
RIEMANN’S INEQUALITY AND RIEMANN-ROCH

DONU ARAPURA

Fix a compact connected Riemann surface X of genus g. Riemann’s inequality
gives a sufficient condition to construct meromorphic functions with prescribed
singularities. Let C(X) denote the field of meromorphic functions on X. The
most convenient way to specify the zeros and poles of a nonzero element of this
field is in terms of divisors. A divisor is a finite formal sum D =

∑
npp with

p ∈ X and np ∈ Z. We sometimes view this as sum over all points with np = 0
for all but finitely many p. Divisors form a group under addition. The degree
degD =

∑
np ∈ Z. Given f ∈ C(X)∗, div(f) =

∑
ordp(f)p is an example of a

divisor, where ordp is the discrete valuation measuring the order at p. D is called
effective, written as D ≥ 0, if all its coefficients are nonnegative. Given a divisor
D, let

L(D) = {f ∈ C(X)∗ | div(f) +D ≥ 0} ∪ {0}
= {f ∈ C(X) | ∀p, ordp(f) ≥ −np}

Theorem 0.1 (Riemann’s inequality). If D is a divisor,

dimL(D) ≥ degD + 1− g
In particular, L(D) 6= 0 as soon as degD ≥ g.

The Riemann-Roch refines this to an equality with a precise “error term”. An
important consequence which not apriori obvious is:

Corollary 0.2. C(X) 6= C, i.e. X carries a nonconstant meromorphic function.

We give a proof of these results below after a bit of preparation.

1. Harmonic forms

We quickly review some material already discussed in class. We recall that in
basic complex analysis there is a close connection between harmonic functions and
holomorphic ones. In order to globalize this, we need to introduce the relevant
operators. The Hodge star operator is the C-linear operator1 defined locally by the
formulas

∗dx = dy, ∗dy = −dx, ∗1 = dx ∧ dy, ∗(dx ∧ dy) = 1

where x and y are the real and imaginary parts of a local analytic coordinate z.
Thus ∗∗ = −(1)p on p-forms. The point of the operator is that it gives an inner
product

〈α, β〉 =

∫
X

α ∧ ∗β̄

1Some authors define it to be antilinear. Also at the risk of complicating the story, ∗ can be

defined by the rule α∧∗β = (α, β̄)volume where (, ) is the pointwise inner product associated to a
Riemannian metric compatible with the complex structure. This is the right viewpoint in higher

dimensions.
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on the space of forms. Since d(α∧∗β̄) = dα∧∗β̄±α∧∗∗d∗ β̄. The adjoint of d with
respect to this inner product is d∗ = ±d by Stokes’ theorem. The Laplacian (aka
Hodge Laplacian, or Laplace-Beltrami operator) ∆ = dd∗+d∗d. This coincides with
minus the classical Laplacian on functions; the reason that this sign is preferred is
that one wants the spectrum to be nonnegative. A form α is harmonic if ∆α = 0.

Lemma 1.1. α is harmonic if and only if dα = d(∗α) = 0.

Proof. One direction is clear. The converse is proved by observing that

(1) 〈∆α, α〉 = ||dα||2 + || ∗ d ∗ α||2

�

The forms dz = dx+ idy and dz̄ = dx− idy are easily seen to be eigenforms of
∗ with eigenvalue −i and +i respectively. A form is of type (1, 0) (resp. (0, 1)) if
it is a multiple of dz (resp. dz̄) for every local coordinate z. From the lemma, one
quickly deduces that

Corollary 1.2. A (1, 0) (resp. (0, 1)) form is harmonic if and if it is holomorphic
(resp. antiholomorphic or equivalently the conjugate of a holomorphic form). Every
harmonic form is a sum of holomorphic form and an antiholomorphic form, and
this decomposition is unique.

Proof. If α is (1, 0), then dα = ∂̄α and d ∗ α = −i∂̄α. So α is harmonic if and only
if it is holomorphic. The (0, 1) case is similar.

