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Abstract

Ž .We present the first computation of the thermodynamic properties of the complex su 3 Toda theory. This is possible
thanks to a new string hypothesis, which involves bound states that are non-self-conjugate solutions of the Bethe equations.

Ž .Our method provides equivalently the solution of the su 3 generalization of the XXZ chain. In the repulsive regime, we
confirm that the scattering theory proposed over the past few years – made only of solitons with non-diagonal S matrices –
is complete. But we show that unitarity does not follow, contrary to early claims, eigenvalues of the monodromy matrix not
being pure phases. In the attractive regime, we find that the proposed minimal solution of the bootstrap equations is actually
far from being complete. We discuss some simple values of the couplings, where, instead of the few conjectured breathers, a

Ž .very complex structure involving E , or two E of bound states is necessary to close the bootstrap. q 2000 Elsevier6 8

Science B.V. All rights reserved.

PACS: 72.10.-d; 73.40.Gk

Ž .Integrable quantum field theories QFTs based
Ž .on su 2 have been the subject of intensive studies

over the past many years. New theoretical tools like
w xthe quantum Q-operators 1 , the Destri De Vega and

w xKlumper and Pearce equations 2 , the connections¨
w xwith spectral determinant theory 3 , or the relations
w xwith elliptic curves and duality 4 have revealed

mathematical structures of remarkable depth; they
have also made possible the computation of quanti-
ties of experimental interest – and typical of strong
interactions – in various low dimensional condensed

w xmatter systems 4 .
Formal developments, as well as practical applica-

tions, would largely benefit from an extension of
these results to the case of other Lie algebras, in

Ž .particular su n . The situation here is somewhat
embarrassing, however. Although the pillars of the

Ž .su 2 case – the XXZ chain and the associated
sine-Gordon model – have been under control for a

Ž .long time, even the simplest su 3 case is only very
partially understood.

One of the difficulties here – and, from the field
theory point of view, one of the most interesting
issues at stake – has to do with unitarity. Indeed, the
simplest integrable generalizations of the sine-Gordon

1 Ž .model are the complex affine su n Toda theories
defined by the Lagrangian:

n
1 a m a i ba .fjLLs E f E f yl e 1Ž . Ž .Ž . Ým2

js0

1 Real Toda theories involve entirely different issues. For a
w xrecent review see 5 .
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where l)0, a , . . . ,a form the root system of1 ny1

the classical lie algebra a , a syÝny1a is theny1 0 js1 j

negative of the longest root. The conformal weights
2Ž .of the perturbing operator in 1 are DsDsb r4p .

ty 1In the following, we shall parameterize Ds .t

Ž .The theory described by 1 is obviously non-unitary
at the classical level. The fascinating possibility was

w xraised 6,7 that it could nevertheless describe a
unitary field theory in a sufficiently strong quantum
regime. This possibility was ruled out in the interest-

w xing paper 8 , and we confirm and extend their
observations here.

From a practical point of view, unitarity is not
such a key issue. In fact, the most interesting appli-
cations of complex Toda theories are potentially
found in disordered systems of statistical mechanics,
where Toda theories based on superalgebras natu-

w xrally seem to appear 9,10 , leading most likely to
even stronger violations of unitarity. More crucial
then are the questions of completeness of the boot-
strap, the physical meaning of the bound states, and
the calculation of physical quantities.

The main progress in the study of complex Toda
theories have been based on non-perturbative S ma-

w xtrix analysis, following the pioneering work of 6 .
Ž .One of the difficulties in this approach for su n is

the appearance of a large number of poles in the S
matrix elements, whose signification is not entirely
clear: it was argued, after careful analysis of several
cases, that most of these poles were not physical, and
occurred rather by mechanisms generalizing Cole-

w xman Thun’s 11 .
The issue of the completeness of the bootstrap in

w x6,7 could be settled by a study of the thermodynam-
ics, and a computation of the central charge in the

Ž .UV, using the thermodynamic Bethe ansatz TBA
w x 212 . However, for the imaginary affine Toda theo-

Žries or, equivalently, the corresponding anisotropic
.quantum spin chains , the TBA has never been writ-

ten so far, because of the complexity of the set of
solutions: no natural ‘‘string hypothesis’’ had been
proposed, up to now.

