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Introduction

In these notes, which originated from various “second courses” in algebraic
geometry given at Purdue, I study complex algebraic varieties using a mixture
of algebraic, analytic and topological methods. I assumed an understanding of
basic algebraic geometry (around the level of [Hs]), but little else beyond stan-
dard graduate courses in algebra, analysis and elementary topology. I haven’t
attempted to prove everything, often I have been content to give a sketch along
with a reference to the relevent section of Hartshorne [H] or Griffiths and Harris
[GH]. These weighty tomes are, at least for algebraic geometers who came of
age when I did, the canonical texts. They are a bit daunting however, and I
hope these notes makes some of this material more accessible.

These notes are pretty rough and somewhat incomplete at the moment.
Hopefully, that will change with time. For updates check

http://www.math.purdue.edu/∼dvb
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5.3 The ∂̄-Poincaré lemma . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 ∂̄-cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2



5.5 Projective embeddings . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 Automorphic forms . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Simplicial Methods 52
6.1 Simplicial and Singular Cohomology . . . . . . . . . . . . . . . . 52
6.2 H∗(Pn, Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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Chapter 1

Manifolds and Varieties via
Sheaves

As a first approximation, a manifold is a space, like the sphere, which looks
locally like Euclidean space. We really want to make sure that the function
theory of a manifold is locally the same as for Euclidean space. Sheaf theory
is a natural language in which to make such a definition, although it’s rarely
presented this way in introductory texts (e. g. [Spv, Wa]). An algebraic variety
can be defined similarly as a space which looks locally like the zero set of a col-
lection of polynomials. The sheaf theoretic approach to varieties was introduced
by Serre in the early 1950’s, and algebraic geometry has never been the same
since.

1.1 Sheaves of functions

In many parts of mathematics, one is interested in some class of functions sat-
isfying some condition. We will be interested in the cases where the condition
is local in the sense that it can be checked in a neighbourhood of a point.
Formulating this precisely leads almost immediately to the concept of a sheaf.

Let X be a topological space, and Y a set. For each open set U ⊆ X, let
MapY (U) be the set of maps from X to Y .

Definition 1.1.1. A collection of subsets P (U) ⊂MapY (U) is called a presheaf
of (Y -valued) functions on X, if it is closed under restriction, i. e. f ∈ P (U)⇒
f |U ∈ P (V ) when U ⊂ V .

Definition 1.1.2. A presheaf of functions P is called a sheaf if f ∈ P (U)
whenever there is an open cover {Ui} of U such that f |Ui

∈ P (Ui).

Example 1.1.3. Let PY (U) be the set of constant functions to Y . This is a
presheaf but not a sheaf in general.
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Example 1.1.4. A function is locally constant if it is constant in a neigh-
bourhood of a point. The set of locally constant functions, denoted by Y (U) or
YX(U), is a sheaf. It is called the constant sheaf.

Example 1.1.5. Let Y be a topological space, then the set of continuous func-
tions CY (U) from U to Y is a sheaf. When Y is discrete, this is just the previous
example.

Example 1.1.6. Let X = Rn, the sets C∞(U) of C∞ real valued functions
forms a sheaf.

Example 1.1.7. Let X = C (or Cn), the sets O(U) of holomorphic functions
on U forms a sheaf.

Example 1.1.8. Let L be a linear differential operator on Rn with C∞ coef-
ficients (e. g.

∑
∂2/∂x2

i ). Let S(U) denote the space of C∞ solutions in U .
This is a sheaf.

Example 1.1.9. Let X = Rn, the sets L1(U) of L1-functions forms a presheaf
which is not a sheaf.

We can always force a presheaf to be become a sheaf by the following con-
struction.

Example 1.1.10. Given a presheaf P of functions to Y . Define the

P+(U) = {f : U → Y | ∀x ∈ U,∃ a nbhd Ux of x, such that f |Ux
∈ P (Ux)}

This is a sheaf called the sheafification of P .

When P is a sheaf of constant functions, P+ is exactly the sheaf of locally
constant functions. When this construction is applied to the presheaf L1, we
obtain the sheaf of locally L1 functions.

1.2 Manifolds

Let k be a field.

Definition 1.2.1. Let R be sheaf of k-valued functions on X. We call R a
sheaf of algebras if each R(U) ⊆Mapk(U) is a subalgebra.

Definition 1.2.2. With the above notation, we call the pair (X, R) a concrete
ringed over k, or simply a k-space.

(Rn, CR), (Rn, C∞) and (Cn,O) are examples of R and C spaces. An affine
variety over k is a k-space.

Definition 1.2.3. A morphism of k-spaces (X, R) → (Y, S) is a continuous
map F : X → Y such that f ∈ S(U) implies f ◦ F ∈ R(f−1U).
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The collection of k-spaces and morphisms form a category. In any category,
one has a notion of an isomorphism. Let’s spell it out in this case.

Definition 1.2.4. An isomorphism of k-spaces (X, R) ∼= (Y, S) is a homeomor-
phism F : X → Y such that f ∈ S(U) if and only if f ◦ F ∈ R(F−1U).

Given a sheaf S on X and and open set U ⊂ X, let S|U denote the sheaf on
U defined by V 7→ S(V ) for each V ⊆ U .

Definition 1.2.5. An n-dimensional C∞ manifold is an R-space (X, C∞
X ) such

that

1. The topology of X is given by a metric1.

2. X admits an covering {Ui} such that each (Ui, C
∞
X |Ui) is isomorphic to

(Bi, C
∞|Bi

) for some open ball B ⊂ Rn.

The isomorphisms (Ui, C
∞|Ui

) ∼= (Bi, C
∞|Bi

) correspond to coordinate charts
in more conventional treatments. The whole collection of data is called an atlas.
There a number of variations on this idea:

1. An n-dimensional topological manifold is defined as above but with (Rn, C∞)
replaced by (Rn, CR).

2. An n-dimensional complex manifold can be defined by replacing (Rn, C∞)
by (Cn,O).

One dimensional complex manifolds are usually called Riemann surfaces.

Definition 1.2.6. A C∞ map from one C∞ manifold to another is just a
morphism of R-spaces. A holomorphic map between complex manifolds is defined
in the same way.

C∞ (respectively complex) manifolds and maps form a category; an isomor-
phism in this category is called a diffeomorphism (respectively biholomorphism).
By definition any point of manifold has neighbourhood diffeomorphic or biholo-
morphic to a ball. Given a complex manifold (X,OX), call f : X → R C∞ if
and only if f ◦ g is C∞ for each holomorphic map g : B → X from a ball in
Cn. We can introduce a sheaf of C∞ functions on any n dimensional complex
manifold, so as to make it into a 2n dimensional C∞ manifold.

Let consider some examples of manifolds. Certainly any open subset of Rn

(Cn) is a (complex) manifold. To get less trivial examples, we need one more
definition.

1 It’s equivalent and perhaps more standard to require that the topology is Hausdorff and
paracompact. (The paracompactness of metric spaces is a theorem of Stone. In the opposite
direct use a partition of unity to construct a Riemannian metric, then use the Riemannian
distance.)
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Definition 1.2.7. Given an n-dimensional manifold X, a closed subset Y ⊂ X
is called a closed m-dimensional closed submanifold if for any point x ∈ Y , there
exists a neighbourhood U of x in X and a diffeomorphism of to a ball B ⊂ Rn

such that Y ∩U maps to a the interesection of B with an m-dimensional linear
space.

Given a closed submanifold Y ⊂ X, define PY to be the presheaf which
functions on Y which extend to C∞ functions on X. More precisely, for each
open U ⊂ Y , f ∈ PY (U) in a there exists an open U ⊂ V ⊂ X such that and
g ∈ C∞

X (V ) such that f = g|V . Let C∞
Y = P+

Y . In other words, C∞
Y is the sheaf

functions which are locally extendible to C∞ functions on X.

Lemma 1.2.8. (Y, C∞
Y ) is a manifold.

We can make an analogous definition for complex manifolds. One can show,
using partitions of unity, that locally extendible C∞ functions are globally ex-
tendible, i.e. C∞

Y = PY . However, the corresponding statement for holomorphic
functions on complex manifolds is usually false, as the following example shows.

Example 1.2.9. Let Let Pn
C = CPn be the set of one dimensional subspaces

of Cn+1. Let π : kn+1 − {0} → Pn
C be the natural projection (in the sequel,

we often denote π(x0, . . . xn) by [x0, . . . xn]). The topology on this is defined in
such a way that U ⊂ Pn is open if and only if π−1U is open. Define a function
f : U → k to be holomorphic exactly when f ◦ π is holomorphic. Then the
presheaf of holomorphic functions OPn is a sheaf, and the pair (Pn,OPn) is an
complex manifold. In fact, if we set

Ui = {[x0, . . . xn] | xi 6= i}

Then the map
[x0, . . . xn] 7→ (x0/xi, . . . x̂i/xi . . . xn/xi)

induces an isomomorphism Ui
∼= Cn.

Example 1.2.10. Let Y ⊂ P1 be a finite set of at least 2 points p1, p2, . . . pn.
Then the function which takes the value 1 on p1 and 0 on p2, . . . pn is cannot
be extended to global holomorphic function on P1 since all such functions are
constant (this follows from Liouville’s theorem).

With this lemma in hand, it’s possible to produce many interesting examples
of manifolds starting from Rn.

Exercise 1.2.11.

1. Let T = Rn/Zn be a torus. Let π : Rn → T be the natural projection.
Define f ∈ C∞(U) if and only if the pullback f ◦ π is C∞ in the usual
sense. Show that (T,C∞) is a C∞ manifold.

2. Let τ be a nonreal complex number. Let E = C/(Z + Zτ) and π denote
the projection. Define f ∈ OE(U) if and only if the pullback f ◦ π is
holomorphic. Show that E is a Riemann surface. Such a surface is called
an elliptic curve.
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3. Prove lemma 1.2.8 .

4. Check that the quadric defined by x2
1 + x2

2 + . . . + x2
k − x2

k+1 . . . − x2
n = 1

is a closed n− 1 dimensional submanifold of Rn.

1.3 Algebraic varieties

Let k be an algebraically closed field. Write An
k = kn. When k = C, we can

use the standard metric space topology on this space, and we will refer to this
as the classical topology. In general, one has only the Zariski topology, but we
may use it even when k = C. This topology can be defined to be the weakest
topology which makes the polynomials continuous. The closed sets are precisely
the sets of zeros

V (S) = {a ∈ An | f(a) = 0 ∀f ∈ S}

of sets of polynomials S ⊂ k[x0, . . . xn]. Sets of this form are also called alge-
braic. By Hilbert’s nullstellensatz the map I 7→ V (I) is a bijection between the
collection of radical ideals of k[x0, . . . xn] an algebraic subsets of An. Will call
an algebraic set X ⊂ An an affine variety if it is irreducible, which means that
X is not a union of proper closed subsets, or equivalently if X = V (I) with I
prime. The Zariski topology of X has a basis given by affine sets of the form
D(g) = X − V (g), g ∈ k[x1, . . . xn] Call a function F : D(g) → k regular if it
can be expressed as a the rational function with a power of g in the denomi-
nator i.e. an element of k[x1, . . . xn][1/g]. For a general open set U ⊂ X, we
determine regularity of F : U → k by restricting to the basic open sets. With
this notation, then:

Example 1.3.1. Let OX(U) denote the set of regular functions. Then this is
a sheaf.

The irreduciblity guarrantees that O(X) is an integral domain called the
coordinate ring of X. This ring determines X completely. Thus (X,OX) is a
k-space. In analogy with manifolds, we define:

Definition 1.3.2. A prevariety over k is a k-space (X,OX) such that X is
connected and there exists a finite open cover {Ui} such that each (Ui,OX |Ui

)
is isomorphic to an affine variety.

This is “pre” because we’xre missing a “Hausdorff condition”. Before ex-
plaining what this means, let’s do the example of projective space. Let Pn

k be
the set of one dimensional subspaces of kn+1. Let π : An+1 − {0} → Pn be
the natural projection. The Zariski topology on this is defined in such a way
that U ⊂ Pn is open if and only if π−1U is open. Equivalently, the closed sets
are zeros of sets of homogenous polynomials in k[x0, . . . xn]. Define a function
f : U → k to be regular exactly when f ◦ π is regular. Then the presheaf of
regular functions OPn is a sheaf, and the pair (Pn,OPn) is easily seen to be a
prevariety with affine open cover Ui as in example 1.2.9.

9



Now let’s make the seperation axiom precise. The Hausdorff condition for a
space X is equivalent to the requirement that the diagonal ∆ = {(x, x) |x ∈ X}
is closed in X×X with its product topology. In the case (pre)varieties, we have
to be careful about we mean by products. We certainly expect An×Am = An+m,
but notice that topology on this space is not the product topology. In general,
the safest way to define products is terms of a universal property. We define
a morphism of prevarieties simply as a morphism of k-spaces. This makes the
collection of prevarieties into a category. The following can be found in [M]:

Proposition 1.3.3. Let (X,OX) and (Y,OY ) and be prevarieties. Then the
Cartesean product X×Y carries a topology and a sheaf of functions OX×Y such
that the projections to X and Y are morphisms. If (Z,OZ) is any prevariety
which maps via morphisms f and g to X and Y then there the map f ×g : Z →
X × Y is a morphism.

In outline, the argument goes as follows. If X ⊂ An and Y ⊂ Am, then the
one checks that the prevariety structure associated to X × Y ⊂ An+m is the
right one. If X and Y have affine coverings {Ui} and {Vj} respectively, then
one constructs X × Y so that {Ui × Vj} gives an open affine covering for it.

Definition 1.3.4. A prevariety X is a variety if the diagonal ∆ ⊂ X × X is
closed.

Clearly affine varieties are varieties in this sense. To show that Pn is a
variety, one needs to check that the topology on Pn×Pn coincides with the one
induced by the Segre embedding Pn × Pn ⊂ P(n+1)(n+1)−1.

Further example s can be obtained by taking open or closed subvarieties.
Let (X,OX) be an algebraic variety over k. A closed irreducible subset Y ⊂ X
is called a closed subvariety. Imitating the construction for manifolds, given an
open set U ⊂ Y OY (U) to be the set functions which extend to a locally to a
regular function on X. Then

Proposition 1.3.5. (Y,OY ) is an algebraic variety.

It is worth making this explicit for closed subvarieties of projective space.
Let X ⊂ Pn

k be an irreducible Zariski closed set. The affine cone of X is the
affine variety CX = π−1X ∪ {0}. Now let π denote the restriction of this map
to CX − {0}. Define a function f on an open set U ⊂ X to be regular when
f ◦ π is regular.

When k = C, we can use the stronger topology on Pn
C introduced in 1.2.9,

and inhereted by subvarieties will be called the classical topology.

Exercise 1.3.6.

1. Check that Pn is an algebraic variety.

2. Given an open subset U of an algebraic variety X. Let OU = OX |U . Prove
that (U,OU ) is a variety.

3. Prove proposition 1.3.5.
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1.4 Stalks and tangent spaces

Given two functions defined in possibly different neighbourhoods of a point
x ∈ X, we say they have the same germ at x if their restrictions to some
common neigbourhood agree. This is is an equivalence relation. The germ at x
of a function f defined near X is the equivalence class containing f . We denote
this by fx. The stalk Px of a presheaf of functions P at x, is the set of germs of
functions of contained in some P (U). From a more abstract point of view, Px

is nothing but the direct limit
lim
→

P (U)

as U varies over neighbourhoods of x.
When R is a sheaf of algebras of functions, then Rx is a commutative ring.

In most of the examples considered earlier, Rx is a local ring, i. e. it has a
unique maximal ideal.

Lemma 1.4.1. Rx is a local ring if and only if the following property holds: If
f ∈ R(U) with f(x) 6= 0, then 1/f is defined and lies in R(V ) for some open
set x ∈ V ⊆ U .

Proof. Let m be the set of germs of functions vanishing at x. Then any f ∈
Rx −m is invertible which implies that m is the unique maximal ideal.

We’ll say that a k-space is locally ringed if each of the stalks are local rings.
Manifolds (in all of the above senses) and algebraic varieties are locally ringed.
When (X,OX) is an n-dimensional complex manifold, the local ring OX,x can
be identified with ring of convergent power series in n variables. When X is
variety, the local ring OX,x is also well understood. We may replace X by an
affine variety with coordinate ring R. Consider the maximal ideal

mx = {f ∈ R | f(x) = 0}

then

Lemma 1.4.2. OX,x is isomorphic to the localization Rmx
.

Proof. Let K be the field of fractions of R. A germ in OX,x is represented by a
by regular function in a neighbourhood of x, but this is fraction f/g ∈ K with
g /∈ mx.

In these two cases the local rings are Noetherian. This is easy to check
by a theorem of Krull which says that a local ring R with maximal ideal m
is Noetherian if and only if ∩n mn = 0. By contrast, when (X, C∞) is a C∞

manifold, the stalks are non Noetherian local rings, since the intersection ∩n mn

contains nonzero functions such as{
e−1/x2

if x > 0
0 otherwise

(see figure 1.1).
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Figure 1.1: function in ∩n mn

However, the maximal ideals are finitely generated.

Proposition 1.4.3. If R is the ring of germs at 0 of C∞ functions on Rn.
Then its maximal ideal m is generated by the coordinate functions x1, . . . xn.

If R is local ring with ring with maximal ideal m (which will denote by a pair
(R,m)), then R/m is a field called the residue field. The cotangent space of R
is the R/m-vector space m/m2 ∼= m⊗R R/m, and the tangent space is its dual
(over R/m). When m is finitely generated, these spaces are finite dimensional.
When X is C∞ or complex manifold or an algebraic variety over k respectively,
the local ring R = OX,x is an algebra over R, C or k and the map k → R→ R/m
is an isomorphism. In these cases, we denote the tangent space - which is finitef
dimensional - by TX,x or simply Tx. When R is the local ring of a manifold or
variety X at x, then R/m2 splits canonically into k ⊕ T ∗x . Given the germ of a
function f , let df be the projection to T ∗x . In other words, df = f − f(x).

Lemma 1.4.4. d : R→ T ∗x is a k-linear derivation, i. e. it satisfies the Leibnitz
rule d(fg) = f(x)dg + g(x)df .

As a corollary, it follows that a tangent vector v ∈ Tx = T ∗∗x gives rise to
a derivation v ◦ d : R → k. Conversely, any such derivation corresponds to a
tangent vector. In particular,

Lemma 1.4.5. If (R,m) is the ring of germs at 0 of C∞ functions on Rn.
Then a basis for the tangent space T0 is given

Di =
∂

∂xi

∣∣∣∣
0

i = 1, . . . n

Exercise 1.4.6.

1. Prove proposition 1.4.3 (hint: given f ∈ m, let

fi =
∫ 1

0

∂f

∂xi
(tx1, . . . txn) dt
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show that f =
∑

fixi.)

2. Prove lemma 1.4.4.

3. Let F : (X, R) → (Y, S) be a morphism of k-spaces. If x ∈ X and y =
F (x), check that the homorphism F ∗ : Sy → Rx taking a germ of f to the
germ of f ◦F is well defined. When X and S are both locally ringed, show
that F ∗(my) ⊆ mx where m denotes the maximal ideals.

4. When F : X → Y is a C∞ map of manifolds, use the previous exercise
to construct the induced linear map dF : Tx → Ty. Calculate this for
(X, x) = (Rn, 0) and (Y, y) = (Rm, 0) and convince yourself that this
really is the derivative.

5. Check that with the appropriate identification given a C∞ function on X
viewed as a C∞ map from f : X → R. df in the sense of 1.4.4 and in the
sense of the previous exercise coincide.

1.5 Nonsingular Varieties

Manifolds are locally quite simple. By contrast algebraic varieties can be locally
very complicated. For example, any neighbourhood of the vertex of the cone
over a projective variety is as complicated as the variety itself.

We want to say that a point of a variety is nonsingular if it looks like affine
space at a microscopic level. The precise definition requires some commutative
algebra:

Theorem 1.5.1. Let X ⊂ AN
k be a closed subvariety defined by the ideal

(f1, . . . fr). Choose x ∈ X and let R = OX,x. Then the following statements
are equivalent

1. R is a regular local ring i.e. dim Tx equals the Krull dimension of R.

2. The rank of the Jacobian (∂fi/∂xj |x) is N − dim X.

3. The completion R̂ is isomorphic to a ring of formal power series over k.

If these conditions are fulfilled, x is called a nonsingular point of X. Note
that the equivalence of (2) and (3) amounts to a formal implicit function theo-
rem. When k = C, we can apply the holomorphic implicit function theorem to
deduce an additional equivalent statement:

4 There exists a neighbourhood U of x ∈ CN in the usual Euclidean topology,
and a biholomorphism (i. e. holomorphic isomorphism) of U to a ball B
such that X∩U maps to the intersection of B and an n-dimensional linear
subspace.

A variety is called nonsingular or smooth if all of its points are nonsingular.
Affine and projective spaces are examples of nonsingular varieties. It follows
from (4) that a nonsingular affine or projective variety is a complex submanifold
of affine or projective space.
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1.6 Vector fields

A vector field on a manifold X is a choice vx ∈ Tx for each x ∈ X. Of course,
we really want this function x→ vx to be C∞ in the appropriate sense. There
are a few ways to make this precise. For the moment, we will rely on the crutch
of coordinates. Choose an atlas

Fj : (Uj , C
∞|Uj

) ∼= (Bj , C
∞|Bj

)

then using the construction of the previous exercise, we can push the vector
field onto the ball Bj . When we expand this in the basis

dFjvx =
∑

fi(x)
∂

∂xi

we require that the components are C∞ functions. The dual notion is that of
1-form (or covector field). It is a choice of ωx ∈ T ∗x varying in a C∞ way. This
dual notion is perhaps the more fundamental of the two. Given a Ci-function
f on X, we can define df = x 7→ dfx. This is a C∞ 1-form. This allows for
a coordinate free formulation of the above notion. A vector field {vx} is C∞

exactly when the map x 7→ vx ◦ df ∈ C∞(X) for each f ∈ C∞(X).
Let T (X) and E1(X) denote the space of C∞ vector fields on X. Then U 7→

T (U) and U 7→ E1(U) are easily seen to be sheaves on X denoted by TX and E1
X

respectively. These are prototypes of sheaves of locally free C∞-modules: Each
T (U) is a C∞(U)-module, and hence a C∞(V )-module for any U ⊂ V and the
restriction T (V )→ T (U) is C∞(V )-linear. Every point has a neighbourhood U
such that are T (U) and E1(U) are free C∞(U)-modules. More specifically, if U is
a coordinate neighbourhood with coordinates x1, . . . xn, then {∂/∂x1, . . . ∂/∂xn}
and {dx1, . . . dxn} are bases for T (U) and E1(U) respectively.

These notions are usually phrased in the equivalent language of vector bun-
dles. A rank n (C∞ real, holomorphic, algebraic) vector bundle is a morphism
of C∞ or complex manifolds or algebraic varieties π : V → X such that there
exists an open cover {Ui} of X and commutatitve diagrams

φi : π−1Ui

∼=−→ Ui × kn

↘ ↙
Ui

such that pi ◦ p−1
j are linear on each fiber. Here k = R or C in the first two

cases. Given a vector bundle π : V → X, define the presheaf of sections

V (U) = {s : U → π−1U | s is C∞, π ◦ s = idU}

This is easily seen to be a sheaf of locally free modules. Conversely, we will
see in section 6.3 that every such sheaf arises this way. The vector bundle
corresponding to TX is called the tangent bundle of X.

Parallel constructions can be carried out for holomorphic (respectively reg-
ular) vector fields and forms on complex manifolds and nonsingular algebraic
varieties. The corresponding sheaf of forms will be denoted by Ω1

X .
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An explicit example of a nontrivial vector bundle is the tautological bundle.
Projective space Pn

k is the set of lines through 0 in kn+1. Let

T = {(x, l) ∈ kn+1 × Pn
k |x ∈ l}

Let P : T → Pn
k be given by projection onto the second factor. Then T is rank

one algebraic vector bundle, or line bundle, over Pn
k . When k = C this can also

be regarded as holomorphic line bundle.

Exercise 1.6.1.

1. Let S = Sn−1 ⊂ Rn denote the unit sphere. Let

TS = {(v, w) ∈ Rn × S | v · w = 0}

where · is the usual dot product. Check that the map TS → S given by the
second projection makes, TS into a rank n − 1 vector bundle. This is an
explicit model for the tangent bundle of the sphere.

2. Check that T really is an algebraic line bundle.
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Chapter 2

Generalities about Sheaves

Up to now, we have been dealing with sheaves primarily as a linguistic device; as
sets of functions with some properties. Here we want to do sheaf theory proper.

2.1 The Category of Sheaves

It will be convenient to define sheaves of things other than functions. For
instance, one might consider sheaves of equivalence classes of functions. For
this more general notion of presheaf, the restrictions maps have to be included
as part the data:

Definition 2.1.1. A presheaf P on a topological space X consists of a set P (U)
for each open set U , and maps ρUV : P (U) → P (V ) for each inclusion V ⊂ U
such that:

1. ρUU = idP (U)

2. ρV W ◦ ρUV = ρUW

We will usually write f |V = ρUV (f).

Definition 2.1.2. A presheaf P is a sheaf if for any open covering {Ui} of U ,
given fi ∈ P (Ui) satisfying fi|Ui∩Uj = fj |Ui∩Uj , there exists a unique f ∈ P (U)
with f |Ui

= fi.

Definition 2.1.3. A morphism of presheaves fU : P → P ′ is collection of
maps fU : P (U)→ P ′(U) which commute with the restrictions. A morphism of
sheaves is defined exactly in the same way.

A special case of a morphism is the notion of a subsheaf of sheaf. This
is a morphism of sheaves where each fU : P (U) ⊆ P ′(U) is an inclusion. For
example, the sheaf of C∞-funtions on Rn is a subsheaf of the sheaf of continuous
functions.
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Example 2.1.4. Given a sheaf of rings of functions R over X, and f ∈ R(X),
the map R(U)→ R(U) given multipication by f |U is a morphism.

Example 2.1.5. Let X be a C∞ manifold, then d : C∞ → E1 is a morphism
of sheaves.

We now can define the category of presheaves of abelian groups PAb(X)
on a topological space X, where we require the maps fU : P (U) → P ′(U) to
be homomorphisms. Let Ab(X) be the full subcategory of sheaves of abelian
groups on X. Let Ab denote the category of abelian groups. There are number
of functors from PAb(X) to Ab. The global section functor Γ(P ) = Γ(X, P ) =
P (X). For any x ∈ X, define the stalk Px of the presheaf P at x, as the direct
limit lim P (U) over neighbourhoods of x. Then P → Px determines a functor
from PSh(X)→ Ab.

There is a functor going backwards from PAb(X)→ Ab(X) called sheafica-
tion generalizating the previous construction.

Theorem 2.1.6. The sheafification functor P 7→ P+ has the following proper-
ties:

1. There is a canonical morphism P → P+.

2. If P is a sheaf then this morphism is an isomomorphism

3. Any morphism from P to a sheaf factors uniquely through P → P+

4. The map P → P+ induces an isomorphism on stalks.

We sketch the construction under a mild (an unnecessary assumption) that
P (X) contains at least one element, which we will call 0. The construction will
be done in two steps. First, we construct presheaf of functions, then we previous
construction to make this sheaf.

Set Y =
∏

Px. We define a morphism from P to a sheaf P ′ of Y -valued
functions as follows. There is a canonical map σx : P (U)→ Px if x ∈ U ; if x /∈ U
then send everything to 0. Then f ∈ P (U) defines a function f ′(x) = σx(f).
Let P ′(U) be the set of f ′ with f ∈ P (U). Now we define P+ = (P ′)+.

2.2 Exact Sequences

We want to point out, for those who like this sort of thing, that the category
Ab(X) is an abelian category [GM, Wl] which means, roughly speaking, that
it possesses many of the basic constructions and properties of the category of
abelian groups. In particular, there is an intrinsic notion of an exactness in this
category. We give a nonintrinsic, but equivalent, formulation of this notion. A
sequence of sheaves on X

A→ B → C

is called exact if and only if

Ax → Bx → Cx
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is exact for every x ∈ X.

Lemma 2.2.1. Let f : A → B and g : B → C, then A → B → C is exact if
and only if for any open U ⊆ X

1. gU ◦ fU = 0.

2. Given b ∈ B(U) with g(b) = 0, there exists an open cover {Ui} of U and
ai ∈ A(Ui) such that f(ai) = b|Ui

.

Proof. We will prove one direction. Suppose that A→ B → C is exact. Given
a ∈ A(U), g(f(a)) = 0, since g(f(a))x = g(f(ax)) = 0 for all x ∈ U .

For each x ∈ U , bx is the image of a germ in A at x. Choose a representative
for this germ in some A(Ux) where Ux is a neighbourhood of x.

Corollary 2.2.2. If A(U)→ B(U)→ C(U) is exact for every open set U , then
A→ B → C is exact.

The converse is false, but we do have:

Lemma 2.2.3. If
0→ A→ B → C → 0

is an exact sequence of sheaves, then

0→ A(U)→ B(U)→ C(U)

is exact for every open set U .

Proof. Let f : A→ B and g : B → C denote the maps. By lemma 2.2.1,g◦f = 0.
Suppose a ∈ A(U) maps to 0 under f , then f(ax) = f(a)x = 0 for each x ∈ U .
Therefore ax = 0 for each x ∈ U , and this implies that a = 0.

Suppose b ∈ B(U) satisfies g(b) = 0. Then by lemma 2.2.1, there exists an
open cover {Ui} of U and ai ∈ A(Ui) such that f(ai) = b|Ui

. Then f(ai−aj) = 0,
which implies ai − aj = 0 by the first part. Therefore ai − aj patch together to
yield an element of A(U).

Example 2.2.4. Let X denote the circle S1 = R/Z. Then

0→ RX → C∞
X

d−→ E1
X → 0

is exact. However C∞(X)→ E1(X) is not surjective.

To see the first statement, let U ⊂ X be an open set diffeomorphic to an
open interval. Then the sequence

0→ R→ C∞(U)
f→f ′−→ C∞(U)dx→ 0

is exact by calculus. Thus one gets exactness on stalks. For the second, note
that the constant form dx is not the differential of a periodic function.
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Example 2.2.5. Let (X,OY ) be C∞ or complex manifold or algebraic variety
and Y ⊂ X a submanifold or subvariety. Let

IY (U) = {f ∈ OX(U) | f |Y = 0}

then
0→ IY → OX → OY → 0

is exact. Example 1.2.10 shows that OX(X)→ OY (X) need not be surjective.

Given a sheaf S and a subsheaf S′ ⊆ S, we can define a new presheaf with
Q(U) = S(U)/S′(U) and restriction maps induced from S. In general, this is
not a sheaf.

Exercise 2.2.6.

1. Finish the proof of lemma 2.2.1.

2. Give an example of a subsheaf S′ ⊆ S, where Q(U) = S(U)/S′(U) fails to
be a sheaf. Check that

0→ S′ → S → S/S′ → 0

is an exact sequence of sheaves.