Any 1-form α can be uniquely decomposed into a sum

α = α(1,0) + α(0,1)

of a (1, 0) and (0, 1) form. We can see that

α(1,0) =
α+ i ∗ α

2

α(0,1) =
α− i ∗ α

2
Therefore α is harmonic if and only if these components are. �

Theorem 1.3 (Hodge theorem). The space of C∞ 1-forms decomposes

E1(X) = {harmonic 1-forms} ⊕ dC∞(X)⊕ ∗dC∞(X)

Proof. We give the bare outline of the proof. Details can be found in [D, GH]. It
suffices to establish

(2) E1(X) = ker ∆⊕ im ∆

Equation (1) implies that ker ∆ = (im ∆)⊥. So it is enough to establish

E1(X) = (im ∆)⊥ ⊕ im ∆

For infinite dimensional inner product spaces, such a decomposition is not auto-
matic. However, if we complete E1(X) to a Hilbert space L2E1(X), then

L2E1(X) = (im ∆)⊥ ⊕ im ∆

is true by standard functional analysis, where to be clear ()⊥ now refers to the
orthogonal complement in Hilbert space. But we need to bring things back to the
C∞ world. Given α, β ∈ L2E1(X), we say that

(3) ∆α = β
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holds weakly if it holds in sense of distribution theory or equivalently

〈α,∆γ〉 = 〈β, γ〉
holds for all C∞ forms γ. We can see that (im ∆)⊥ consists of weak solutions
to ∆α = 0. A bit more work shows im ∆ consists of β’s for which (3) is weakly
solvable. The main analytic result needed at this point is Weyl’s “lemma” or the
regularity theorem for ∆: if β is C∞, then a weak solution α to (3) is a true C∞

solution. It follows that elements of (im ∆)⊥ are harmonic forms. We can also see
that im ∆ ∩ E1(X) = ∆E1(X). So that (2) follows. �

Although the following corollary is the most important consequence, we will need
the full version of the theorem.

Corollary 1.4. The first de Rham cohomology of X is isomorphic to the space of
harmonic 1-forms

Proof. By definition

H1(X,C) =
ker d

im d
on 1-forms. Since ker d is orthogonal to imd∗, we have

H1(X,C) =
{harmonic 1-forms} ⊕ dC∞(X)

dC∞(X)

�

Corollary 1.5. The dimension of the space of holomorphic (resp. antiholomorphic)
forms is g.

Proof. By corollaries 1.2 and 1.4

2g = dimH1(X,C) = dim{holmorphic forms}+ dim{antiholmorphic forms}
However, the last two spaces are have the same dimension because complex conju-
gation gives a real isomorphism. �

2. Some sheaf theory

A presheaf (of abelian groups) on X (or any space) is an assignment of an abelian
group U 7→ A(U) to each open set, and a homomorphism ρUV : A(U) → A(V )
to each inclusion V ⊆ U such that ρUU = id and ρVW ρUV = ρUW . When there
is no confusion, we generally write α|V for ρUV (α). A is called a sheaf if for any
open cover {Ui} of U A(U) is isomorphic by the set of collections αi ∈ A(Ui) such
that αi|Uij

= αj |Uij
, where Uij = Ui ∩ Uj . For example we have the sheaf OX of

holomorphic functions. Here some more examples.

Example 2.1. Given a divisor D =
∑
npp, let

OX(D)(U) = {f merom. on U | ∀p ∈ U, np + ordp(f) ≥ 0}
with obvious restrictions.

Example 2.2. Given p ∈ X, the sky-scraper sheaf

Cp(U) =

{
C if p ∈ U
0 otherwise

In fact, C can be replaced by any abelian group.
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A morphism of sheaves f : A → B is a collection of homomorphisms fU : A(U)→
B(U) which commute with restriction i.e. fU (α)|V = fV (α|V ). A pair of morphisms

A → B → C

between sheaves is called exact if for every p ∈ X and ε > 0, there exist a neig-
bourhoods U contained in an ε disk around p (with respect to some metric) such
that

A(U)→ B(U)→ C(U)

is exact in the usual sense. The point is that condition is local about each p. People
familiar with stalks will notice that I am translating the usual condition.

