TRIANGULATED CATEGORIES AND ¢(-STRUCTURES

DONU ARAPURA

Perverse sheaves are objects in a derived category. So it will be necessary to do
a certain amount of category theory just to understand the precise definition. I
will review the standard construction of the derived category D°(A) of an abelian
category A in the first part. Then I will explain how to reverse the process. This
stuff seems to give a counterexample to the popular claim that category theory has
no content.

1. TRIANGULATED CATEGORIES

Recall that an abelian category A is an additive category such that morphisms
have kernels and cokernels satisfying the expected properties. A very succinct way
of expressing this is that for any morphism f : A — B, coker(ker(f) — B) (called
the coimage) is isomorphic to the image ker(B — coker(f)) under the canonical
map’. A typical example is the category of (sheaves of) modules. We can form a
new abelian category C*(A) which is the category of bounded below complexes in
A. We also have a subcategory of cohomologically bounded complexes C?(A). Let
Kb(A) (K*(A)) be the associated homotopy category: the objects are the same,
but the morphisms are homotopy classes of chain maps. This is no longer abelian
because kernels etc. are no longer well defined. Fortunately, there is a partial
substitute for short exact sequences. Given a morphism f : A — B of complexes,
the mapping cone

cone(f)" = A" @ B", d(a,b) = (—da, db + f(a))

fits into a diagram
A — B — cone(f) — A[l]

or more suggestively

A ! B

~

cone(f)

called distinguished triangle. cone(f) plays a role which is combination of kernel
and cokernel. However, unlike these earlier constructions, it is homotopy invariant:
if f, g are homotopic then cone(f) 2 cone(g). The set of (diagrams isomorphic to)
distinguished triangles enjoy the following properties T1-T4, whose proofs range
from obvious to challenging. I'll state them a bit imprecisely.

T1 Every morphism embeds into a distinguished triangle. For the identity, the
third vertex is 0.
T2 The set of distinguished triangles is stable under rotation and translation.

Date: September 9, 2010.
LThis definition occurs in Grothendieck, Sur quelques points...
1



2 DONU ARAPURA

T3 Any pair of compatible maps between two vertices of two distinguished

A B C
\
.
v
A B’ c’

can be extended to a map of distinguished triangles in the obvious sense.

This list is already sufficient for many arguments. But there is one more some-
what technical property called the octahedral axiom because of the way it’s some-
times depicted. The previous axioms implies that the third vertex of a triangle
extending f : X — Y is determined up to noncanonical?® isomorphism. It will be
convenient to denote this by Y/X below.

T4 Given distinguished triangles
A— B— B/A—

B—-C—C/B—

arranged in the upper cap of an octahedral diagram

C/B\\ /c
e \A

B/A

PN NG U e )

(the nondistinguished triangles commute), we can complete this to an oc-
tahedral diagram with lower cap

with
A—-C—C/A—
B/A—-C/A—C/B—

distinguished. The last triangle, whose existence is the real point, can be
expressed more suggestively as

(C/A)/(B/A) = C/B

2The noncanonicity is the source of some headaches and occasional errors
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This can be abstracted as follows. A triangulated category is an additive category
equipped with a endofunctor A — A[l] called translation, and a set of diagrams,
called distinguished triangles, satisfying T1-T4. Aside from homotopy categories,
there is one more important class of examples of triangulated categories (for us
— there are plenty of others). A map f : A — B of complexes is called a quasi-

~

isomorphism if it induces an isomorphism on all the cohomology “groups” H%(A) =
HY(B).

Theorem 1.1 (Verdier). Given an abelian category A, there exists a triangu-
lated category D°(A) (resp. D*(A)) and functor K°(A) — Db(A) (K*(A) —
DT (A)) which takes distinguished triangles to distinguished triangles, and quasi-
isomorphisms to isomorphisms. It is the universal such category.

In outline, the objects of D*(A) or D?(A) are still complexes, but the morphisms
from A — B are now equivalence classes of diagrams

A& C— B

where the first arrow is a quasi-isomorphism. Another diagram, given as the AC'B
path below, is equivalent if it embeds into a commutative diagram

C/

When A has enough injectives, DV (A) can also be identified with the homotopy
category of complexes of injective objects. It follows that the Hom'’s in this category
have the following interpretation.

Lemma 1.2. Given A,B € A,
fIO’I’I”LDJr(A)(A7 B[n]) & Exzt"(A, B)

To give illustration of what we can do with this stuff, we can deduce the long
exact sequence for Ext’s using only these axioms.. An additive functor F' from a
triangulated category to an abelian category is cohomological if for any triangle

A—-B—-C—
there is a long exact sequence
. F™(A)...F"(B) = F™*(C) — F""(A)...

where F"(A) = F(A[n]). For example, H(A) = H°(A) is a cohomological functor
from DV (A) — A.

Lemma 1.3. If X is object in a triangulated category, Hom(X, —) is cohomological.
Hom(—, X) is cohomological on the opposite category (which is also triangulated).