3. Given a morphism of sheaves f : S → S′, define ker f to be the subpresheaf
of S with ker f(U) = ker[fU : S(U)→ S′(U)]. Check that ker f is a sheaf,
and check that (ker f)x

∼= ker[Sx → S′x].

2.3 The notion of a scheme

A scheme is a massive generalization of the notion of an algebraic variety due to
Grothendieck. We will give only the basic flavour of the subject. The canonical
reference is [EGA]. Hartshorne’s book [H] has become the standard introduction
to these ideas for a more most people.

Let R be a commutative ring. Let SpecR denote the set of prime ideals of
R. For any ideal, I ⊂ R, let

V (I) = {p ∈ SpecR | I ⊆ p}.

Lemma 2.3.1. 1. V (IJ) = V (I) ∪ V (J).

2. V (
∑

Ii) = ∩i V (Ii),

As a corollary, it follows that the sets of the form V (I) form the closed
sets of a topology on Spec R called the Zariski topology. Note that when R is
the coordinate ring of an affine variety Y over an algebraically closed field k.
The Hilbert Nullstellensatz shows that any maximal ideal of R is of the form
my = {f ∈ R | f(y) = 0} for a unique y ∈ Y . Thus we can embed Y into Spec R
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by sending y to my. Under this embedding V (I) pulls back to the algebraic
subset

{y ∈ Y | f(y) = 0, ∀f ∈ I}

Thus this notion of Zariski topologu is an extension of the classical one.
A basis is the Zariski topology on X = Spec R is given by D(f) = X−V (f).

Thus any open set U ⊂ X is a union of such sets. Define

OX(U) = lim
→

R[
1
f

]

When R is an integral domain with fraction field K, OX(U) ⊂ K consists of the
elements r such that for any p ∈ U , r = g/f with f /∈ p. This remark applies,
in particular, to the case where R is the coordinate ring of an algebraic variety
Y . In this case, OX(U) can be identified with the ring of regular functions on
U ∩ Y under the above embedding.

Lemma 2.3.2. OX is a sheaf of commutative rings such that OX,p
∼= Rp for

any p ∈ X.

Proof. We give the proof in the special case where R is a domain. This implies
that X is irreducible, i. e. any two nonempty open sets intersect, because

D(gi) ∩D(gj) = D(gigj) 6= ∅

if gi 6= 0. Consequently the constant presheaf KX with values in K is already a
sheaf. OX is a subpresheaf of KX . Let U = ∪Ui be a union of nonempty open
sets, and fi ∈ OX(Ui). Then fi = fj as elements of K. Call the common value
f . Since p ∈ U lies in some Ui, f can be written as a fraction with denominator
in R− p. Thus f ∈ OX(U), and this shows that OX is a sheaf.

One sees readily that the stalk OX,p is the subring of K of fractions where
the denominator can be chosen in R− p. Thus OX,p

∼= Rp.

The pair (X,OX) is called the affine scheme associated to R. A scheme
consists of a topological space together with a sheaf of rings which is locally
isomorphic to an affine scheme. We have seen how to associate an affine scheme
to an affine variety. More generally, given a (pre)variety Y over a field k, there
exists a scheme X and embedding Y ↪→ X such that OX restricts to the sheaf
of regular functions on Y . In particular, all the information about Y can be
recovered from X. At this point, one can redefine the varieties as special kinds
of schemes. We will take up these ideas again in section 16.1.

2.4 Toric Varieties

Toric varieties are an interesting class of varieties that are explicitly constructed
by gluing of affine schemes. The beauty of the subject stems from the inter-
play between the algebraic geometry and the combinatorics. See [F] for further
information (including an explanation of the name).
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To simplify our discussion, we will consider only two dimensional examples.
Let 〈, 〉 denote the standard inner product on R2. A cone in R2 is subset of the
form

σ = {t1v1 + t2v2 | ti ∈ R, ti ≥ 0}

It is called rational if the vectors vi, called generators, can be chosen in Z2,
and strongly convex if the angle between the generators is less than 180o. If the
generators are nonzero and coincide, σ is called a ray. The dual cone can be
defined by

σ∨ = {v | 〈v,w〉 ≥ 0,∀w ∈ σ}

This is rational and spans R2 if σ is rational and strongly convex. Fix a field
k. For each rational strongly convex cone σ, define Sσ to be the subspace of
k[x, x−1, y, y−1] spanned by xmyn for all (m,n) ∈ σ∨ ∩ Z2. This easily seen
to be a finitely generated subring. The affine toric variety associated to σ is
X(σ) = Spec Sσ.

A fan ∆ in R2 is a finite collection of nonoverlapping rational strongly convex
cones.

���� ���� ����
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����
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����

����

σ

σ
1

2

Let {σi} be the collection of cones of ∆. Any two cones interest in a ray or
in the cone {0}. The maps Sσi

→ Sσi∩σj
are localizations at single elements.

Thus the induced maps

ιij : X(σi ∩ σj)→ X(σi)

are inclusions of open sets. We define X = X(∆) as a topological space by
taking the disjoint union of X(σi) modulo the equivalence relation generated by
ιij(x) ∼ ιji(x) for all x ∈ X(σi ∩ σj). A sheaf of rings OX can be constructed
so that it restricts to OX(σi). This turns out to be a variety.

In the example pictured above σ1 and σ2 are generated by (0, 1), (1, 1) and
(1, 0), (1, 1) respectively. The varieties

X(σ1) = Spec k[x, x−1y] = Spec k[x, t]

X(σ2) = Spec k[y, xy−1] = Spec k[y, s]

are both isomorphic to the affine plane. These can be glued by identifying (x, t)
in the first plane with (y, s) = (xt, t−1) in the second. We will see this example
again in a different way. It is the blow up of A2 at (0, 0).

Exercise 2.4.1.
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1. Show that the toric variety corresponding to the fan:

(1,0)

(0,1)

(−1, −1)

σ

σ

σ

1

2

3

is P2

2.5 Sheaves of Modules

Let R be a sheaf of commutative rings over a space X. The pair (X,R) is called
a ringed space (generalizing the notion of section 1.2). A sheaf of R-modules or
simply an R-module is a sheaf M such that each M(U) is an R(U)-module and
the restrictions M(U)→M(V ) are M(U)-linear. The sheaves form a category
R-Mod where the morphisms are morphisms of sheaves A→ B such that each
map A(U) → B(U) is R(U)-linear. This is an fact an abelian category. The
notion of exactness in this category coincides with the notion introduced in
section 2.2.

We have already seen a number of examples in section 1.6. Here are some
more:

Example 2.5.1. Let R be a commutative ring, and M an R-module. Let X =
SpecR. Let M̃(U) = M ⊗R OX(U). This is an OX-module. Such a module is
called quasi-coherent.

It will useful to observe:

Lemma 2.5.2. The functor M → M̃ is exact.

Proof. This follows from the fact that OX(U) is a flat R-module.

Example 2.5.3. The sheaf IY introduced in example 2.2.5 is an OX-module.
It is called an ideal sheaf.

Most standard linear algebra operations can be carried over to modules.

Definition 2.5.4. Given a two R-modules M and N , their direct sum is the
sheaf U 7→M(U)⊕N(U).
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Definition 2.5.5. The dual M∗ of a R-module M is the sheaf associated to
U 7→ HomR(U)(M(U),R(U)).

For example the sheaf of 1-forms on a manifold is the dual of the tangent
sheaf.

Definition 2.5.6. Given two R-modules M and N , their tensor product is the
sheaf associated to U 7→M(U)⊗R(U) N(U).

Given a module M over a commutative ring R, recall that the exterior al-
gebra ∧∗M (respectively symmetric algebra S∗M) is the quotient of the free
associative algebra with multiplication ∧ (resp. ·) by the two sided ideal gen-
erated m ∧ m (resp. (m1 · m2 − m2 · m1)). ∧kM (SkM) is the submodule
generated by products of k elements. If V is a finite dimensional vector space,
∧kV ∗ (SkV ∗) can be identified with the set of alternating (symmetric) multilin-
ear forms on V in k-variables. After choosing a basis for V , one sees that SkV ∗

are degree k polynomials in the coordinates.

Definition 2.5.7. When M is an R-module, the kth exterior power ∧kM is
sheaf associated to U 7→ ∧kM(U) When X is manifold the sheaf of k-forms is
Ek

X = ∧kE1
X .

Definition 2.5.8. A module M is locally free (of rank n) if for every point has
a neighbourhood U , such that M |U is isomorphic to a finite (n-fold) direct sum
R|U ⊕ . . .⊕R|U

Given an R-module M over X, the stalk Mx is an Rx-module for any x ∈ X.
If M is locally free, then each stalk is free of finite rank. Note that the converse
may fail.

As noted in section 1.6, locally free sheaves arise from vector bundles. Let T
be the tautological line bundle on projective space P = Pn

k over an algebraically
closed field k. The sheaf of regular sections is denoted by OP(−1) = OPn

k
(−1).

OP(1) is the dual and

OP(m) =

 SmO(1) = O(1)⊗ . . . O(1) (m times) if m > 0
OP if m = 0
S−mO(−1) = O(−m)∗ otherwise

Let V = kn+1. By construction T ⊂ V × Pn, so OP(−1) is a subsheaf of the
n+1-fold sum OP⊕. . .⊕OP which can be expressed more canonically as V ⊗kOP.
Dualizing, gives

V ∗ ⊗OP → OP(1)→ 0

Taking symmetric powers gives a map, in fact an epimorphism

SmV ∗ ⊗OP → OP(m)→ 0

when m ≥ 0. Taking global sections gives maps

SmV ∗ → SmV ∗ ⊗ Γ(OP)→ Γ(OP(m))
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We will see later that these maps are isomorphisms. Thus the global sections of
OP(m) are homogenous degree m polynomials in the homogeneous coordinates
of m.

Exercise 2.5.9.

1. Show that the stalk of M̃ at p is precisely the localization Mp.

2. Show that direct sums, tensor products, exterior, and symmetric powers
of locally free sheaves are locally free.

2.6 Direct and Inverse images

Given any subset S ⊂ X of a topological space and a presheaf F , define

F(S) = lim
→
F(U)

as U ranges over all open neigbourhoods of S. If S is point, this is just the
stalk.

Let F : X → Y be a continous map of topological spaces. Given a sheaf A
on X, define the the direct image sheaf F∗A on Y by F∗A(U) = A(F−1U) with
obvious restrictions. If B is a sheaf on Y , define F−1B(V ) = B(F (V )). (The
lack of symmetry in the notation will be fixed in a moment.) These operations
are clearly functors f∗ : Ab(X) → Ab(Y ) and f−1 : Ab(Y ) → Ab(X). The
relationship is given by the adjointness property:

Lemma 2.6.1. There is a natural isomorphism

HomAb(X)(f−1A,B) ∼= HomAb(Y )(A, f∗B)

Given a morphism F of k-spaces (X,R) → (Y,S) (section 1.2), we get a
morphism of sheaves rings S → F∗R given by f 7→ f ◦ F . More generally,
we can define a morphism of ringed spaces to be a continuous map together
a morphism of rings S → F∗R. Let f−1S → R be the adjoint map. Given
an R-module M , f∗M is naturally an f∗R-module, and hence an S-module by
restriction of scalars. Similarly given an S-module N , f−1N is naturally an
f−1S-module. We define the R-module

f∗N = R⊗f−1S f−1N

The inverse image of a locally sheaf is locally free. This has an an interpre-
tation in the context of vector bundles 1.6. If π : V → Y is a vector bundle,
then the vector bundle f∗V → X can be defined in the context of manifolds or
varieties. Set theoretically, it is the projection

f∗V = {(v, x) |π(v) = f(x)} → X

Then
f∗(sheaf of sections of V ) = (sheaf of sections of f∗V )
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Exercise 2.6.2.

1. Check that f∗A and f−1B are really sheaves.

2. Prove lemma 2.6.1.

3. Generalize lemma 2.2.3 to show that an exact sequence 0 → A → B →
C → 0 of sheaves gives rise to an exact sequence 0→ f∗A→ f∗B → f∗C.
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Chapter 3

Sheaf Cohomology

In this chapter, we give a rapid introduction to sheaf cohomology. It lies at the
heart of everything else in these notes.

3.1 Flabby Sheaves

A sheaf F on X is called flabby (or flasque) if the restriction maps F(X)→ F(U)
are surjective for any nonempty open set. Their importance stems from the
following:

Lemma 3.1.1. If 0 → A → B → C is an exact sequence of sheaves with A
flabby, then B(X)→ C(X) is surjective.

Proof. We will prove this by the no longer fashionable method of transfinite
induction1. Let γ ∈ C(X). By assumption, there is an open cover {Ui}i∈I ,
such that γ|Ui lifts to a section βi ∈ B(Ui). By the well ordering theorem, we
can assume that the index set I is the set of ordinal numbers less than a given
ordinal κ. We will define

σi ∈ B(∪j<iUj)

inductively, so that it maps to the restriction of γ. Set σ1 = β0. If σi exists, let
αi be an extension of βi − σi to A(X). Then set σi+1 to be σi on the Uj , j < i,
and βi − αi|Ui

on Ui. If i is a limit (non-successor) ordinal, then the previous
σ’s patch to define σi. Then σκ is a global section of B mapping to γ.

Corollary 3.1.2. The sequence 0 → A(X) → B(X) → C(X) → 0 is exact if
A is flabby.

Example 3.1.3. Let X be a space with the property that any open set is con-
nected (e.g. X is irreducible). Then any constant sheaf is flabby.

1For most cases of interest to us, X will have a countable basis, so ordinary induction will
suffice
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Let F be a presheaf, define the presheaf G(F) by

U 7→
∏
x∈U

Fx

with the obvious restrictions. There is a canonical morphism F → G(F).

Lemma 3.1.4. G(F) is a flabby sheaf, and the morphism is F → G(F) is a
monomorphism if F is a sheaf.

Lemma 3.1.5. G and Γ ◦G are exact functors on the category of sheaves i. e.
they preserves exactness.

Exercise 3.1.6.

1. Find a proof of lemma 3.1.1 which uses Zorn’s lemma.

2. Prove that the sheaf of bounded continous real valued functions on R is
flabby

3. Prove the same thing for the sheaf of bounded C∞ functions on R.

4. Prove that if 0→ A→ B → C is exact and A is flabby, then 0→ f∗A→
f∗B → f∗C → 0 is exact for any continuous map f .

3.2 Cohomology

Define C0(F) = F , C1(F) = coker[F → G(F)] and Cn+1(F) = C1Cn(F).
Now cohomology can be defined by:

H0(X,F) = Γ(X,F)
H1(X,F) = coker[Γ(X, G(F))→ Γ(X, C1(F))]

Hn+1(X,F) = H1(X, Cn(F))

Hi(X,−) is clearly a functor from Ab(X)→ Ab. Another basic property is
the following which says in effect that these form a “delta functor” [Gr, H].

Theorem 3.2.1. Given an exact sequence of sheaves

0→ A→ B → C → 0,

there is a long exact sequence

0→ H0(X, A)→ H0(X, B)→ H0(X, C)→

H1(X, A)→ H1(X, B)→ H1(X, C)→ . . .

First we need:
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Lemma 3.2.2. There is a commutative diagram with exact rows

0 0 0
↓ ↓ ↓

0 → A → B → C → 0
↓ ↓ ↓

0 → G(A) → G(B) → G(C) → 0
↓ ↓ ↓

0 → C1(A) → C1(B) → C1(C)

Proof. By lemma 3.1.5, there is a commutative diagram with exact rows

0 0 0
↓ ↓ ↓

0 → A → B → C → 0
↓ ↓ ↓

0 → G(A) → G(B) → G(C) → 0

The snake lemma [AM, GM] (which holds in any abelian category) gives the
rest.

Proof. From the previous lemma and lemmas 2.2.3 and 3.1.5, we get a commu-
tative diagram with exact rows:

0 → Γ(G(A)) → Γ(G(B)) → Γ(G(C)) → 0
↓ ↓ ↓

0 → Γ(C1(A)) → Γ(C1(B)) → Γ(C1(C))

From the snake lemma, we obtain a 6 term exact sequence

0→ H0(X, A)→ H0(X, B)→ H0(X, C)

→ H1(X, A)→ H1(X, B)→ H1(X, C)

Repeating this with A replaced by C1(A), C2(A) . . . allows us to continue this
sequence indefinitely.

Corollary 3.2.3. B(X)→ C(X) is surjective if H1(X, A) = 0.

Exercise 3.2.4.

1. If F is flabby prove that Hi(X,F) = 0 for i > 0. (Prove this for i = 1,
and that F flabby implies that C1(F) is flabby.)

3.3 Soft sheaves

Up to now, the discussion has been abstract. In this section, we will actually
do some computations. We first need to introduce a class of sheaves which are
similar to flabby sheaves, but much more plentiful. We assume through out this
section that X is a metric space although the results hold under the weaker
assumption of paracompactness.
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Definition 3.3.1. A sheaf F is called soft if the map F(X)→ F(S) is surjective
for all closed sets.

Lemma 3.3.2. If 0 → A → B → C is an exact sequence of sheaves with A
soft, then B(X)→ C(X) is surjective.

Proof. The proof is very similar to the proof of 3.1.1. We just indicate the
modifications. We can assume that the open cover {Ui} consists of open balls.
Let {Vi} be a new open cover where we shrink the radii of each ball, so that
V̄i ⊂ Ui. Define

σi ∈ B(∪j<iV̄j)

inductively as before.

Corollary 3.3.3. If A and B are soft then so is C.

One trivially has:

Lemma 3.3.4. A flabby sheaf is soft.

Lemma 3.3.5. If F is soft then Hi(X,F) = 0 for i > 0.

Proof. Lemma 3.3.2 H1(F) = 0. Lemma 3.3.4 implies that Ci(F) is soft, hence
Hi(F) = 0.

Theorem 3.3.6. The sheaf CR of continuous real valued functions on a metric
space X is soft.

Proof. Suppose S is closed subset and f : U → R a real valued continuous
function defined in a neighbourhood of S. We have to extend the germ of f to
X. Let d denote the metric. We extend this to a fuction d(A,B) on pairs of
subsets A,B ⊆ X by taking the inf over all d(a, b) with a ∈ A and b ∈ B. Let
S′ = X − U and let

g(x) =
{

d(x, S′)/ε if d(x, S′) < ε
1 otherwise

where ε = d(S, S′)/2. Then gf extends by 0 to a continous function on X.

Note that CR is almost never flabby. We get many more examples of soft
sheaves with the following.

Lemma 3.3.7. Let R be a soft sheaf of rings, then any R-module is soft.

Proof. The basic strategy is the same as above. Let f be section of anR-module
define in the neighbourhood of a closed set S, and let S′ be the complement
of this neighbourhood . Since R is soft, the section which is 1 on S and 0 on
S′ extends to a global section g. Then gf extends to a global section of the
module.

U ⊂ C denote the unit circle, and let e : R → U denote the normalized
exponential e(x) = exp(2πix). Let us say that X is locally simply connected if
every neighbourhood of every point contains a simply connected neighbourhood.
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Lemma 3.3.8. If X is locally simply connected, then the sequence

0→ ZX → CR
e−→ CU → 1

is exact.

Lemma 3.3.9. If X is simply connected and locally simply connected, then
H1(X, ZX) = 0.

Proof. Since X is simply connected, any continuous map from X to U can be
lifted to a continuous map to its universal cover R. In other words, CR(X)
surjects onto CU (X). Since CR is soft, lemma 3.3.8 implies that H1(X, ZX) =
0.

Corollary 3.3.10. H1(Rn, Z) = 0.

Exercise 3.3.11.

1. Check that the sheaf C∞ functions on Rn is soft.

3.4 Mayer-Vietoris sequence

We will introduce a basic tool for computing cohomology groups which is prelude
to Cech cohomology. Let U ⊂ X be open. For any sheaf, we want to define
natural restriction maps Hi(X,F) → Hi(U,F). If i = 0, this is just the usual
restriction. For i = 1, we have a commutative square

Γ(X, G(F)) → Γ(X, C1(F))
↓ ↓

Γ(U,G(F)) → Γ(U,C1(F))

which induces a map on the cokernels. In general, we use induction.

Theorem 3.4.1. Let X be a union to two open sets U ∪ V , then for any sheaf
there is a long exact sequence

. . .Hi(X,F)→ Hi(U,F)⊕Hj(V,F)→ Hi(U ∩ V,F)→ Hi+1(X,F) . . .

where the first indicated arrow is the sum of the restrictions, and the second is
the difference.

Proof. The proof is very similar to the proof of theorem 3.2.1, so we will just
sketch it. Construct a diagram

0 → Γ(X, G(F)) → Γ(U,G(F))⊕ Γ(V,G(F)) → Γ(U ∩ V,G(F)) → 0
↓ ↓ ↓

0 → Γ(X, C1(F)) → Γ(U,C1(F))⊕ Γ(V,C1(F)) → Γ(U ∩ V,C1(F))

and apply the snake lemma to get the sequence of the first 6 terms. Then repeat
with Ci(F) in place of F .
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Exercise 3.4.2.

1. Use Mayer-Vietoris to prove that H1(S1, Z) ∼= Z.

2. Show that H1(Sn, Z) = 0 if n ≥ 2.
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Chapter 4

De Rham’s theorem

In this chapter, we apply the machinery of the last section to the study of C∞

manifolds.

4.1 Acyclic Resolutions

A complex of abelian groups (or more generally elements in an abelian category)
is a possibly infinite sequence

. . . F i di

−→ F i+1 di+1

−→ . . .

of groups an homomorphisms satisfying di+1di = 0. These condtions guarantee
that image(di) ⊆ ker(di+1). We denote a complex by F • and we often suppress
the indices on d. The cohomology groups of F • are defined by

Hi(F •) ∼=
ker(di+1)
image(di)

For example, an exact sequence is a complex where the groups are zero.
The connection, between this notion of cohomology and the previous one

will be established shortly. A sheaf F is called acyclic if Hi(X,F) = 0 for all
i > 0. An acyclic resolution of F is a exact sequence

0→ F → F0→F1→ . . .

of sheaves such that each F i is acyclic. Given the a complex, the sequence

Γ(X,F0)→ Γ(X,F1)→ . . .

need not be exact, however it is necessarily a complex by functoriallity.

Theorem 4.1.1. Given an acyclic resolution of F as above,

Hi(X,F) ∼= Hi(Γ(X,F•))
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Proof. Let K−1 = F and Ki = ker(F i+1 → F i+2). Then there are exact
sequences

0→ Ki−1 → F i → Ki → 0

Since F i are acyclic, theorem 3.2.1 implies that

0→ H0(Ki−1)→ H0(F i)→ H0(Ki)→ H1(Ki−1)→ 0 (4.1)

is exact, and
Hj(Ki) ∼= Hj+1(Ki−1) (4.2)

for j > 0. The sequences (4.1) leads to a commutative diagram

H0(Ki−1) //___ H0(F i) //

%%JJJJJJJJJ
H0(F i+1)

H0(Ki)

99r
r

r
r

r

where the dashed arrows are injective. Therefore

H0(Ki−1) ∼= ker[H0(F i)→ H0(F i+1)]

This already implies the first case of the theorem when i = 0. This isomorphism
together with the sequence (4.1) implies that

H1(Ki−1) ∼=
ker[H0(F i+1)→ H0(F i+2)]

image[H0(F i)]

Combining this with the isomorphisms

Hi+1(K−1) ∼= Hi(K0) ∼= . . .H1(Ki−1)

of with (4.2) finishes the proof.

4.2 De Rham’s theorem

Let X be a C∞ manifold and Ek = Ek
X the sheaf of k-forms. Note that E0 = C∞.

Theorem 4.2.1. There exists canonical maps d : Ek(X) → Ek+1(X), called
exterior derivatives, satisfying the following

1. d : E0(X)→ E1(X) is the operation introduced in section 1.6.

2. d2 = 0.

3. d(α ∧ β) = dα ∧ β + (−1)iα ∧ dβ for all α ∈ E i(X), β ∈ Ej(X).
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Proof. A complete proof can be found in almost any book on manifolds (e.g.
[Wa]). We will only sketch the idea. When X is a ball in Rn with coordinates
xi, one sees that there is a unique operation satisfying the above rules given by

d(fdxi1 ∧ . . . ∧ dxik
) =

∑
j

∂f

∂xj
dxj ∧ dxi1 ∧ . . . dxik

This applies to any coordinate chart. By uniqueness, these local d’s patch.

When X = R3, d can be realized as the div, grad, curl of vector calculus. The
theorem tells that E•(X) forms a complex. We define the De Rham cohomology
groups (actually vector spaces) as

Hk
dR(X) = Hk(E•(X))

Notice that the exterior derivative is really a map of sheaves d : Ek
X → E

k+1
X

satisfying d2 = 0. Thus we have complex. Moreover, RX is precisely the kernel
of d : E0

X → E1
X .

Theorem 4.2.2. The sequence

0→ RX → E0
X → E1

X . . .

is an acyclic resolution of RX .

Corollary 4.2.3 (De Rham’s theorem).

Hk
dR(X) ∼= Hk(X, R)

The theorem makes two seperate assertions, first that the complex is exact,
then that the sheaves Ek are acyclic. The exactness follows from:

Theorem 4.2.4 (Poincaré’s lemma). For all n and k > 0,

Hk(Rn) = 0.

Proof. Assume, by induction, that the theorem holds for n − 1. Identify Rn−1

the hyperplane x1 = 0. Let I be the identity and R : Ek(Rn) → Ek(Rn) be
restriction to this hyperplane. Note that R commute with d. So if α ∈ Ek(Rn)
is closed which means that dα = 0. Then dRα = Rdα = 0. By the induction
assumption, Rα is exact which means that it lies in the image of d.

For each k, define a map h : Ek(Rn)→ Ek−1(Rn) by

h(f(x1, . . . xn)dx1 ∧ dxi2 ∧ . . .) = (
∫ x1

0

fdx1)dxi2 ∧ . . .

and
h(fdxi1 ∧ dxi2 ∧ . . .) = 0

if 1 /∈ {i1, i2, . . .}. Then one checks that dh + hd = I − R (in other words,
h is homotopy from I to R). Given α ∈ Ek(Rn) satisfying dα = 0. We have
α = dhα + Rα. Which by the above remarks is exact.
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Corollary 4.2.5. The sequence of theorem 4.2.2 is exact.

Proof. Any ball is diffeomorphic to Euclidean space, and any point on a manifold
has a fundamental system of such neigbourhoods. There the sequence is exact
on stalks.

To prove that the sheaves Ek are acyclic, it’s enough to establish the follow-
ing.

Lemma 4.2.6. E0 is soft.

In later, we will work with complex valued differential forms. Essentially the
same argument shows that H∗(X, C) can be computed using such forms.

Exercise 4.2.7.

1. We will say that a manifold is of finite type if it has a finite open cover
{Ui} such that any nonempty intersection of the Ui are diffeomorphic to
the ball. Compact manifolds are known to have finite type [Spv, pp 595-
596]. Using Mayer-Vietoris and De Rham’s theorem, prove that if X is an
n-dimensional manifold of finite type, then Hk(X, R) vanishes for k > n,
and is finite dimensional otherwise.

4.3 Poincaré duality

Let X be an C∞ manifold. Let Ek
c (X) denote the set of C∞ k-forms with

compact support. Since dEk
c (X) ⊂ Ek+1

c (X), we can define compactly supported
de Rham cohomology by

Hk
cdR(X) = Hk(E•c (X)).

Lemma 4.3.1. For all n,

Hk
cdR(Rn) =

{
R if k = n
0 otherwise

The computation for Euclidean space suggests that these groups are some
opposite to the usual ones. The precise statement, in general, requires the
notion of orientation. An orientation on an n dimensional real vector space
V is a connected component of ∧nV − {0}. This component serves to tells
when an ordered basis v1, . . . vn is positively oriented; it is if v1 ∧ . . . vn lies in
this component. An orientation on an n dimensional manifold X is a choice of
connected of ∧nTX minus the zero section.

Theorem 4.3.2. Let X be an oriented n-dimensional manifold. Then

Hk
cdR(X) ∼= Hn−k(X, R)∗
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With the same notation as above, let Ck(U) = En−k
c (U)∗ for any open set

U ⊂ X. Given V ⊂ U , α ∈ Ck(U), β ∈ Ek(V ), let α|V (β) = α(β̃) where β̃ is
the extension of β by 0. This makes Ck a presheaf.

Lemma 4.3.3. Ck is a sheaf.

Proof. Let {Ui} be an open cover of U , and αi ∈ Ck(Ui). Let {ρi} be a C∞

partition of unity subordinate to {Ui}. Then define α ∈ Ck(U) by

α(β) =
∑

i

αi(ρiβ)

Suppose that β ∈ Ek
c (Uj) is extended by 0 to U . Then ρiβ will be supported in

Ui ∩ Uj . Consequently, αi(ρiβ) = αj(ρiβ). Therefore

α(β) = αj(
∑

i

ρiβ) = αj(β).

Define a map δ : Ck(U)→ Ck+1(U) by δ(α)(β) = α(dβ). One automatically
has δ2 = 0. Thus one has a complex of sheaves.

The final ingredient is existence of the integral.

Theorem 4.3.4. Let X be an oriented n-dimensional manifold. There exists a
linear map

∫
X

: En
c (X)→ R such that

∫
X

dβ = 0.

The details can be found in several places such as [Wa]. The last statement
is a special case of Stoke’s theorem on a manifold. In essence, the construc-
tion is similar to the proof of the previous lemma. Using a partition of unity
subordinate to an atlas one expresses∫

X

β =
∫

X

(
∑

i

ρiβ)

The right hand itegrals can be expressed in local coordinates in Euclidean space.
The orientation is necessary in order to guarantee that these Euclidean integrals
are chosen with a consistent sign.

We define a map RX → C0 induced by the map from the constant presheaf
sending r → r

∫
X

. Then theorem 4.3.2 follows from

Lemma 4.3.5.
0→ RX → C0 → C1 → . . .

is an acyclic resolution.

Proof. Lemma 4.3.1 implies that this complex is exact. The sheaves Ck are soft
since they are C∞-modules.
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We can now use this complex to compute the cohomology of RX to get

Hi(X, R) ∼= Hi(C•(X)) = Hi(E•c (X)∗)

and one sees more or less immediately that the right hand space is isomorphic
to Hi

cdR(X, R)∗. This completes the proof of the theorem.

Corollary 4.3.6. If X is a compact oriented n-dimensional manifold. Then

Hk(X, R) ∼= Hn−k(X, R)∗

The following is really a corollary of the proof.

