
AN OVERVIEW OF POLARIZED HODGE MODULES

DONU ARAPURA

Abstract:We will cover the definition of polarized Hodge modules, and summarize
their basic properties. In order to simplify the presentation, we work exclusively with
left modules on a nonsingular variety.

1. Preliminaries

Let X be a complex manifold. The basic example of a Hodge module is provided
by a variation of Hodge structure [Sc], which consists of a local system L on X
defined over a subring of R, and a filtration F • ⊂ V = OX ⊗ L satisfying Griffiths
transversality such that the fibres (Lx, F

•
x ⊂ C ⊗ Lx) are pure Hodge structures.

We have an integrable connection on ∇ on V such that ker∇ ∼= C⊗L. V can thus
be regarded as a holonomic D-module1 via ∂xiv = ∇∂xi

v. Griffiths transversality
ensures that F defines a filtration on the D-module V . This is in fact a good
filtration, since F p is a coherent over OX . With an eye toward the generalization
to Hodge modules, we will find it useful to replace the local system L, by the
perverse sheaf L[dimX]. The deeper aspects of the theory require the existence of
a polarization, which is flat pairing on L which polarizes the Hodge structures on
the fibres in the usual sense. (We will review polarizations in more detail, later on.)

In general, Hodge modules have “singularities”. It will be convenient to have a
basic prototype. Suppose that X = ∆∗ is a punctured disk with coordinate t and
inclusion j : ∆∗ → ∆ into a disk. Suppose that L is the local system underlying a
variation of Hodge structure on ∆∗. The vector bundle V = O∆∗ ⊗ L is equipped
with a connection ∇ such that ker∇ ∼= C ⊗ L. V has several extensions to vector
bundles over ∆ such that ∇ extends to a logarithmic connection. Let V α ⊂ j∗V
(respectively V >α) be the unique extension where the residues have eigenvalues in
[α, α + 1) (respectively (α, α + 1]). Then V >α ⊆ V α ⊆ V β when α ≥ β. We let

Ṽ =
⋃
V α. Then Ṽ is a D-module and V α is essentially the Malgrange-Kashiwara

filtration. In particular, GrαV = V α/V >α is a generalized eigenspace of t∂t with

eigenvalue α. Under Riemann-Hilbert, Ṽ corresponds to the perverse sheaf Rj∗L[1].
Our real interest is the intersection cohomology complex or intermediate extension
j!∗L[1] = j∗L[1]. This corresponds to the sub D-module of Ṽmin ⊆ Ṽ generated by
V >−1. We filter this by

(1) F pṼmin =
∑
i≥0

∂it(j∗F
p+i ∩ V >−1)

We record the following observation, which will basically tell us that (Ṽmin, F, j!∗L[1])
is a Hodge module.
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Notes for Hodge module workshop.
1By default, D-module will mean left module. Regarding D-modules in general, I will follow

the conventions and notation of [MS, S] to maintain consistency with Claude Sabbah’s lecture.
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Lemma 1.1. When L is polarizable,

(a) each F pṼmin is coherent over O∆, and ∂tF
pṼmin ⊆ F p−1Ṽmin.

(b) if b > −1, tF pṼ bmin = F pṼ b+1
min .

(c) if b < 0, ∂tF
pGrbṼmin = F p−1Grb−1Ṽmin.

Proof. The second formula of (a) is a consequence of Griffiths transversality and
(1). The remaining properties can be deduced from the work of Schmid [Sc]. �

In general, a (rational) Hodge module consists of a perverse sheaf L ∈ Perv(QX)
over X with coefficients in Q, and a holonomic DX -module M equipped with a
good filtration F and an isomorphism α : pDR(L) ∼= C ⊗ L which is sometimes
suppressed. ( pDR(M) denotes the de Rham complex, shifted so that the result
is a perverse sheaf.) Let MFh(DX ,Q) denote the category of such quadruples
(M,F,L, α). Of course, the category MFh(DX) is much too big for the purposes
of Hodge theory, but it will contain the category of Hodge modules as a full sub-
category. We have already described two classes of examples, variations of Hodge
structures, and the last example (Ṽmin, F, j!∗L[1]). We note that the category
MFh(DX ,Q) is additive, with kernels and images, although not abelian. The sub-
category of Hodge modules will turn out to be abelian, however.

