A Statistical Analysis of 2-Selmer Groups for Elliptic Curves with Prescribed Torsion

A. Rollick1 J. Weigandt2

1Department of Mathematics
John Carroll University

2Department of Mathematics
Purdue University

Summer Undergraduate Mathematical Sciences Research Institute 2007
Outline

Family of Elliptic Curves with $E(\mathbb{Q})_{tors} \simeq \mathbb{Z}_2 \times \mathbb{Z}_8$

The 2-Selmer Group

Computations

mwrank

Algorithm

Distribution of 2-Selmer Ranks

Poisson Distribution?

Generating Functions
Introduction

- We are attempting to find Mordell-Weil rank r of elliptic curves.
- An upper bound for the rank is s, the rank of the 2-Selmer group of the elliptic curve.
- $E(\mathbb{Q})$ may be an infinite group.
- Instead consider $\frac{E(\mathbb{Q})}{2E(\mathbb{Q})}$, which is a finite group.
Connecting Homomorphism

Let E be a curve such that:

- is defined by $Y^2 = X^3 + AX + B$ where A and $B \in \mathbb{Z}$
- $X^3 + AX + B$ has three distinct rational roots: e_1, e_2, e_3

Then we have the “connecting homomorphism”:

$$\delta_E : \frac{E(\mathbb{Q})}{2E(\mathbb{Q})} \rightarrow \frac{\mathbb{Q}^\times}{(\mathbb{Q}^\times)^2} \times \frac{\mathbb{Q}^\times}{(\mathbb{Q}^\times)^2}, \quad P = (X, Y) \mapsto (X - e_1, X - e_2)$$

δ_E is injective and its image lies in a finite group

$$G = \left\{(d_1, d_2) \mid d_i = \pm \ell_1^{a_{i1}} \cdots \ell_r^{a_{ir}}, \text{ where } \ell_j \text{ divides } -16(4A^3 + 27B^2) \right\}$$
Counting Rational Points

For \((d_1, d_2) \in G\) consider the curve

\[C_d : \quad d_1 u^2 - d_2 v^2 = e_2 - e_1, \quad d_1 u^2 - d_1 d_2 w^2 = e_3 - e_1. \]

Then the connecting homomorphism implies the isomorphism

\[\frac{E(\mathbb{Q})}{2E(\mathbb{Q})} \cong \left\{ d \in G \mid C_d(\mathbb{Q}) \neq \emptyset \right\} \cong \mathbb{Z}_2^{r+2}. \]

That is, if \((u, v, w) \in C_d(\mathbb{Q})\) then \((d_1 u^2 + e_1, d_1 d_2 u v w)\) in \(E(\mathbb{Q})\). Conversely, if \(P \in E(\mathbb{Q})\) then there is a point in \(C_d(\mathbb{Q})\) for \(d = \delta_E(P)\).

To compute the rank \(r\) we count \(d \in G\) such that \(C_d(\mathbb{Q}) \neq \emptyset\).
The 2-Selmer Group

Motivation

- Identify points in $\frac{E(\mathbb{Q})}{2E(\mathbb{Q})}$ with homogeneous spaces.

- Need to find rational points on C_d for $d \in G$.

- How do we do this?
2-Selmer and Shafarevich-Tate Groups

\[
\frac{E(\mathbb{Q})}{2E(\mathbb{Q})} \xrightarrow{\delta_E} \text{Sel}^{(2)}(E/\mathbb{Q}) \xrightarrow{\Phi} \text{III}(E/\mathbb{Q})[2]
\]

where we define the 2-Selmer and Shafarevich-Tate groups

\[
\text{Sel}^{(2)}(E/\mathbb{Q}) = \left\{ d \in G \mid C_d(\mathbb{R}) \neq \emptyset \text{ and } C_d(\mathbb{Q}_p) \neq \emptyset \text{ for all primes } p \right\}
\]

\[
\text{III}(E/\mathbb{Q})[2] = \left\{ d \in G \mid C_d(\mathbb{R}) \neq \emptyset \text{ and } C_d(\mathbb{Q}_p) \neq \emptyset \text{ for all primes } p \text{ but } C_d(\mathbb{Q}) = \emptyset \right\}
\]
2-Selmer and Shafarevich-Tate Groups

- \(\frac{|E(\mathbb{Q})|}{|2E(\mathbb{Q})|} = 2^{r+2} \)
- \(|\text{Sel}^{(2)}(E/\mathbb{Q})| = 2^{s+2} \)
- \(|\text{III}(E/\mathbb{Q})[2]| = 2^{s-r} \)

- 2-Selmer group is easy to compute, Shafarevich-Tate group is hard to compute
- Hopefully \(r = s \), i.e., the Shafarevich-Tate group is trivial
- We use \texttt{mwrank}
Family of Elliptic Curves with $E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}_2 \times \mathbb{Z}_8$

Computations

Distribution of 2-Selmer Ranks

mwrack

Rollick, Weigandt

SUMSRI, Miami University

2-Selmer Ranks

John Cremona

http://www.maths.nott.ac.uk/personal/jec/mwrack/index.html
Searching For a Curve with Rank \(r \geq 3 \)