Suppose that we are given an exact sequence of sheaves

0→ A→ B → C → 0

Lemma 2.3. Then there is an exact sequence

0→ A(X)→ B(X)→ C(X)

of groups

However, B(X) → C(X) need not be surjective; the failure of this to be so will
be crucial for us to understand. Fix γ ∈ C(X). Then by definition of exactness,
we can find a cover {Ui} of X so that γ|Ui

lifts to βi ∈ B(Ui). If βi|Uij
= βj |Uij

,
we can patch these to an element β ∈ B(X) and we would be done. The failure of
this is measured by αij = βi − βj ∈ A(Uij) where suppress writing restrictions to
simplify notation. Note that this collection satisfies the 1-cocycle identity:

αij + αjk + αki = 0

Thus it seems that we have constructed a map γ 7→ αij , but it is not quite well
defined because we needed the auxiliary choice of βi. Any two such choices of βi
differ by an element of A(Ui). Thus we are led to define the 1st (Cech) cohomology
group Ȟ1({Ui},A) as the group (which it clearly is) of cocycles as above, modulo
the subgroup of coboundaries which are cocycles of the form αij = αi − αj , with
αi ∈ A(Ui). This depends on the cover, we can get rid of the dependency by taking
the direct limit

H1(X,A) = lim−→
refinement

Ȟ1({Ui},A)

but we won’t make say much about this last step. We have essentially constructed
a homomorphism ∂ : C(X)→ H1(X,A) by

∂(γ) = class of αij

The notation becomes more uniform if we write H0(X,A) = A(X) etc.

Theorem 2.4. The previous sequence extends to a 6 term exact sequence

0→ H0(X,A)→ H0(X,B)→ H0(X, C)→ H1(X,A)→ . . .

Proofs and generalizations can be found in the references [G, GH, H]. The first
being the most thorough.
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3. Back to Riemann’s inequality

We now assume that D =
∑
npp ≥ 0, and give a proof in this case. Then

OX(D)(U) will contain OX(U) giving rise to an injective morphism OX → OX(D).
We want to prolong this to a short exact sequence. To analyze this, let U be a
coordinate disk centered at one of the points p of support D and disjoint from the
remaining points. Then O(D)(U) = 1

znpO(U). The quotient O(D)(U)/O(U) ∼=
Cnp . So we obtain an exact sequence of sheaves

0→ OX → OX(D)→ ⊕Cnp
p → 0

giving rise to an exact sequence

0→ OX(X)→ OX(D)(X)→ ⊕Cnp → H1(X,OX)

The second space is just L(D). Since X is compact, global holomorphic functions
on it are constant by the maximum principle. Therefore we can write the sequence
as

0→ C→ L(D)→ Cdeg D → H1(X,OX)

The rank nullity theorem from linear algebra gives us a lower bound

dimL(D) ≥ 1 + degD − dimH1(X,O)

We also get an upper bound

dimL(D) ≤ 1 + degD

which is useful as well. So to finish the proof of Riemann’s inequality we just need
to prove

Theorem 3.1. dimH1(X,OX) = g.

We start by recalling that an element of H1(X,OX) is represented by a cocy-
cle fij ∈ O(Uij) on some open cover {Ui}. Choose a C∞ partition of unity ψi

subbordinate to this covering. Set

(4) φi =
∑
k

ψkfik

Then using the cocycle condition and the fact ψk is a partition of unity, we have

φi − φj =
∑
k

ψk(fik − fjk) = fij
∑
k

ψk = fij

This says that fij is a C∞ coboundary. Applying ∂̄ implies that

∂̄(φi − φj) = 0

so that α = ∂̄φi is a globally defined (0, 1)-form on X, which of course depends on
the choice of φi. However, the class

[α] ∈ {(0, 1)-forms}/∂̄C∞(X) = H
(0,1)

∂̄

depend only on the cohomology class associated to fij

Lemma 3.2. H1(X,OX) ∼= H
(0,1)

∂̄

The inverse is given by reversing the process. Given a (0, 1) form α, we can
write it locally as α = ∂̄φi by variant of Cauchy’s formula (cf [GH, p 5]). Then
fij = φi − φj is necessarily a collection holomorphic functions satisfying cocycle
identity.
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Lemma 3.3. H
(0,1)

∂̄
∼= {antiholomorphic 1-forms}

Given a (0, 1)-form α, by the Hodge theorem we can decompose it as

α = β + df + ∗dg
where β is harmonic and f, g are C∞ functions. If we take (0, 1) part of the right
side of this equation, it still equals α. The (0, 1) part γ of β is still harmonic by
corollary 1.2. Therefore

α = (β + df + ∗dg)(0,1) = γ + ∂̄f + i∂̄g = γ + ∂̄(f + ig)

This shows that

{(0, 1)-forms} = {antiholomorphic 1-forms}+ image(∂̄)

A bit more work shows that the summands are orthogonal, and therefore this a
direct sum decomposition. The lemma now follows.