The subcategory of pure Hodge modules is defined by induction. The key induc-
tive axiom is stability under vanishing cycle functors. We recall the basic set up.
Given a perverse sheaf L and a holomorphic map f : X → C, set pψfL = RψfL[−1]
and pφfL = RΦfL[−1], where the objects on the right are the usual nearby and
vanishing cycle sheaves of Deligne [D2]. It is known that pψfL and pφfL are per-
verse [BBD]. The generator T ∈ π1(C∗) acts on these sheaves. In the cases of
interest here, we can assume that T acts quasi-unipotently, i.e. that its eigenvalues
are roots of unity. We have maps can : pψfL → pφfL and V ar : pφfL → pψfL
whose composition, in either order, is the logarithm2 N of the unipotent part of T
[S1].

On the D-module side, things are more involved. A holonomic D-module M is
known to be specializable. In particular, this means that the direct image M̃ = i+M

carries a Malgrange-Kashiwara filtration V •M̃ , where i : X → X×C is the inclusion
of the graph of f and V •M̃ is a decreasing filtration such that t∂t−α acts nilpotently
on GrαV M̃ = V αM̃/ ∪ε>0 V

α+εM̃ . The quasi-unipotency assumption for pDR(M)
implies that we can assume that V •M is indexed by Q. When M is also regular,
the associated graded GrbV M̃ corresponds to the λ = exp(−2πib)-th eigensheaf

ψλf (pDR(M)), when −1 < b ≤ 0, and Gr−1
V M̃ to pφ1

f (pDR(M)) [S1, 3.4.12]

We extend the nearby and unipotent vanishing cycle functors to MF (DX ,Q) as
follows:

ψf (M,F,L) := (
⊕
−1<b≤0

GrbV M̃, F, pψfL)

φ1
f (M,F,L) := (Gr−1

V M̃, F •+1, pφfL)

We have maps can and V ar induced on the D-module components by −∂t and t re-
spectively. We need to impose further conditions on F to get reasonable behaviour.
The conditions are essentially the same as those given in lemma 1.1. Given a holo-
nomic D-module with good filtration (M,F ), we say that it is strictly specializable
with respect to f if the following conditions hold:

2The logarithm should be normalized by 1
2πi

, but we will ignore this for simplicity.
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(a) if b > −1, tF pV bM̃ = F pV b+1M̃ , where (M̃, F ) = i+(M,F ).

(b) if b < 0, ∂tF
pGrbV M̃ = F p−1Grb−1

V M̃ .

It is called regular with respect to f if in addition

(c) F induces a good filtration on the GrV M̃ , i.e. Gr∗FG
∗
V M̃ is coherent over

Gr∗FDi(X).

Some explanation for the utility of these conditions is provided by the following
two propositions.

Proposition 1.2. If (M,F ) is strictly specializable with respect to f and M̃ is

generated by V >−1M̃ , then F is determined by the restriction of (M,F ) to U =
X − f−1(0).

Proof. See [S1, prop 3.2.2]. We remark that the formula for F on M in terms of
(M,F )|U is essentially the same as (1). �

At the end of the day, at least in the polarizable setting, we want to be able to
break up our objects into a sum of simple objects, where the underlying perverse
sheaves are intersection cohomology complexes. The following proposition will be
a key step.

Proposition 1.3 ([S1, 5.1.4]). IfM∈MFh(DX ,Q) is regular and quasi-unipotent
with respect to f , then the following are equivalent:

(a) φ1
f (M) ∼= ker(V ar)⊕ im(can)

(b) M∼=M1 ⊕M2, where suppM2 ⊆ f−1(0) and M1 has no sub or quotient
object supported on f−1(0).

Corollary 1.4. If the conditions of the proposition hold for M with respect to
every locally defined function f , then M admits a strict support decomposition
which means that

M =
⊕

Z⊂X closed analytic

MZ

where all subquotients of MZ have support equal to Z.

2. Hodge Modules

We are now ready to start defining the full subcategory

MH(X,n) = MH(X,Q, n) ⊂MFh(DX ,Q)

of pure Hodge modules of weight n. It will be the largest subcategory satisfying
axioms (MH1)-(MH3) below.