Corollary 4.3.7. If X is a connected oriented n-dimensional manifold. Then
the map α 7→

∫
X

α induces an isomorphism (denoted by same symbol)∫
X

: Hn
cdR(X, R) ∼= R

From now on, let us suppose that X is compact connected oriented n di-
mensional manifold. We can make the duality isomorphism much more explicit.
The de Rham cohomology is a graded ring with multplication denoted by ∪. If
α and β are closed (i. e. lie in the kernel of d), then so is α∧β by theorem 4.2.1.
If [α] and [β] denote the classes in H∗

dR(X) represented by these forms, then
define [α]∪ [β] = [α∧ β]; this is well defined. The following will be proved later
on (cor. 7.2.2):

If f ∈ Hn−i(X, R)∗, then there exists a unique α ∈ Hi(X, R) such that
f(β) =

∫
X

α ∪ β.

4.4 Fundamental class

Let Y ⊂ X be a closed connected oriented m dimensional manifold. Denote the
inclusion by i. There is a natural restriction map

i∗ : Ha(X, R)→ Ha(Y, R)

induced by restriction of forms. Using Poincaré duality we get a map going in
the opposite direction

i! : Ha(Y, R)→ Ha+n−m(X, R)

called the Gysin map. We want to make this more explicit. But first, we need:

Theorem 4.4.1. There exists an open neigbourhood T , called a tubular neig-
bourhood, of Y in X and a π : T → Y which makes T a locally trivial rank
(n−m) real vector bundle over Y .

Proof. See [Spv, p. 465].
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We can factor i! as a composition

Ha(Y )→ Ha+n−m
cdR (T )→ Ha+n−m(X)

where the first map is the Gysin map for the inclusion Y ⊂ T and the second is
extension by zero. The first map is an isomorphism since it is dual to

Hm−a(T )
∼=→ Hm−a

cdR (Y )

Let 1Y denote constant function 1 on Y . This is the natural generator for
H0(Y, R). The Thom class τY of T is the image of 1Y under the isomorphism
H0(Y )→ Hn−m

cdR (T ). τY can be reprsented by any closed compactly supported
n −m form on T whose integral along any fiber is 1. It is possible to choose
a neighbourhood U of a point of Y with local coordinates xi, such that Y is
given by xm+1 = . . . xn = 0 and π is given by (x1, . . . xn) 7→ (x1, . . . xm). The
restriction map

Hi
cdR(T )→ Hi−n−m(U)⊗Hn−m

cdR (Rn−m)

is an isomorphism. Therefore the Thom class can be represented by an expres-
sion

f(xm+1, . . . xn)dxm+1 ∧ . . . dxn

where f is compactly supported in Rn−m.
The image of τY in Hn−m(X, R) is called the fundamental class [Y ] of Y .

The basic relation is given by∫
Y

i∗α =
∫

X

[Y ] ∪ α (4.3)

Let Y, Z ⊂ X be oriented submanifolds such that dimY + dimZ = n. Then
[Y ]∪ [Z] ∈ Hn(X, R) ∼= R corresponds to a number Y ·Z. This has a geometric
interpretation. We say that Y and Z are transverse if Y ∩ Z is finite and
if TY,p ⊕ TZ,p = TX,p for each p in the intersection. Choose ordered bases
v1(p), . . . vm(p) ∈ TY,p and vm+1(p) . . . vn(p) ∈ TZ,p which are positively oriented
with respect to the orientations of Y and Z. We define the intersection number

ip(Y, Z) =
{

+1 if v1(p) . . . vn(p) is positively oriented
−1 otherwise

This is easily seen to be independent of the choice of bases.

Proposition 4.4.2. Y · Z =
∑

p ip(Y, Z)

Proof. Choose tubular neighbourhoods T of Y and T ′ of Z. These can be chosen
“small enough” so that T ∩ T ′ is a union of disjoint neighbourhoods around Up

each p ∈ Y ∩ Z diffeomorphic to Rn = Rdim Y × Rdim Z Then

Y · Z =
∫

X

τY ∧ τZ =
∑

p

∫
Up

τY ∧ τZ
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Choose coordinates x1, . . . xn around p so that Y is given by xm+1 = . . . xn = 0
and Z by x1 = . . . xm = 0. Then as above, the Thom classes of T and T ′ can
be written as

τY = f(xm+1, . . . xn)dxm+1 ∧ . . . dxn

τZ = g(x1, . . . xm)dx1 ∧ . . . dxm

Fubini’s theorem gives ∫
Up

τY ∧ τZ = ip(Y, Z)

4.5 Examples

We look as some basic examples to illustrate the previous ideas. Let T = Rn/Zn.
Let {ei} be the standard basis, and xi be coordinates on Rn. Then

Proposition 4.5.1. Every de Rham cohomology class on T contains a unique
form with constant coefficients.

We will postpone the proof until section 7.2.

Corollary 4.5.2. There is an algebra isomorphism H∗(T, R) ∼= ∧∗Rn

Since T is a product of circles, this also follows from repeated application of
the Künneth formula:

Theorem 4.5.3. Let X and Y be C∞ manifolds, and let p : X × Y → X and
q : X × Y → Y be the the projections. Then the map∑

αi ⊗ βj 7→
∑

αi ∧ βj

induces an isomorphism⊕
i+j=k

Hi(X, R)⊗Hj(Y, R) ∼= Hk(X × Y, R)

On the torus, Poincaré duality becomes the standard isomorphism

∧kRn ∼= ∧n−k ∧ Rn.

If VI ⊂ Rn is the span of {ei | i ∈ I}, then TI = V/(Zn ∩ V ) is a submanifold.
Its fundamental class is dxi1 ∧ . . . dxid

, where i1 < . . . < id are the elements of
I in increasing order. If J is the complement of I, then TI · TJ = ±1.

Next consider, complex projective space Pn
C. Then

Hi(Pn, R) =
{

R if 0 ≤ i ≤ 2n is even
0 otherwise

This is the basic example for us, and it will be studied further in section 6.2.
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Chapter 5

Riemann Surfaces

Recall that Riemann surfaces are the same thing as one dimensional complex
manifolds. As such they should be called complex curves and we will later on.
For the present, we will stick to the traditional terminology.

5.1 Topological Classification

A Riemann surface can be regarded as a 2 (real) dimensional manifold. It has a
canonical orientation: if we identify the real tangent space at any point with the
complex tangent space, then for any nonzero vector v, we declare the ordered
basis (v, iv) to be positively orientated. Let us now forget the complex structure
and consider the purely topological problem of classifying these surfaces up to
homeomorphism.

Given two 2 dimensional topological manifolds X and Y with points x ∈ X
and y ∈ Y , we can form new topological manifold X#Y called the connected
sum. To construct this, choose open disks D1 ⊂ X and D2 ⊂ Y centered
around x and y. Then X#Y is obtained by gluing X−D1∪S1× [0, 1]∪Y −D2

appropriately. Figure (5.1) depicts the connected sum of two tori.

a

b1

a21

b2

Figure 5.1: Genus 2 Surface

Theorem 5.1.1. A compact connected orientable 2 dimensional topological
manifold is classified, up to homeomorphism, by a nonnegative integer called
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the genus. A genus 0 is manifold is homeomorphic to the 2-sphere S2. A man-
ifold of genus g > 0 is homeomorphic to a connected sum of the 2-torus and a
surface of genus g − 1.

There is another standard model for these surfaces which is also quite useful
(for instance for computing the fundamental group). Namely that a genus g
surface can constructed by gluing the sides of a 2g-gon. For example, after
cutting the genus 2 surface of (5.1) along the indicated curves, it can be opened
up to an octagon (5.2).

a1 b1

a1

b1

b2

b2

a2

a2

Figure 5.2: Genus 2 surface cut open

The topological Euler characteristic of space X is

e(X) =
∑

(−1)idim Hi(X, R).

We need to assume that these dimensions are finite and that all but finitely
many of them are zero.

Lemma 5.1.2. If X is a union of two open sets U and V , then e(X) = e(U)+
e(V )− e(U ∩ V ).

Proof. This follows from the Mayer-Vietoris sequence.

Corollary 5.1.3. If X is a manifold of genus g, then e(X) = 2− 2g.

It is easy to produce Riemann surfaces of every genus. Choose 2g+2 distinct
points in ai ∈ C. Let Y ⊂ P2

C be the algebraic curve defined by

z2gy2 −
∏

(x− aiz) = 0

where x, y, z are the homogeneous coordinates. This will have a singularity at
[0, 1, 0]. This can be resolved by normalizing the curve to obtain a smooth
projective curve X. Since X is nonsingular, it can be viewed as a Riemann
surface. By construction, X comes equipped with a morphism f : X → P1

C
which is 2 to 1 except at the branch or ramificationpoints {ai}. Curves which
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can realized as two sheeted ramified coverings or P1
C are rather special, and are

called hyperelliptic. In the exercises, it will be shown that the genus of X is g.
Actually, we’re abusing the standard terminology, where the term hyperelliptic
is reserved for g > 1.

Consider the pairing

α ∧ β 7→
∫

α ∧ β

on H1(X, C). This is skew symmetric and nondegnerate by Poincaré duality
(7.2.2). In this case, one can visualize this in terms of intersection numbers of
appropriately chosen curves on X. For example, after orientating the curves
a1, a2, b1, b2 in figure (5.1) properly, we get the intersection matrix:

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


Exercise 5.1.4.

1. Let S be the toplogical space associated to a finite simplicial complex (jump
ahead to the chapter 6 for the definition if necessary). Prove that e(S) is
the alternating sum of the number of simplices.

2. Check that the genus of the hyperelliptic curve constructed above is g by
triangulating in such way that the {ai} are included in the set of vertices.

5.2 Examples

Many examples of compact Riemann surfaces can be constructed explicitly non-
singular smooth projective curves. We have already done this for hyperelliptic
curves.

Example 5.2.1. Let f(x, y, z) be a homogeneous polynomial of degree d. Sup-
pose that the partials of f have no common zeros in C3 except (0, 0, 0). Then
the V (f) = {f(x, y, z) = 0} in P2 is smooth. We will see later that the genus is
(d− 1)(d− 2)/2. In particular, not every genus occurs.

Example 5.2.2. Suppose f(x, y, z) is only irreducible, then V (f) may have sin-
gularities. After resolving singularities, e. g. by normalizing, we get a Riemman
surface. By a generic projection argument one see that every smooth algebraic
curve arises this way.

Example 5.2.3. Let f(x, y) be a polynomial, nonconstant in both x andy, such
that the partials of f have no common zeros in C2. Projection onto the first
factor V (f) → C exhibits it as a branched cover. This can be completed to a
nonsingular branched cover of P1. The genus can be calculated by the Riemann-
Hurwitz formula.

42



From a different point of view, we can construct many examples as quotients
of C or the upper half plane. In fact, the uniformization theorem tells us that
all examples other than P1 arise this way.

Example 5.2.4. Let L ⊂ C be a lattice, i. e. an abelian subgroup generated
by two R-linearly independent numbers. The quotient E = C/L can be made
into a Riemann surface (exercise 1.2.11) called an elliptic curve. Since this
topologically a torus, the genus is 1.

This is not an ellipse at all of course. It gets its name because of its relation
to elliptic integrals and function. An elliptic function is a meromorphic function
on C which is periodic with respect to the lattice L. A basic example is the
Weierstrass ℘-function

℘(z) =
1
z2

+
∑

λ∈L, λ6=0

(
1

(z − λ)2
− 1

λ2

)
This induces a map on the quotient E → P1 which is two sheeted and branched
at 4 points. One of the branch points will include ∞. We can construct a
“hyperelliptic” curve E′ → P1 with the same branch points. It can be checked
that E ∼= E′, hence E is algebraic.

The group PSL2(R) = SL2(R)/{±I} acts on H = {z | im(z) > 0} by frac-
tional linear transformations:

z 7→ az + b

cz + d

The action of subgroup Γ ⊂ PSL2(R) on H is properly discontinuous if every
point has a neighbourhood D such that gD ∩ D 6= ∅ for all but finitely many
g ∈ Γ; it is free and properly discontinuous if g = I is the only such g.

Example 5.2.5. If Γ acts freely and properly discontinuously on H, the quotient
X = H/Γ becomes a Riemann surface. If π : H → X denotes the projection,
define the structure sheaf f ∈ OX(U) if and only if f ◦ π ∈ OH(π−1U).

When H/Γ is compact, the quotient has genus g > 1. The quickest way
to see this is by applying the Gauss-Bonnet theorem to the hyperbolic metric.
The fundamental domain for this action will be the interior of a geodesic 2g-gon.
The above construction can be extended to only properly discontinous actions.
This is useful since many of the most interesting examples (e.g. SL2(Z)) do
have fixed points.

5.3 The ∂̄-Poincaré lemma

Let U ⊂ C be an open set. Let x and y be real coordinates on C, and z = x+iy.
Given a complex C∞ function f : U → C, let

∂f

∂z
=

1
2
(
∂f

∂x
− i

∂f

∂y
)
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∂f

∂z̄
=

1
2
(
∂f

∂x
+ i

∂f

∂y
).

With this notation, the Cauchy-Riemann equation is simply ∂f
∂z̄ = 0.

In order to make it easier to globalize these operators to Riemann surfaces,
we reinterpret these in terms of differential forms. In this chapter, C∞(U) and
En(U) will denote the space of complex valued C∞ functions and n-forms. The
exterior derivative extends to a C-linear operator between these spaces. Define
the complex valued 1-forms dz = dx + idy and dz = dx− idy, and set

∂f =
∂f

∂z
dz

∂̄f =
∂f

∂z̄
dz̄

We extend this to 1-forms, by

∂(fdz̄) =
∂f

∂z
dz ∧ dz̄

∂(fdz) = 0

∂̄(fdz) =
∂f

∂z̄
dz̄ ∧ dz

∂̄(fdz̄) = 0

A 1-form α is holomorphic α = fdz with f holomorphic. This is equivalent
to ∂̄α = 0. The following identities can be easity verified:

d = ∂ + ∂̄ (5.1)
∂2 = ∂̄2 = 0
∂∂̄ + ∂̄∂ = 0

Theorem 5.3.1. Let D ⊂ C be an open disk. Given f ∈ C∞(D̄), there exists
g ∈ C∞(D) such that ∂g

∂z̄ = f .

Proof. A solution can be given explicitly as

g(ζ) =
1

2πi

∫
D

f(z)
z − ζ

dz ∧ dz̄

See [GH, p. 5].

5.4 ∂̄-cohomology

Let X be a Riemann surface, i. e. a 1-dimensional complex manifold. We write
C∞

X and E i
X for the sheaves of complex valued C∞ functions and i-forms. We

define a C∞-submodule E(1,0)
X ⊂ E1

X (respectively E01
X ⊂ E1

X), so that for any
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coordinate neighbourhood U holomorphic cordinate z, E(1,0)
X (U) = C∞(U)dz

(resp. E(0,1)
X (U) = C∞(U)dz̄). We have a decomposition

E1
X = E(1,0)

X ⊕ E(0,1)
X

We set E(1,1)
X = E2

X as this is locally generated by dz ∧ dz̄.

Lemma 5.4.1. There exists C-linear maps ∂, ∂̄ on the sheaves E•X which coin-
cide with the previous expressions in local coordinates.

It follows that the identities (5.1) hold globally, and the kernels of ∂̄ are
precisely the sheaves of holomorphic functions and forms respectively.

Lemma 5.4.2. The sequences of sheaves

0→ OX → C∞
X

∂̄−→ E(0,1)
X → 0

0→ Ω1
X → E

(1,0)
X

∂̄−→ E(1,1)
X → 0

are acyclic resolutions.

Proof. Any C∞-module is soft, hence acyclic, and the exactness follows from
theorem5.3.1.

Corollary 5.4.3.

H1(X,OX) =
E(0,1)(X)
∂̄C∞(X)

H1(X, Ω1
X) =

E(1,1)(X)

∂̄E(1,0)
X (X)

and
Hi(X,OX) = Hi(X, Ω1

X) = 0

if i > 1.

Next, we want a holomorphic analogue of the de Rham complex.

Proposition 5.4.4. There is an exact sequence of sheaves

0→ CX → OX
d−→ Ω1

X → 0

Proof. The only nontrivial part of the assertion is that OX → Ω1
X → 0 is exact.

We can check this by replacing X by a disk D. A holomorphic 1-form on D
is automatically closed, therefore exact by the usual Poincaré lemma. If df is
holomorphic then ∂̄f = 0, so f is holomorphic.

Corollary 5.4.5. There is a long exact sequence

0→ H0(X, C)→ H0(X,OX)→ H0(X, Ω1
X)→ . . .
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Holomorphic 1-forms are closed, and

H0(X, Ω1
X)→ H1(X, C)

is the map which sends a holomorphic form to its class in de Rham cohomology.

Lemma 5.4.6. When X is compact and connected, this map is an injection.

Proof. It is equivalent to proving that

H0(X, C)→ H0(X,OX)

is surjective i.e. that global holomorphic functions are constant. Let f be a
holomorphic function on X. f must attain a maximum at some point, say
x ∈ X. Choose a coordinate disk D ⊂ X centered at x. The we can apply
the maximum modulus principle to conclude that f is constant on D. Since
f − f(x) has a nonisolated 0, it follows by complex analysis that f is globally
constant.

In section 8.1 we will show that the dimension of H0(X, Ω1
X) is exactly the

genus. For now, we prove a weak form of this statement.

Lemma 5.4.7. If X is compact and connected then dim H0(X, Ω1
X) ≤ g, where

g is the genus.

Proof. As we have seen, we can view H10 = H0(X, Ω1
X) as a subpsace of

H1(X, C). Given two holomorphic 1-forms α, β, α ∧ β = 0. This implies that
H10 is an isotropic subpsace under the skew symmetric Poincaré duality pairing.
So dim H10 ≤ 1

2dim H1(X, C) by linear algebra.

In the case of the hyperelliptic curve constructed in section 5.1, one can
check the opposite inequallity by hand. The expressions xidx/y with 0 ≤ i < g
give g linearly elements of H0(X Ω1

X) (see exercises).
One additional property whose proof will postponed to section 5.4.3 is that

the map
H1(X, C)→ H1(X,OX)

is surjective, or equivalently that H1(X, Ω1
X) injects into H2(X, C). It follows

from this that dim H1(X,OX) = g. The fact that H0(X, ΩX) ∼= H1(X,OX) is
usually deduced from the Serre duality theorem.

Exercise 5.4.8.

1. The differentials xidx/y on the hyperelliptic curve are certainly holomor-
phic on X−Σ where Σ = f−1{ai}∪{∞}. Check that they holomorphically
extend to Σ.
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5.5 Projective embeddings

Fix a compact Riemann surface X. We want to assume a couple of things that
stated above but not yet proven, namely that dim H0(X, Ω1

X) and dim H1(X,OX)
both coincide with the genus of X. We introduce some standard shorthand:
hi = dim Hi, and ωX = Ω1

X .
A divisor D on X is a finite integer linear combination

∑
nipi where pi ∈ X.

One says that D is effective if all the coefficients are nonnegative. The degree
deg D =

∑
ni. For every meromphic function defined in a neighbourhood of

p ∈ X, let ordp(f) be the order of vanishing (or minus the order of the pole) of
f at p. If D is a divisor define ordp(D) to be the coefficient of p in D (or 0 if p
is absent). Define the sheaf OX(D) by

OX(D)(U) = {f : U → C ∪ {∞} | ordp(f) + ordp(D) ≥ 0, ∀p ∈ U}

Lemma 5.5.1. This is a line bundle.

Proof. Let U be a coordinate neighbourhood , and let D =
∑

nipi + D′ where
pi ∈ U and D′ is sum of points not in U . hen we can find functions fi vanishing
at each point pi ∈ U to order 1 and nowhere else. It is can be checked that

OX(D)(U) = OX(U)
1

fn1
1 fn2

2 . . .
,

which is free of rank one.

Divisors form an abelian group Div(X) in the obvious way.

Lemma 5.5.2. OX(D + D′) ∼= OX(D)⊗OX(D′).

In later terminology, this says that D 7→ OX(D) is a homomorphism from
Div(X) → Pic(X). If D is effective O(−D) is a sheaf of ideals. In particular,
OX(−p) is exactly the maximal ideal sheaf at p. We have an exact sequence

0→ OX(−p)→ OX → Cp → 0 (5.2)

where

Cp(U) =
{

C if p ∈ U
0 otherwise

Tensoring (5.2) by OX(D) and observing that Cp⊗L ∼= Cp for any line bundle,
yields

0→ OX(D − p)→ OX(D)→ Cp → 0 (5.3)

In the same way, we get a sequence

0→ ωX(D − p)→ ωX(D)→ Cp → 0 (5.4)

where ωX(D) = ωX ⊗OX(D).

Lemma 5.5.3. For all D, Hi(X,OX(D)) and Hi(X, ωX(D)) are finite dimen-
sional and 0 if i > 1.
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The statement is actually redundant, but we haven’t proved that it is.

Proof. Observe that Cp has no higher cohomology since it is flabby. (5.3) yields

0→ H0(OX(D−p))→ H0(OX(D))→ C→ H1(OX(D−p))→ H1(OX(D))→ 0

and isomorphisms

Hi(OX(D − p)) ∼= Hi(OX(D)) i > 0

By adding or subtracting points, we can reduce this to the case of OX(D) = OX .
The argument for ωX(D) is the same.

The residue of a meromorphic 1-form α at p is

resp(α) =
1

2πi

∫
C

α

where C is any loop “going once counterclockwise” around p and containing no
singularities other than p. Alternatively, if α = f(z)dz locally for some local
coordinate z at p, resp(α) is the coefficient of 1

z in the Laurant expansion of
f(z).

Lemma 5.5.4 (Residue Theorem). If α is a meromorphic 1-form, it has
finitely many singularities, and the sum of the residues is 0.

Proof. The singularities are isolated hence they form a finite set {p1, . . . pn}.
For each i, choose an open disk Di containing pi and no other singularity. Then
by Stokes’ theorem ∑

respi
α =

1
2πi

∫
X−∪Di

dα = 0.

Theorem 5.5.5. Suppose that D is a nonzero effective divisor then

(A) H1(ωX(D)) = 0.

(B) h0(ωX(D)) = deg D + g − 1.

(A) is due to Serre. It is a special case of the Kodaira vanishing theorem.
(B) is a weak form of the Riemann-Roch theorem.

Proof. (A) will be proved by induction on the degree of D. Suppose D = p.
Then H0(ωX(p)) consists of the space of meromorphic 1-forms α with at worst
a simple pole at p and no other singularities. The residue theorem that such
an α must be holomorphic. By the long exact sequence of cohomology groups
associated to (5.4), we have

0→ C → H1(ωX)→ H1(ωX(p))→ 0
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Since the space in the middle is one dimensional, this proves (A) in this case.
In general, the inductive step follows from a similar application of (5.4).

(B) will again be proved by induction. As already noted when D = p,
h0(ωX(D)) = h0(ωX) = g. In general, (5.4) and (A) shows

h0(ωX(D)) = 1 + h0(ωX(D − p)) = deg D + g − 1

by induction.

Corollary 5.5.6. There exists a divisor (called a canonical divisor) such that
ωX
∼= OX(K)

Proof. Choose D so that H0(ωX(D)) possesses a nonzero section α. Locally
α = fdz, and we define ordp(α) = ordp(f) (this is independent of the coordinate
z). Then

K = (α)−D =
∑

ordp(α)p−D

satisfies the required properties.

Although, we won’t prove that here, the degree of K is known.

Proposition 5.5.7. deg K = 2g − 2

We say that a line bundle L on X is globally generated if for any point
x ∈ X, there exists a section f ∈ H0(X, L) such that f(x) 6= 0. Suppose that
this is the case, Choose a basis f0, . . . fN for H0(X, L). If fix an isomorphism
τ : L|U ∼= OU , τ(fi) are holomorphic functions on U . Thus we get a holomorphic
map U → CN+1 given by x 7→ (τ(fi(x))). By our assumption, the image lies
in the complement of 0, and thus descends to a map to projective space. The
image is independent of τ , hence we get a well defined holomorphic map

φL : X → PN

This map has the property that φ∗LOPN (1) = L. L is called very ample if φL is
an embedding.

Proposition 5.5.8. A sufficient condition for L to be globally generated is that
H1(X, L(−p)) = 0 for all p ∈ X A sufficient condition for L to be very ample
is that H1(X, L(−p− q)) = 0 for all p, q ∈ X

Corollary 5.5.9. ωX(D) is very ample if D is nonzero effective with degD > 2.
In particular, any Riemann surface can be embedded into a projective space.

5.6 Automorphic forms

Let Γ ⊂ SL2(R) be a subgroup and k a positive integer, an automorphic form
of weight 2k is a holomorphic function f : H → C on the upper half plane
satisfying

f(z) = (cz + d)−2kf(
az + b

cz + d
)
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for each (
a b
c d

)
∈ Γ

Choose a weight 2k automorphic form f . Then f(z)(dz)⊗k is invariant under
the group precisely when f is automorphic of weight 2k. Since −I acts trivially
on H, the action of SL2(R) factors through PSL2(R) = SL2(R)/{±I}. Let us
suppose that the group Γ/{±I}/ acts freely, then the quotient X = H/Γ is a
Riemann surface, and an automorphic form of weight 2k descends to a section
of the sheaf ω⊗k

X . We can apply the previous to the calculate the dimensions of
these spaces.

Proposition 5.6.1. Suppose that Γ/{±I} acts freely on H and that the quo-
tient X = H/Γ is compact of genus g. Then the dimension of the space of
automorphic functions of weight 2k is{

g if k = 1
(g − 1)(2k − 1) if k > 1

Proof. When k = 1, this is clear. When k > 1, we have

h0(ω⊗k) = h0(ω((k − 1)K)) = (k − 1)(deg K) + g − 1 = (2k − 1)(g − 1)

Our discussion so far is inadequate since it doesn’t deal with examples such
as the modular group SL2(Z). This is a particularly interesting example, since
two elliptic curves C/Z + Zτ and C/Z + Zτ ′, with τ, τ ′ ∈ H, are isomorphic if
and only if τ and τ ′ lie in the same orbit of SL2(Z). The quotient H/SL2(Z) is
noncompact, in fact it is can be identified with C via the j-function [S4, p. 89].
The natural compactification P1 can be constructed as a quotient as follows.
H has compactification by the circle R ∪ {∞} (this is easier to visualize if we
switch to the unit disk model D ∼= H), however we add only rational points
H∗ = D∪Q∪{∞} called cusps. Then SL2(Z) acts on this, and the cusps form
a unique orbit corresponding the point at infinity in P1.

We can apply the same technique to any finite index subgroup of the modular
group.

Theorem 5.6.2. Given a finite index subgroup Γ ⊂ SL2(Z), H∗/Γ can be
made into a compact Riemann surface such that H∗/Γ → H∗/SL2(Z) ∼= P1 is
holomorphic.

For example, the nth principle congruence subgroup

Γ(n) =
{(

a b
c d

)
∈ SL2(Z) | a− 1 ≡ d− 1 ≡ b ≡ c ≡ 0 mod n

}
Γ(2)/{±I} acts freely on H, and the quotient is isomorphic to P1 − {0, 1,∞}.
In the unit disk we can choose a fundamental domain for Γ(2) as depicted in
figure 5.3. The three cusps in the domain correspond to the points 0, 1,∞. A
pretty consequence of this is Picard’s little theorem:
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cusp

Figure 5.3: Fundamental domain of Γ(2)

Theorem 5.6.3. An entire function omitting two or more points must be con-
stant.

Proof. The universal cover of P1−{0, 1,∞} is H which is isomorphic to the unit
disk D. Let f be an entire function omitted two points, which we can assume
are 0 and 1. Then f lifts to holomorphic map C → D which is bounded and
therefore constant by Liouville’s theorem.
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Chapter 6

Simplicial Methods

In this chapter, we will develop some tools for actually computing cohomology
groups in practice. All of these are based on simplicial methods.

6.1 Simplicial and Singular Cohomology

A systematic development of the ideas in this section can be found in [Sp].
The standard n-simplex is

∆n = {(t1, . . . tn+1) ∈ Rn+1 |
∑

ti = 1, ti ≥ 0}

The ith face ∆n
i is the intersection of ∆n with the hyperplane ti = 0 (see

(6.1). Each face is homeomorphic an n − 1 simplex by an explicit affine map
δi : ∆n−1 → ∆n

i . More generally, we refer to the intersection of ∆ with the
linear space xi1 = . . . xik

= 0 as a face.

Some fairly complicated topological spaces, called polyhedra or triangulable
spaces, can be built up by gluing simplices. It is known, although by no means
obvious, that manifolds and algebraic varieties (with classical topology) can
be triangulated. The combinatorics of the gluing is governed by a simplicial
complex. This consists of a set V of vertices, and collection of finite nonempty
subsets Σ of V containing all the singletons and closed under taking nonempty
subsets. We can construct a space |(V,Σ)| out of this roughly as follows. To
each maximal element S ∈ Σ, choose an n-simplex ∆(S), where n + 1 is the
cardinality of S. Glue ∆(S) to ∆(S′) along the face labeled by S ∩S′ whenever
this is nonempty. (When V is infinite, this gluing process requires some care,
see [Sp, chap. 3].)

Let K = (V,Σ) be a simplical complex, and assume that V is linearly or-
dered. We will refer to element of Σ as a n-simplex if it has cardinality n + 1.
We define an n-cochain on a simplicial complex with values in an abelian group
A to be function which assigns an element of A to every n-simplex. One can
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∆

∆
3

3

3

Figure 6.1: 3 simplex

think of a n-cochain some sort of combinatorial analogue of an integral of n-
form. As in integration theorem one needs to worry about orientations, and this
is where the ordering comes in. An alternative, which is probably more stan-
dard, is to use oriented simplices; the complexes one gets this way are bigger,
but the resulting cohomology theory is the same. Given an n-cochain F , we
define a (n + 1)-cochain ∂(F ). called the coboundary or differential of F . In
analogy with Stokes’ theorem which allows one to calculate the integral of dα
as in integral along the boundary, we define

∂(F )({v0, . . . vn}) =
∑

(−1)iF ({v0, . . . v̂i . . . vn}),

whenever v0 < v1 . . . < vn. (The notation x̂ means omit x.) Let Cn(K, A)
denote the set of n-cochains. This is clearly an abelian group (in fact an A-
module if A is ring). We extend ∂ : Cn(K, A)→ Cn+1(K, A) by linearity. The
key relation is

Lemma 6.1.1. ∂2 = 0.

Proof. Let
∂i(F )({v0, . . . vn}) = F ({v0, . . . v̂i . . . vn})

so that ∂ =
∑

(−1)i∂i. The lemma follows for the easily verified identity ∂j∂i =
∂i∂j−1 for i < j.

Thus we have a complex. The simplicial cohomology of K is defined by

Hi(K, A) = Hi(C•(K, A)).