Sketch. Suppose that
ALhBooo
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is a triangle. Since triangles are stable under rotation and translation (T2), it is
enough to check exactness of

Hom(X,A) - Hom(X,B) - Hom(X,C)
Let g be in the first group. By T1 and T3, we have commutative diagram

X2 x— >0
|
|
\

ig lfog
At-p— ¢

So g maps to 0 in Hom(X,C). Suppose h € Hom(X, B) maps to 0 in Hom(X, C),
then from the axioms we can find an arrow m as depicted below

X2 x— >0

|

| m lh i
voor
A——B——C

The dual result is similar. O

Suppose that F' : A — B is a right exact functor between abelian categories
such that A has enough injectives. By identifying D*(A) with homotopy category
of injectives, we get a well defined extension of F' to a triangulated functor RF :
D*(A) — DT (B) by RF(I*) = F(I*). This is called the right derived functor.
There is a dual notion of left derived functor for things like ®, f*. This is a bit
awkward as the domain is naturally D~ or the unbounded derived category rather
than D*. Fortunately, we won’t have to worry about this, since we will be working
over a field where modules are automatically flat. So the naive extension will work
fine.

2. t-STRUCTURES

Given D = D(A), where A is abelian, set D=" = DZ"(A) (resp. D<" =
D="(A)) to be full subcategory of complexes such that H?(A) = 0 unless i > n
(resp. i < m). This is the prototype of a t-structure. Then

TS1 If A€ D=V and B € D=!, Hom(A, B) = 0.
TS2 D= c D=! and D=° > D=1
TS3 For any A € D, there is a distinguished triangle

X—-A—-Y —
with X € D=0 and Y € D=1,

To verify TS3, we use the truncation functors
X:TSOA:..JF1 —kerd® —0...
Y =114A=A/7<
For TS1, using triangles such as
<1 — A— H°(A) —

HY(B) - B — 7528 —
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plus induction, we can assume that A and B are sheaves F' and G translated to
degree < 0 and > 1 respectively. Then

Hom(A, B) = Ext'(F,G) =0

since ¢ will be negative.

A t-structure on a triangulated category D is a pair (D<°, D=%) satisfying TSI,
TS2, TS3, where D=" = D<Y[—n] and D=" = D=°—n]. Although, we have
only one example so far, we will shortly see that there are (non-obvious) perverse
t-structures.

Proposition 2.1. For any t-structure, the inclusion D" — D (resp DZ" — D)
admits a right (resp. left) adjoint T<,, (resp. T>yn). Any object fits into a canonical
distinguished triangle

TS()A—> A— TZlA—>

Proof. In outline, for each A € D choose a triangle as in TS3. Define 7<p4 = X.
Observe that by TS1 and TS2

(1) Hom(X', A) =2 Hom(X',7<0A)

for X’ € D=0. Thus given A’ — A, we get an induced morphism 7<gA’ — T<oA4,
so this is a functor. Equation (1) shows this is the right adjoint to inclusion. The
remaining cases are similar. O

Proposition 2.2. Suppose that a < b. Then T<qT<p = T<q, T>pT>q = T>p, and
T>aT<b = T<bT>a-

Proof. The first two isomorphisms are routine, so we prove only the last. The map
T<pX — T>¢X, given as the composition 7<; X — X — 7>,X, factors through
ToaT<pX. As 75,7, X € D=b| we see that 75,7<4X — 75,X factors through
T<pT>qX. We have to show that this is an isomorphism.

Let Y fit into a distinguished triangle

(2) TeaX = T<pX =Y —
we can use this along with
TSbX — X —>T>bX —

to generate
TeaX = X = 75X =
and
(3) Y = 50X = 7 X —
by T4. Since 7« X = T«q7<pX, (2) implies that ¥ = 75,7<;X. And since 75, X =

T>pT>aX, we can conclude from (3) that ¥V =2 7«75, X. O

The heart (“le coeur” in the original) of the t-structure is D=0 N D=%. For the
standard t-structure on D®(A), we can identify the heart with A itself. Remarkably,
the axioms lead to a similar structure in general.

Theorem 2.3 (Beilinson, Bernstein, Deligne). The heart is abelian. H® = 7<T>¢
18 a cohomological functor from D to the heart.
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Proof. We prove the first statement that the heart 4 = D<% N D20 is abelian. If
f:+ A — Bisamorphism in A, we need to construct a kernel and cokernel. Extend
this to a distinguished triangle
A—-B—S5—
Then using
B—S— Al —
we can see that S € D0 N D271 It follows that C' = 75¢S and K = (1<_15)[1]
are in A. We have a natural map B = 7<oB — C which we claim is the cokernel
of f. To see this obverse that for any X € A we have an exact sequence
Hom(A[-1],X) — Hom(S,X) - Hom(B,X) - Hom(A, X)
Hom(A[-1,X)=0
by the axioms. Also
Hom/(S, X) = Hom(1>0S5,X)
Thus
0 — Hom(C,X) — Hom(B,X) — Hom(A, X)
is exact, and this proves the that C is the cokernel. The proof that K — A, induced
from S[—1] — A, is the kernel of f is similar.

The final step is to show that the image im(f) = ker(B — C) is isomorphic to
the coimage coim(f) = coker(K — A). Using T4, we can use

sy

n

N
SN

5 <~~~ Q)

—_

b

to build

~—B

Using the upper triangle in the second diagram, we see that I = im(f). The bottom

triangle shows that I 2 coim(f). O

Remark 2.4. This does not say that D is the derived category of its heart. This
not always true.
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