(MH1) An object MH(X,n) must be regular and quasi-unipotent and satisfy the
conditions of proposition 1.3.

Thus objects admit strict support decompositions. The remainder of the defini-
tion proceeds by induction on the dimension of support. The base case is handled
by:

(MH2) An object (M,F,L) with zero dimensional support lies in MH(X,n) if and
only if it is the direct image of a Hodge structure of weight n.
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The rough idea of the inductive axiom is to impose stability under nearby and
vanishing functors. However, these constructions usually produce mixed objects,
so we need to first take the associated graded with respect to a suitable filtration.
This is already evident in the simplest case when L comes from a weight r unipotent
polarized variation of Hodge structure on the punctured disk ∆∗. The filtration
F induces one on ψ = RψtL ⊗ C, which we can view as just a vector space. This
becomes a mixed Hodge structure, called the limit mixed Hodge structure [Sc],
when we combine this with the monodromy filtration W shifted by r. This is the
unique increasing filtration rational filtration such that

(2) NWiψ ⊂Wi−2ψ, N j : GrWr+jψ
∼→ GrWr−jψ

In general, given an object (M,F,L) ∈MFh(DX ,Q) on f : X → C, and an integer
n which will play the role of weight, let W be the monodromy filtration on pψfL,
in the category of perverse sheaves, with respect to the nilpotent endomorphism N
shifted by r = n− 1. We can define a D-module filtration W on ψfM := ⊕GrbV M̃
which corresponds to W⊗C above under Riemann-Hilbert. The filtration F induces
one on the associated graded GrW (ψfM), resulting in an object

GrWi ψf (M,F,L) ∈MFh(DX ,Q)

Similarly, we have an object

GrWi φ
1
f (M,F,L) ∈MFh(DX ,Q)

where W now denotes the monodromy filtration on pφ1
fL shifted by n. The final

axiom is:

(MH3) Given (M,F,L) ∈ MH(X,n) and any holomorphic function f defined on
an open subset U ,

GrWi ψf (M,F,L), GrWi φ
1
f (M,F,L) ∈MH(U, i)

These axioms are strong enough to establish:

Theorem 2.1 ([S1, 5.1.14]). MH(X,n) is abelian, and morphisms strictly preserve
F .

This is proved by induction. In order to describe the idea a bit more precisely,
we introduce the auxiliary categories. Let MHZ(X,n) ⊂ MH(X,n) be the full
subcategory of objects with strict support Z, which means that all subquotients
of the objects have Z as its support. Let MHW (X,n) be the category of filtered
objects of (M,W ) ∈ FMFh(DX ,Q) such that GrWi (M) ∈ MH(X, i) for all i.
(NB: This is strictly bigger than the category of mixed Hodge modules introduced
later on in [S2].) Consider the following statements

A(i): MHZ(X,n) is abelian and the morphisms are strict for dimZ ≤ i.
B(i): The subcategory of MHW (X) objects with support having dimension ≤ i

is abelian and the morphisms are bistrict.

Then by (MH1) and corollary 1.4 it suffices to prove A(i) for all i. A(0) is
clear by (MH2). The logic of the rest of the proof is to establish A(i) ⇒ B(i)
and B(i) ⇒ A(i + 1). The first implication A(i) ⇒ B(i) uses the orthogonality
condition, Hom(MHZ(X, i),MHZ(X, j)) = 0 when i > j [S1, 5.1.11], and the
following general result.
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Lemma 2.2 ([S1, 5.1.15]). Let A be an abelian category. Suppose that Ai, i ∈ Z
are full abelian subcategories whose kernels and cokernels coincide with those in A,
and suppose also that Hom(Ai,Aj) = 0 for i > j. Then the category AW , of finite
filtered objects (A,W ) of A with GrWj A ∈ Aj, is abelian and morphisms are strict.

The key point in checking the “bootstrapping” implication B(i) ⇒ A(i + 1) is
that to verify the axioms (MH1) and (MH3) for kernel and cokernel of a map in
MHZ(X,n), we can choose the function f in general position with respect to Z,
and thereby cut the dimension of the support.