2 w xThe approach developed in 2 bypasses some difficulties in
the study of the thermodynamics, but does not give much informa-

w xtion on the spectrum itself 13 .

In this letter, we present the first solution of this
Ž .vexing problem in the case of su 3 . This allows us,

in particular, to show that the quantum theory de-
Ž .fined in 1 for ns3 is never unitary, even in the

strong quantum regime, and that it presents consider-
ably more bound states than expected.

Our main technical progress is an understanding
of the solutions of the Bethe equations for systems

Ž .based on su 3 . Except in the exactly symmetric
Žcase, these solutions the equivalent of the string

.hypothesis for the XXZ chain had never been found.
We hope that their understanding will spur new
development in the area: generalizations of the works
mentioned in the introduction, as well a calculations
of physical properties in the super Toda case, seem
particularly timely.

The problem we want to tackle is largely equiva-
Ž .lent to the su 3 generalization of the XXZ spin

chain. This integrable chain has been known for a
w xlong time 14 , and reads

3 3
r s sr r r r rHsy e e qcosg e eÝ Ý Ýj jq1 j jq1

j r , ss1,r/s rs1

3
r r ssqising sign rys e e . 2Ž . Ž .Ý j jq1

r , ss1

Relations of this system with the quantum field
theory are two-fold. At the physical level, there is a
simple integrable perturbation – obtained, in the
quantum inverse scattering framework, by introduc-
ing heterogeneities of the spectral parameter, which

Ž .amount to a staggered interaction – giving rise to 1
in the continuum limit, as can easily been shown

w xusing bosonization, or other arguments 15 . In that
pcorrespondence, gs . At a more formal level, ob-t

serve first that the scattering matrices proposed in
w x16 are non-diagonal. To study the thermodynamics
of the gas of excitations in the S matrix approach,
one needs to write wave functions, and impose their
periodicity. This condition involves ‘‘passing’’ a
particle through a set of other particles with which it
scatters non-diagonally: the phases obtained in this
way are, in the inverse quantum scattering frame-

w xwork, eigenvalues of a monodromy matrix 17 . This
monodromy matrix is nothing but the transfer matrix

Ž . Žassociated with the hamiltonian 2 actually, it in-
volves a slight generalization of this hamiltonian
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with a mixture of the fundamental representation and
.its conjugate , with however a renormalization of the

panisotropy parameter, which becomes gs . Thety 1
p Žcase gs , for instance the equivalent of the XX2

.chain, which is not a free problem here however , is
1a lattice regularization of the Toda theory for Ds ;2

it also turns out in the monodromy problem for the
2Toda theory at Ds .3

This double correspondence is very useful. If one
is able to solve say the field theory problem for a

ty 1particular value of Ds , one should also be ablet
pto diagonalize the lattice model for gs , since it ist

just a discretization of this quantum field theory. But
pŽ .knowing the spectrum of 2 for gs in turn meanst

knowing the spectrum of the monodromy matrix for
this value of g . This is nothing but being able to

tsolve the Toda theory for Ds !tq 1

Rather than dwell into the lengthy technical de-
tails, we would like to discuss first the solution of

pthe lattice model for gs . We consider the slightly2

more general hamiltonian, where there is an arbitrary
mixture of the fundamental representation and its

w xconjugate. The lattice Bethe equations are 18
N31

sinh y q ipr2Ž .j2
1� 0sinh y y ipr2Ž .j2

1
sinh y yz y ipr2Ž .j r2s ,Ł 1z sinh y yz q ipr2Ž .j r2

N31
sinh z q ipr2Ž .r2

1� 0sinh z y ipr2Ž .r2

1
sinh z yy y ipr2Ž .r j2s , 3Ž .Ł 1y sinh z yy q ipr2Ž .r j2

where we have not written a crucial but complicated
sign on the right hand sides, and the energy reads

1 1Esy2Ý y2Ý . A combination of numeri-cosh z cosh y

cal studies and analytical arguments led to the identi-
fication of the following sets of roots in the thermo-

dynamic limit. The y and z can both be real, or both
Ž .have an imaginary part equal to p antistring . In

addition, it is possible to have complexes, with a two
string z centered on an antistring y, that is: ysrq

p Žip , zsr" i here r is a real number, and we2
p p .identified rq3i and ry i , and the same thing2 2

with y and z reversed. The existence of these
complexes is easy to understand. Suppose for in-
stance that z has a positive imaginary part, so the lhs

