤ k ≤ p − 1)

(t∂t − α)mk + mk+1 = 0 and (t∂t − α)mp = 0

iff (for 0 ≤ k ≤ p)

mk = [−(t∂t − α)]km0 and (∂tt − α)pm0 = 0

So for p such that (∂tt − α)p acts by zero on grαVM, ρp induces
the desired isomorphism.



On Step 3:

Step 3 generalizes a result from SGA 7, discussed two weeks ago.
We recall the setup:

X0
i //

id
��

X

p

��

X
∗

p′

��

j

oo

X0
i // X X ∗

j
oo

For a coherent sheaf F on X , whose restriction F∗ to X ∗ is locally
free, let F denote its restriction to X

∗
. Define

ψmqu
η (F) ↪−→ i

−1
j∗F

to be the subsheaf generated by images of sections of F of
“moderate growth and quasi-unipotent finite determination”.



On Step 3:

Rather than define this condition, we remark that any such section
f of F can be written as a (finite) sum

f =
∑
α,k

(p′)−1(fα,k)tαlogk(t)

where fα,k is a section of F∗, k ≥ 0, α ∈ Q, and −1 ≤ α < 0. In
fact, this decomposition is unique, and we have an isomorphism

ψmqu
η (F) ∼=

⊕
0<α≤1

i−1
(
j∗j
∗F ⊗t−1(OA1 )

t−1(Nα)
)



On Step 3:

In particular:

ψmqu
η (Ω•X ) ∼=i−1

⊕
0<α≤1

j∗Ω
•
X∗ ⊗t−1(OA1 )

t−1(Nα)

∼=i−1
⊕

0<α≤1
(Ω•X ⊗OX

OX [t−1])⊗t−1(OA1 )
t−1(Nα)

∼=i−1
⊕

0<α≤1
Ω•X ⊗OX

(OX [t−1]⊗t−1(OA1 )
t−1(Nα))

∼=i−1
⊕

0<α≤1
DR((OX )mod

α )



On Step 3:

Deligne’s result from SGA 7, II, Exp XIV, section 4, gave an
isomorphism

ψmqu
η (Ω•X∗)

∼−→ pψ(DR(OX ))

One shows that (for general M) there is a natural isomorphism

i−1DR(Mmod
t,α )

∼−→ DR(ψmod
t,e(α)M)

Combining this with the above remarks, we get isomorphisms

i−1DR((OX )mod
α )

∼−→ pψe(α)(DR(OX ))

as claimed in step 3. Deligne actually handles the more general
case of a vector bundle, and the general (regular holonomic) case
can be reduced to this one by devissage.