3. Polarizations

For the deeper results in theory, we need polarizations. Recall that a polarization
on a weight n rational Hodge structure H is a pairing S : H ⊗H → Q(−n) such
that (2π

√
−1)nS(x,Cy) is symmetric and positive definite where the Weil operator

C acts by
√
−1

p−q
on Hpq. It will instructive to recall a basic example. Let X

be a d dimensional smooth projective variety with a Lefschetz operator L. On
d − i primitive cohomology PLH

d−i(X) = kerLd+1 : Hd−i(X) → Hd+i+2(X),
S(−,−) = ±S0(−, Li−) gives a polarization where S0(α, β) =

∫
X
α ∪ β. There

is somewhat more structure in this example which is convenient to axiomatize. A
Hodge-Lefschetz structure of weight d is a finite sum

⊕
Hi of Hodge structures

of weight d + i together with a collection of morphisms ` : Hi → Hi+2(1) giving
isomorphisms H−i ∼= Hi(i). A polarization is a collection of pairings 〈, 〉 : Hi ×
H−i → Q(−d) such that

(3) 〈x, y〉 = ±〈y, x〉, 〈`x, y〉 = ±〈x, `y〉

and such that 〈−, `i−〉 polarizes the primitive part P`H
−i.

There is a bigraded version of the previous notion which is somewhat harder to
motivate, but suffice it to say that it will play an essential role in what follows. A
bigraded Hodge-Lefschetz structure of weight d consists of a finite sum

⊕
Hj
i of

Hodge structures of weight d+ i+ j and commuting operators ` : Hj
i → Hj+2

i (1),

N : Hj
i → Hj

i−2(−1) both satisfying hard Lefschetz. A polarization is now a pairing

〈, 〉 : H−j−i ×H
j
i → Q(−d)

such that the obvious generalization of (3) holds for both operators, and such that
〈−, N i`j−〉 polarizes the “bi-primitive” part kerN i+1∩`j+1. Here is a basic example
which arises in Steenbrink’s work on limit mixed Hodge structures [St, GN]. Given
a projective semistable family f : X → ∆ of relative dimension d, let Y (0) = X and
let Y (i) denote the disjoint of i-fold intersections of components of f−1(0) when
i > 0. Steenbrink constructed a spectral sequence converging to H∗(RψfQ), where
the E1 term looks like

Hj
i =

⊕
k

Hj+n−i−2k(Y (2k+i+1))(−i− k)

This is in fact a bigraded Hodge-Lefschetz structure of weight d + i + j. The
operator ` : Hj

i → Hj+2
i is simply the Lefschetz operator with respect to a relatively

ample class. The remaining operator N is a bit more subtle, so we refer to the
original papers [GN, St]. The usual polarizations give a polarization of H∗∗ as well.
Steenbrink asserted that the filtration on the abutment coming from the spectral
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sequence coincided with the monodromy filtration, which means that (2) holds.
Guillén and Navarro [GN] gave a complete proof based on the following:

Theorem 3.1. Suppose that H =
⊕
Hj
i is a polarized bigraded Hodge-Lefschetz

module with a differential d : Hj
i → Hj+1

i−1 commuting with ` and N and satisfying
〈x, dy〉 = ±〈dx, y〉. Then the cohomology ker d/ im d carries an induced polarized
Hodge-Lefschetz structure.

Proof. See [S1, 4.2.2] or [GN, 4.5]. �

Returning to Hodge modules, let X be a d-dimensional complex manifold. The
Verdier dualizing sheaf is just Q[2d]. Given a Hodge module M = (M,F,L) ∈
MH(X,n), a polarization is a pairing S : L ⊗ L → QX [2d](−n) satisfying the
certain inductive conditions. Since the strict support decomposition is orthogonal
with respect to any such pairing, we may as well assume thatM is strictly supported
on an irreducible subvariety Z. By adjointness, S corresponds to a map to the
Verdier dual S′ : L → DL(−n) = RHom(L,Q[2d](−n)). This induces a map
S′ : M → DM(−n) under Riemann-Hilbert. The operation D can be lifted to the
category of D-modules with good filtration [S1, §2.4]. We say that S is compatible
with the filtration if there is a morphism (M,F )→ D(M,F ) coinciding with S′ on
the first factor. A pairing S compatible with the filtration is called a polarization
if it satisfies the following inductive axioms:

(P1) If dimZ = 0, M is given by a Hodge structure H, S is induced from
polarization on H in the usual sense.