Ž .of the second equation in 3 blows up as N ™`. It3

is then necessary to have the rhs also blow up, which
can be accomplished if there exists a y such that

pyszq i . The same goes if z has a negative2

imaginary part, so the complexes proposed are the
minimal possible structures leading to real Bethe
equations. Together with the real and antistring solu-
tions, they reproduce the 3q3 degeneracy expected
for the fundamental solitons. In addition however,

Žanother type of complex which we call yz in the
3p.following is possible, of the form zsrq i , ysr4

5pq i , together with the conjugate. Usually, one4

would expect that these two complexes actually come
glued together to ensure reality of the Bethe equa-
tions and the eigenvalues, resulting in a sort of

w x‘‘quartet’’ 19 . This does not seem to be the case
here. Rather, to reproduce the correct entropy or
central charge, one needs to treat their densities as
independent.

These complexes are the ones which dominate the
thermodynamics. As usual, there are many other
solutions to the Bethe equations. The existence of
solutions which are not invariant under complex
conjugation being rather unusual, we illustrate it
briefly. Fig. 1 shows the yz complex obtained by a

Ž .numerical solution of 3 for N s0 and for different3

values of N . In this example – which seems the3

simplest possible – the half sum of the imaginary
parts of y and z goes to p in the thermodynamic

plimit, but their difference does not go to . We2

conjecture that this would however be the case for
the overwhelming majority of such complexes: we
checked that only in this case, are the correct scatter-
ing theory and thermodynamics recovered.

The lattice model without heterogeneities has a
continuum limit which is a conformal field theory,
made of two bosons compactified on a triangular
lattice. The latter is unitary, and we have checked
numerically that the imaginary parts of the eigenen-
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Ž .Fig. 1. A numerical solution of 3 containing a yz complex for N s0 for different values of N s6,9, . . . ,39. For 39 sites we show all3 3

roots belonging to this particular state, whereas for all other lattice lengths only the yz complex is shown.

Ž .ergies of 2 scale to zero faster than their real parts,
ensuring reality of the conformal weights, and, actu-
ally, unitarity of the conformal field theory, despite
the non-hermicity of the hamiltonian. Meanwhile,
the lattice model with heterogeneities does have a
continuum limit described by a complex Toda the-

1ory, with Ds . In this case, the complexes corre-2

spond to physical particles, the bound states dis-
w xcussed in 6,7 . The fact that they are described by

solutions of the Bethe ansatz which are not self
conjugate corresponds to the shocking fact that, in
the quantum field theory, their S matrix is not a pure

Žphase and ‘‘naive’’ unitarity, in the sense of the
.scattering theory, is broken .

Accordingly, a crucial feature related with the yz
complexes is that they give rise to non-real kernels

in the continuum Bethe ansatz. For instance, the
kernel for the scattering of a real z through a yz

3p 5p 1 dcomplex zsrq i , ysrq i is lnFsy1r4 4 i dz
ipcosh zyrq . Although at equilibrium the densi-Ž .4

ties of the two types of conjugate complexes are
equal, it is necessary to let them vary independently
to get the correct entropy. The physical results will
be the same as the ones that would be obtained with
a different theory, where the scattering kernels would
be real, and given by the real part of the true kernels.
This is what we will consider in the following, to
make the notations simpler.

Ž .The lattice model whose equations are 3 occurs
also in the problem of diagonalizing the monodromy

2matrix for Ds . The complexes just discussed have3

no physical meaning then: they just correspond to
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pseudo particles of zero mass. However, the fact that
they are not self conjugate means that eigenvalues of
the monodromy matrix will not, in general, have

w xmodulus one. Contrary to early claims 6 , unitarity
is strongly violated in the theory, even in the absence
of bound states. The physical implications of having
‘‘monodromies’’ which are not pure phases are not
clear to us: presumably S matrix elements have to be
considered as formal objects used to build wave
functions, and cannot be given a reasonably meaning
in terms of scattering processes 3.

