SOME APPLICATIONS OF POSITIVE
CHARACTERISTIC TECHNIQUES TO VANISHING
THEOREMS

DONU ARAPURA

To Joe Lipman

These are notes to my talk at Lipman’s birthday conference. Some

details have appeared in [A1, A2]. The rest hopefully will someday.

1. DIFFERENTIAL FORMS

Let X be a smooth complete variety over C. Then
as a consequence of Hodge theory + GAGA:

H'(X™.C) = H'(X,0%) =~ @ H'(X,0%)
a+b=1
If X is complete but singular, then both these iso-

morphisms will usually fa:l for the complex of Kahler
differentials. However:

Theorem 1 (Du Bois). There exists well defined
objects Q5 € ObD(X) = ObD"Coh(X) such that

Q?(—Sing = Q@(—Sing
and
H'(X™ C)= @ H'(X, Q%)
a+b=1t
(Furthermore, the dimensions of the summands
on the right coincide with Deligne’s mized Hodge
numbers. )
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Rough idea of construction: Using resolution of sin-
gularities, we can construct a simplicial diagram of
smooth projective varieties

— iy
R 7R it

with the same cohomology as X i.e. the map 7,
satisfies cohomological descent. Given a sheaf F', the
direct images R, 7" F' fit into a “double complex”,
the descent condition is that F'is quasi-isomorphic to
the total complex Tot(Rm;. 7} F') for every F. Then
QF is defined as T'ot(Rm, £y, ).

[l C

Note that mixed Hodge structures are constructed
in a similar way. So compatibility is not surprising.
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If Z C X is closed, we get a restriction map Q% —
Q',. We can complete this to a distinguished triangle

Q&,Z — Qg( — Q% — Q@(,Z[l]

2. FROBENIUS AMPLITUDE

Let X be a complete variety defined over a field k.
Let Z C X beclosed, and E = E* € ObD(X). The
Frobenius or F-amplitude ¢(F) is an integer which
measures positivity of the complex in an inverse sense
(smaller is better).

Then ¢ has the following properties:

(1) If E is a coherent sheaf in degree 0,
0<¢(F) <dimX

@) 1 6(E}]) = 6(E) — i
(3) If E fits into a distinguished triangle
EF' — E — E"— E'[1]
then §(E) < maz(6(E"), 6(E"))

(4) If E’ has a finite resolution by locally free sheaves,
then §(E' © E") < (') + ¢(E").
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(5) If f:Y — X is morphism, then
o(fE) < ¢(F) 4+ max dim f_l(x)

(6) If f:Y — X is etale, then ¢(f.E) = ¢(F).

(7) If char k = 0 and F is an ample vector bundle,
o(F) < rank(FE)

More generally, it E' is d-ample in Sommese’s
sense, then ¢(F) < d + rank(FE).

(8) When k = C and E a vector bundle, ¢(FE) can
be estimated in terms of curvature or convez-
ity. Specifically, if E is ¢ + 1-convex, and in
particular admits a Hermitean metric such that
form ©(¢, &, —, —), on T}, has at most ¢ non-
positive eigenvalues for all ¢ # 0 and all x € X,
then

O(FE) < rank(E) + q.
Here
OCcCE QE @T:aTx)
is the curvature tensor.

(9) If {&} is a flat family of vector bundles, then
¢(Ey) is upper semicontinuous.
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Items (4), (7), (8) and (9) are really theorems. I
consider these deeper than the main theorem given
below. The remaining properties are elementary con-
sequences of the definition (given later).

3. THE VANISHING THEOREM

MAIN THEOREM

Let X be a complete variety over a field of

characteristic 0 with a closed subset Z.

Then for any complex E € ObD(X),
H"(X, Q%(,Z ®FE)=0

for a +b > dim X + ¢(F).

When combined with the previous estimates, these
yield a number of specific vanishing theorems, includ-
ing previously known results:

(1) If E is an ample line bundle, Z = () and X
smooth, then this is the Akizuki-Kodaira-Nakano
vanishing theorem.

(2) For E as above, Z = () but X general, this due
Navarro Aznar et. al.

(3) For an ample vector bundle F, Z = () and X
smooth this due to Le Potier.
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(4) For a d-ample vector bundle F, Z = () and X
smooth this due to Sommese.

(5) For E an ample line bundle, b = dim X, Z a
divisor normal crossings, this is a special case
of Kawamata-Viehweg. (The full version needs
a modification of ¢...)



4. DEFINITION OF F-AMPLITUDE

I will start with the definition in positive charac-
teristic, where it is most natural.

Let k be a field of characteristic p > 0. If X =
Spec R is an affine scheme over k, the (absolute)
Frobenius F' : X — X is induced by the pth power
map r — r” on R.

In general, given a scheme X over k, F': X — X
is the identity on the underlying space, and the pth
power map on Ox. If E is a locally free sheaf on X,
let

EY) = F*E.
If E given by a cocycle g;; € GL.(Ox(Uy;)), EW is
given by the cocycle gfj. It follows that EW) = E®P if
E is line bundle. This operation extends the derived
category in the obvious way:

EP = LF*E
Let E®") be the Nth iterate of this operation.