Note that when V is finite, these groups are automatically finitely generated
and computable. However, triangulations of interesting spaces tend to be quite
complicated, so this not a particularly practical method.
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When A is replaced by a commutative ring R. There is a product on co-
homology analogous to the product in De Rham induced by wedging forms.
Given two cochains α ∈ Cn(K, R), β ∈ Cm(K, R), their cup product α ∪ β ∈
Cn+m(K, R) is given by

α ∪ β({v0, . . . vn+m}) = α({v0, . . . vn})β({vn, . . . vn+m) (6.1)

where v0 < v1 < . . .. Then:

Lemma 6.1.2. ∂(α ∪ β) = ∂(α) ∪ β + (−1)nα ∪ ∂(β)

Corollary 6.1.3. ∪ induces an operation on cohomology that makes H∗(K, R)
into a graded ring.

Singular cohomology was introduced partly in order to give conceptual proof
of the fact that Hi(K, A) depends only on |K|, i.e. that simplicial cohomology
is independant of the triangulation. It has the advantage, for us, that the
relation with sheaf cohomology is easier to establish. A singular n-simplex on a
topological space X is simply a continuous map from f : ∆n → X. When X is
a manifold, we can require the maps to be C∞. We define a singular n-cochain
on a X be a map which assigns an element of A to any n-simplex on X. Let
Sn(X, A) (Sn

∞(X, A)) denote the group of (C∞) n-cochains with values in A.
When F is an n-cochain, its coboundary is the (n + 1)-cochain

∂(F )(f) =
∑

(−1)iF (f ◦ δi).

The following has more or less the same proof as lemma 6.1.1.

Lemma 6.1.4. ∂2 = 0.

Thus we have a complex. The singular cohomolgy groups of X are

Hi
sing(X, A) = Hi(S∗(X, A)).

A basic property of this cohomology theory is its homotopy invariance. We state
this in the form that we will need. A subspace Y ⊂ X is called a deformation
retraction, if there exists a a continuous map F : [0, 1] × X → X such that
F (0, x) = x, F (1, X) = Y and F (1, y) = y for y ∈ Y . If Y is a point then X is
called contractible.

Proposition 6.1.5. If Y ⊂ X is a deformation retraction, then

Hi
sing(X, A)→ Hi

sing(Y,A)

is an isomorphism for any A.

In particular, the higher cohomology vanishes on a contractible space. This
is an analogue of Poincaré’s lemma. Call space locally contractible if every
point has a contractible neighbourhood . Manifolds and varieties with classical
topology are examples of such spaces.
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Theorem 6.1.6. If X is paracompact Hausdorff space (e. g. a metric space)
which is locally contractible, then Hi(X, AX) ∼= Hi

sing(X, A) for any abelian
group A.

A complete proof can be found in [Sp, chap. 6] (note that Spanier uses Čech
approach discussed in the next chapter). In the case of manifolds, a proof which
is more natural from our point of view can be found in [Wa]. The key step is
to consider the sheaves Sn associated to the presheaves U 7→ Sn(U,A). These
sheaves are soft since they are modules over the sheaf of real valued continuous
functions. The local contractability guarantees that

0→ AX → S0 → S1 → . . .

is a fine resolution. Thus one gets

Hi(X, AX) ∼= Hi(S∗(X))

It remains to check that the natural map

S∗(X, A)→ S∗(X)

induces an isomorphism on cohomology. We the reader refer to [Wa, pp 196-197]
for this.

As a corollary, we obtain the form of De Rham’s theorem that most people
think of.

Corollary 6.1.7 (De Rham’s theorem, version 2). If X is a manifold,

Hi
dR(X, R) ∼= Hi

sing(X, R)

The theorem holds with C∞ cochains. The map in the corollary can be
defined directly on the level of complexes by

α 7→ (f 7→
∫

∆

f∗α)

Singular cohomology carries a cup product given by formula (6.1). A stronger
form of De Rham’s theorem shows that the above map is a ring isomorphism
[Wa]. Fundamental classes of oriented submanifolds can be constructed in
H∗(X, Z). This explains why the the intersection numbers Y · Z were integers
in proposition 4.4.2.

Exercise 6.1.8.

1. Calculate the simplicial cohomology with Z coefficients for the “tetrahe-
dron” which is the powerset of V = {1, 2, 3, 4} with ∅ and V removed.

2. Let Sn be the n-sphere realized as the unit sphere in Rn+1. Let U0 =
Sn − {(0, . . . 0, 1)} and U1 = Sn − {(0, . . . 0,−1)}. Prove that Ui are
contractible, and that U0 ∩U1 deformation retracts on to the “equatorial”
(n− 1)-sphere.
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3. Prove that

Hi(Sn, Z) =
{

Z if i = 0, n
0 otherwise

using Mayer-Vietoris.

6.2 H∗(Pn, Z)

Let Pn = Pn
C with its classical topology.

Theorem 6.2.1.

Hi(Pn, Z) =
{

Z if 0 ≤ i ≤ 2n is even
0 otherwise

Before giving the proof, we will need to develop a few more tools. Let X
be a space satisfying the assumptions of theorem 6.1.6, and Y ⊂ X a closed
subspace satisfying the same assumptions. We will insert the restriction map

Hi(X, Z)→ Hi(Y, Z)

into a long exact sequence. This can be done in a number of ways, by first
defining cohomology of the pair (X, Y ), using sheaf theory, or using a mapping
cone. We will choose the last option. Let C be obtained by first gluing the base
of the cylinder {1} × Y ⊂ [0, 1]× Y to X along Y , and then collapsing the top
to a point P (figure (6.2)).

X

Y

C

P

Figure 6.2: Cone
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Let U1 = C−P , and U2 ⊂ C the open cone [0, 1)×Y/{0}×Y (the notation
A/B means collapse B to a point). On sees that U1 deformation retracts to X,
U2 is contractible, and U1 ∩ U2 deformation retracts to Y . The Mayer-Vietoris
sequence, together with these facts, yields a long exact sequence

. . .Hi(C, Z)→ Hi(X, Z)→ Hi(Y, Z)→ Hi+1(C, Z) . . .

when i > 0. The make this really useful, note that the map C → C/U2 which
collapses the closed cone to a point is a homotopy equivalence. Therefore it
induces an isomorphism on cohomology. Since we can identify C/U2 with X/Y ,
we obtain a sequence

. . .Hi(X/Y, Z)→ Hi(X, Z)→ Hi(Y, Z)→ . . . (6.2)

We apply this when X = Pn and Y = Pn−1 embedded as a hyperplane. The
complement X − Y = Cn. Collapsing Y to a point amounts to adding a point
at infinity to Cn, thus X/Y = S2n. Since projective spaces are connected

H0(Pn, Z) ∼= H0(Pn−1, Z) ∼= Z.

For i > 0, (6.2) and the previous exercise yields isomorphisms

Hi(Pn, Z) ∼= Hi(Pn−1, Z), when i < 2n (6.3)

H2n(Pn, Z) ∼= Z

The theorem follows by induction.

Exercise 6.2.2.

1. Let L ⊂ Pn be a linear subspace of codimension i. Prove that its funda-
mental class [L] generated H2i(Pn, Z).

2. Let X ⊂ Pn be a smooth projective variety. Then [X] = d[L] for some d,
where L is a linear subspace of the same dimension. d is called the degree
of X. Bertini’s theorem, which you can assume, implies that there exists a
linear space L′ of complementary dimension transverse to X. Check that
X · L′ = #(X ∩ L′) = d.

6.3 Čech cohomology

We return to sheaf theory proper. We will introduce the Čech approach to co-
homology which has the advantage of being quite explicit and computable (and
the disadvantage of not always giving the “right” answer). Roughly speaking,
Čech bears the same relation to sheaf cohomology, as simplicial does to singular
cohomology.
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One starts with an open covering {Ui | i ∈ I} of a space X indexed by a
totally ordered set I. If J ⊆ I, let UJ be the intersection of Uj with j ∈ J . Let
F be a sheaf on X. The group of Cech n-cochains is

Cn = Cn({Ui},F) =
∏

i0<...<in

F(Ui0...in
)

The coboundary map ∂ : Cn → Cn+1is defined by

∂(f)i0...in+1 =
∑

k

(−1)kfi0...̂ik...in+1
|Ui0...in+1

where î signifies that i should be omitted. This satisfies ∂2 = 0. So we can
define the nth Cech cohomology group as

Ȟn({Ui},F) = Hn(C•) =
ker(∂ : Cn → Cn+1)
im(∂ : Cn−1 → Cn)

To get a feeling for this, let us write out the first couple of groups explicitly:

Ȟ0({Ui},F) = {(fi) ∈
∏
F(Ui) | fi = fj on Uij }

= F (X)

Ȟ1({Ui},F) =
{(fij) ∈

∏
F(Uij) | fik = fij + fjk on Uijk }

{(fij | ∃(φi), fij = φi − φj}
(6.4)

There is a strong similarity with simplicial cohomology. This can be made
precise by introducing a simplicial complex called the nerve of the covering. For
the set of vertices, we take the index set I. The set of simplices is given by

Σ = {{i0, . . . in} |Ui0,...in 6= ∅}

If we assume that each Ui0,...in
is connected, then we see that the Čech complex

Cn({Ui}, AX) coincides with the simplicial complex of the nerve with coefficients
in A.

Even though, we are primarily interested in sheaves of abelian groups. It
will be convenient to extend (6.4) to a sheaf arbitrary groups G.

Ȟ1({Ui},G) = {(gij) ∈
∏
i<j

G(Uij) | gik = gijgjk on Uijk }/∼

where (gij) ∼ (ḡij) if there exists (γi) ∈
∏
G(Ui) such that gij = γiḡijγ

−1
j . Note

that this is just a set in general. The (gij) are called 1-cocycles with values in
G. It will be useful to drop the requirement that i < j by setting gji = g−1

ij and
gii = 1.

As an example of sheaf of nonabelian groups, take U 7→ GLn(R(U)), where
(X,R) is a ringed space (i.e. space with a sheaf of commutative rings).
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Theorem 6.3.1. Let (X,R) be a manifold or a variety over k, and {Ui} and
open cover of X. There is a bijection between the following sets:

1. The set of isomorphism classes of rank n vector bundles over (X,R) triv-
iallizable over {Ui}.

2. The set of isomorphism classes of locally free R-modules M of rank n such
M |Ui

is free.

3. Ȟ1({Ui}, Gln(R)).

Proof. We merely describe the correspondences.
1→ 2: Take the sheaf of sections.
2 → 3: Given M as above. Choose isomorphisms Fi : Rn

Ui
→ M |Ui

.Set
gij = Fi ◦ F−1

j . This determines a well defined element of Ȟ1.
3→ 1: Define an equivalence relation ∼ on the disjoint union W =

∐
Ui×kn

as follows. Given (xi, vi) ∈ Ui × kn and (xj , vj) ∈ Uj × kn, (xi, vi) ∼ (xj , vj)
iff xi = xj and vi = gij(x)vj . Let V = W/ with quotient topology. Given an
open set U ′/ ∼= U ⊂ V . Define f : U → k to be regular, C∞ or holomorphic
(as the case may be) if its pullback to U ′ has this property.

Implicit above, is a construction which associates to a 1-cocycle γ = (gij),
the locally free sheaf

Mγ(U) = {(vi) ∈
∏
R(U ∩ Ui)n | vi = gijvj}.

Consider the case of projective space P = Pn
k . Suppose x0, . . . xn are homoge-

neous coordinates. Let Ui be the complement of the hyperplane xi = 0. Then
Ui is isomorphic to An

k by

[x0, . . . xn]→ (
x0

xi
, . . .

x̂i

xi
. . .)

Define gij = xj/xi ∈ O(Uij)∗. This is a 1-cocycle, and Mgij
∼= OP(1). Likewise

(xj/xi)d is the 1-cocyle for O(d).
We get rid of the dependence on coverings by taking direct limits. If {Vj} is

refinement of {Ui}, there is a natural restriction map

Ȟi({Ui},F)→ Ȟi({Vj},F)

We define
Ȟi(X,F) = lim

→
Ȟi({Ui},F)

Corollary 6.3.2. There is a bijection between the following sets:

1. The set of isomorphism classes of rank n vector bundles over (X,R).

2. The set of isomorphism classes of locally free R-modules M of rank n.

3. Ȟ1(X, Gln(R)).
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A line bundle is a rank one vector bundle. We won’t distinguish between
lines bundles and rank one locally free sheaves. The set of isomorphism classes
of line bundles carries the stucture of a group namely Ȟ1(X,R∗). This group
is called the Picard group, and is denoted by Pic(X).

Exercise 6.3.3.

1. Check the description of OP(1) given above.

2. Show that multiplication in Pic(X) can be interpreted as tensor product
of line bundles.

6.4 Čech versus sheaf cohomology

Definition 6.4.1. An open covering {Ui} is called a Leray covering for a sheaf
F if Hn(UJ ,F) = 0 for all nonempty finite sets J and n > 0.

Lemma 6.4.2. Suppose that H1(UJ , A) = 0 for all nonempty finite sets J .
Then given an exact sequence

0→ A→ B → C → 0

of sheaves, there is a long exact sequence:

0→ Ȟ0({Ui}, A)→ Ȟ0({Ui}, B)→ Ȟ0({Ui}, C)→ Ȟ1({Ui}, A) . . .

Proof. The hypothesis guarantees that there is a short exact sequence of com-
plexes:

0→ C•({Ui}, A)→ C•({Ui}, B)→ C•({Ui}, C)→ 0.

The long exact now follows from a standard result in homological algebra...

Lemma 6.4.3. Suppose that F is flabby, then Ȟn(F) = 0 for all n > 0.

Theorem 6.4.4. If {Ui} is a Leray with respect to F then

Ȟn({Ui},F) ∼= Hn(X,F)

Proof. This is clearly true for n = 0. Next consider the case where n = 1.
Lemmas 6.4.2 and 6.4.3 imply that

Ȟ1(F) = coker[Γ(X, G(F))→ Γ(X, C1(F))] = H1(X,F).

The remaining cases follow by dimension shifting, e.g.

Ȟ2(F) = Ȟ1(C1(F)) = H2(X,F)

We state few more general results.

60



Proposition 6.4.5. For any sheaf F

Ȟ1(X,F) ∼= H1(X,F)

Proof. See [G, Cor. 5.9.1]

Theorem 6.4.6. If X is a paracompact space then for any sheaf and all i,

Ȟi(X,F) ∼= Hi(X,F)

Proof. See [G, Cor. 5.10.1]

6.5 First Chern class

Let (X,OX) be a complex manifold or algebraic variety over C. Then we have
isomorphisms

Pic(X) ∼= Ȟ1(X,O∗X) ∼= H1(X,O∗X)
The exponential sequence is

0→ ZX → OX
e2πi

−→ O∗X → 1 (6.5)

Definition 6.5.1. Given a line bundle L, its first Chern class c1(L) ∈ H2(X, Z)
is the image of L under the connecting map Pic(X)→ H2(X, Z)

This can be carried out for C∞ manifolds as well. Provided one interprets
OX as the sheaf of complex valued C∞ functions, and Pic(X) as group of C∞

complex line bundles. In this case, c1 is an isomorphism. It is clear that the
construction is functorial:

Lemma 6.5.2. If f : X → Y is C∞ map between manifolds, c1(f∗L) =
f∗c1(L).

We want to calculate this explicitly for P = P1
C. We can use the standard

covering Ui = {xi 6= 0}. We identify U1 with C with the coordinate z =
x0/x1. The 1-cocycle (section 6.3) of O(1) is g01 = z−1. The logarithmic
derivative dlog g01 = −dz/z is 1-cocycle with values in E1. Since this sheaf is
soft, this cocycle is coboundary, i.e. there exists forms αi ∈ E1(Ui) such that
−dz/z = α1 − α0 on the intersection. There dαi patch to yield a global 2-form
β ∈ E2(P). β/2πi gives an explicit representative of the image of C1(O(1)) in
H2(X, C). We have an isomorphism of this space with C given by integration. In
order to evaluate the integral

∫
P β/2πi, divide the sphere into two hemispheres

H0 = {|z| ≤ 1} and H1 = {‖z| ≥ 1}. Let C be the curve |z| = 1 with positive
orientation. Note the boundary of H1 is −C. Then with the help of Stokes’
theorem, we get

1
2πi

∫
P
β =

1
2πi

(
∫

H0

dα0 +
∫

H1

dα1)

=
1

2πi
(
∫

C

α0 −
∫

C

α1)

=
1

2πi

∫
C

dz

z
= 1
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Thus c1(O(1)) is the fundamental class of H2(P1, Z). By the same kind of
argument, we obtain:

Lemma 6.5.3. If D is a divisor on a compact Riemann surface X, c1(O(D)) =
deg(D)[X]

Since c1 is compatible with restriction, (6.3) implies that the same holds for
Pn:

Lemma 6.5.4. c1(OPn(1)) = [H] where H ⊂ Pn is a hyperplane.
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Chapter 7

The Hodge theorem

Thus far, our approach has been pretty much algebraic or topological. We
are going to need a basic analytic result, namely the Hodge theorem which
says that every de Rham cohomology class has a unique “smallest” element.
Standard acccounts of basic Hodge theory can be found in the books of Griffiths-
Harris [GH], Warner [Wa] and Wells [W]. However, we will depart slightly
from these treatments by outling the heat equation method of Milgram and
Rosenbloom [MR]. This is an elegant and comparatively elementary approach
to the Hodge theorem. As a warm up, we will do a combinatorial version which
requires nothing more than linear algebra.

7.1 Hodge theory on a simplicial complex

In order to motivate the general Hodge theorem, we work this out for a finite
simplicial complex. This will require nothing beyond linear algebra

Let K = (V,Σ) be a finite simplicial complex. Choose inner products on the
spaces of cochains C∗(K, R). For each simplex S, let

δS(S′) =
{

1 if S = S′

0 otherwise

These form a basis. A particularly natural choice of inner product is determined
by making this basis orthonormal. Let ∂∗ : Ci(K, R) → Ci−1(K, R) be the
adjoint to ∂, and let ∆ = ∂∂∗ + ∂∗∂. ∆ is the discrete Laplacian.

Lemma 7.1.1. Let α be a cochain. The following are equivalent:

1. α ∈ (im∂)⊥ ∩ ker∂.

2. ∂α = ∂∗α = 0.

3. ∆α = 0.

The cochains satisfying the above conditions are called harmonic.
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Lemma 7.1.2. Every simplical cohomology class has a unique harmonic repre-
sentative. These are precise the elements of smallest norm.

Proof. One sees that the obvious map

(im∂)⊥ ∩ ker∂ → Hn(K, R)

is an isomorphism. Given an element α in the lefthand space

||α + ∂β||2 = ||α||2 + ||∂β||2 > ||α||2

unless ∂β = 0.

Exercise 7.1.3.

1. Prove lemma 7.1.1.

2. Prove that ∆ is a positive semidefinite symmetric operator.

3. Use this to prove that limit of the “heat kernel”

H = lim
t→∞

e−t∆

is the orthogonal projection to the space of harmonic cochains.

7.2 Harmonic forms

Let X be an n dimensional compact oriented manifold. We want to prove
an analogue of lemma 7.1.2 for de Rham cohomology. In order to formulate
this, we need inner products. A Riemannian metric (, ), i.e. a family of inner
products on the tangent spaces which vary in a C∞ fashion. The existence is
standard partition of unity argument [Wa]. A metric determines inner products
on exterior powers of the cotangent bundle which will also be denoted by (, ).
X possesses an differential form dvol ∈ En(X) called the volume form which
is roughly the square root of the determinant of the metric (this requires an
orientation). The Hodge star operator is a C∞(X)-linear operator ∗ : Ep(X)→
En−p(X), determined by

α ∧ ∗β = (α, β)dvol.

One can choose a local orthonormal basis or frame ei for E1
X in a neighbourhood

of any point. Then ∗ is easy to calculate in this frame, e.g. ∗e1 ∧ . . . ek =
ek+1 ∧ . . . en. From this one can check that ∗∗ = ±1. The spaces Ep(X) carry
inner products:

< α, β > =
∫

X

(α, β)dvol =
∫

X

α ∧ ∗β

and hence norms.
Then basic result of Hodge (and Weyl) is:

64



Theorem 7.2.1. Every de Rham cohomology class has a unique representative
which minimizes norm. This is called the harmonic representative.

As an application of this theorem, we have get a new proof of a Poincaré
duality in strengthened form.

Corollary 7.2.2. (Poincaré duality, version 2). The pairing

Hi(X, R)×Hn−i(X, R)→ R

induced by (α, β) 7→
∫

α ∧ β is a perfect pairing

Proof. ∗ induces an isomorphism between the space of harmonic i-forms and
n−i-forms. This proves directly that Hi(X, R) and Hn−i(X, R) are isomorphic.

Consider the map

λ : Hi(X, R)→ Hn−i(X, R)∗

given by λ(α) = β 7→
∫

α ∧ β. We need to prove that λ is an isomorphism.
Since these spaces have same dimension, it is enough to prove that ker(λ) = 0.
But this clear since λ(α)(∗α) 6= 0 whenver α is a nonzero harmonic form.

To understand the meaning of this condition, we can find the Euler-Lagrange
equation. Let α be a harmonic p-form. Then for any for any (p− 1)-form β, we
would have to have

d

dt
||α + tdβ||2|t=0 = 2 < α, dβ >= 2 < d∗α, β >= 0,

which forces d∗α = 0, where d∗ is adjoint to d. A straight forward integration
by parts shows that d∗ = ± ∗ d∗. Thus harmonicity can be expressed as a pair
of differential equations dα = 0 and d∗α = 0. It’s sometimes more convenient to
combine these into a single equation ∆α = 0 where ∆ = d∗d+ dd∗ is the Hodge
Laplacian. The equivalence follows from the identity < ∆α, α >= ||dα||2 +
||d∗α||2.

The hard work is contained in the following:

Theorem 7.2.3. There are linear operators H (harmonic projection) and G
(Green’s operator) taking C∞ forms to C∞ forms, which are characterized by
the following properties

1. H(α) is harmonic,

2. G(α) is orthogonal to the space of harmonic forms,

3. α = H(α) + ∆G(α),

for any C∞ form α.
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Let’s see how to prove the existence part of theorem 7.2.1 given this result.
Any α can be written as α = β +dd∗γ +d∗dγ with β harmonic. All these terms
are in fact orthogonal to each other, so

||d∗dγ||2 =< d∗dγ, α >=< dγ, dα >,

and this vanishes if α is closed. Therefore α is cohomologous to the harmonic
form β. The uniqueness is straightforward: if β′ is another harmonic represen-
tative, then β − β′ is both exact and harmonic. Denoting this by dγ, we then
have ||dγ||2 =< d∗dγ, γ >= 0.

It will be useful to record part of this argument as a corollary.

Corollary 7.2.4. There is an orthogonal direct sum

E i(X) = (harmonic forms)⊕ dE i−1(X)⊕ E i+1(X)

Before doing the general case, let’s work out the easy, but instructive, ex-
ample of the torus X = Rn/Zn, with the Euclidean metric. A differential form
α can be expanded in a Fourier series

α =
∑

λ∈Zn

∑
i1<...<ip

aλ,i1...ipe2πiλ·xdxi1 ∧ . . . ∧ dxip (7.1)

By direct calculation, one finds the Laplacian

∆ = −
∑ ∂2

∂x2
i

,

the harmonic projection

H(α) =
∑

a0,i1...ipdxi1 ∧ . . . ∧ dxip

and Green’s operator

G(α) =
∑

λ∈Zn−{0}

∑ aλ,i1...ip

4π2|λ|2
e2πiλ·xdxi1 ∧ . . . ∧ dxip .

Since the image of H are forms with constant coefficients, this proves propos-
tion 4.5.1.

7.3 Heat Equation

We will sketch an approach to 7.2.3 using the heat equation due Milgram and
Rosenbloom ([MR] [Ch] ). The heuristic behind it is that if α is thought of as an
initial temperature, then the temperature should approach a harmonic steady
state as the manifold cools. So our task is to solve the heat equation:

∂A(t)
∂t

= −∆A(t) (7.2)

A(0) = α (7.3)
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for all t > 0, and study the behaviour as t→∞. For simplicial complexes, this
was the content of the previous exercise. Before describing this, we make a few
general remarks. If A(t) is a C∞ solution of 7.2, upon differentiating ||A(t)||2
we obtain:

2 <
∂A

∂t
,A >= −2 < ∆A,A >= −2(||dA||2 + ||d∗A||2) ≤ 0.

This implies that ||A||2 is nonincreasing. Therefore if A(0) = 0, it remains 0.
This proves the uniqueness because the equation is linear. For existence, it is
enough to prove that there exists ε independent of α, such that solutions exist
for all 0 < t < ε. For if T is the supremum of the t0 for which the above
system has a solution for t < t0. Then T must be ∞, since otherwise picking
T − ε/2 < t0 < T and using A(t0) as the new initial condition, we see that A
can be extended to the interval t < T + ε/2.

The starting point for the proof of existence is the observation that when X
is replaced by Euclidean space and α is a compactly supported function, then
one has an explicit solution

A(t) =
∫

Rn

K(x, y, t)α(y)dy

where the heat kernel

K(x, y, t) = (4πt)−n/2e−||x−y||2/4t

This can be modified to make sense for a p-form on X. When working with forms
on X×X, we will abuse notation a bit and write them as local expressions such
as η(x, y). Then dxη(x, y) etcetera will indicate that the operations d . . . are
preformed with y treated as a constant (or more correctly, these operations are
preformed fiberwise along the second projection). Let dist(x, y)2 be a nonneg-
ative C∞ function which agrees with the square of the Riemannian distance
function in neighbourhood of the diagonal. Let β = − 1

2dxdydist(x, y)2 and set

K(x, y, t) = (4πt)−n/2e−dist(x,y)2/4tβp

This is only an approximation to the true heat kernel on X, however one can still
get some useful information from it. For small t, it behaves like the Euclidean
heat kernel, in particular in the limit it acts like a δ-function along the diagonal:

lim
t→0

< A(y, τ),K(x, y, t) >y= A(x, τ)

This together with the self adjointness of ∆ and integration by parts shows that
for any p-form A on X × [0,∞)

A(x, t) = < A(x, 0),K(x, y, t) >y +
∫ t

0

< K1(x, y, t), A(y, t) >y dt

−
∫ t

0

< K(x, y, t), (∆y + ∂/∂t)A(y, t) >y dt
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where
K1(x, y, t) = (∆y − ∂/∂t)K(x, y, t).

In particular, if A is a solution to equations 7.2 and 7.3, then it satisfies the
integral equation

A =< α(x),K(x, y, t) >y +
∫ t

0

< K1(x, y, t), A(y, t) >y dt (7.4)

and conversely a solution to this equation satisfies the heat equation. Let Rt(A)
denotes the right hand side of the above equation which we can regard as an
operator acting on forms on X× [0, t]. ||K1(x, y, t)|| is known to be bounded by
a constant M independent of y and t [MR]. This implies that for t < ε = 1/M ,
Rt is a contraction operator. Thus there is a fixed point, and it is C∞ because
K is. So by the above remarks, we have a C∞ solution for all t > 0.

Since we have established existence and uniqueness of 7.2 and 7.3, the opera-
tor T (α) = A(t) is well defined. One has the semigroup property Tt1+t2 = Tt1Tt2

because A(t1+t2) can be obtained by solving the heat equation with initial con-
dition A(t2) and then evaluating it at t = t1. We claim, furthermore that Tt is
formally selfadjoint. To see this, calculate

∂

∂t
< Ttη, Tτξ >=<

∂

∂t
Ttη, Tτξ >=< ∆Ttη, ξ >

=< η, Tτ∆ξ >=< Ttη,
∂

∂τ
Tτξ >=

∂

∂τ
< Ttη, Tτξ >

which implies that < Ttη, Tτξ > can be written as a function of t + τ , say
g(t + τ). Therefore < Ttη, ξ >= g(t) =< η, ξ >. These properties imply that
for h ≥ 0 we have

||Tt+2hα− Ttα||2 = ||Tt+2hα||2 + ||Ttα||2 − 2 < Tt+2hα, Ttα >

= ||Tt+2hα||2 + ||Ttα||2 − 2||Tt+hα||2

= (||Tt+2hα|| − ||Ttα||)2 − 2(||Tt+hα||2 − ||Tt+2hα|| · ||Ttα||)

||Ttα||2 converges because it is nonincreasing. Therefore the above expression
can be made arbitrarily small for large enough t. This implies that Ttα converges
in the L2 sense to an L2 form H(α). In fact, a little more work shows uniform
convergence.

We’ll outline the remaining steps. Equation 7.4 and the semigroup law
implies the relation Tt−τα = RτTtα. In the limit as t → ∞, we get H(α) =
RτH(α) which implies that Hα is C∞ and harmonic. ||Ttα−Hα|| can be shown
to decay rapidly, so the integral

G(α) =
∫ ∞

0

(Ttα−Hα)dt

is well defined. We’ll verify formally that this is Green’s operatorr:

∆G(α) =
∫ ∞

0

∆Ttαdt = −
∫ ∞

0

∂Ttα

∂t
dt = α−H(α),
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and for β harmonic

< G(α), β >=
∫ ∞

0

< (Tt −H)α, β > dt =
∫ ∞

0

< α, (Tt −H)β > dt = 0

as required.

Let’s return to the example of a torus X = Rn/Zn, where things can be
calculated explicitly. Given α as in (7.1), the solution to the heat equation with
initial value α is given by

Ttα =
∑

λ∈Zn

∑
aλ,i1...ip

e(2πiλ·x−4π2|λ|2t)dxi1 ∧ . . . ∧ dxip
,

and this converges to the harmonic projection

H(α) =
∑

a0,i1...ip
dxi1 ∧ . . . ∧ dxip

Ttα−Hα can be integrated term by term to obtain Green’s operator

G(α) =
∑

λ∈Zn−{0}

∑ aλ,i1...ip

4π2|λ|2
e2πiλ·xdxi1 ∧ . . . ∧ dxip

.
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Chapter 8

Toward Hodge theory for
Complex Manifolds

In this chapter, we take the first few steps toward Hodge theory in the complex
setting. This is really a warm up for the next chapter.

8.1 Riemann Surfaces Revisited

This section is a warm up for things to come. We also tie up a few loose
ends from chapter 5. Fix a compact Riemann surface X. In order to apply
the techniques from the previous chapter, we need a metric which is a C∞

family of inner products. But we need to impose a compatability condition.
As one learns in first course in complex analysis, conformal maps are angle
preserving, and this means that we have a well defined notion of the angle
between two tangent vectors. Among other things, compatability will mean
that the angles determined by the metric agree with the ones above. To say
this more precisely, view X as two dimension real C∞ manifold. Choosing an
analytic local coordinate z in a neighbourhood of U , the vectors v1 = ∂/∂x and
v2 = ∂/∂y give a basis (or frame) of the real tangent sheaf T R

X of X restricted
to U . The automorphism Jp : T R

X |U → T R
X |U represented by(

0 1
−1 0

)
in the basis v1, v2 is independent of this basis, and hence globally well defined. A
Riemannian metric (, ) is compatible with the complex structure, or hermitean,
if the transformations Jp are orthogonal. In terms of the basis v1, v2 this forces
the matrix of the bilinear (, ) to be a positive multiple of I by some function h.
Standard partition of unity arguments show that hermitean metrics exist. Fix
one. In coordinates, the metric would be represented by a tensor h(x, y)(dx ⊗
dx + dy ⊗ dy). The volume form (which is globally well defined) is represented
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by hdx ∧ dy. It follows that ∗dx = dy and ∗dy = −dx. In other words, ∗ is the
transpose of J which is independent of h. Once we have ∗, we can define all the
previous operators and talk about harmonicity. After having made such a fuss
about metrics, it turns out that for our purposes one is as good as any other
(for the statements though not the proofs).