(P2) If dimZ > 0 and f is a locally defined function which is not identically 0
on Z, then S(−, N i−) induces a polarization on the primitive part (with
respect to N) of GrWn−1+i

pψfL.

Theorem 3.2. Any object M ∈ MHZ(X,n) is generically a variation of Hodge
structure on Z. More precisely, there exists an open set U ⊂ Z and a variation of
Hodge structure K on U of weight n−dimZ suchM|X−(Z−U) is the direct image of
K. Moreover, the underlying perverse sheaf is the intersection cohomology complex
associated to the local system of K. Finally a polarization on M corresponds to a
polarization on K in the usual sense.

Proof. [S1, 5.1.10,5.2.12] �

Corollary 3.3. The full subcategory MH(X,n)p ⊂MH(X,n) of polarizable Hodge
modules is a semisimple abelian category.

Proof. This follows from the corresponding result for polarizable variations. �

The theorem admits a converse that any generically defined polarizable variation
of Hodge structure extends to a polarizable Hodge module. This was conjectured
in the first paper [S1] and proved in the second [S2].

4. Direct images

We come to one of the main results, which involves the behaviour under a pro-
jective direct image. Suppose we are given a projective morphism f : X → Y and
Hodge module (M,F,L) on X, what should the ith direct image mean? On the
perverse side, we simply use pHiRf∗L, which means take the derived direct image
and then take the cohomology with respect to the perverse t-structure. On the
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filtered D-module side, we also have a suitable derived direct image f+(M,F ), but
in order to get a well behaved filtered module structure on cohomology, we should
make sure that this is (represented by) a complex strictly compatible with F . This
is dealt with in the first part of the next theorem. Now we have a candidate for
the direct image Hodge module

Hif∗(M,F,L) := (Hif+(M,L), pHiRf∗L)

That this actually is one, is also part of the theorem.

Theorem 4.1. Let f : X → Y a be projective morphism of smooth varieties, and
let ` be the first Chern class of a relatively ample line bundle. Let (M,F,L) ∈
MH(X,n) have a polarization S. Then the direct image exists as a pure polarized
Hodge module and this satisfies hard Lefschetz. More precisely,

(a) f∗(M,F ) is strict.
(b) Hif∗(M,F,L) ∈MH(Y, n+ i).
(c) `i : H−if∗(M,F,L)→ Hif∗(M,F,L) is an isomorphism.
(d) ±Hif∗S(1 ⊗ Li) is a polarization of the primitive part (with respect to `)

of Hif∗(M,F,L).

We give a broad outline of the proof, focusing on (b) and (c). We refer the
reader to [S1, pp 977-988] for the precise details and the remaining parts. Let
M = (M,F,L) ∈MHZ(X,n). The proof is by induction on d = dimZ. There are
two cases, where the second case relies on the first with the same value of d. The
base case d = 0 is trivially true, so we assume d > 0.

4.2. Case 1. For the first case assume that dim f(Z) > 0. Then choose a (local)
function g on Y with g−1(0) in general position and let h = gf . Saito establishes
an isomorphism

ψgHjf∗M∼= Hjf∗ψhM
and a similar one for φ1. By induction, theorem 4.1 holds for the primitive parts
of the weight graded subquotients of f∗ψhM and f∗φ

1
hM. The proof of this case

of the theorem is completed with the help of the following proposition applied to
to f∗ψhM and f∗φ

1
hM.

Proposition 4.3 ([S1, 5.3.5] ). Let (M ′, F, L′,W ) ∈ MHW (X) be equipped with
an endomorphism N satisfying (2) and a compatible polarization. Suppose that the
conclusion of theorem 4.1 holds for the primitive part PNGr

W
r+i(M

′, F, L′), then
there exists a spectral sequence

Epq1 = Hp+qf∗GrW−p(M ′, F, L)⇒ H∗f∗(M ′, F, L′)

This degenerates at E2, Epq2 ∈MH(Y, q)p, and the hard Lefschetz isomorphisms

(4) `j : C−ji
∼→ Cji ; N i : Cj−i

∼→ Cji

hold where Cji = E−i−r,i+j+r2 .