This basic structure generalizes easily to the case
pt integer. For gs , the Bethe equations contain int

addition a term of interaction between y roots, and
between z roots. The solutions are the usual y or z
real, antistrings, or 2, . . . ,ty1 strings, plus y-t
strings centered on z antistrings, and the same thing
with y and z reversed. In addition, the yz com-

pplexes now are of the form zsrq ipy i , ysr2 t
pq ipq i , and the same with y and z exchanged.2 t

To proceed, one has to use these results to solve
ty 1the monodromy problem. At Ds , passing at

soliton through a set of N , N solitons at various3 3

rapidities gives rise to a ‘‘phase’’ which is an eigen-
value of the monodromy matrix. The latter is essen-

Ž .tially the transfer matrix associated with 2 , but for
p

gs . Its eigenvalues are obtained by generalizingty 1

slightly the Bethe ansatz equations, so the arguments
Ž .in the lhs of 3 are shifted by the corresponding

rapidities, and using the generalized string hypothe-
sis described previously.

A few technical details are involved, which are
Ž .completely equivalent to what happens in the su 2

w xcase 20 . We will only describe the end result,
which is quite simple. For the case t™`, the TBA

w xhas been known for a long time 21,22 , and has a
Ž .structure that mimics the known one for su 2 , with

an infinity of massless nodes corresponding to the
usual strings of the Bethe equations. Like for the
Ž .su 2 case, the introduction of anisotropy truncates

this to a finite number of strings: the truncation has
to be completed by the proper ‘‘end structure’’ of the

Ž .diagram. Like in the su 2 case, this structure, for
pŽ .su 3 , is given by the Bethe roots for gs . After2

3 A somewhat related problem occurs for instance in the mass-
less description of conformal field theories.

some manipulations, the results are the following.
We call s ,s h the densities of the solitons at rapid-
ity u , and m the mass of the fundamental soliton.
Then

3 3h 3h 3hs qs smcoshuqfw r qs , . . . ,Ž .1

3 3h 3h 3h 3r qr sfw r qr qr . . . 4Ž .Ž .n n ny1 nq1 n

and similarly for 3, with r 's . We recognize here0
w xthe standard equations for the minimal model 16 . In

addition, in this untruncated case, we need the
‘‘closure’’ relations, which are the key to the whole
problem. They read here

3 3h 3h 3h 3 3 3r qr sfw r qr qr qr qrž /ty3 ty3 ty4 ty2 ty3 a a1 2

3 3qcw r qr ,Ž .b b

3 3h 3h 3 3 3r qr sfw r qr yr yrž /ty2 ty2 ty3 ty2 a a1 2

3 3ycw r qr ,Ž .b b

r 3 qr 3h sr 3 qr 3h 5Ž .a a ty2 ty2i i

and similarly for 3; finally

3 3h 3h 3 3 3r qr scw r qr yr yr q3™3ž /b b ty3 ty2 a a1 2

3 3yfw r qr . 6Ž .Ž .b b

In these equations, the kernels are defined by their
1 cosh xr24 ˆ ˆfourier transforms fs and cs . The2cosh x 2cosh x

subscripts a , is1,2 stand for antistrings or t stringsi

centered on antistrings; b stands for yz complexes.
We set eye 0 r T ssrs h, eye n r T sr hrr , nsi i

1, . . . ,t y 2, eye a r T s r rr h , eye b r T s r rr h
a a b bi i

Ž .color labels are kept implicit here . Introducing the

4 1 yi n xu rpŽ̂ . Ž .We define f x s Hf u e du .2p
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usual variables x seyea r T, the TBA in the UVa

Ž .limit reduces to the system x s1rx :ty2 a

y1r211r2x s 1qx 1q , . . . ,Ž .0 1 ž /x0

1r2 1r2x s 1qx 1qxŽ . Ž .n ny1 nq1

=

y1r21
1q , . . . ,ž /xn

y1r211r2 3r2x s 1qx 1qx 1qŽ . Ž .ty3 ty4 a ž /xty3

= 1qx ,Ž .b

y1r211r2 y1x s 1qx 1q 1qxŽ . Ž .a ty3 až /xa

=
y11qx ,Ž .b

y11 y2x s 1qx 1q 1qxŽ . Ž .b ty3 až /xa

=
y11qx . 7Ž . Ž .b

The solution of this system is

jq1 jq4Ž . Ž .
x s , js0, . . . ,ty3,j 2

2ty1 ty1Ž .
x s , x s . 8Ž .a btq1 4 t

In the IR limit, we get an identical TBA, but with the
Ž .replacement t™ ty1 exactly as in the SU 2 case