Lemma 8.1.1. A 1-form is harmonic if and only if its (1, 0) and (0, 1) parts
are respectively holomorphic and antiholomorphic.

Proof. A 1-form α is harmonic if and only if dα = d ∗ α = 0. Given a local
coordinate z, it can be checked that ∗dz = −idz and ∗dz̄ = idz̄. Therefore the
(1, 0) and (0, 1) parts of a harmonic 1-form α are closed. If α is a (1, 0)-form,
then dα = ∂̄α. Thus α is closed if and only if it is holomorphic. Conjugation
yields the analogous statement for (0, 1)-forms.

Corollary 8.1.2. dim H0(X, Ω1
X) equals the genus of X.

Proof. The first Betti number dim H1(X, C) is the dimension of the spaces of
holomorphic and antiholomorphic forms, and both these spaces have the same
dimension.

Lemma 8.1.3. The image of ∆ and ∂∂̄ on E2(X) coincide.

Proof. Computing in local coordinates yields

∂∂̄f = − i

2

(
∂2f

∂x2
+

∂2f

∂y2

)
dx ∧ dy

and

d ∗ df =
(

∂2f

∂x2
+

∂2f

∂y2

)
dx ∧ dy.

This finishes the proof because ∆ = −d ∗ d∗.

Proposition 8.1.4. The map H1(X,OX)→ H1(X, Ω1
X) induced by d vanishes.

Proof. We use the use the ∂̄-cohomology descriptions of these spaces 5.4.3.
Given α ∈ E01(X), let β = dα. We have to show that β lies in the image
of ∂̄. Applying theorem 7.2.3 we can write β = H(β)+∆G(β). Since β is exact,
we can conclude that H(β) = 0 by corollary 7.2.4. Therefore β lies in the image
of ∂∂̄ = −∂̄∂.

Corollary 8.1.5. The map H1(X, C)→ H1(X,OX) is surjective.

8.2 Dolbeault’s theorem

We now extend the results from Riemann surfaces to higher dimensions. Given
an n dimensional complex manifold X, let OX denote the sheaf of holomorphic
functions. We can regard X as a 2n dimensional (real) C∞ manifold as explained
in section 1.2. As with Riemann surfaces, from now on C∞ and Ek

X will denote
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the sheaves of complex valued Ci functions and forms. We use the notation
C∞

X,R and Ek
X,R to denote the sheaf of real valued C∞ functions and k-forms.

More formally,
Ek

X(U) = C⊗R Ek
X,R(U).

This implies that this space has complex conjugation given by a⊗ α = ā ⊗ α.
Recall that Ωp

X is the sheaf of holomorphic k-forms. This is a subsheaf of Ep
X .

Definition 8.2.1. Let E(p,0)
X (U) denote the C∞(U) submodule of Ep(U) gener-

ated by Ωp
X(U). Let E(0,p)

X (U) = E(p,0)
X (U), and E(p,q)

X (U) = E(p,0)
X (U)∧E(0,q)

X (U).

Suppose U ⊂ Cn is an open subset. Let z1, . . . zn be the coordinates on Cn.
Then E(p,q)

X (U) is a free C∞(U)-module with a basis

{dzi1 ∧ . . . dzip
∧ dz̄j1 ∧ . . . dz̄jq

| i1 < . . . < ip, j1 < . . . < jq}

To simplify formulas, we’ll write this the above forms as dzI ∧ dz̄J .
All of the operations of sections 5.3 and 5.4 can be extended to the higher

dimensional case. The operators

∂ : E(p,q)
X → E(p+1,q)

X

and
∂̄ : E(p,q)

X → E(p,q+1)
X

are given locally by

∂(
∑
I,J

fI,JdzI ∧ dz̄J) =
∑
I,J

n∑
i=1

∂fI,J

∂zi
dzI ∧ dz̄J

∂̄(
∑
I,J

fI,JdzI ∧ dz̄J) =
∑
I,J

n∑
j=1

∂fI,J

∂z̄j
dzI ∧ dz̄J

The identities

d = ∂ + ∂̄ (8.1)
∂2 = ∂̄2 = 0
∂∂̄ + ∂̄∂ = 0

hold.
The analogue of theorem 5.3.1 is

Theorem 8.2.2. Let D ⊂ Cn be an open polydisk (i.e. a product of disks).
Given α ∈ E(p,q)(D̄) with ∂̄α = 0, there exists β ∈ C∞(D) such that α = ∂̄β

See [GH]. Let Ωp
X be sheaf of holomorphic p-forms which are given locally

as sums of fdzI with f holomorphic. One checks immediately that this is the
kernel of the ∂̄ operator on E(p,0)

X .

Corollary 8.2.3 (Dolbeault’s Theorem).

0→ Ωp
X → E

(p,0)
X

∂̄−→ E(p,1)
X . . .

is a fine resolution.
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8.3 Complex Tori

A complex torus is a quotient X = V/L of a finite dimensional complex vector
space by a lattice (i.e. a discrete subgroup of maximal rank). Thus it is both a
complex manifold and a torus. Let us identify V with Cn. Let z1, . . . zn be the
standard complex coordinates on Cn, and let xi = Re(zi), yi = Im(zi).

We have already seen that harmonic forms with respect to the flat metric
are the forms with constant coefficients. The space of harmonic forms can be
decomposed into (p, q) type.

H(p,q) =
⊕

#I=p,#J=q

CdzI ∧ dz̄J

These forms are certainly ∂̄-closed. Thus we get a map to ∂̄-cohomology.

Proposition 8.3.1. This map induces an isomorphism H(p,q) ∼= Hq(X, Ωp
X).

The isomorphism V ∼= L⊗R induces a natural real structure on V . Therefore
it makes sense to speak of antilinear maps from V to C; let V̄ ∗ denote the space
of these.

Corollary 8.3.2. Hq(X, Ωp
X) ∼= ∧qV ⊗ ∧pV̄ ∗

It’s possible to give a fairly elementary proof of this proposition [MA]. How-
ever, we will indicate the that generalizes well.

Let ∂∗ and ∂̄∗ denote the adjoints to ∂ and ∂̄ respectively (note that this
convention is reversed in [GH]). These operators can be calculated explicitly.
Let ik and īk denote contraction with the vector fields 2∂/∂zk and 2∂/∂z̄k.
These are the adjoints to dzk∧ and dz̄k∧. Then

∂∗α = −
∑ ∂

∂zk
ikα

∂̄∗α = −
∑ ∂̄

∂̄zk
ikα

We can define the ∂ and ∂̄-Laplacians by

∆∂ = ∂∗∂ + ∂∂∗,

∆∂̄ = ∂̄∗∂̄ + ∂̄∂̄∗

Theorem 8.3.3. ∆ = 2∆∂̄ = 2∆∂ .

Proof of proposition 8.3.1. By Dolbeault’s theorem

Hq(X, Ωp
X) ∼=

ker[∂̄ : E(p,q)(X)→ E(p, q + 1)]
im[∂̄ : E(p,q−1)(X)→ E(p, q)]

Let α be a ∂̄-closed (p, q)-form. Decompose

α = β + ∆γ = β + 2∆∂̄γ = β + ∂̄γ1 + ∂̄∗γ2
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with β harmonic by theorem7.2.3.

||∂̄∗γ2||2 =< γ2, ∂̄∂̄∗γ2 >=< γ2, ∂̄α >= 0.

Therefore the ∂̄-class of α is represented by β. The uniqueness can be proved
by arguments identical to those of section 7.2. Briefly, suppose β′ is another
harmonic form representing this class. Then β−β′ = ∂̄η must be orthogonal to
itself.

Introduce the operators

ω =
√
−1
2

∑
dzk ∧ dz̄k =

∑
dxk ∧ dyk

Lα = ω ∧ α

and

Λ = −
√
−1
2

∑
īkik

A straight forward computation yields the first order Kähler identities:

Proposition 8.3.4. If [A,B] = AB −BA then

1. [Λ, ∂̄] = −i∂∗

2. [Λ, ∂] = i∂̄∗

Proof. [GH, p. 114].

Upon substituting these into the definitions of the various laplacians some
remarkable cancelations take place, and we obtain:

Proof of theorem 9.2.1. We first establish ∂∂̄∗ + ∂̄∗∂ = 0,

i(∂∂̄∗ + ∂̄∗∂) =

= ∂(Λ∂ − ∂Λ)− (Λ∂ − ∂Λ)∂

= ∂Λ∂ − ∂Λ∂ = 0

Similarly, ∂∗∂̄ + ∂̄∂∗ = 0.
Next expand ∆,

∆ = (∂ + ∂̄)(∂∗ + ∂̄∗) + (∂∗ + ∂̄∗)(∂ + ∂̄)

= (∂∂∗ + ∂∗∂) + (∂̄∂̄∗ + ∂̄∗∂̄) + (∂∂̄∗ + ∂̄∗∂) + (∂∗∂̄ + ∂̄∂∗)

= ∆∂ + ∆∂̄

Finally, we check ∆∂ = ∆∂̄ ,

−i∆∂ = ∂(Λ∂̄ − ∂̄Λ) + (Λ∂̄ − ∂̄Λ)∂

= ∂Λ∂̄ − ∂∂̄Λ + Λ∂̄∂ − ∂̄Λ∂

= (∂Λ− Λ∂)∂̄ + ∂̄(∂Λ− Λ∂) = −i∆∂̄
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Chapter 9

Kähler manifolds

In this chapter, we extend the results of the previous section to an important
class of manifolds called Kähler manifolds.

9.1 Kähler metrics

Let X be a compact complex manifold with complex dimension n. Fix a her-
mitean metric H, which is a choice of hermitean inner product on the complex
tangent spaces which vary in C∞ fashion. More precisely, H would be given
by a section of the E(1,0)

X ⊗E(0,1)
X , sthat in some (any) locally coordinate system

around each point is given by

H =
∑

hijdzi ⊗ dz̄j

with hij positive definite hermitean. By standard linear algebra, the real and
imaginary parts of hij are respectively symmetric positive definite and non-
degenerate skew symmetric matrices. Geometrically, the real part is just a
Riemannian structure, while the (suitably normalized) imaginary part of gives
a (1, 1)-form ω called the Kähler form; in local coodinates

ω =
√
−1
2

∑
hijdzi ∧ dz̄j .

X has a canonical orientation, so the Hodge star operator associated to the
Riemannian structure can be defined. ∗ will be extended to C-linear operator
on EX , and set ∗̄(α) = ∗̄α. ∗ is compatible with the natural bigrading on forms
in the sense that

∗E(p,q)(X) ⊆ E(n−q,n−p)(X).

Let ∂∗ = −∗̄∂∗̄ and ∂̄∗ = −∗̄∂̄∗̄. These are adjoints of ∂ and ∂̄. Then we can
define the operators

∆∂ = ∂∗∂ + ∂∂∗,
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∆∂̄ = ∂̄∗∂̄ + ∂̄∂̄∗

L = ω∧

Λ = − ∗ L∗

A form is called ∂̄-harmonic if it lies in the kernel of ∆∂̄ . For a general hermitean
manifold there is no relation between harmonicity and ∂̄-harmonicity. However,
these notions do coincide for the class the class of Kähler manifolds, which we
will define shortly.

A hermitean metric on X is called Kähler if there exist analytic coordinates
about any point, for which the metric becomes Euclidean

hij = δij + O(z2
1 , z1z2 . . .)

up to second order. This implies that the Kähler form is closed: dω = 0, and
in fact this is an equivalent condition [GH, p 107]. A Kähler manifold is a
complex manifold with a Kähler metric. Standard examples of compact Kähler
manifolds are:

Example 9.1.1. Riemann surfaces with any hermitean metric since dω van-
ishes for trivial reasons.

Example 9.1.2. Complex tori with flat metrics.

Example 9.1.3. Pn with the Fubini-Study metric. This is the unique metric
with Kähler form which pulls back to

i

2π
∂∂̄ log(|z0|2 + . . . |zn|2)

under the canonical map Cn+1 − {0} → Pn.

Example 9.1.4. Complex submanifolds of Kähler manifolds inherit Kähler
metrics where the Kähler class is the restriction Kähler class of the ambient
manifold. In particular, any smooth projective variety possess a (nonunique)
Kähler metric.

9.2 The Hodge decomposition

Fix a Kähler manifold X. Theorem 8.3.3 generalizes:

Theorem 9.2.1. ∆ = 2∆∂̄ = 2∆∂ .

Proof. Since Kähler metrics are Euclidean up to second order, any identity
involving geometrically defined first order operators on Euclidean space can be
automatically extended to Kähler manifolds. Thus proposition 8.3.4 extends.
The rest of the argument is the same as in section 8.3.

This actually characterizes Kähler manifolds.
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Corollary 9.2.2. If X is compact then Hq(X, Ωp
X) is isomorphic the space of

harmonic (p, q)-forms.

Proof. See the proof of proposition 8.3.1.

We obtain the following special case of Serre duality as a consequence:

Corollary 9.2.3. When X is compact, Hp(X, Ωq
X) ∼= Hn−p(X, Ωn−q

X )

Proof. ∗̄ induces an antilinear isomorphism between the corresponding spaces
of harmonic forms.

Therefore we obtain the Hodge decomposition:

Theorem 9.2.4. If X is a compact Kähler manifold then a differential form
is harmonic if and only if its (p, q) components are. Consequently we have (for
the moment) noncanonical isomorphisms

Hi(X, C) ∼=
⊕

p+q=i

Hq(X, Ωp
X).

Furthermore, complex conjugation induces R-linear isomorphisms between the
space of harmonic (p, q) and (q, p) forms. Therefore

Hq(X, Ωp
X) ∼= Hp(X, Ωq

X).

Proof. The operator ∆∂̄ commutes with the projection π(p,q) while ∆ commutes
with complex conjugation. This implies the first and third statements. Together
with corollary 9.2.2, we get the second.

Corollary 9.2.5. The Hodge numbers hpq(X) = dimHq(X, Ωp
X) are finite di-

mensional.

Corollary 9.2.6. If i is odd then the ith Betti number bi of X is even.

Proof.
bi = 2

∑
p<q

hpq

The first corollary is true for compact complex non Kähler manifolds, how-
ever the second may fail (the Hopf surface [GH] has b1 = 1). The Hodge numbers
gives a set of holomorphic invariants which can be arranged in a diamond:

h00 = 1
h10 h01

h20 h11 h02

. . .
hn,n−1 hn−1,n

hnn = 1

The previous results implies that this picture has both vertical and lateral
symmetry (e.g h10 = h01 = hn,n−1 = hn−1,n).
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9.3 Picard groups

Theorem 9.3.1. Let X be compact Kähler manifold. Then Pic(X) fits into an
extension

0→ Pic0(X)→ Pic(X)→ H2(X, Z) ∩H11(X)→ 0

with Pic0(X) a complex torus of dimension h01(X)

Proof. There are two assertions. First is that Pic0(X) is torus, and second that
the image of c1 is desribed as above. The last assertion is called the Lefschetz
(1, 1) theorem.

From the exponential sequence, we obtain

H1(X, Z)→ H1(X,OX)→ Pic(X)→ H2(X, Z)

Pic0 is the cokernel of the first map. This map can be factored through
H1(X, RX), and certainly H1(X, R)/H1(X, Z) is a torus. Thus for the first
part, it suffices to prove that

π : H1(X, R)→ H1(X,OX)

is an isomorphism of real vector spaces. We know that that these space have
the same real dimension b1 = 2h10, so it is enough to check that π is injective.
The Hodge decomposition implies that α ∈ H1(X, C) can be represented by the
class of a (1, 0)-form α1 and a (0, 1)-form α2. If α = ᾱ then α1 = α2. π(α) is
just α1. Therefore π(α) = 0 implies that α = 0.

Pic0(X) is called the Picard torus. When X is a compact Riemann surface,
Pic0(X) is usually called the Jacobian and denoted by J(X)

Example 9.3.2. When X = V/L is a complex torus, Pic0(X) is a new torus
called the dual torus. Using corollary 8.3.2, it can be seen to be isomorphic to
V̄ ∗/L∗, where V̄ ∗ is the antilinear dual and

L∗ = {λ ∈ V ∗ |, Im(λ)(L) ⊆ Z}

The dual of the Picard torus is called the Albanese torus Alb(X). Since
H01 = H̄01, Alb(X) is isomorphic to

H0(X, Ω1
X)∗

H1(X, Z)/torsion
,

where the elements γ of the denominator are identified with the integrals
∫

γ
.

Exercise 9.3.3.

1. Let X be a compact Riemann surface. Show that the pairing < α, β >=∫
X

α ∧ β induces an isomorphism J(X) ∼= Alb(X); in other words J(X)
is self dual.
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2. Fix a base point x0 ∈ X. Show that the so called Abel-Jacobi map X →
Alb(X) given by x 7→

∫ x

x0
(which is well defined modulo H1) is holomor-

phic.

3. Show that every holomorphic 1-form on X is the pullback of a holomor-
phic 1-form from Alb(X). In particular, the Abel-Jacobi map cannot be
constant if h01 6= 0.
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Chapter 10

Homological methods in
Hodge theory

We introduce some homological tools which will allow us to extend and refine
the results of the previous chapter.

10.1 Pure Hodge structures

It is useful isolate the purely linear algebraic features of the Hodge decomposi-
tion. We define a (pure) Hodge structure of weight m to be finitely generated
abelian group H together with a bigrading

HC = H ⊗ C =
⊕

p+q=m

Hpq

satisfying H̄pq = Hqp. We generally use the same symbol for Hodge structure
and the underlying abelian group. Note that H can have torsion although won’t
usually consider such examples. One way to avoid torsion issues is to work with
rational Hodge structures, where H is replaced by a finite dimensional rational
vector space. Given a pure Hodge structure, define the Hodge filtration by

F pHC =
⊕
p′≥p

Hpq.

The following is elementary.

Lemma 10.1.1. If H is a pure Hodge structure of weight m then

HC = F p
⊕

F̄m−p+1

for all p. Conversely if F • is a descending filtration satisfying F a = HC and
F b = 0 for some a, b ∈ Z and satisfying the above identity, then

Hpq = F p ∩ F̄ q
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defines a pure Hodge structure of weight m.

The most natural examples come from the mth cohomology of a compact
Kähler manifold, but it is easy to manufacture other examples. For example, we
can define Hodge structures of negative weight. In fact, there is a unique rank
one Hodge structure Z(i) of weight −2i for any integer i. Here the underlying
group is Z, with H(−i,−i) = C. The collection of Hodge structures of forms a
category, where a morphism is homomorphism f of abelian groups such that f⊗
C preserves the bigradings, or equivalently the Hodge filtrations. In particular,
morphisms between Hodge structure with different weights must vanish. This
category is abelian with a tensor product and duals. Explicitly, given Hodge
structures H and G of weights n and m. their tensor product H⊗ZG is equipped
with a weight n + m Hodge structure with bigrading

(H ⊗G)pq =
⊕

p′+p′′=p,q′+q′′=q

Hp′q′ ⊗Gp′′q′′

The dual H∗ = Hom(H, Z) is equipped with a weight −n Hodge structure with
bigrading

(H∗)pq = (H−p,−q)∗.

The operation H 7→ H(i) is called the Tate twist. It has the effect of leaving H
unchanged and shifting the bigrading by (−i,−i).

The obvious isomorphism invariants of a Hodge structure H are its Hodge
numbers dim Hpq. However, this the doesn’t completely characterize them.
Consider, the set of 2g dimensional Hodge structures H of weight 1 and level
1. This means that the Hodge numbers are as follows: dim H10 = dim H01 = g
and the others zero. There are uncountably many isomorphism classes, in fact:

Lemma 10.1.2. There is a one to one correspondence between isomorphism
classes of Hodge structures as above and g dimensional complex tori given by

H 7→ HC

HZ + F 1

Exercise 10.1.3.

1. If H is a weight one (not necessarily) level one Hodge structure, show that
the construction of lemma 10.1.2 is a torus.

2. Prove lemma 10.1.2.

10.2 Canonical Hodge Decomposition

The question remains as to what extent the Hodge decomposition can be made
independent of the choice of Kähler metric.

Let X be a compact Riemann surface. then we have an exact sequence

0→ CX → OX → Ω1
X → 0
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and we saw in lemma 5.4.6 that the induced map

H0(X, Ω1
X)→ H1(X, C)

is injective. If we define

F 0H1(X, C) = H1(X, C)

F 1H1(X, C) = im(H0(X, Ω1
X))

F 2H1(X, C) = 0

then this together with the isomorphism H1(X, C) = H1(X, Z)⊗C determines
a pure Hodge structure of weight 1. To see this choose a metric which is auto-
matically Kähler because dimX = 1 (in fact ∗ is a conformal invariant so it’s
not necessary to choose a metric at all). Then H1(X, C) is isomorphic to direct
sum of the space of harmonic (1, 0)-forms which maps to F 1 and the space of
harmonic (0, 1) forms which maps to F̄ 1.

Before proceeding with the higher dimensional version, we need some facts
from homological algebra. Let C• be a bounded below complex of modules over
some ring (or even objects in an abelian category). Let

C• ⊇ F pC• ⊇ F p+1C• . . .

be a biregular filtration by subcomplexes, i.e. for each i there exists a and b
with F aCi = Ci and F bCi = 0. We get a map on cohomology

φp : H•(F pC•)→ H•(C•)

and we let F pH•(C•) be the image. The filtration is said to be strictly com-
patible with differentials of C•, or simply just strict if all the φ’s are injective.

Proposition 10.2.1. The following are equivalent

1. F is strict.

2. F pCi+1 ∩ dCi = dF pCi for all i and p.

3. The connecting maps Hi(GrpC•)→ Hi+1(F p+1C•) associated to

0→ F p+1 → F p → Grp → 0

vanish for all i and p.

Proof. We first show (1) ⇒ (2). Suppose the differential of x ∈ Ci lies in F p,
then dx defines an element of kerφp. Therefore dx = dy for some y ∈ F p if F
is strict. The proof that (2)⇒ (1) is similar.

The connecting map in (3) can be described explicitly as follows. Given
x̄ ∈ Hi(Grp), it can be lifted to an element x ∈ F p such that dx ∈ F p+1 and
the class of dx is the image of x̄ under the connecting map. If (2) holds, then
dx = dy for some y ∈ F p+1. Replacing x by x− y shows that the image of x̄ is
zero.

(3) is equivalent to the injectivity of all the maps Hi(F p+1)→ Hi(F p), and
this implies (1).
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Corollary 10.2.2. Hi(GrpC•) contains a canonical submodule I = Ii,p to-
gether with a canonical surjection I → GrpHi(C•). Isomorphisms GrpHi(C•) ∼=
I ∼= Hi(GrpC•) hold, for all i, p, if and only if F is strict.

Proof. Let I = image[Hi(F p) → Hi(GrpC•)] then the surjection Hi(F p) →
GrpHi(C•) factors through I. The remaining statement follows from (3) and a
diagram chase.

Corollary 10.2.3. Suppose that C• is a complex of vector spaces over a field
such that dimHi(Grp) <∞ for all i, p. Then

dimHi(C•) ≤
∑

p

dimHi(Grp),

and equality holds for all i if and if F is strict.

Proof. We have

dimHi(C•) =
∑

p

dimGrpHi(C•) ≤
∑

p

dimIip ≤
∑

p

dimHi(Grp)

and equallity is equivalent to strictness of F by the previous corollary.

These results are usually formulated in terms of spectral sequences which
we have chosen to avoid. In this language these corollaries say that F is strict
if and only if the associated spectral sequence degenerates at E1.

Let X be a complex manifold, then the de Rham complex E•(X) has a
filtration called the Hodge filtration:

F pE•(X) =
∑
p′≥p

Ep′q(X)

The Hodge decomposition and corollary 10.2.3 imply:

Theorem 10.2.4. If X is compact Kähler, the Hodge filtration is strict. The
associated filtration F •Hi(X, C) gives a canonical Hodge structure

Hi(X, C) =
⊕

p+q=i

Hpq(X)

of weight i, where

Hpq(X) = F pHi(X, C) ∩ F̄ qHi(X, C) ∼= Hq(X, Ωp
X).

Even though harmonic theory lies is behind this. It should be clear that the
final result does not involve the metric. The following is not so much a corollary
as an explanation of what the term canonical means:

Corollary 10.2.5. If f : X → Y is a holomorphic map of compact Kähler
manifolds, then the pullback map f∗ : Hi(Y, Z) → Hi(X, Z) is compatible with
the Hodge structures.
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Corollary 10.2.6. Global holomorphic differential forms on X are closed.

Proof. Strictness implies that the maps

d : H0(X, Ωp
X)→ H0(X, Ωp+1

X )

vanish by proposition 10.2.1.

This corollary, and hence the theorem, can fail for compact complex non
Kähler manifolds [GH, p. 444].

Theorem 10.2.7. If X is a compact Kähler manifold, the cup product

Hi(X, Z)⊗Hj(X, Z)→ Hi+j(Z, Z)

is a morphism of Hodge structures.

The proof comes down to the observation that

F pE• ∧ F qE• ⊆ F p+qE•

For the corollaries, we work with rational Hodge structures. We have com-
patability with Poincaré duality:

Corollary 10.2.8. If dim X = n, then Poincaré duality gives an isomorphism
of Hodge structures

Hi(X) ∼= [H2n−i(X)∗](−n)

We have compatability with the Künneth formula:

Corollary 10.2.9. If X and Y are compact manifolds, then⊕
i+j=k

Hi(X)⊗Hj(Y ) ∼= Hk(X × Y )

is an isomorphism of Hodge structures.

We have compatability with Gysin map:

Corollary 10.2.10. If f : X → Y is a holomorphic map of compact Kähler
manifolds of dimension n and m respectively, the Gysin map is a morphism

Hi(X)→ Hi+2(m−n)(Y )(n−m)

10.3 The ∂∂̄-lemma

It is possible to generalize theorem 10.2.4 to certain non Kähler manifolds such
as nonprojective smooth proper algebraic varieties. The key ingredient is.

Lemma 10.3.1. (∂∂̄-lemma) If α is a ∂̄-closed ∂-exact form on a compact
Kähler manifold, then there exists a form β such that α = ∂∂̄β.
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Proof. Let G be Green’s operator and H harmonic projection. Then for any
form η

∂η = ∂H(η) + ∂∆G(η) = ∆∂G(η)

Furthermore ∂G(η) is orthogonal to the harmonic forms, therefore it coincides
with G(∂η). Similarly G commutes with ∂̄. Harmonic forms are orthogonal to
∂-exact forms, thus

α = ∆G(α) = 2∂̄∂̄∗G(α) + 2∂̄∗G(∂̄α) = 2∂̄∂̄∗G(α).

Upon substitution of ∂̄∗ = −i[Λ, ∂] and further simplification, we obtain

α = ∂∂̄(constΛG(α))

Lemma 10.3.2. If f : X → Y is a surjective holomorphic map of compact
manifolds with X Kähler, then the ∂∂̄-lemma holds for Y .

Proof. See [D2, 4.3].

A complex manifold X is called Moishezon if its field of meromorphic func-
tions has transcendence degree equal to dim X. These include smooth proper
algebraic varieties. Moishezon [Mo] proved that such manifolds need not be
Kähler but can always be blown up to a smooth projective variety. Hence:

Corollary 10.3.3. The ∂∂̄-lemma holds for Moishezon manifolds.

To see the power of this result, let us prove corollary 10.2.6 directly.

Lemma 10.3.4. Global holomorphic differential forms are closed on compact
manifolds for which the ∂∂̄-lemma holds.

Proof. Suppose that α is a global holomorphic form. Then dα = ∂α would lie
in the image of ∂∂̄. This is impossible unless dα = 0.

A refinement of this yields:

Lemma 10.3.5. F is strict for compact manifolds for which the ∂∂̄-lemma
holds.

Proof. See [DGMS].

Theorem 10.3.6. If X is Moishezon manifold or more generally a manifold
satisfying the hypothesis of lemma 10.3.2, then the conclusion of theorem 10.2.4
holds.
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10.4 Hypercohomology

It is possible to describe the relationship between the De Rham and Dolbeault
cohomologies in more direct terms. But first, we need to generalize the con-
structions given in chapter 3. Recall that a complex of sheaves is a possibly
infinite sequence of sheaves

. . .F i di

−→ F i+1 di+1

−→ . . .

satisfying di+1di = 0. We say that the complex is bounded if only finitely many
of these sheaves are nonzero. Given any sheaf F and natural number n, we get
a complex

F [n] = . . . 0→ F → 0 . . .

with F in the nth position. The collection of bounded complexes of sheaves
on a space X forms a category Cb(X), where a morphism of complexes f :
E• → F• is defined to be a collection of sheaf maps E i → F i which commute
with the differentials. This category is abelian. We define additive functors
Hi : Cb(X)→ Ab(X) by

Hi(F•) = ker(di)/image(di−1)

A morphism in Cb(X) is a called a quasi-isomorphism if it induces isomorphisms
on all the sheaves Hi.

Theorem 10.4.1. Let X be a topological space, then there are additive functors
Hi : Cb(X)→ Ab, with i ∈ N, such that

1. For any sheaf F , Hi(X,F [n]) = Hi+n(X,F)

2. If F• is a complex of acyclic sheaves, Hi(X,F•) = Hi(Γ(X,F•))).

3. If E• → F• is a quasi-isomorphism, then the induced map Hi(X, E•) →
Hi(X,F•) is an isomorphism.

4. If 0→ E• → F• → G• → 0 is exact, then there is an exact sequence

0→ H0(X, E•)→ H0(X,F•)→ H0(X,G•)→ H1(X, E•)→ . . .

We merely give the construction and indicate the proofs of some of these
statements. Complete proofs can be found in [GM] or [I]. We start by redoing
the construction of cohomology for a single sheaf F . The functor G defined in
3.1, gives a flabby sheaf G(F) with an injective map F → G(F). C1(F) is the
cokernel of this map. Applying G again yields a sequence

F → G(F)→ G(C1(F))

By continuing as above, we get a resolution by flabby sheaves

F → G0(F)→ G1(F)→ . . .
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Theorem 4.1.1 shows that Hi(X,F) is the cohomology of the complex Γ(X, G•(F)),
and this gives the clue how to generalize the construction. The complex G• is
functorial. Given a complex

. . .F i d−→ F i+1 . . .

we get a commutative diagram

. . . F i d−→ F i+1 . . .
↓ ↓

G0(F i) d−→ G0(F i+1)
↓ ∂ ↓ ∂
. . . . . .