Proof. The spectral sequence is the standard one associated to W on f∗(M
′, F, L′).

(In this generality, it goes back to Verdier [S1, 5.1.17]) The assumptions imply that
E1 ∈ MH(Y )p. The operators N and ` respect the strict support decomposition.
So we can assume E1 has strict support Z without loss of generality. E1 is generi-
cally a polarized variation of Hodge structure on Z. So at a general point z ∈ Z, the
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above assumptions imply that E1|z is a bigraded polarized Hodge-Lefschetz struc-
ture with a compatible differential. Therefore E2|z is also a polarized bigraded
Hodge-Lefschetz structure by theorem 3.1. This implies (4). �

4.4. Case 2. We now turn to the remaining case where dim f(Z) = 0. We can
assume in this case that Y = pt is a point. The theorem implies that the cohomology
of L carries a pure polarized Hodge structure and that it satisfies hard Lefschetz.
We will be content to prove just this, and refer to [S1] for the remaining properties.
The first interesting case essentially goes back to Zucker [Z].

Theorem 4.5. Hi(X,L) is pure of weight n+ i when X is a curve.

What Zucker actually proved was that intersection cohomology of a curve with
coefficients in a polarized variation of Hodge structure has a pure Hodge structure.
This was deduced by showing that intersection cohomology coincides with L2 coho-
mology with the same coefficients. This is the only point in the proof of theorem 4.1
where analytic methods are needed.

Now suppose that X has arbitrary dimension. We make use of the following easy
fact:

Lemma 4.6. Suppose that V is a pure Hodge structure. Then a direct summand
of V in MFh(Dpt,Q) (= the category filtered C-vector spaces with Q-structure) is
again a pure Hodge structure of the same weight.

Let π : X̃ → X be the blow up of the base locus of sufficiently general pencil of
hyperplane sections. Let M̃ = (M̃, F, L̃) = π∗M. Its support is the strict transform

of Z, so its dimension is unchanged. We have a surjective map p : X̃ → P1. The
cohomology Hi(X,L) is summand of Hi(X̃, L̃) in MFh(Dpt,Q), so suffices to prove
that the latter is pure of weight n + i. By Case 1, we know that M satisfies hard
Lefschetz relative to p. Therefore Deligne’s theorem [D1] shows that the Leray
spectral sequence for L with respect to p degenerates at E2. It follows that

Hi(X̃, L̃) ∼=
⊕
j+k=i

Hj(P1,Hkp∗M̃)

Case 1 of the theorem together with theorem 4.5 shows that the latter has a pure
Hodge structure of the expected weight.

Let i : T → X denote the inclusion of a general hyperplane section with respect
to a fixed projective embedding. LetM′ = (M ′, F, L′) = i∗M∈MH(T, n−1). By
induction, we can assume that the theorem holds for T → pt. By weak Lefschetz
([BBD, §4.1] and [GM, §7])

i∗ : Hj(X,L)→ Hj+1(T, L′)

is bijective for j ≤ −2 and injective for j = −1, and

i∗ : Hj−1(T, L′)→ Hj(X,L)(1)

is bijective for j ≥ 2 and surjective for j = 1. Since we also have i∗i
∗ = `, we can

conclude, from induction, that we have an isomorphism

(5) `j : H−j(X,L) ∼= Hj(X,L)

when j ≥ 2. It remains to treat the case where j = 1. Since the dimensions
coincide, by duality, it is enough to show that (5) is injective. We have equalities

H−1(X,L) = `H−3(X,L)⊕ P`H−1(X,K)
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H1(X,L) = `2H−3(X,L)⊕ ker `

The injectivity of
` : P`H

−1(X,K)→ ker `

follows from part (c) of the theorem applied to M′.

Corollary 4.7 (Decomposition theorem). If L is a perverse sheaf underlying a
polarizable Hodge module, then Rf∗L is a sum of translated perverse sheaves.

Proof. By part (b) of the theorem and [D1],

Rf∗L ∼=
⊕

pHi(Rf∗L)[−i]

�
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