Summarizing, we have an isomorphism

H1(X,OX) ∼= {antiholomorphic 1-forms}
But we know from corollary 1.5 that the last space is g dimensional.

4. Riemann-Roch

So far we have proved Riemann’s inequality only for effective divisors. For
the general case, it is convenient to first prove a stronger statement, namely the
Riemann-Roch theorem.

Theorem 4.1 (Riemann-Roch). If D is a divisor,

dimH0(X,OX(D))− dimH1(X,OX(D)) = degD + 1− g

Riemann’s inequality is an immediate corollary. Of course, this is not the classical
statement of Riemann-Roch but the modern version due to Serre, which seems more
natural (at least to me). The left side

χ(OX(D)) = dimH0(X,OX(D))− dimH1(X,OX(D))

can be understood as an Euler characteristic. This point of view led to the subse-
quent generalizations due to Hirzebruch and Grothendieck.

Proof. If D =
∑
npp, the proof is by induction on N = N(D) =

∑
|np|. The base

case N = 0 follows immediately from the facts

dimH0(X,OX) = 1, dimH1(X,OX) = g

proved earlier.
We turn to the inductive step. Let D′ = D − p. Then N(D) = N(D′) ± 1. So

it suffices to prove that Riemann-Roch holds for D if and only if it holds for D′.
We have an inclusion OX(D′) ⊂ OX(D), which in a neighbourhood of p is given by

1
znp−1O(U) ⊂ 1

znpO(U). The cokernel is one dimensional. This leads to an exact
sequence

0→ OX(D′)→ OX(D)→ Cp → 0

of sheaves. Therefore we have an exact sequence

0→ H0(X,OX(D′))→ H0(X,OX(D))→ H0(X,Cp)→

H1(X,OX(D′))→ H1(X,OX(D))→ H1(X,Cp)
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of vector spaces. We have H0(X,Cp) = C, and we claim that the first cohomology of
this sheaf is 0. Given an open cover {Ui} of X, and a cocycle fij ∈ Cp(Uij) we have
to show that it is a coboundary. Suppose that p ∈ U1, then ψ1 = 1 ∈ H0(X,Cp)
and ψi = 0, i > 0 gives a collection of sections which behaves like a partition of
unity. So we can apply formula (4) to show that fij is a coboundary. This proves
the claim. This together with the above exact sequence implies that

χ(OX(D)) = χ(OX(D′)) + 1

Since the right side of Riemann-Roch behaves the same way:

[degD + (1− g)] = [degD′ + (1− g)] + 1

the proof is complete. �

5. Some consequences

Corollary 5.1. X can be realized as a branched covering of CP1.

Proof. X has a nonconstant meromorphic function. �

Corollary 5.2. Up to isomorphism, there is unique compact Riemann surface of
genus 0, namely CP1.

Proof. Choose p ∈ X, and regard it as a degree one divisor. Then dimL(p) ≥ 2, so
there is nonconstant function in f ∈ L(p). f has a simple pole at p, and no other
singularities. Regarding it as a map f : X → CP1, it must have degree one. It is
easy to see from this it is an isomorphism. �

Corollary 5.3. A compact Riemann surface of genus 1 is a projective algebraic
curve with affine equation of the form

y2 = x(x− 1)(x− λ)

with λ 6∈ {0, 1}.

Sketch. Choose p ∈ X. A nonconstant function in L(p) would lead to an iso-
morphism X ∼= CP1 as above. Therefore L(p) = C. Riemann’s inequality gives
dimL(2p) ≥ 2. It follows that there exists f ∈ L(2p) with a double pole at p. We
can regard f as degree 2 map from X → CP1. The Riemann-Hurwitz formula gives
a total of 4 ramification points including ∞ = f(p). We can find an automorphism
which sends two of the remaining points to 0 and 1. The fourth point is given by
some λ 6∈ {0, 1}. X can now be described as above. �
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