We define, the total complex

T i =
⊕

p+q=i

Gp(Fq)

with a differential δ = d + (−1)q∂. We can now define

Hi(X,F•) = Hi(Γ(X, T •))

When applied to F [0], this yields Hi(Γ(X, G•(F))) which as we have seen is
Hi(X,F), and this proves 1 when n = 0.

The precise relationship between the various (hyper)cohomology groups is
usually expressed by the spectral sequence

Epq
1 = Hq(X, Ep)⇒ Hp+q(E•)

This has the following consequences that we can prove directly:

Corollary 10.4.2. Suppose that E• is a bounded complex of sheaves of vector
spaces then

dim Hi(E•) ≤
∑

p+q=i

dim Hq(X, Ep)

and ∑
(−1)i dim Hi(E•) =

∑
p+q=i

(−1)p+q dim Hq(X, Ep)

and

Proof. Suppose that EN is the last nonzero term of E•. Let F• be the complex
obtained by replacing EN by zero in E•. There is an exact sequence

0→ EN [N ]→ E• → F• → 0

which induces a long exact sequence of hypercohomology. Then the corollary
follows by induction on the length (number of nonzero entries) of E•.
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Corollary 10.4.3. Suppose that E• is a bounded complex with Hq(X, Ep) = 0
for all p + q = i, then Hi(E•) = 0.

In order to facilitate the computation of hypercohomology, we need a crite-
rion for when two complexes are quasi-isomorphic. We will say that a filtration

E• ⊇ F pE• ⊇ F p+1E• . . .

which is finite if E• = F aE• and F bE• = 0 for some a, b.

Lemma 10.4.4. Let f : E• → F• be a morphism of bounded complexes.
Suppose that F pE• and GpF• are finite filtrations by subcomplexes such that
f(F pE•) ⊆ GpF•. If the induced maps

F pE•/F p+1E• → GpF•/Gp+1F•

are quasi-isomorphisms for all p, then f is a quasi-isomorphism.

10.5 Holomorphic de Rham complex

To illustrate the ideas from the previous section, let us reprove de Rham’s
theorem. Let X be a C∞ manifold. We can resolve CX by the complex of C∞

forms E•X , which is acyclic. In other words, CX and E•X are quasi-isomorphic.
It follows that

Hi(X, CX) = Hi(X, CX [0]) ∼= Hi(X, E•X) ∼= Hi(Γ(X, E•X))

The last group is just de Rham cohomology.
Now suppose that X is a (not necessarily compact) complex manifold. Then

we define a subcomplex
F pE•X =

∑
p′≥p

Ep′q
X

The image of the map

Hi(X, F pE•X)→ Hi(X, E•X)

is the filtration introduced just before theorem 10.2.4. We want to reinterpret
this purely in terms of holomorphic forms. We define the holomorphic de Rham
complex by

OX → Ω1
X → Ω2

X . . .

This has a filtration (sometimes called the “stupid” filtration)

σpΩ•X = . . . 0→ Ωp
X → Ωp+1

X → . . .

gotten by dropping the first p − 1 terms. We have a natural map Ω•X → E•X
which takes σp to F p. Dolbeaut’s theorem 8.2.3 implies that F p/F p+1 is quasi-
isomorphic to σp/σp+1 = Ωp

X [p]. Therefore, lemma 10.4.4 implies that Ω•X →
E•X , and more generally σpΩ•X → F pE•X , are quasi-isomorphisms. Thus:
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Lemma 10.5.1. Hi(X, C) ∼= Hi(X, Ω•X) and F pHi(X, C) is the image of
Hi(X, σpΩ•X).

When X is compact Kähler, theorem 10.2.4 implies that the map

Hi(X, σpΩ•X)→ Hi(X, Ω•X)

is injective.
When X is compact, the Dolbeault groups are always finite dimensional.

From corollaries 10.4.2 and 10.4.3, we obtain

Corollary 10.5.2. If X is compact, the ith Betti number

bi(X) ≤
∑

p+q=i

dim Hq(X, Ωp
X)

and the Euler characteristic∑
(−1)ibi(X) =

∑
(−1)p+q dim Hq(X, Ωp

X)

Corollary 10.5.3. If Hq(X, Ωp
X) = 0 for all p + q = i, then Hi(X, C) = 0.

Corollary 10.5.4. Let X be a Stein manifold (see section 16.2), then Hi(X, C) =
0 for i > dim X.

Proof. This follows from theorem 16.2.6.
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Chapter 11

Algebraic Surfaces

A (nonsingular) complex surface is a two dimensional complex manifold. By an
algebraic surface, we will mean a two dimensional smooth projective surface.
To be consistent, Riemann surfaces will be referred to as complex curves from
now on.

11.1 Examples

Let X be an algebraic surface. We know from the previous chapter that there
are three interesting Hodge numbers h10, h20, h11. The first two are traditionally
called (and denoted by) the irregularity (q) and geometric genus (pg).

Example 11.1.1. If X = P2, then q = pg = 0 and h11 = 1. This will be
checked in the next chapter.

Example 11.1.2. The next example is the rational ruled surface Fn, with n
a nonnegative integer. This can be conveniently described as the toric variety
(section 2.4) associated to the fan

(1,0)

(0,1)

σ
1

2
σ

σ
3

σ

(−1, n)

4
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These surfaces are not isomorphic for different n. However they have the same
invariants q = pg = 0 and h11 = 2.

Example 11.1.3. If X = C1 × C2 is a product of two nonsingular curves of
genus g1 and g2. Then by Künneth’s formula q = g1 + g2, pg = g1g2 and
h11 = 2g1g2 + 4g1 + 4g2 + 6.

Example 11.1.4. Let X ⊂ P3 be a smooth surface of degree d. Then q = 0.
We will list the first few values:

d pg h11

2 0 2
3 0 7
4 1 20
5 4 45
6 10 86

These can be calculated using formulas given later (15.2.3).

A method of generating new examples from old is by blowing up. The basic
construction is: Let

Bl0C2 = {(x, `) ∈ C2 × P1 |x ∈ `}

The projection p1 : Bl0C2 → C2 is birational. This is called the blow up of C2

at 0. This can be generalized to yield the blow up BlpX → X of the surface
X at point p. This is an algebraic surface which can be described analytically
as follows. Let B ⊂ X be a coordinate ball centered at p. After identifying B
with a ball in C2 centered at 0, we can form let Bl0B be the preimage of B in
Bl0C2. The boundary of Bl0B can be identified with the boundary of B. Thus
we can glue X −B ∪Bl0B to form BlpX.

Using the above description, we can compute H∗(Y, Z) where Y = BlpX by
comparing Mayer-Vietoris sequences

→ Hi(X) → Hi(X −B′) ⊕ Hi(B) → Hi(X −B′ ∩B)
↓ || ⊕ ↓ ||

→ Hi(Y ) → Hi(Y −BlpB
′) ⊕ Hi(BlpB) → Hi(Y −BlpB

′ ∩BlpB)

where B′ ⊂ B is a smaller ball. It follows that

Lemma 11.1.5. H1(Y ) ∼= H1(X) and H2(Y ) = H2(X)⊕ Z.

Corollary 11.1.6. q and pg are invariant under blowing up. h11(Y ) = h11(X)+
1.

Proof. The lemma implies that b1 = 2q is invariant and b2(Y ) = b1(X)+1. Since
b2 = 2pg + h11, the only possiblities are h11(Y ) = h11(X) + 1, pg(Y ) = pg(X),
or that pg(Y ) < pg(X). The last inequallity means that there is a nonzero
holomorphic 2-form on X that vanishes on X − p, but this is impossible.
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A morphism of varieties f : V →W is called birational if it is an isomorphism
when restricted to nonempty Zariski open sets of X and Y . A birational map
V 99K W is simply an isomorphism of Zariski open sets. Blow ups and their
inverses (“blow downs”) are examples of birational morphisms and maps. For
the record, we point out

Theorem 11.1.7 (Castelnuovo). Any birational map between algebraic sur-
faces is a given by a finite sequence of blow ups and downs.

Therefore, we get the birational invariance of q and pg. However, there are
easier ways to prove this. Blow ups can also be used to extend meromorphic
functions. A meromorphic function f : X 99K P1 is a holomorphic map from an
open subset U ⊆ P1 which can be expressed locally as a ratio of holomorphic
functions.

Theorem 11.1.8 (Zariski). If f : X 99K P1 meromorphic function on an
algebraic surface. Then there is a finite sequence of blow ups such that Y → X
such that f extends to a holomorphic map f ′ : X → P1.

Exercise 11.1.9.

1. Compare the construction of the blow up given here and in section 2.4
(identify ((x, t) with ((x, xt), [t, 1])).

2. Finish the proof of lemma 11.1.5.

11.2 Castenuovo-de Franchis’ theorem

When can try to study varieties by mapping them onto lower dimensional va-
rieties. In the case of surfaces, the target should be a curve. A very useful
criterion for this is

Theorem 11.2.1 (Castenuovo-de Franchis). Suppose X is an algebraic sur-
face. A necessary and sufficient condition for X to admit a constant holomor-
phic map to a smooth curve of genus g ≥ 2 is that there exists two linear
independant forms ωi ∈ H0(X, Ω1

X) such that ω1 ∧ ω2 = 0.

The necessity is clear. We will sketch part of the argument of the converse,
since it gives a nice application of corollary 10.2.6. A complete proof can be
found in [BPV, pp123-125]. Choosing local coordinates, we can write

ωi = fi(z1, z2)dz1 + gi(z1, z2)dz2

The condtion ω1 ∧ ω2 = 0 is

(f1g2 − f2g1)dz1 ∧ dz2 = 0

which implies that
f2/f1 = g2/g1.
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Thus ω2 = F (z1, z2)ω1. Since ωi are globally defined, F = ω2/ω1 defines a
global meromorphic function X 99K P1. Since ωi are closed (corollary 10.2.6),

dF ∧ ω1 = dω2 = 0 (11.1)

Choose a “general” point p ∈ X and let t1 be a local coordinate centered at
F (p). Let us also use t1 for the pullback of this function to neighbbourhood of
p. Then we can choose a function t2 such that t1, t2 give local coordinates at
p. (11.1) becomes dt1 ∧ ω1 = 0. Consequently ω1 = f(t1, t2)dt1. The relation
dω1 = 0, implies f is a function of t1 alone. Thus ω1 is locally the pullback of
a 1-form on P1, and likewise for ω2. This not true globally, since in fact there
are no nonzero holomorphic 1-forms on P1. What we can do is the following.
By theorem 11.1.8, there exists a blow up Y → X such that F extends to a
holomorphic function F ′ : Y → P1. The fibers of F ′ will not be connected. A
theorem of Stein shows that the map can be factored as Y → C → P1, where
the first map has connected fibers and C → P1 is a finite to one map of curves.
The argument above can be used to show that ωi are pullback from holomorphic
1-forms on C. The final step is to prove that, the blow up is unnecessary, i.e.
we can take Y = X.

An obvious corollary is:

Corollary 11.2.2. If q ≥ 2 and pg = 0, then X admits a constant map to a
curve as above.

This can be improved substatially [BPV, IV, 4.2].

11.3 The Neron-Severi group

Let X be an algebraic surface once again. The image of the first Chern class
map is the Neron-Severi group NS(X) = H2(X, Z)∩H11(X). The rank of this
group is called Picard number ρ(X). We have ρ ≤ h11 with equality if pg = 0.

A divisor on X is a finite integer linear combination
∑

niDi of possibly
singular curves Di. We can define a line bundle OX(D) as we did for Riemann
surfaces in section 5.5. If fi are local equations of Di ∩ U in some open set U ,

OX(D)(U) = OX(U)
1

fn1
1 fn2

2 . . .

is a fractional ideal.

Proposition 11.3.1. If D is a smooth curve, then c1(OX(D)) = [D].

The cup product pairing

H2(X, Z)×H2(X, Z)→ H4(X, Z)→ Z

restricts to NS(X) denoted by “·”.
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Lemma 11.3.2. Given a pair of transverse smooth curves D and E,

D · E =
∫

X

c1(O(D)) ∪ c1(O(E)) = #(D ∩ E)

Proof. This follows from the propositions 11.3.1 and 4.4.2. The number ip(D,E)
is seen to be always +1 in this case.

If the intersection of the curves D and E is finite but not transverse, it is still
possible to give a geometric meaning to the above product. For each p ∈ X, let
Oan

p and Op be the rings of germs of holomorphic respectively regular functions
at p. Let f, g ∈ Op ⊂ Oan

p be the local equations of D and E respectively.
Define ip(D,E) = dimOp/(f, g). Then

Lemma 11.3.3.

ip(D,E) = dimOan
p /(f, g) =

1
(2π
√
−1)2

∫
|f(z)|=|g(z)|=ε

df ∧ dg

fg

Proof. [GH, pp. 662-670].

Proposition 11.3.4. If D,E are smooth curves such D ∩ E is finite, then

D · E =
∑
p∈X

ip(D,E)

Recall that H2(P2, Z) = H4(P2, Z) = Z, and the generator of H2(P2, Z) is
the class of line [L]. Given a curve D defined by a polynomial f , we define
deg D = deg f . Then [D] = deg D[L].

Corollary 11.3.5 (Bezout). If D,E are smooth curves on P2 with a finite
intersection, ∑

p∈X

ip(D,E) = deg(D) deg(E)

Proof. We have [D] = deg D[L], and [E] = deg E[L], so that D·E = deg D deg EL·
L = deg D deg E.

Exercise 11.3.6.

1. Let X = C × C be product of a curve with itself. Consider, the divisors
H = C × {p}, V = {p} × C and the diagonal ∆. Show that these are
independent in NS(X)⊗Q.

2. E = C/(Z + Zτ) be an elliptic curve, and let X = E × E. Calculate the
Picard number, and show that it could be 3 or 4 depending on τ .
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11.4 The Hodge index theorem

Let X a compact Kähler surface. Then the Kähler for ω is closed real (1, 1)
form, therefore it defines an element of H11(X) ∩H2(X, R).

Theorem 11.4.1. Let X be a compact Kähler surface. Then the restriction of
the cup product to (H11(X) ∩H2(X, R)) ∩ (R[ω])⊥ is negative definite.

Proof. Locally, we can find an orthonormal basis {φ1, φ2} of E(1,0). In this basis,

ω =
√
−1
2

(φ1 ∧ φ̄1 + φ2 ∧ φ̄2)

and the volume form

dvol =
ω2

2
=

(
2√
−1

)2

φ1 ∧ φ̄1 ∧ φ2 ∧ φ̄2

Choose an element of (H11(X)∩H2(X, R))∩ (R[ω])⊥ and represent it by a real
(1, 1) form

α =
∑

aijφi ∧ φ̄j

Since ᾱ = α, aji = āij .∫
X

α ∧ ω =
2√
−1

∫
X

(a11 + a22)dvol = 0.

which shows a11 + a22 = 0. Therefore∫
X

α ∧ α = 2
(

2√
−1

)2 ∫
X

(|a11|2 + |a12|2)dvol < 0

Let X be a smooth projective surface. A divisor H on X is called if called
very ample if there is an embedding X ⊂ Pn such that OX(H) ∼= OPn(1)|X .
H is ample if some positive multiple is very ample. Since H2(Pn, C) is one
dimensional, the cohomology class associated to the Kähler class ω of the Fubini-
Study metric 9.1.3. would have to be a nonzero multiple of c1(O(1)). In fact,
the constants in ω are chosen so that these coincide. Thus [H] = c1(O(H)) will
be the Kähler class for the induced metric, when H is very ample.

Corollary 11.4.2. If H is an ample divisor on an algebraic surface, the inter-
section pairing is negative definite on (NS(X)⊗ R) ∩ (RH)⊥

If H is ample, then H2 > 0. The converse is false. Therefore when the cup
product form is diagonalized, the diagonal consists of one 1 followed by ρ − 1
−1’s. So we obtain

Corollary 11.4.3. If H,D are divisors on an algebraic surface such that H2 >
0 and D ·H = 0, then D2 < 0

95



Exercise 11.4.4.

1. Prove that the restriction of the cup product to (H20(X) + H02(X)) ∩
H2(X, R) is positive definite.

2. Conclude that (the matrix representing) the cup product pairing has 2pg+1
positive eigenvalues. Therefore pg is a topological invariant.
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Chapter 12

Topology of families

12.1 Fiber bundles

A C∞ map f : X → Y of manifolds is called a fiber bundle if it is locally a
product of Y with another manifold (called the fiber). It is called trivial if f is
a product. Nontrivial bundles over S1 can be constructed as follows. Let F be
a manifold with a diffeomorphism φ : F → F , then glue F ×{0} in F × [0, 1] to
F × {1} by identifying (x, 0) to (φ(x), 1). This includes the familiar example of
the Mobius strip where F = R and φ is multiplication by −1. If the induced map
φ∗ : H∗(F )→ H∗(F ), called monodromy, is nontrivial then the fiber bundle is
nontrivial.

A C∞ map f : X → Y is called a submersion if the map on tangent spaces
is surjective. The fibers of such a map are submanifolds. A continuous map of
topological spaces is called proper if the preimage of any compact set is compact.

Theorem 12.1.1 (Ehresmann). Let f : X → Y be a proper smooth map of
C∞ connected manifolds. Then f is a C∞ fiber bundle; in particular, the fibers
are diffeomorphic.

Proof. A complete proof can be found in [MK, 4.1]. Here we sketch the proof
of the last statement. Since Y is connected, we can join any two points, say
0 and 1 by a path. Thus we replace Y by an interval, and hence by R which
is diffeomorphic to it. Choose a Riemmanian metric on X, then by the inner
products allow us to define a vector field (the gradient) ∇f dual to the differ-
ential df . By assumption df and therefore ∇f is nowhere zero. The existence
and uniqueness theorem of ordinary linear differential equations allows us to
define, for each p ∈ f−1(0), a C∞ path γp : R → X passing through p at time
0 and with velocity ∇f . Then the gradient flow p 7→ γp(1) gives the desired
diffeomorphism.
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Y 

X 

Figure 12.1: Gradient flow

12.2 A family of elliptic curves

Let’s take a quick look at a complex analytic example. Legendre’s family of
projective cubic curves is

p2 : E = {([x, y, z], t) ∈ P2 × C | y2z − x(x− z)(x− tz) = 0} → C

The curves are singular if and only if t = 0, 1, in which case, they rational curves
with a single node. E restricts to a family of elliptic curves Eo over C− {0, 1}.
The map Eo → C − {0, 1} is a submersion, and hence a C∞ fiber bundle with
a torus T as fiber. (Note that Eo is not locally trivial analytically, since the
fibers are not even isomorphic.) Each smooth fiber Et is a double cover of P1

branched over 0, t, 1,∞. Let ā(t) and b̄(t) be noncrossing paths in P1 joining
0 to 1 and 0 to t respectively. Then the preimages of these paths in Et form
closed paths a(t) and b(t). If we orient these so that a · b = 1, these form a
basis of H1(Et, Z). b(t) is called a vanishing cycle since it shrinks to the node
as t→ 0, see figure 12.2

The restriction of Eo to a bundle over the circle Sε = {t | |t| = ε} can be
described by taking a trivial torus bundle T × [0, 1] and gluing the ends T ×{0}
and together T × {1} using a so called Dehn twist about the vanishing cycle
b = b(t). This is a diffeomorphism which is the identity outside a neighbourhood
U of b and twists “once around” along b (see figures 12.3 and 12.3, U is the
shaded region).
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t=0 t general

b(t)

Figure 12.2: Legendre family

Note that the Dehn twist involves choices, however its effect on (co)homology,
called the monodromy transformation µ associated to the loop, is independent
of them. The matrix of the monodromy transformation is determined by the
Picard-Lefschetz formula:

Theorem 12.2.1. µ(a) = a + b, and µ(b) = b.

Recall that H/Γ(2) = C− {0, 1}, and E0 can also be realized as a quotient
of C×H by an action of the semidirect product Z2 o Γ(2). E is an example of
an elliptic modular surface.

12.3 Local systems

In this section, we give a more formal treatment of monodromy.
Let X be a topological space, a path from x ∈ X to y ∈ X is a is a

continuous map γ : [0, 1] → X such that γ(0) = x and γ(1) = y. Two paths
γ, η are homotopic if there is a continuous map Γ : [0, 1]× [0, 1]→ X such that
γ(t) = Γ(t, 0), η(t) = Γ(t, 1) Γ(0, s) = x and Γ(1, s) = y. We can compose
paths: If γ is a path from x to y and η is a path from y to z, then γ · η is the
path given by following one by the other at twice the speed. More formally,

γ · η(t) =

{
γ(2t) if t ≤ 1/2
η(2t− 1) if t > 1/2
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Figure 12.3: T foliated by meridians

This operation is compatible with homotopy in the obvious sense, and the in-
duced operation on homotopy classes is associative. It almost a group law. To
make this precise, we define a category Π(X) whose objects are points of X
and whose morphisms are homotopy classes of paths. This makes Π(X) into a
groupiod which means that every morphism is an isomorphism. In other words
every (homotopy class of a) path has a inverse. This is not a group because it
is not possible to compose any two paths. To get around this, we can consider
loops, i. e. paths which start and end at the same place. Let π1(X, x) be the
set of homotopy classes of loops based (starting and ending )at x. This is just
HomΠ(X)(x, x) and as such it inherits a composition law which makes it a group
called the fundamental group of (X, x). We summarize the standard properties
that can be found in almost any toplogy textbook, e.g. [Sp]:

1. π1 is a functor on the category of path connected spaces with base point
and base point preserving continous maps.

2. If X is path connected, π1(X, x) ∼= π1(X, y) (consequently, we usually
suppress the base point).

3. Two homotopy equivalent path connected spaces have isomorphic funda-
mental groups.

4. Van Kampen’s theorem: If X is a path connected simplicial complex which
is the union two subcomplexes X1 ∪X2, then π1(X) is the free product of
π1(X1) and π1(X2) amalgamated along the image of π1(X1 ∪X2).
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Figure 12.4: T foliated by images of meridians under Dehn twist

5. A X is a connected locally path connected space has a universal cover
π : X̃ → X, and π1(X) is isomorphic to the group of deck transformations,
i.e. selfhomeomorphisms of X̃ which commute with π.

This already suffices to calculate the examples of interest to us. It is easy to
see that the fundmental group of the circle R/Z is Z. The complement in C of
a set S of k points is homotopic to a wedge of k circles. Therefore π1(C− S) is
a free group on k generators.

Let X be a topological space. A local system of abelian groups is a functor
F : Π(X) → Ab. A local system F gives rise to a π1(X)-modules i.e. abelian
group F (x) with a π1(X, x) action. We can also define a sheaf F as follows

F(U) = {f : U → ∪F (x) | f(x) ∈ F (x) and f(γ(1)) = F (γ)(f(γ(0)))}

This sheaf is locally constant which means that every x ∈ X has an open neigh-
bourhood U such that F|U is constant.

Theorem 12.3.1. Let X be a connected good (i.e. locally path connected semilo-
cally simply connected) topological space. There is an equivalence of categories
between

1. The category of π1(X)-modules.

2. The category of local systems and natural transformations.

3. The full subcategory of Sh(X) of locally constant sheaves on X.
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In view of this theorem, we will treat local systems and locally constant
sheaves as the same.

Let f : X → Y be a fiber bundle. We are going to construct a local system
which takes y → Hi(Xy, Z). Given a path γ : [0, 1] → Y joining y0 and
y1, the pullback γ∗X = {(x, t) | f(x) = γ(t)} will be a trivial bundle over
[0, 1]. Therefore γ∗X will be homotopic to both Xy0 and Xy1 , and so we have
isomorphisms

Hi(Xy0)
∼← Hi(γ∗X) ∼→ Hi(Xy1)

The map Hi(Xy0)→ Hi(Xy1) can be seen to depend only on the homotopy class
of the path, thus we have a local system which gives rise to a locally constant
sheaf which will be constructed directly in the next section.

12.4 Higher direct images

Let us start with a rather general situation. Let f : X → Y be a continuous map
and F ∈ Sh(X) a sheaf. We can define the higher direct images by imitating
the definition of Hi(X,F) in section 3.2.

R0f∗F = f∗F
R1f∗F = coker[f∗G(F)→ f∗C

1(F)]
Rn+1f∗F = R1f∗C

n(F)

Then we have an analogue of theorem 3.2.1.

Theorem 12.4.1. Given an exact sequence of sheaves

0→ A→ B → C → 0,

there is a long exact sequence

0→ R0f∗A→ R0f∗B → R0f∗C → R1f∗A . . .

There is an alternative description which is a bit more convenient.

Lemma 12.4.2. If f : X → Y is a continuous map, and F ∈ Sh(X), then
Rif∗F(U) is the sheafification of U 7→ Hi(U,F)

Each element of Hi(X,F) determines an a global section of the presheaf U 7→
Hi(U,F) and hence of the sheaf Rif∗F . This map Hi(X,F)→ H0(X, Rif∗F)
is often called an edge homomorphism.

Let us now assume that f : X → Y is a fiber bundle of triangulable spaces.
Then choosing a contractible neighbourhood U of y, we see that Hi(U, Z) ∼=
Hi(Xy, Z). Since such neigbourhoods are cofinal, it follows that Rif∗Z is locally
constant. This coincides with the sheaf associated to the local system Hi(Xy, Z)
constructed in the previous section. The global sections of H0(Y, Rif∗Z) is
the space Hi(Xy, Z)π1(Y,y) of invariant cohomology classes on the fiber. We
can construct elements of this space using the edge homomorphism. For more
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general maps, we still have (Rif∗Z)y
∼= Hi(Xy, Z), but the ranks can jump, so

these need not be locally constant.
The importance of the higher direct images is that it allows the cohomology

of X to be computed on Y . The precise relationship is given by the Leray
spectral sequence

Epq
2 = Hp(Y, Rqf∗F)⇒ Hp+q(X,F)

which we won’t go into. However, we will explain one of its consequences.

Proposition 12.4.3. If F is a sheaf of vector spaces over a field, such that
dim Hp(Y,Rqf∗F) <∞, then

dim Hi(X,F) ≤
∑

p+q=i

Hp(Y, Rqf∗F)

It is possible to give a self contained proof of this using corollary 10.4.2.

Exercise 12.4.4.

1. Prove theorem 12.4.1.
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Chapter 13

The Hard Lefschetz
Theorem

13.1 Hard Lefschetz and its consequences

Let X be an n dimensional compact Kähler manifold. Recall that L was defined
by wedging with Kähler class ω. Since ω is closed, L takes closed (respectively
exact) forms to closed ( exact) forms. Therefore this operation is defined on
cohomology. The space

P i(X) = ker[Ln−i+1 : Hi(X, C)→ H2n−i+2(X, C)]

is called the primitive part of cohomology.

Theorem 13.1.1. For every i,

Li : Hn−i(X, C)→ Hn+i(X, C)

is an isomorphism. For every i,

Hi(X, C) =
[i/2]⊕
j=0

LjP i−2j(X)

We indicate the proof in the next section. As a simple corollary we find
that the Betti numbers bn−i = bn+i. Of course, this is nothing new since this
also follows Poincaré duality. However, it is easy to extract some less trivial
“numerology”.

Corollary 13.1.2. The Betti numbers satisfy bi−2 ≤ bi for i ≤ n/2.

Proof. The theorem implies that the map L : Hi−2(X) → Hi(X) is injective.
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Suppose that X = Pn with the Fubini-Study metric 9.1.3. the Kähler class
ω = c1(O(1)). The class c1(O(1))i 6= 0 is the fundamental class of a codimen-
sion i linear space (see sections 6.2 and 6.5), so it is nonzero. Since all the
cohomology groups of Pn are either 0 or 1 dimensional, this implies the Hard
Lefschetz theorem for Pn. Things get much more interesting when X ⊂ Pn is a
nonsingular subvariety with induced metric. By Poinaré duality and the previ-
ous remarks, we get a statement closer to what Lefschetz would have stated1.
Namely, that any element of Hn−i(X, Q) is homologous to the intersection of a
class in Hn+i(X, Q) with a codimension i subspace.

The Hodge index for surfaces admits the following generalization called the
Hodge-Riemman relations to an dimensional compact Kähler manifold X. Con-
sider the pairing

Hi(X, C)×Hi(X, C)→ C

defined by

Q(α, β) = (−1)i(i−1)/2

∫
X

α ∧ β ∧ ωn−i

Theorem 13.1.3. Hi(X) = ⊕Hpq(X) is an orthogonal decomposition. If α ∈
P p+q(X) ∩Hpq(X) is nonzero,

√
−1

p−q
Q(α, ᾱ) > 0.

Proof. See [GH, p.123].

Let us introduce the Weil operator C : P i(X) → P i(X) which acts on
P p+q(X) ∩Hpq(X) by multiplication by

√
−1

p−q
.

Corollary 13.1.4. The form Q̃(α, β) = Q(α, Cβ̄) on P i(X) is positive definite
Hermitean.

13.2 More identities

Let X be as in the previous section. We defined the operators L,Λ acting forms
E•(X) in section 9.1. We define a new operator H which acts by multiplication
by n− i on E i(X). Then:

Proposition 13.2.1. The following hold:

1. [Λ, L] = H

2. [H,L] = −2L

3. [H,Λ] = 2Λ

1Lefschetz stated a version of this theorem for varieties in his book [L], but to my knowledge
no one has ever made his proof rigorous. The first correct proof is due to Hodge using
harmonic forms. A subsequent arithemetic proof was given by Deligne. However, there is still
no geometric proof.
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Furthermore these operators commute with ∆.

Proof. See [GH, p 115, 121].

This plus the following theorem of linear algebra will prove the Hard Lef-
schetz theorem.

Theorem 13.2.2. Let V be a vector space with endomorphisms L, Λ,H satis-
fying the above idenities. Then

1. H is diagonalizable with integer eigenvalues.

2. For each a ∈ Z let Va be the space of eigenvectors of H with eigenvalue a.
Then Li induces an isomomorphism between Vi and V−i.

3. If P = ker(Λ), then

V = P ⊕ LP ⊕ L2P ⊕ . . .

4. α ∈ P ∩ Vi then Li+1α = 0.

We should say a few words about this mysterious theorem of linear algebra.
Consider Lie algebra sl2(C) of space of traceless 2 × 2 complex matrices. This
is a Lie algebra with a basis is given by

λ =
(

0 1
0 0

)

` =
(

0 0
1 0

)

h =
(

1 0
0 −1

)
These matrices satisfy

[λ, `] = h, [h, λ] = 2λ, [h, `] = −2`

So the hypothesis of the theorem is simply that V is a representation of sl2(C).
The theorem can then be deduced from the following two facts from represen-
tation theory of sl2(C) (which can be found in almost any book on Lie theory):

1. Every representation of sl2(C) is a direct sum of irreducible representa-
tions.

2. An irreducible representation is classified by an integer N ≥ 0, and has
the following structure

0 V−N = C
` 6=0 //

λ
oo V−N+2 = C

λ6=0
oo

` 6=0 // . . .
λ6=0

oo
` 6=0//

VN = C
λ6=0

oo
` // 0
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13.3 Lefschetz Pencils

In this section, we are going to reverse history and use the hard Lefschetz
theorem to deduce the original statement that Lefschetz used in his attempt
to prove it. Choose a smooth n dimensional projective variety X ⊂ PN . We
can and will assume that X is nondegnerate which means that X does lie on
a hyperplane. Let P̌N be the dual projective space whose points correspond to
hyperplanes of PN . A line {Ht}t∈P1 ⊂ P̌N is called a pencil of hyperplanes.
A pencil {Ht} is called Lefschetz if Ht ∩ X has at worst a single node (i.e.
singularity x ∈ H ∩X with Ôx

∼= C[[x1, . . . xn]]/(x2
1 + . . . x2

n)) for all t ∈ P1.