Then ¢(F) is the smallest integer such

that for every locally free sheaf F,
HI(X,E") @ F) =0

for i > ¢(F) and N > 0
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Now suppose char k = 0. The definition is given
by specialization. Given a variety X over k£ and a
bounded complex E*® of coherent sheaves, we can
find a finitely generated subalgebra A C k., and a
scheme X — Spec A with a complex £° such that

X — X
l l
Spec A «— Speck

is cartesian, and E* = £°|x. The closed fibers of X
are schemes over finite fields, thus X forms a bridge
between the worlds of characteristic 0 and p. Then
we define

¢(F) is the smallest integer such that
?(Elx,) < ¢(E) for almost all closed

points g € Spec A.

This is independent of (X, &), so this notion is well
defined.



5. BOOTSTRAPPING LEMMA

Theorem 2 (Deligne-1llusie). Suppose that X is
a smooth projective variety over a perfect field k
of characteristic p > 0. If dim X < p and X lifts
modulo p* (i.e to W(k)/(p?)), then

R0y = Doy -
holds in D(X).

As a corollary, we obtain the following bootstrap-
ping lemma:

Lemma 1.
Xy @E) < Y (X, © EV)
a+b=n a+b=n

As usual, we write A = dim H’.
Proof. The expression
> (X, @ EW)
a+b=n
is the dimension of

P H"(Q © B)
which is isomorphic

This last group is the abutment of a spectral se-
quence with

B’ = H'(F.O% ® B) = H'(Q% @ EV),
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and this yields the above inequality. [

With a little bit of work, the bootstrapping lemma
can be extended to the singular case:

Lemma 2. If X is a complete variety with a finite
(strict) simplicial resolution Y, — X such that
the whole diagram lifts mod p* and dimY, < p,
then

> WX Q@B < Y WX, Q%@ EY)

a+b=n a+b=n

The vanishing theorem can easily be deduced from
this and specialization.

6. ESTIMATES ON F-AMPLITUDE

I want to say some words about proofs of the in-

equalities listed earlier in section 2.

Let V' be a finite vector dimensional vector de-
fined over a field k. When char k = 0, the Schur
functors SNV, as A varies over all partitions of
r = dim V', give the positive irreducible representa-
tions of GL(V'). The Schur functors can be defined
(with care) even when char k = p > 0, but they need
no longer be irreducible. In particular, the symmet-

ric power SP(V) = S®0-)(V) contains a submodule

V) consisting of pth powers of elements of V. This
inclusion can be extended to a G'L(V')-equivariant
resolution

0— VP 5 57 (V) - ety —  gnb-b(y) -0
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by work of Carter-Lusztig. This extends automati-
cally to locally free sheaves. Thus vanishing state-
ments for Schur powers lead to vanishing statements
for Frobenius powers, and this is one of the key in-
gredient in the proof of inequalities (7) and (8).

There is another ingredient needed above, and also
for (9). The fact that F-amplitude involves an infi-
nite number of conditions creates technical problems
for specialization arguments. We define the level
A = \E) of the E on PV to be the smallest integer
such that

H"YE(-1)=H"*E(-2)=...=0

A is upper semicontinuous in flat families. Notice
that A = 0 iff the Castelnuovo-Mumford regularity
is 0. We clearly have

MEY) < ¢(E)
for all n >> 0. In the opposite direction, we have

Theorem 3. If X C PV is embedded by a suffi-
ciently high (in a precise sense) power of a very
ample line bundle then

6(E) < A E(dim X))

(9) follows easily from these inequalities.
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7. NOTES

se were added in response to questions during and after the talk.

In which derived category does E live? I'm still trying to sort
this out. The safest answer for now is to take £ in the bounded
derived category of vector bundles (which is an exact category,
so this makes sense [BBD]. These are perfect complexes in a
strong sense.)

How do Du Bois’ [D] and Hartshorne’s [H2] procedures com-
pare? Du Bois gives a bit more than I stated. In fact, there is
a filtered complex which computes the cohomology H* (X", C)
which is unique in some filtered derived category. I merely de-
scribed the associated graded. Hartshorne’s procedure of em-
bedding X C Y in something smooth and completing along X
also yields H'(Q$) & H' (X, C), but one can’t get the Hodge
filtration this way. To put it another way, the complexes of Du
Bois and Hartshorne are not filtered quasi-isomorphic.

How does this relate to p-ampleness? For a vector bundle
in char p, ¢(E) = 0 implies p-ampleness [H1], but not con-
versely. Some people (perhaps starting with Hartshorne though
he doesn’t remember) call the stronger condition “cohomologi-
cal p-ampleness”.

Is ¢(&|x,) essentially constant in the specialization? This would
great, but I have no idea how ¢(€|x,) behaves as ¢ varies.

Is there a good bound for ¢(S*(E))? T hope so. This one of the
things I've been thinking about.
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