w x20 , because the first two nodes become infinitely
massive, e s`. The whole TBA system is actually0

quite similar to the one for the sine-Gordon model:
the ‘‘left part’’ can be conveniently encoded in a
ladder diagram with base the Dynkin diagram of a ,2

and in the isotropic limit t™`, this is all that
matters. For finite t however, the diagram has to be
closed to the right, and the closing terms are more
complicated than for sine-Gordon: in addition to
3q3 nodes standing algebraically for the representa-

Žtions 3 and 3 in the sine-Gordon case, there are two

such nodes corresponding to the self-conjugate fun-
.damental representation , the closure requires the

nodes associated with the non-real solutions of the
Bethe ansatz, whose algebraic meaning has eluded us

Ž . Ž .up to now. The TBA diagrams for SU 2 and SU 3
are shown in Fig. 2.

w x Ž . Ž .Using the basic identity 23 : L x qL y s
Ž . Ž .x 1yy y 1yxŽ .L xy qL qL , one finds
1yxy 1yxy

2ty3 j q5 jq4 ty1
2 L q6LÝ 2 2 tj q5 jq6js0

2 2ty1 p
q2 L s ty1 , 9Ž . Ž .ž /tq1 3

Ž . Ž .and therefore, cs2 ty1 y2 ty2 s2, as re-
quired. Note that for the sine-Gordon case, the sum

Ž . Žof dilogarithms for the UV IR diagram was ty
p 2. Ž .1 resp. ty2 instead, generalizing nicely the6

combinatorics to the case of rank two.
Still like in the sine-Gordon case, the same TBA

diagram supports the scattering theory for general-
ized supersymmetric extensions: by putting the mass
term on the k th node, the central charge now be-

8kcomes cs , in agreement with the central chargekq 3

Ž .for SU 3 theories.k

The Toda theory can be twisted by coupling a
Ž .charge to the total diagonal U 1 current. The kinks

come in the form of 3 and 3, and the total charge can
be recast in terms of the solutions of the associated,

Ž . Ž .Fig. 2. The TBA diagrams for SU 2 and SU 3
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Žnon-diagonal scattering problem, as Q A t y
3 3. Ž .1 Hr y r q 3™3 . The thermodynamics isty2 a1

more complicated to carry out than in the sine-Gordon
case however, densities of holes and particles mixing
up in a complex fashion in the right hand side of the
universal Bethe equations. It can still be shown that,
with a fugacity y1 for the solitons, the diagram
truncates, leaving only the nodes js0, . . . ,ty5, for
tG5, the well known result for the minimal model

Ž . Ž . Ž .SU 3 =SU 3 rSU 3 . Note that more nodes1 ty4 ty3

disappear than in the sine-Gordon case: the case
where the minimal theory has cs0 now corre-

3sponds to a dimension Ds in the Toda theory.4
ty 1The study of the points Ds , t integer, there-t

fore presents few surprises, except maybe the non-
unitarity, due to the complex solutions of the Bethe
equations. We do not expect a qualitatively different
behaviour when t is not an integer, provided D lies
in the repulsive regime, DG3r5, where no bound
states are expected. In contrast, the attractive regime
turns out to be considerably more complicated.

1From a technical point of view, the points Ds ,t

could be studied as the continuum limit of the chain
pwith gs still, but with the opposite sign of thet

hamiltonian. This observation is crucial in the case
of the XXZ chain, and allows one to essentially use
the same type of solutions of the Bethe equations to
study both the attractive and the repulsive regime: it
is well known that the TBAs for these two cases are

Ž .very closely related. In the su 3 case, the situation
is more involved: depending on the sign of the
hamiltonian, it is not the same type of solutions of
the Bethe equations that determines the thermody-

pnamics. This can be illustrated in the case gs .2

Taking say a chain made only of 3’s, the ground
state is y and z real for one sign, y antistring and z
real for the other. This still is like for the XX chain.
However, the other solutions of the Bethe equations
are different: for instance, instead of having two
string z centered on antistrings y’s, one has now
two string z centered on real y’s. Things get worse
as t increases, and solutions that were possible but
did not contribute to the thermodynamics for one
sign of the coupling, start being important for the
other.