Lemma 13.3.1. Lefschetz pencils exist.

Given a pencil, we form an incidence variety X̃ = {(x, t) ∈ X×P1 | x ∈ Ht}
The second projection gives a map onto P1 whose fibers are intersections H∩X.
There is a finite set S of t ∈ P1 with p−1t singular. Let U = P1 − S. Choose
t0 ∈ U , set Y0 = p−1(t0) and consider the diagram

X X̃

p

��

π
oo

Y0

τ

OO
τ̃

>>~~~~~~~~
P1

Choose small disks ∆i around each ti ∈ S, and connect these by paths γi to the
base point t0 (figure 13.1).

���
�

���
�

���
�

t t
0 1

γ
1

Figure 13.1: Loops

The space p−1(γi∪∆i) is homotopic to the singular fiber Yi = p−1(ti). The ker-
nel Hn−1(Y0, Q)→ Hn−1((γi∪∆i), Q) is generated by a class δi ∈ Hn−1(Y0, Q)
called a vanishing cycle (see figure 12.2). Let µi denote the monodromy of going
once around ∆i.
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Theorem 13.3.2 (Picard-Lefschetz). µi(α) = α±〈α, δi〉δi where 〈, 〉 denotes
the cup product pairing on Hn−1(Y0, Q)

Proof. [La].

Let V ⊂ Hn−1(Y0, Q) be the subspace spanned by the δi.

Corollary 13.3.3. The orthogonal complement V ⊥ coincides with the subspace
Hn−1(Y0)π1(U) ⊂ Hn−1(Y0) of classes invariant under π1(U).

The image of Hn−1(X, Q) lies in Hn−1(Y0)π1(U) since it factors through
Hn−1(X̃, Q).

Theorem 13.3.4.

(a) V is an irreducible π1(U)-module.

(b) Hn−1(Y0)π1(U) = τ∗Hn−1(X, Q).

(c) τ∗Hn−1(X, Q) ∩ V = 0.

(d) Hn−1(Y, Q) = τ∗Hn−1(X, Q)⊕ V

Proof. We prove the last two statements. For the previous statements, see
[La]. By Poincaré duality dim Hn−1(Y, Q) = dim V + dim V ⊥. By part (b) and
corollary 13.3.3, τ∗Hn−1(X) = V ⊥. The restriction of the cup product pairing
to τ∗Hn−1(X) coincides with the pairing

(α, β) 7→
∫

Y

τ∗α ∪ τ∗β = ±Q(α, β)

which is nondegenerate by corollary 13.1.4. This implies that V ∩V ⊥ = 0 which
proves (c) and (d).

13.4 Barth’s theorem

Hartshorne [H1] gave a short elegent proof of a theorem of Barth based on the
hard Lefschetz theorem. His reproduce his argument here.

Proposition 13.4.1. If X is an n dimensional nonsingular complex projective
variety, such there positive integers m < n and N ≤ 2m− n for which

1 = b2 = b4 = . . . b2([N/2]+n−m)

b1 = b3 = . . . b1+2([(N−1)/2]+n−m)

Then if Y ⊂ X a nonsingular m dimensional subvariety, the restriction map
Hi(X, Q)→ Hi(Y, Q) is an isomorphism for i < N .

108



Proof. The assumtions imply that H2(n−m)(X) is generated by Ln−m. There-
fore [Y ] = d[H]n−m with d 6= 0. Let ι : Y → X denote the inclusion. Let L be
the Lefschetz operator associated to H and H|Y (it will be clear from context,
which is which). Consider the diagram

Hi(X) Ln−m
//

ι∗

��

Hi+2(n−m)(X)

ι∗

��
Hi(Y ) Ln−m

//

(1/d)ι!
88ppppppppppp

Hi+2(n−m)(X)

The diagram commutes thanks to the identities

ι∗ι!α = i∗[Y ] ∪ α

ι!ι
∗β = [Y ] ∪ β

ι∗(β ∪ γ) = ι∗β ∪ ι∗γ

Hard Lefschetz for X implies that Ln−m : Hi(Y ) → Hi+2(n−m)(Y ) is in-
jective and hence an isomorphism by our assumptions. It follows that the re-
striction ι∗ : Hi(X) → Hi(Y ) is injective. It’s enough to prove equality of
dimension. Hard Lefschetz for Y implies that Ln−m : Hi(Y )→ Hi+2(n−m)(Y )
is injective. Therefore the same is true of ι!. Therefore

bi(X) ≤ bi(Y ) ≤ bi+2(n−m)(X) = bi(X)

Corollary 13.4.2 (Barth). If Y ⊂ Pn is a nonsingular, complex projective
variety, then Hi(Pn, Q)→ Hi(Y, Q) is an isomorphism for i < dim Y .

When Y has codimension one, this is the Lefschetz hyperplane theorem (or
more acurately a special case of it).

13.5 Hodge conjecture

Let X be an n dimensional nonsingular complex projective variety. We define
the space of codimension p Hodge cycles on X to be

Hodgep(X) = H2p(X, Z) ∩Hpp(X)

Lemma 13.5.1. Given a nonsingular subvariety i : Y → X of codimension p,
the fundamental class [Y ] ∈ Hodgep(X)

Proof. [Y ] corresponds under Poincaré duality to the functional α 7→
∫

Y
α. If

α has type (a, b), then α|Y = 0 unless a = b = p. Therefore [Y ] has type (p, p)
thanks to corollary 10.2.8. The class [Y ] is also integral, hence the lemma.
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Even if Y has singularities, a fundamental class can be defined with the
above properties. Here we give a quick but nonelementary definition. Let us
first observe.

Lemma 13.5.2. α ∈ Hodgep(X) if and only if 1 7→ α defines a morphism of
Hodge structures Z→ H2p(X, Z)(p). Consequently, Hodgep(X) ∼= Hom(Z,H2p(X, Z)(p)).

By Hironaka’s famous theorem [Ha], there exists a smooth projective variety
Ỹ with a birational map p : Ỹ → Y . Let ĩ : Ỹ → X denote the composition of
p and the inclusion. By corollary 10.2.10, we have a morphism

ĩ! : H0(Ỹ ) = Z→∈ H2p(X)(−p)

This defines a class [Y ] ∈ Hodgep(X) which is easily seen to be independent of
Ỹ .

Let Ap(X) ⊆ Hodgep(X) ⊗ Q be the subspace spanned by fundamental
classes of codimension p subvarieties. The (in)famous Hodge conjecture asserts:

Conjecture 13.5.3 (Hodge). Ap(X) and Hodgep(X)⊗Q coincide.

Note that in the original formulation Z was used in place of Q, but this is
known to be false [AH]. For p = 1, the conjecture is true by the Lefschetz (1, 1)
theorem 9.3.1. We prove it holds for p = dim, X − 1.

Proposition 13.5.4. If the Hodge conjecture holds for X in degree p with
p < n = dim X, i.e. if Ap(X) = Hodgep(X)⊗Q, then it holds in degree n− p.

Proof. Let L be the Lefshetz operator corresponding to a projective embedding
X ⊂ PN . Then for any subvariety Y L[Y ] = [Y ∩H] where H is a hyperplane
section chosen in general position. It follows thatLn−2p takes Ap(X) to An−p(X)
and the map is injective. Thus

dim Hodgep(X)⊗Q = dim Ap(X) ≤ dim An−p(X) ≤ dim Hodgen−p(X)⊗Q

On the other hand Ln−2p induces an isomorphism of Hodge structures H2p(X, Q)(p−
n) ∼= H2n−2p(X, Q), and therefore an isomorphism Hodgep(X)⊗Q ∼= Hodgen−p(X⊗
Q). Thus forces equality of the above dimensions.

Corollary 13.5.5. The Hodge conjecture holds in degree n− 1.

Further information can be found in [Lw].

13.6 Degeneration of Leray

We want to mention one last consequence of the Hard Lefschetz theorem due to
Deligne [D1]. A projective morphism of smooth complex algebraic varieties is
called smooth if the induced maps on (algbraic) tangent spaces are surjective.
In particular, such maps are C∞ fiber bundles.
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Theorem 13.6.1. Let f : X → Y be smooth projective map of smooth complex
algberaic varieties, then the inequalities in proposition 12.4.3 for F = Q are
equalities, i.e.

dim Hi(X, Q) =
∑

p+q=i

Hp(Y, Rqf∗Q)

Note that this generally fails for C∞ fiber bundles.
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Chapter 14

Coherent sheaves on
Projective Space

In this chapter, we develop some algebraic tools for studying sheaves on projec-
tive spaces. In the last section, we discuss Serre’s GAGA theorems which shows
that on projective varieties there is an equivalence between the algebraic and
analytic theories.

14.1 Cohomology of line bundles on Pn

Let k be a field, and let (Pn
k ,OP) denote projective space over k viewed as an

algebraic variety 1.3 (even if k = C). Then Pn
k has a covering by n + 1 open

affine sets Ui = {xi 6= 0}, where xi are the homogenous coordinates. Ui can be
identified with affine n-space with coordinates

x0

xi
, . . .

x̂i

xi
. . .

xn

xi

Our goal is to compute cohomology of OPn(i) using the Cech complex with
respect to this covering. But we need to show that this a Leray covering. Since
the interesction of a finite number of the Ui’s is affine, this will follow from:

Theorem 14.1.1 (Serre). If X is an affine variety, then

Hi(X,OX) = 0

for all i > 0.

This will be proven in a more general form in section 16.2.

Theorem 14.1.2 (Serre). Let Si be the space of homogeneous degree i poly-
nomials in the variables x0, . . . xn, then

a) H0(Pn,OP(d)) ∼= Sd (in particular it is 0 if d < 0).
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b) Hi(Pn,OP(d)) = 0 if 0 6= i 6= n.

c) Hn(Pn,OP(d)) ∼= S−d−n−1.

A complete proof can be found in [H, III.5], although from a somewhat more
general point of view. We use Čech cohomology with respect to the covering
{Ui}. We use the description of O(d) given in section 6.3, where we identify a
section of O(d)(U) with collection of functions fi ∈ O(U ∩ Ui) satisfying

fi = (xj/xi)dfj

Formally cross multiplying yields

xd
i fi = xd

jfj (14.1)

which will be more convenient for us. In order, to interpret this step, note
O(Ui) can be identified with the polynomial ring k[x0/xi, . . . xn/xi]. Let S =
k[x0, . . . xn]. The localization

S

[
1
xi

]
=

⊕
d

S

[
1
xi

]
d

has a natural Z-grading, where

S

[
1
xi

]
d

=
∑

e

Sd+e

xe
i

.

Similar statements apply to the other localizations S[1/xixj . . .] along mono-
mials. Note the that degree 0 piece is exactly O(Ui). The sections φi = xd

i fi

should be viewed as elements of S[1/xi]d. At this point, we may well identify
O(d)(Ui) = S[1/xi]d, equation 14.1 then simply becomes φ = φj .

In general, the Čech complex for O(d) is the degree d piece of the complex⊕
S

[
1
xi

]
→

⊕
S

[
1

xixj

]
→ . . .

where the maps are as defined alternating sums of the natural maps along the
lines of section 6.3.

Notice that Hi(Pn,O(d)) is automatically zero when i > n because the Cech
complex has length n, this takes care of part of (b). An element of H0(Pn,O(d))
can be represented by a triple (p0/xe

0, p1/xe
1, . . .) of rational expressions of degree

d, where the p’s are polynomials, satisfying

p0

xe
0

=
p1

xe
1

=
p2

xe
2

. . .

This forces the polynomials pi to be divisible by xe
i . Thus the H0(Pn,O(d)) can

be identified with Sd as claimed in (a).
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Hn(Pn,O(d)) is S[ 1
x0...xn

] modulo the the space of coboundaries B, i. e. the
image of the previous term. S[ 1

x0...xn
] is spanned by monomials xi0

0 . . . xin
n with

arbitrary integer exponents. The image B is the space spanned by those mono-
mials where at least one of the exponents is nonnegative. Therefore the quotient
can be identified with the complementary submodule spanned by monomials
with negative exponents. In particular

Hn(Pn,O(d)) ∼=
⊕

i0+...in=d;i1,...in<0

kxi0
0 . . . xin

n .

This is isomorphic to S−d−n−1 via

xi0
0 . . . xin

n 7→ x−i0−1
0 . . . x−in−1

n

This proves (c).
It remains to finish the proof (b). The reader can look up the argument in

[H, pp 227-228]. We will be content to work this out in for n = 2. This amount
to the assertion that H1(P2,O(d)) vanishes. Our treatment will be elementary
but a little messy. A 1-cocycle is given by a triple {pij/(xixj)k} of rational
expressions satisfying

p02

(x0x2)k
=

p01

(x0x1)k
+

p12

(x1x2)k
.

We have to find polynomials {qi} satisfying

pij

(xixj)k
=

qi

xk
i

− qj

xk
j

.

The above relation is equivalent to

xk
1p02 = xk

2p01 + xk
0p12,

which implies p02 ∈ (xk
0 , xk

2) and similarly p01 ∈ (xk
0 , xk

1) and p12 ∈ (xk
1 , xk

2).
Therefore, we can find polynomials such that

p01 = xk
1q0 − xk

0q1

p12 = xk
2q′1 − xk

1q′2

Substituting back into the above relation shows that q1 − q′1 = xk
1s for some

polynomial s. Now setting q2 = q′2 + s should work.

14.2 Coherence in general

Let (X,R) be a ringed space. We need to isolate a class of R-modules with
good finiteness properties.

Definition 14.2.1. Given a ringed space (X,R), an R-module E is coherent if
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1. E is locally finitely generated, i. e., each point has a neighbourhood U such
that R|nU surjects onto E|U for some n <∞.

2. If R|nU → E|U is a surjection, the kernel is finitely generated.

This definition has been given for completeness. We are really only inter-
ested in certain standard examples. Standard properties of coherent sheaves on
ringed spaces can be found in [EGA] (the definition given in [H] is only valid
for noetherian schemes).

Example 14.2.2. If M is a finitely generated module over a noetherian ring
R, then M̃ is coherent on SpecR.

Theorem 14.2.3 (Oka). If (X,OX) is a complex manifold, then OX is coher-
ent.

Corollary 14.2.4. Any locally free OX-module is coherent.

In the next section, we will describe all coherent sheaves on projective space.

14.3 Coherent Sheaves on Pn

Let us revert to the notation of section 14.1. The ring S = k[x0, . . . xn] = ⊕Si

is graded, where Si is the space of homogenous polynomials of degree i. Let

S(j) = k

[
x0

xj
, . . .

xn

xj

]
We can identify Spec S(j) with the affine space Uj = {xj 6= 0}.

Let M = ⊕Mi be a (finitely generated) graded S-module (in additional to
being an S-module it satisfies SiMj ⊂Mi+j). Then

M(j) =
∑

i

Mi[
1
xi

j

] ⊂M [
1
xi

j

]

is naturally a (finitely generated) Sj)-module. We can construct sheaves OUj
-

modules M̃(j) as in section 2.5. These can be glued toegether:

Proposition 14.3.1. There exist an OPn-module M̃ such that M̃ |Uj
∼= M̃(j).

The functor M → M̃ from graded S-modules to OPn-modules is exact.

Proof. See [H, II, 5.11] for the first statement. Since exactness is a local property,
the second statement follows from lemma 2.5.2.

It follows from this that M̃ is coherent for any finitely generated graded
S-module M . Conversely:

Proposition 14.3.2. Any coherent sheaf on Pn is isomorphic to M̃ for some
finitely generated graded S-module M .
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Proof. [H, II, ex. 5.9]

Example 14.3.3. Let S(i) denote S with the shifted grading (S(i))j = Sj+i.
Then O(i) = S̃(i). In particular, it is coherent.

Example 14.3.4. Let X ⊂ Pn be a closed subvariety and let IX be the homoge-
nous ideal generated by homogenous polynomials vanishing along X. Then Ĩ is
the ideal sheaf IX , example 2.2.5.

As a corollary of proposition 14.3.1, we get

Corollary 14.3.5. The class of coherent sheaves is closed under kernels, cok-
ernels and extensions.

It is possible to the impression that M 7→ M̃ is one to one. But this is wrong
as the following example shows.

Example 14.3.6. Let M be a graded module which is finite dimensional over
k, so Mi = for i >> 0. Then M̃ = 0.

If one “mods out” the above modules, then one does get an equivalence of
categories. However, we won’t try to make this precise.

Any vector bundle is coherent, although this is far from clear with our defini-
tion. For standard vector bundles, this can be checked directly using the above
corollary.

Example 14.3.7. The tangent sheaf fits into an exact sequence

0→ OPn


x0

x1

. . .


−→ OPn(1)n+1 → TPn → 0

If we pull this back via π : An+1 − {0} → Pn, we can identitfy the second map
with the derivative TAn−{0} → π∗TPn , and the first map sends 1 to the Euler
vector field

∑
xi

∂
∂xi

The Hilbert syzygy theorem [E, 1.13] says that any finitely generated graded
S-module has a finite graded resolution of length at most n. This immediately
gives:

Theorem 14.3.8. Any coherent sheaf E on Pn fits into an exact sequence

0→ Er → En−1 → . . . E0 → E → 0

where r ≤ n and each Ei is a sum of a finite number of line bundles OPn(j).

Theorem 14.3.9. If E is a coherent sheaf on Pn, then Hi(Pn, E) is finite di-
mensional for each i, and is zero for i > n.
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Proof. We prove this by induction on r, where r is the length of the shortest
resolution given by theorem 14.3.8. If r = 0, we are done by theorem 14.1.2.
Suppose, we know the theorem for all r′ < r. Choose a resolution

0→ Er → En−1 → . . . E0 → E → 0

and let E ′ = ker[E0 → E ]. We have exact sequences

0→ Er → En−1 → . . . E1 → E ′ → 0

and
0→ E ′ → E0 → E → 0

The first sequence implies that H∗(Pn, E ′) is finite dimensional by the induction
hypothesis. The second sequences yields a long exact sequence

. . .Hi(Pn, E0)→ Hi(Pn, E)→ Hi+1(Pn, E ′) . . .

which finishes the proof. The vanishing for i > n can be proved by induction in
similar manner. Details are left as exercise.

Exercise 14.3.10.

1. Let f be a homogeneous polynomial of degree d in S = k[x0, x1, x2]. Then
corresponding to the exact sequence of graded modules

0→ S(−d) ∼= Sf → S → S/(f)→ 0

there is an exact sequence of sheaves

0→ OP2(−d)→ OP2 → OX → 0.

Prove that

dimH1(X,OX) =
(d− 1)(d− 2)

2

2. Let f be a homogeneous polynomial of degree d in 4 variables. Repeat the
above for the first and second cohomology groups.

3. Prove the last part of theorem 14.3.9.

14.4 Hilbert Polynomial

The Euler characteristic of a sheaf F on a space X is

χ(F) =
∑

(−1)i dim Hi(X,F)

provided that the sum is finite. The advantage of working with the Euler char-
acteristic is the following:

117



Lemma 14.4.1. If
0→ F1 → F2 → F3 → 0

is an exact sequence,
χ(F2) = χ(F1) + χ(F3)

Given a coherent sheaf, E on Pn, let E(i) = E ⊗O(i). This is again coherent.
If E = M̃ for a finitely generated graded S-module M , then E(i) = M̃(i), where
M(i) denote M with grading shifted by i. A corollary of theorem 14.3.8 is:

Theorem 14.4.2. If E is a coherent sheaf on Pn, then i → χ(E(i)) is a poly-
nomial in i. If X is a subvariety of Pn

k and E = OX , then this polynomial has
degree dim X.

Proof. From theorem 14.1.2,

χ(OPn(i)) =

{
dim Si if i ≥ 0
(−1)n dim S−d−n−1 otherwise

=
(

n + i

n

)
,

which is a polynomial of degree n. This implies that χ(E(i)) is degree n polyno-
mial when E is sum of line bundles OPn(j). In general, theorem 14.3.8 implies
that for any coherent E

χ(E(i)) =
r∑

j=0

(−1)jχ(Ej(i))

where Ej are sums of line bundles. This shows χ(E(i)) is degree n polynomial
in general.

For the second, we use induction on dim X and the relation

χ(OH∩X(i)) = χ(OX(i))− χ(OX(i− 1))

which follows from the sequence

0→ OX(−1)→ OX → OH∩X → 0,

where H is a general hyperplane.

χ(E(i)) is called the Hilbert polynomial of E . It has a elementary algebraic
interpretation

Corollary 14.4.3 (Hilbert). Let M be a finitely generated graded S-module,
then for i >> 0, dim Mi is given by a polynomial, and this coincides with the
Hilbert polynomial χ(M̃(i)).
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14.5 GAGA

Let k = C. Let (Pn,OP) denote complex projective space as an algebraic variety,
and (Pn

an,OPan) projective space as a complex manifold. In other words, Pn

(resp. Pn
an) is endowed with the Zariski (strong) topology and OPn (resp. OPn

an
)

is the sheaf of algebraic (resp. holomorphic) functions. We have a morphism of
ringed spaces

ι : (Pn,OP)→ (Pn
an,OPan)

Given an OP-module E , define the OPan
-module Ean = ι∗E . Ean is coherent if

E is.

Theorem 14.5.1 (Serre). If E is a coherent OPan-module, then there exists a
unique coherent OP-module F such that E ∼= Fan. There is an isomorphism

Hi(Pn,F) ∼= Hi(Pn
an, E)

The GAGA theorem can fail for nonprojective varieties. For example, H0(OCn
an

)
is the space of holomorphic functions on Cn which is much bigger than the space
H0(OCn) of polynomials.

Let X ⊆ Pn be a nonsingular subvariety. Then the sheaf of algebraic p-
forms Ωp

X can be viewed as a coherent OP-module. Then (Ωp
X)an is the sheaf of

holomorphic p-forms. In particular, Oan
X is the sheaf of holomorphic functions

of the associated complex manifold Xan. Thus:

Corollary 14.5.2 (Chow). Every complex submanifold of Pn is a projective
algebraic subvariety.

Corollary 14.5.3. dimHq(X, Ωp
X) coincides with the Hodge number hpq of the

manifold Xan.
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Chapter 15

Computation of some
Hodge numbers

The GAGA theorem 14.5.1 allows us compute Hodge numbers by working in
the algebraic setting. We look a few examples.

15.1 Hodge numbers of Pn

Let S = k[x0, . . . xn] be a polynomial ring over a field and P = Pn
k for some field

k. The basic result (which is dual to 14.3.7) is:

Proposition 15.1.1. There is an exact sequence

0→ Ω1
P → OP(−1)n+1 → OP → 0

Proof. Let F = Sn+1 be the free module of rank n + 1 with basis vectors ei.
We define a map of graded modules F (−1)→ S by sending ei to xi. Let K be
the kernel. We have an exact sequence of graded modules

0→ K → F (−1)→ m→ 0

where m = (x0, . . . xn)....

Proposition 15.1.2. Given an exact sequence of locally free sheaves

0→ A→ B → C → 0

If A has rank one, then

0→ A⊗ ∧p−1C → ∧pB → ∧pC → 0

is exact for any p. If C has rank one, then

0→ ∧pC → ∧pB → ∧p−1A⊗ C → 0

is exact for any p.
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Proof. See [H, II, 5.16].

Corollary 15.1.3. There is an exact sequence

0→ Ωp
P → OP(−p)(

n+1
p ) → Ωp−1

P → 0

Proof. This follows from the above proposition and proposition 15.1.1, together
with the isomorphism

∧p[OP(−1)n+1] ∼= OP(−p)(
n+1

p )

This corollary can be understood from another point of view. Using the
notation introduced in the proof of proposition 15.1.1, we can extend the map
F (−1)→ m to an exact sequence

0→ [∧n+1F ](−n− 1) δ→ . . . [∧2F ](−2) δ→ F (−1) δ→ m→ 0 (15.1)

where
δ(ei1 ∧ . . . eip

) =
∑

(−1)pxij
ei1 ∧ . . . êij

∧ . . . eip

This is the so called Koszul resolution [E, chap 17] which is one of the basic
workhorses of homological algebra. The associated sequence of sheaves is

0→ [∧n+1On+1
P ](−n− 1)→ . . . [∧2On+1

P ](−2)→ [On+1
P ](−1)→ OP → 0

If we break this up into short exact sequences, then we obtain exactly the
sequences in corollary 15.1.3.

Proposition 15.1.4.

Hq(P,Ωp
P) =

{
k if p = q ≤ n
0 otherwise

When k = C, this gives a new proof of the formula for Betti numbers of Pn

given in section 6.2.

15.2 Hodge numbers of a hypersurface

We now let X ⊂ Pn be a nonsingular hypersurface defined a degree d polynomial.

Proposition 15.2.1. The restriction map

Hq(Pn,Ωp
P)→ Hq(Xn,Ωp

X)

is an isomorphism when p + q < n− 1.
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When k = C (which we assume for the remainder of this section), this propo-
sition can be deduced from corollary 13.4.2, the canonical Hodge decomposition
(10.2.4) and GAGA. As corollary, we can calculate many of the Hodge numbers
of X.

Corollary 15.2.2. The Hodge numbers hpq(X) = δpq, where δpq is the Kro-
necker symbol, when n− 1 6= p + q < 2n− 2.

Proof. For p+q < n−1, this follows from the above proposition and proposition
15.1.4. For p + q > n− 1, this follows from GAGA and 9.2.3.

This leaves the middle Hodge numbers. For h0,n−1(X), this is equivalent to
computing the Euler characteristic χ(OX). From the sequence

0→ OPn(−d)→ OPn → OX → 0

we obtain

χ(OX) =
(

i + n

n

)
−

(
i + n− d

n

)
.

In general, the formulas can be given in terms of a generating function. Let
hpq(d) denote the pqth Hodge number of smooth hypersurface of degree d in
Pp+q+1. Define the formal power series

H(d) =
∑
pq

(hpq(d)− δpq)xpyq

in x and y. Then:

Theorem 15.2.3 (Hirzebruch).

H(d) =
1

(1 + x)(1 + y)

[
(1 + x)d − (1 + y)d

(1 + y)dx− (1 + x)dy
− 1

]
Hirzebruch [Hh] deduces a slightly different identity from his general Riemman-

Roch theorem. The above form of the identity appears in [SGA7, exp X1].
Similar formulas are available for complete intersections.

Exercise 15.2.4.

1. Show that the generating for h0,q obtained by setting x = 0 in H(d) is
correct.

15.3 Machine computations

The formulas of the previous section are easily implemented on computer and are
rather efficient to use when X is a hypersurface (or a complete intersection).
There is, in principle, a method for computing Hodge numbers of a general
X ⊂ Pn given explicit equations for it. In rough outline, one can proceed as
follows:
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• View the sheaves Ωp
X as coherent sheaves on Pn. These can be given an

explicit presentation. For example by combining

Ω1
X = Ω1

Pn/(IΩ1
Pn + dI),

with the formulas from section 15.1, where I is the ideal of X.

• Resolve this as in theorem 14.3.8.

• Calculate cohomology using the resolution.

Nowdays, it is possible to do these calculations on a machine using packages
such as Macaulay2 [M2]. Below is part of a Macaulay 2 session for computing
H12 and H22 of the Fermat quartic threefold x4 + y4 + z4 +u4 + v4 = 0 over Q.
The commands should be more or less self explanitory. The answer H12 = Q30

and H22 = Q can be checked against the formulas from the previous section.

i1 : S = QQ[x,y,z,u,v];

i2 : I = ideal (x^4+y^4+z^4+u^4+v^4);

i3 : X = Proj(S/I);

i4 : Om1 = cotangentSheaf(1,X);

i5 : HH^2 Om1

30
o5 = QQ

i6 : Om2 = cotangentSheaf(2,X);

i7 : HH^2 Om2

1
o7 = QQ

Exercise 15.3.1.

1. Do more examples in Macaulay 2. (Look up the commands HH, cotan-
gentSheaf... first.)
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Chapter 16

Deformation invariance of
Hodge numbers

In this chapter, the various strands (algebra, analysis, topology) will converge.
Our goal is to prove that Hodge numbers of a family of smooth complex projec-
tive varieties stays constant. While this can be proved purely analytically, we
develop much of background using Grothendieck’s language of schemes which
gives a particularly elegant approach to families.

16.1 Families of varieties via schemes

We gave a definition of schemes 2.3 earlier without giving much geometric mo-
tivation. Varieties often occur in families as we have already seen. As a simple
example, let f(x, y, t) = y2−xt be a polynomial over a field k. We can view this
as defining a family of parabolas in the xy-plane A2 parameterized by t ∈ A1.
When t = 0, we get a degenerate parabola y2 = 0 which is the “doubled” x-
axis. It is impossible to capture this fully within the category of varieties, but
it makes perfect sense with schemes. Here, we have a map of rings

k[t]→ k[x, y, t]/(f(x, y, t))

which induces a morphism of schemes

π : Spec k[x, y, t]/(f)→ Spec k[t] = A1

We can view this as the family of schemes

{Spec k[x, y, t]/f(x, y, a) | a ∈ k}

given by the fibers of π.
More generally, let R = O(Y ) be the coordinate ring be an affine variety Y

over an algebraically closed field k. Affine space over R is

An
R = SpecR[x1, . . . xn] ∼= An

k × Y.
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Let I ⊂ R[x1, . . . xn] be an ideal. It is generated by polynomials

fj(x, y) =
∑

fj,i1,...in
(y)xi1

1 . . . xin
n .

We get a morphism

SpecR[x1, . . . xn]/I → SpecR = Y

We can view this as a family of affine subschemes of An
k

SpecR[x1, . . . xn]/I ⊗R/ma = Spec k[x1, . . . xn]/(fj(x, a))

parameterized by points a ∈ Y . If (fj(x, a)) is a radical ideal in k[x1, . . . xn],
this would be a subvariety of An

k , but in general it be a closed subscheme.
Similarly, a (not necessarily radical) homogenous ideal I ⊂ k[x1, . . . xn] gives

rise to a closed subscheme called Proj k[x1, . . . xn]/I of Pn
k . More generally if

I ⊂ R[x1, . . . xn] = S is an ideal with homogenous generators fj(x, y). We can
loosely define Proj S/I as the family of subschemes of Pn

k defined by the ideals
(fj(x, a)) for points a ∈ Y . A bit more formally, the projective space over R
Pn

R = Pn
k × Y can be constructed by gluing n + 1 copies of affine space

Ui,R = SpecR[x0/xi, . . . x̂i/xi . . . xn/xi]

together. Given a homogenous polynomial in f(x, y) ∈ S = R[x1, . . . xn], we get
a polynomial in f(x1/xi, . . . xn/xi, y) in the above ring. Thus a homogenous
ideal I defines ideals in Ii ⊂ R[x1/xi, . . .] by applying this substitution on the
generators. The scheme ProjS/I is defined by gluing the affine schemes defined
Ij together. See [H] for a more precise account of Proj.