The net result is that we have not been able to
reproduce the simple cs2 result for any point in the

1attractive regime except the Ds case. To illustrate2

the nature of the difficulties, let us concentrate for a
4pwhile on the theories for which ls y1 is of the2b

2n q 1 2 n q 2form ls , or ls . In that case, the defor-3 3

mation parameter for the quantum group symmetry
Ž .of the scattering theory, qsyexp ipl is a cubic

root of unity, and the q-dimension of the 3 or the 3
Ž .vanish exactly, 3 s0. This means that the RSOSq

w xtruncation 24,25 of the theory is very simple: the
kink part entirely disappears from the scattering, and
one is left with a diagonal scattering for the scalar
bound states. This scattering leads to straightforward
TBA calculations, which one can compare against
the predictions of conformal field theory. The dis-

w xagreement with the scattering theory proposed in 7
4is considerable. Let us give two examples. For ls ,3

w xthe analysis of 7 predicts only a pair of bound
states: to reproduce the effective central charge ceff

s6r7 together with its apparent conformal weight
D s1r7, one needs in fact 6 bound states, essen-eff

tially reproducing the well known E scattering the-6
w xory 26 . Note that in this theory, there are pairs of

conjugate particles, but also self-conjugate ones: the
Ž .issue of whether bound states in su 3 should always

appear in pairs is not clear, and this counter example
demonstrates it is not always the case.

If the appearance of E is somewhat surprising,6
5an even bigger surprise is encountered for ls . In3

this case, the effective central charge is c s1, andeff

the apparent weight D s1r16. The scattering the-eff
w xory in 7 predicts two pairs of bound states, i. e. 4

scalar particles. To close the bootstrap, it turns out
that one needs in fact 16 particles, with a scattering

w xtheory that is a sort of double E 27 : if one labels8
Ž .the E particles by j, the su 3 particles by B , then8 j

one has the identity S S sS : this guaranteesB B B B jkj j k k 1 5that the central charge in the UV is 2= s1 , as2

required.
The ratio of the actual number of bound states and

the minimal one is actually growing very quickly,
and it is not clear what to do to close the bootstrap
even for the simplest non-trivial reflectionless point,

1 w xDs , where the conjectured scattering theory 7,28 ,3

involving the fundamental solitons A , A , excited0 0

5 This doubling is similar to what happens in the scattering
theory for the 3 state Potts model, with cs4r5, compared with
the scattering theory for the Yang Lee model, with c s2r5.eff
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solitons A , A , and breathers B , B , B , B , gives1 1 1 1 2 2

only cs1.90821. Note that this point is quite spe-
cial, since the particles can be gathered into 2 eightu-

'plets of particles of mass M and 3 M, indicating
Ž3. w xthe presence of a hidden D symmetry 29,30 .4

Introducing more particles increases c, but we
haven’t found a closure of the bootstrap, even after
introducing large numbers of bound states 6.

Ž .The repulsive regime for su n , nG4, presents
w xsimilar difficulties: the scattering theory of 7,28 is

1incomplete even at the point Ds , and there again,2

more bound states have to be introduced.
In conclusion, except for the simplest case of
Ž .su 3 in the repulsive regime, the scattering theory of

the complex Toda theories is not under control, in
our opinion. The large body of literature on the

Ž w x .subject see e.g. 32 for some recent developments
has identified a minimal structure for it, but reality is

Žmore complicated a fact well known to some ex-
.perts . How complicated is not clear to us: without

an algebraic understanding of the bound states, tack-
ling the general case is a very laborious task, and it
is not even clear that the bootstrap will close with a
finite number of bound states, except for some spe-
cial values: clearly, more work is needed in this
direction.

Ž .Meanwhile, the solution of the su 3 theory in the
repulsive regime opens the way to several problems

Ž .of physical interest, in particular study of su 3
Ž .anisotropic Kondo problems, and su 3 tunneling

problems, on which we hope to report soon.
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