16.2 Cohomology of Affine Schemes

Let R be a commutative ring.

Definition 16.2.1. An R-module I is injective iff for any for injective map
N → M of R-modules, the induced map HomR(M, I) → HomR(N, I) is sur-
jective.

Example 16.2.2. If R = Z then I is injective provided that it is divisible i.e.
if a = nb has a solution for every a ∈ I and n ∈ Z− 0.

A standard result of algebra is the following. A proof can be found in several
places, for example [E, p. 627].

Theorem 16.2.3 (Baer). Every module is (isomorphic to) a submodule of an
injective module.

Recall construction of the sheaf M̃ of section 2.5.

Proposition 16.2.4. If I is injective and R is noetherian, then Ĩ is flabby.
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Proof. Suppose that U = D(f) is a basic open set. Given an element of Ĩ(U),
it can be written as a fraction x/fn. Consider the map R → I which sends
1 7→ x. Since I is injective, this extends to a map R[1/fn]→ I. In other words,
x/fn lies in I.

For a general open set U , express U = ∪D(fi). We have a diagram

Ĩ(U)
i // ∏ Ĩ((D(fi))

Ĩ(X)

r

OO
s

99ssssssssss

where i is injective. s is surjective by the previous paragraph, therefore r is
surjective.

Theorem 16.2.5 (Grothendieck). Let X = spec R, then for any R-module,

Hi(X, M̃) = 0

Proof. Let M be an R-module, then it embeds into an injective module I. Let
N = I/M . By lemma 2.5.2, M 7→ M̃ is exact, therefore

0→ M̃ → Ĩ → Ñ → 0

is exact. As Hi(X, Ĩ) = 0 for i > 0, we obtain

I → N → H1(X, M̃)→ 0,

and
Hi+1(X, M̃) ∼= Hi(X, Ñ).

I → N is surjective, therefore H1(X, M̃) = 0. Note that this argument can be
applied to any module, in particular to N . This implies that

H2(X, M̃) ∼= H1(X, Ñ) = 0.

We can kill the all higher cohomology groups in the same fashion.

There is an analogous theorem in the analytic category which predates this.
A complex manifold is called Stein1 if it can be embedded into some CN . For
example, any nonsingular complex affine variety is Stein.

Theorem 16.2.6 (Cartan). Let E be a coherent sheaf on the Stein manifold
then Hi(X, E) = 0 for all i > 0.

Proof. [Hr, 7.4.3]

1 This definition is nonstandard but equivalent to the usual ones, see [Hr, 5.1.5, 5.3.9].

126



16.3 Semicontinuity of coherent cohomology

Let R = O(Y ) be the coordinate ring of an affine variety, and let S = R[x0, . . . xn] =
⊕Si with the usual grading. Given a finited generated graded R-module M .
We can construct a coherent sheaf M̃ on Pn

R = Pn
k×Y as in section 14.3. Propo-

sition 14.3.2 generalizes to this setting [H, II, ex. 5.9]. For each point a ∈ Y ,
we get a a graded k[x0, . . . xn]-module Ma = M ⊗ R/ma. Thus we get a fam-
ily of coherent sheaves M̃a parameterized by Y . This can be constructed sheaf
theoretically. Let ia : Pn

k → Pn
k×Y be the inclusion x 7→ (x, a), then M̃a = i∗aM̃ .

Example 16.3.1. Let M be a finitely generated graded k[x0, . . . xn]-module,
then R ⊗M is a finitely generated graded S-module. R̃⊗M is a “constant”
family sheaves; we have R̃⊗Ma = M̃ . This can be constructed geometrically.
Let π : Pn

k ×Y → Y be the projection. Then R̃⊗M = π∗(M̃). A special case is
OPn

k×Y (i) which is the constant family π∗OPn
k
.

Example 16.3.2. Let I ⊂ S be a homogeneous ideal, this gives rise to a family
of projective schemes of Pn

k with ideal sheaves Ĩa.

We now ask the basic question, suppose that M as above, how do the di-
mensions of the cohomology groups

hi(M̃a) = dim Hi(M̃a)

vary with a? We look at some examples.

Example 16.3.3. If M is constant family, then clearly a 7→ hi(M̃a) is a con-
stant function of a.

In general, this is not constant. Here is a more typical example:

Example 16.3.4. Set R = k[s, t], and choose three points

p1 = [0, 0, 1], p2 = [s, 0, 1], p3 = [0, t, 1]

in P2
k with s, t variable. Let I be the ideal sheaf of the union of these points in

P2
k × A2

k. This can also be described as Ĩ, where I is product

(x, y, z − 1)(x− s, y, z − 1)(x, y − t, z − 1) ⊂ R[x, y, z]

Consider I(1) = Ĩ(1). The global sections of this sheaf correspond to the space of
linear forms vanishing at p1, p2, p3. Such a form can exist only when the points
are colinear, and it is unique upto scalars unless the points coincide. Thus

h0(I(1)(s,t)) =

 2 if s = t = 0
1 if s = 0 or t = 0 but not both
0 if s 6= 0 and t 6= 0
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In the above example, the sets where cohomology jumps are Zariski closed.
This can be reformulated as saying that the function h0(I(1)(s,t)) is upper semi-
continuous for the Zariski topology. Let’s try to show this in general for the top
cohomology (which is technically easier). Suppose that M is a finitely graded
module S = R[x0, . . . xn]-module, with R = O(Y ). Choose a graded presenta-
tion ⊕

j

S(ij)→
⊕
m

S(`m)→M → 0

The first map is given by a matrix of polynomials. In order for this presentation
to be useful to us, we want⊕

j

S(ij)y →
⊕
m

S(`m)y →My → 0

to stay exact for any y ∈ Y . This to leads to concept of flatness.

Definition 16.3.5. An R-module T is flat if the functor N 7→ T ⊗R N is exact
(note that it always right exact).

Lemma 16.3.6. If T is flat, and

0→ A→ B → T → 0

is exact, then
0→ A⊗ C → B ⊗ C → T ⊗ C → 0

is exact for any module C.

Proof. This follows immediately from properties of the Tor functor. See for
example [E, pp162-172].

Now suppose that M is a flat R-module. Break the above presentation into
exact sequences

0→ K →
⊕
m

S(`m)→M → 0

⊕
j

S(ij)→ K → 0

The above lemma, shows that

0→ Ky →
⊕
m

S(`m)y →My → 0

is exact, and we also have a surjection⊕
j

S(ij)y → Ky → 0
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Applying Hn to the corresponding sequences of sheaves, and splicing the result-
ing sequences yields⊕

j

Hn(Pn
k ,O(ij))

A(y)−→
⊕
m

Hn(Pn
k ,O(`m))→ Hn(Pn, M̃y)→ 0

Note that the first two spaces are constant. Thus we can view the map between
them, A(y), as matrix depending algebraically on y (i.e. it comes from the
evaluation of a matrix over R). The (r + 1) × (r + 1) minors of A(y) define a
closed subset Yr ⊂ Y . Set N =

∑
hn(O`m). Then we obtain

hn(M̃y) = N − rank(A(y)) ≥ N − r

if and only if y ∈ Yr. Thus we have shown that hn(M̃y) is upper semicontinuous.
In general,

Theorem 16.3.7 (Grothendieck). If M is a flat finitely generated graded
R-module, then

y 7→ hi(M̃y)

is upper semicontinuous, and the function

y 7→ χ(My) =
∑

(−1)ihi(M̃y)

is locally constant.

Proof. See [H, 12.8] and [EGA, III].

Grauert has established analogous results in the analytic setting, see [GPR].
We say that the subscheme Z ⊂ Pn

k × Y is flat over Y , if OZ is given by a flat
R-module The geometric meaning of flatness is a little elusive. However the
above theorem implies

Corollary 16.3.8. If Y is flat over Z, then the Hilbert polynomial χ(OY (d))
is locally constant.

It follows from this that the fibers of Y → Z have the same dimension. Thus,
for example, the blow up of point on surface is not flat. If fact, constancy of
the Hilbert polynomial characterizes flatness [H][9.9].

16.4 Smooth families

We introduced flatness as techinical assumption without really giving any ex-
amples. We now introduce a stronger notion, where the geometric meaning is
clear. To simply matters, we restrict out attention to nonsingular varieties.

Definition 16.4.1. A morphism f : X → Y of nonsingular varieties is smooth
if for every point x, the induced map Tx → Ty is surjective.
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Example 16.4.2. Let f : Am
k → An

k be given by f(x) = (f1(x), . . . fn(x)). where
fi are polynomials. Then f is smooth if and only if the Jacobian (∂fi/∂xj) has
rank n. When this is satisfied, it is clear that the fibers f−1(y) are nonsingular
varieties of dimension m− n.n

Theorem 16.4.3. If f : X → Y is a smooth morphism of nonsingular varieties,
then f is flat and the fibers f−1(y) are all nonsingular varieties.

Thus we can view a smooth morphism as a family of nonsingular varieties
over a nonsingular parameter space. We can define an equivalence relation on
nonsingular projective varieties weaker than isomorphism. We say that two
nonsingular projective varieties X1, X2 are deformations of each other if there
is a smooth map of nonsingular varieties f : Z → Y such that the fibers are
all projective varieties and Xi = f−1(yi) for points yi ∈ Y . This generates an
equivalence relation that we will call deformation equivalence. For example, any
two nonsingular hypersurfaces Xi ⊂ Pn of degree d are deformation equivalent,
since they members of the the family constructed below. Let Vd be the space of
homogeneous polynomials of degree d in n + 1 variables. ∆ ⊂ P(Vd) the closed
set of singular hypersurfaces. Then

U = {(x, [f ]) ∈ Pn × (P(Vd)−∆) | f(x) = 0}

Then U → P(Vd)−∆ is a smooth map containing all nonsingular hypersurfaces
as fibers.

Since any elliptic curve can be realized as a smooth cubic in P2, it follows
that any two elliptic curves are deformation equivalent. Considerably deeper
is the fact that any two smooth projective curves of the same genus g ≥ 2 are
deformation equivalent. This can be proved with the help of the Hilbert scheme.
A weak formulation of its defining property is as follows:

Theorem 16.4.4 (Grothendieck). Fix a polynomial p ∈ Q[t]. There is a
projective scheme H = Hilbp

Pn with a flat family U → H of closed subschemes
of Pn with Hilbert polynomial p, such that every closed subscheme with Hilbert
polynomial p occurs as a fiber of U exactly once.

For example, the space P(Vd) above is the Hilbert scheme Hilbp
Pn with

p(i) = χ(OPn(i))− χ(OPn(i− d)) =
(

n + i

n

)
−

(
n + i− d

n

)
.

Choose N ≥ 3, then for a smooth projective curve X of genus g, ω⊗N
X is very

ample. The set of such curves in P(g−1)(2N−1) is parameterized by an open
subset of the Hilbert scheme with p(t) = (2g − 2)Nt + (1− g). This set can be
shown to be irreducible. See [HM] for further details.

16.5 Deformation invariance of Hodge numbers

In this section, we revert to working over C.
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Theorem 16.5.1 (Kodaira-Spencer). If two complex nonsingular projective
varieties are deformation equivalent, then their Hodge numbers are the same.

Proof. Let f : X → Y be a smooth projective morphism of nonsingular varieties.
Then by theorem 16.3.7, there there are constants gpq such that

hpq(Xt) ≥ gqp (16.1)

for all t ∈ X with equality on an a nonempty open set U . Choose a points t ∈ U
and s /∈ U . Then since Xt and Xs are diffeomorphic 12.1.1, they have the same
Betti numbers. Therefore by the Hodge decomposition (theorem 9.2.4),∑

pq

hpq(Xs) =
∑
pq

gpq

and this implies that (16.1) is an equality.

This kind of result is not true of all the invariants considered so far. Any
elliptic curve can be embedded as a cubic in P2, thus any two elliptic curves
are deformation equivalent. Likewise for the products of elliptic curves with
themselves. But we saw in section 11.3 that the Picard number of E × E was
not constant. Therefore it not a deformation invariant. Other examples of this
phenomenon are provided by:

Theorem 16.5.2 (Noether-Lefschetz). Let d ≥ 4 then there exists a surface
X ⊂ P3 of degree d with Picard number 1.

Remark 16.5.3. This is true “for almost all” surfaces.

Proof. We sketch the proof. Since H1(X,OX) = 0 for any surface in P3, c1 :
Pic(X) → H2(X, Z) is injective. On the other hand, H2(X,OX) 6= 0 if X is
has degree d ≥ 4, therefore c1 is not onto. Choose a Lefschetz pencil {Xt}t∈P1

of surfaces, let X̃ → P1 be the incidence variety and let U ⊂ P1 parameterize
Xt smooth 13.3. The set of all curves lying on some Xt is a parameterized by
a countable union of Hilbert schemes. Each irreducible component will either
parameterize curves lying on a fixed Xt or curves varying over all Xt. Therefore
for all but countably many t, any curve lying on a an Xt will propogate to
all the members of the pencil. Choose such a nonexceptional t0 ∈ U . The
group c1(Pic(Xt0)) is the group of curves on Xt0 , and this is stable under the
action of π1(U, t0) since any such curve can be moved along a loop avoiding
the exceptional t’s. By theorem 13.3.4, H2(Xt0 , Q) = image(H2(P3)) ⊕ V ,
where V is the generated by vanishing cycles, and π1(U) acts irreducibly on
this. Since C = c1(Pic(Xt0)) ⊗ Q contains image(H2(P3)), it follows that
either c1(Pic(Xt0)) equals image(H2(P3)) or it equals H2(Xt0). The last case
is impossible, so c1(Pic(Xt0)) = image(H2(P3)) = Q.

Exercise 16.5.4.
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1. Construct a smooth quartic X ∈ P3 containing a line L. It can be shown
that L2 = −2, assume this and prove that the Picard number of X is at
least 2.
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Chapter 17

Mixed Hodge Numbers

Deligne has extended Hodge theory to algebraic varieties which may be be singu-
lar or noncompact. Surprisingly, some of these results were motivated by certain
analogies with varieties over finite fields. Here we give a brief introduction to
these ideas by concentrating on the purely numerical aspects.

17.1 Mixed Hodge numbers

We defined compactly supported cohomology of manifolds with real coefficients
using differential forms in section 4.3. We can define this with Z coefficients for
any (locally compact Hausdorff) topological space X by

Hi
c(X, Z) = Hi(X̄/{∗}, Z)

where X̄ = X ∪ {∗} is the one point compactification. Note that X̄ can be
replaced by any (reasonable) compactification, say X̃. Then from (6.2), we get
a long exact sequence

. . .Hi
c(X, Z)→ Hi(X̃, Z)→ Hi(X̃ −X, Z)→ Hi+1

c (X, Z)→ . . . (17.1)

In De Rham cohomology, the first first map is given by extending a compactly
supported form by 0.

The following is really an amalgam of various theorems in [D2].

Theorem 17.1.1 (Deligne). To every complex algebraic variety X, there is a
canonical bigrading

Hi
c(X, C) =

⊕
p,q∈Ti

Hi(X)(p,q)

where T = {(p, q) | 0 ≤ p, q ≤ i, p + q ≤ i} such that

1. if X is smooth and projective Hp+q(X)(p,q) ∼= Hq(X, Ωp
X)

2. dimHi(X)(p,q) = dim Hi(X)(q,p)
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3. If U ⊂ X is a Zariski open subset of a projective variety, with Z = X−U ,
then the long exact sequence is compatible with the bigrading:

. . .Hi
c(U)(p,q) → Hi(X)(p,q) → Hi(Z)(p,q) → Hi+1

c (U)(p,q) . . .

We introduce the mixed Hodge and Betti numbers

hi;(p,q)(X) = dim Hi(X)(p,q)

by
b
(m)
i =

∑
p+q=m

hi;(p,q)(X)

To get some feeling for this, let us calculate the dimension of these invariants
for smooth nonprojective curve U . We can find a smooth compactification X
of genus g. Let Z = X − U , this is a finite set of say s points. The map
H2

c (U)→ H2(X) is an isomorphisms and H0
c (U) = 0, thus we get

0→ H0(X)(0,0) → H0(Z)(p,q) → H1
c (U)(p,q) → H1(X)(p,q) → 0

Which gives

h1;(0,0)(U) = s− 1, h1;(1,0)(U) = h1;(0,1)(U) = g

In order to further facilitate calculations, let us introduce the Euler charac-
teristics

χ(p,q)(X) =
∑

i

(−1)ihi;(p,q)(X)

χ(m)(X) =
∑

i

b
(m)
i (X)

following [DK]. The theorem yields.

Corollary 17.1.2. In the above notation, χ(p,q)(X) = χ(p,q)(U) + χ(p,q)(Z)
and χ(m)(X) = χ(m)(U) + χ(m)(Z) If X is smooth and projective χ(p,q)(X) =
(−1)p+qhpq(X), and χ(m)(X) = (−1)mbi(X), where hpq = dim Hq(XΩp

X) and
bi are the usual Hodge and Betti numbers.

This leads to a practical tool for computing Hodge and Betti numbers for
projective varieties that can be decomposed into simpler pieces. As an example
of this, let X be smooth projective variety of dimension n. Choose x ∈ X. We
can define the blow up BlxX by generalizing the construction in 11.1. This
is a smooth projective variety with a morphism π : BlxX → X which is an
isomorphism over X − {x} and such that π−1(x) ∼= Pn−1. Then the Hodge
numbers of BlxX are determined by

χ(p,q)(BlxX) = χ(p,q)(Pn−1) + χ(p,q)(X − {x})
= χ(p,q)(Pn−1) + χ(p,q)(X)− χ(p,q)({x})

=

{
χ(p,q)(X) + 1 if p = q > 0
χ(p,q)(X) otherwise.

The previous corollary has a rather surprising consquence:
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Corollary 17.1.3 (Durfee). If X = ∪Xi and Y = ∪Yi are smooth projective
varieties expressable as disjoint unions of locally closed subvarieties such that
Xi
∼= Yi, then X and Y have the same Hodge and Betti numbers.

Proof. These decompositions are necessarily finite since the spaces are Noethe-
rian. Therefore repeated applications of corollary 17.1.2 leads to

χ(p,q)(X) =
∑

i

χ(p,q)(Xi) =
∑

i

χ(p,q)(Yi) = χ(p,q)(Y ).

Each of the ruled surfaces Fn, described in section 11.1, can be decomposed
as a union of P1 and P1 × A1. Thus the Hodge numbers are the same as for
F0 = P1 × P1, and this is easy to compute.

17.2 Cohomology of the complement of a smooth
hypersurface

While we won’t even pretend to prove theorem 17.1.1. It is instructive to see
where some of this structure comes from in a special case. Let us consider
an n dimensional smooth projective variety X with a nonsingular connected
hypersurface D ⊂ X. Let U = X − D, and let i : D → X and j : U → X
denote the inclusions. Let π : T → D be a tubular neigbourhood of D 4.4.1.
Any differential form with compact support on U can be extended by 0 to X.
Thus the sheaf of compactly supported forms E•cU can be regarded as subsheaf
of E•X . This lies in the kernel K• of the restriction map E•X → E•D.

Lemma 17.2.1. E•cU is quasi-isomorphic to K•.

Thus the long exact associated to

0→ K• → E•X → E•D → 0

is just (17.1).
We want to replace these with holomorphic objects. We define Ωp

X(∗D) ⊂
j∗Ep

U to be the sheaf of meromorphic p-forms which are holomorphic on U .
Ωp

X(log D) ⊂ Ωp
X(∗D) is the subsheaf of meromorphic forms α such that both

α and dα have simple poles along D. If we choose local coordinates z1, . . . zn

so that D is defined by z1 = 0. Then the sections of Ωp
X(log D), are locally

spanned as an OX module by

{dzi1 ∧ . . . dzip
| ij > 1} ∪ {

dz1 ∧ dzi2 ∧ . . . dzip

z1
}

Ωp
X(log D)(−D) is the product of the ideal sheaf of D with the previous sheaf.

Locally this is spanned by

{z1dzi1 ∧ . . . dzip | ij > 1} ∪ {dz1 ∧ dzi2 ∧ . . . dzip}

These are exactly the forms vanishing along D. Thus
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Lemma 17.2.2. Ωp
X(log D)(−D) = ker[Ωp

X → Ωp
D]

Clearly Ω•X(log D)(−D) is a subcomplex of Ω•X . It is not difficult to see,
using 10.5, that in the diagram

0 → Ω•X(log D)(−D) → Ω•X → Ω•D → 0
↓ ↓ ↓

0 → K• → E•X → E•D →

the vertical maps are quasi-isomorphisms. Thus

. . .→ Hi(Ω•X(log D)(−D))→ Hi(Ω•X)→ Hi(Ω•D)→ . . .

coincides with (17.1). We also have sequences

. . .→ Hq(Ωp
X(log D)(−D))→ Hq(Ωp

X)→ Hq(Ωp
D)→ . . .

We can now express the mixed Hodge numbers as

hpq;i(U) =


dim ker[Hq(Ωp

X)→ Hq(Ωp
D)] if p + q = i

dim im[Hq(Ωp
X)→ Hq(Ωp

D)] if p + q = i− 1
0 otherwise

Notice that

dim Hq(X, Ωp
X(log D)(−D)) = hpq;p+q(U) + hpq;p+q−1(U)

We have thus proved

Proposition 17.2.3 (Deligne). There is a noncanonical decomposition

Hi
c(U, C) ∼=

⊕
p+q=i

Hq(X, Ωp
X(log D)(−D))

Corollary 17.2.4. Hi(X,OX(−D)) = 0 if the 2n − i the Betti number of U
vanishes.

Proof. This follows from Poincaré duality: Hi
c(U) ∼= H2n−i(U)∗.

This yields a special case of the Kodaira vanishing theorem. The method
used is closely related to various “topological” proofs found by Esnault, Viehweg,
Kollár and others (see [EV]). We say that

Corollary 17.2.5 (Kodaira). If D is very ample (the intersection of X with a
hyperplane under a projective embedding), then Hi(X,OX(−D)) = 0 for i > 0.

Proof. Since X −D is affine and hence Stein, this follows corollary 10.5.4
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17.3 Counting points over finite fields

Suppose that X is a complex quasiprojective algebraic variety with a fixed em-
bedding into PN

C . By adjoining the coefficients of the defining equations (and
inequalities) to Z, we obtain a finitely generated algebra A ⊂ C. Choose a
maximal ideal Q ⊂ A, then A/Q will be a finite field. Recall that, up to iso-
morphism, there is exactly one such field Fq with q elements, for each prime
power q. Fix an isomorphism A/Q ∼= Fq. Now we can reduce the equations
modulo Q to get a quasiprojective “variety” XQ defined over Fq. We can define
XQ(Fqn) to be the set of points of PN

Fqn
satisfying the equations (and inequal-

ities) defining X. Since these sets are finite, we can count their elements. Let
Nn(XQ) = Nn be the cardinality of this set. In more abstract terms, we have
a scheme X → SpecA called a model of X. The original variety X is the fiber
product X×Spec ASpec C, and and XQ is the scheme theoretic fiber over Q. Note
that even if X is smooth, XQ need not be; we say that X has “good reduction”
at Q if this is the case. We have XQ(Fqn) = Homschemes(Spec Fqn , XQ).

Let’s consider a few simple examples.

Example 17.3.1. Let X = Ak
C, then Ak

Z is the obvious model. Nn(Ak
Fq

) = qnk.

Example 17.3.2. Let X = Pk
C, then Pk

Z is a model. Writing Pk = Ak ∪Ak−1 ∪
. . . gives Nn(Pk

Fq
) = qnk + qn(k−1) + . . . qn.

Example 17.3.3. Consider the elliptic curve E defined by zy2 = x3− z3. This
equation gives a model over the integers. Then N1(Ep) = p + 1 if p ≡ 2 mod 3
is an odd prime, but not in general as the following table shows:

p N1 p N1 p N1 p N1

7 4 67 52 127 148 193 192
13 12 73 84 139 124 199 172
19 28 79 76 151 148 211 196
31 28 97 84 157 144 223 196
37 48 103 124 163 172 229 252
43 52 109 108 181 156 241 228

As the last example indicates, it is not usually possible to write down exact
formulas. So we should seek qualitative information. A quick inspection of
the table suggests N1(Ep) stays fairly close to 1 + p. In fact, we always have
following estimate:

Theorem 17.3.4 (Weil). If X is a smooth projective curve of genus g, and
suppose that X has good reduction at Q. Then

|Nn(XQ)− (1 + qn)| ≤ 2g
√

q

This is very remarkable formula which says that topological and arithmetic
properties of curves are related. Weil conjectured, and Deligne [D4] subsequently
proved, that this phenomenon holds much more generally. To formulate it, let
us say that an algebraic number λ ∈ Q̄ has uniform absolute value x ∈ R if
|ι(λ)| = x for all embeddings ι : Q̄→ C.
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Theorem 17.3.5 (Deligne). Let X be a smooth projective d dimensional va-
riety and suppose that X has good reduction at Q. Then

Nn(XQ) =
2d∑

i=0

(−1)i
bi∑

j=1

λn
ji,

where λji are algebraic integers with uniform absolute values qi/2 and bi coin-
cides with the ith Betti number of X.

See [H, appendix C] and especially [K] for a more involved discussion of this
and the other Weil conjectures. It is worth noting that the classical method of
Lefschetz pencils play an important role in the proof. Deligne [D3], [D5] found
a subsequent refinement which gives meaning to the mixed Betti numbers.

Theorem 17.3.6 (Deligne). Let X be a d dimensional variety Then

Nn(Xq) =
2d∑

i=0

(−1)i
bi∑

j=1

λn
ji

where λji are algebraic integers with uniform absolute values in {0, q1/2, q, . . . qi/2}.
bi = dim Hi

c(X, C) and

b
(m)
i (X) = #{j | |λij | = qm/2}

17.4 A transcendental analogue of Weil’s con-
jecture

The discussion in the previous section may have a seemed a bit like black magic.
It may be worthwhile to explain a little more about the philosophy behind it.
Let X be a smooth projective variety defined over Fq, and X̄ be the extension
of X to the algebraic closure F̄q. Fix a prime ` different from the characteris-
tic of Fq. If we choose an embedding X ⊂ PN , we have F : X̄ → X̄ be the
Frobenius morphism which acts by raising the coordinates of the qth power (see
[H] for a more precise description). Then Nn(X) is just the number of fixed
points of Fn. Weil suggested that that these numbers could be computed by
an appropriate generalization of Lefschetz’s trace formula. This was realized by
Grothendieck’s `-adic cohomology theory [Mi], which assigns to X a collection
of finite dimensional Q`-vector spaces Hi

et(X̄, Ql) which behaves very much sin-
gular cohomology of a complex variety. In particular, if X is obtained as in
the previous section by reducing modulo Q, dim Hi

et(X̄, Ql) coincides with the
Betti number of the original complex variety. The Grothendieck-Lefschetz trace
formula shows that

Nn(X) =
∑

i

(−1)itrace[Fn∗ : Hi
et(X̄, Ql)→ Hi

et(X̄, Ql)]
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The λji of theorem 17.3.5 are precisely the eigenvalues of F acting on these
cohomology groups. Thus the real content of this theorem is the estimate on
these eigenvalues.

Around 1960, Serre [S3] had proved an analogue of theorem 17.3.5 for com-
plex varieties. This is something that we can prove. To set up the analogy let
us replace X̄ above by a smooth complex projective variety Y , and F by and
endomorphism f : Y → Y . As for q, if we consider, the effect of the Frobenius
on PN

Fq
, the pullback of O(1) under this map is O(q). To complete the anal-

ogy, we require the existence of a very ample line bundle OY (1) on Y , so that
f∗OY (1) ∼= OY (1)⊗q. We can take c1(OY (1)) to be the Kähler class ω Then we
have f∗ω = qω.

Theorem 17.4.1 (Serre). If f : Y → Y is holomomorphic endomorphism
of a compact Kähler manifold with Kähler class ω, such that f∗ω = qω for
some q ∈ R. Then the eigenvalues λ of f∗ : Hi(Y, Z) → Hi(Y, Z) are algebraic
integers with uniform absolute value qi/2

Proof. The theorem holds for H2n(Y ) since ωn generates it. By hypothesis,
f∗ preserves the Lefschetz decomposition (theorem 13.1.1), thus we can replace
Hi(Y ) by primitive cohomology P i(Y ). Recall from corollary 13.1.4,

Q̃(α, β) = Q(α, Cβ̄)

is positive definite Hermitean form P i(Y ), where

Q(α, β) = (−1)i(i−1)/2

∫
α ∧ β ∧ ωn−i.

Consider the endomorphism F = q−i/2f∗ of P i(Y ). We have

Q(F (α), F (β)) = (−1)i(i−1)/2q−n

∫
f∗(α ∧ β ∧ ωn−i) = Q(α, β)

Moreover, since f∗ is a morphism of Hodge structures, it preserves the Weil
operator C. Therefore F is unitary with respect to Q̃, so its eigenvalues have
norm 1. This gives the desired estimate on absolute values of the eigenvalues of
f∗. Since f∗ can be represented by an integer matrix, the set of it eigenvalues is
a Galois invariant set of algebraic integers, so these have uniform absolute value
qi/2.

Grothendieck suggested that one should be able to carry out a similar proof
for the Weil conjectures. However making this work would require the full
strength of his standard conjectures [GSt, Kl] which are, at present, very much
open.
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ICM (1974)

[D4] P. Deligne, Conjecture de Weil I, Publ. IHES, (1974)

[D5] P. Deligne, Conjecture de Weil II, Publ. IHES, (1980)

[DGMS] P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, Real homotopy theory
of Kähler manifolds, Invent. Math. 29 (1975)

[SGA7] P. Deligne, N. Katz, SGA 7, II, Lect. Notes 340, Springer-Verlag (1973)

[E] D. Eisenbud, Commutative algebra Springer-Verlag (1994)

[EV] H Esnault, E. Viehweg, Lectures on vanishing theorems, Birkhauser
(1993)

[M2] D. Eisenbud, D. Grayson, M. Stillman, B. Sturmfels, Computations in
algebraic geometry with Macaulay 2 Springer-Verlag (2001)

[F] W. Fulton, Toric varieties Princeton U. Press (1993)

140



[GM] S. Gelfand, Y. Manin, Methods of homological algebra, Springer-Verlag
(1996)
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