To search for an elliptic curve defined over \(\mathbb{Q} \) with torsion subgroup \(\mathbb{Z}_2 \times \mathbb{Z}_8 \) and rank \(r \geq 3 \), we use the following algorithm:

1. Generate a list of candidate curves
2. Compute the ranks of the 2-Selmer groups of these curves.
3. Compute the Mordell-Weil ranks of the curves with 2-Selmer ranks \(s \geq 3 \).
Classification of Curves with Torsion $\mathbb{Z}_2 \times \mathbb{Z}_8$

E is an elliptic curve with torsion subgroup $\mathbb{Z}_2 \times \mathbb{Z}_8$ if and only if there exist integers a and b such that E is birationally equivalent to

$$y^2 = (1 - x^2)(1 - k^2 x^2),$$

where

$$k = \frac{a^4 - 6a^2 b^2 + b^4}{(a^2 + b^2)^2}.$$

Using the maps $(a, b) \mapsto (-a, b)$ and $(a, b) \mapsto (a - b, a + b)$, we may choose a and b such that $0 < (1 + \sqrt{2})a < b$.

Rollick, Weigandt

SUMSRI, Miami University
Family of Elliptic Curves with $E(Q)_{\text{tors}} \cong \mathbb{Z}_2 \times \mathbb{Z}_8$

Computations

Distribution of 2-Selmer Ranks

Algorithm

Generating Candidate Curves

#1. INPUT: Bound N

#2. For integers a and b satisfying $0 < (1 + \sqrt{2})a < b \leq N$

 a. Define

 \[
 p = a^4 - 6a^2b^2 + b^4 \quad A = -27(p^4 + 14p^2q^2 + q^4)
 \]

 \[
 q = (a^2 + b^2)^2 \quad B = -54(p^6 - 33p^4q^2 - 33p^2q^4 + q^6)
 \]

 b. Record the elliptic curve $Y^2 = X^3 + AX + B$ to a list.

#3. OUTPUT: List of elliptic curves

- $N = 5000$ took 10 minutes to generate 3148208 curves
- Divide into 256 files (12300 curves per file) for parallel processing

Rollick, Weigandt

SUMSRI, Miami University

2-Selmer Ranks
Family of Elliptic Curves with $E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}_2 \times \mathbb{Z}_8$

Algorithm

Computations

Distribution of 2-Selmer Ranks

Redhawk at Miami University

Rollick, Weigandt

2-Selmer Ranks

SUMSRI, Miami University
Family of Elliptic Curves with $E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}_2 \times \mathbb{Z}_8$

Computations

Distribution of 2-Selmer Ranks

<table>
<thead>
<tr>
<th>Bound N</th>
<th>1 000</th>
<th>2 000</th>
<th>3 000</th>
<th>4 000</th>
<th>5 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s = 0$</td>
<td>19 309</td>
<td>75 384</td>
<td>167 581</td>
<td>296 135</td>
<td>461 127</td>
</tr>
<tr>
<td></td>
<td>(15.32%)</td>
<td>(14.96%)</td>
<td>(14.79%)</td>
<td>(14.70%)</td>
<td>(14.65%)</td>
</tr>
<tr>
<td>$s = 1$</td>
<td>45 807</td>
<td>179 361</td>
<td>401 351</td>
<td>711 392</td>
<td>1 110 462</td>
</tr>
<tr>
<td></td>
<td>(36.35%)</td>
<td>(35.59%)</td>
<td>(35.41%)</td>
<td>(35.31%)</td>
<td>(35.27%)</td>
</tr>
<tr>
<td>$s = 2$</td>
<td>40 044</td>
<td>161 031</td>
<td>362 152</td>
<td>643 340</td>
<td>1 004 658</td>
</tr>
<tr>
<td></td>
<td>(31.75%)</td>
<td>(31.96%)</td>
<td>(31.95%)</td>
<td>(31.93%)</td>
<td>(31.91%)</td>
</tr>
<tr>
<td>$s = 3$</td>
<td>16 933</td>
<td>70 481</td>
<td>160 695</td>
<td>287 682</td>
<td>450 939</td>
</tr>
<tr>
<td></td>
<td>(13.44%)</td>
<td>(13.99%)</td>
<td>(14.18%)</td>
<td>(14.28%)</td>
<td>(14.32%)</td>
</tr>
<tr>
<td>$s = 4$</td>
<td>3 550</td>
<td>15 845</td>
<td>36 956</td>
<td>67 289</td>
<td>106 791</td>
</tr>
<tr>
<td></td>
<td>(2.82%)</td>
<td>(3.14%)</td>
<td>(3.26%)</td>
<td>(3.34%)</td>
<td>(3.39%)</td>
</tr>
<tr>
<td>$s = 5$</td>
<td>338</td>
<td>1 707</td>
<td>4 370</td>
<td>8 208</td>
<td>13 371</td>
</tr>
<tr>
<td></td>
<td>(0.27%)</td>
<td>(0.34%)</td>
<td>(0.39%)</td>
<td>(0.41%)</td>
<td>(0.42%)</td>
</tr>
<tr>
<td>$s = 6$</td>
<td>22</td>
<td>112</td>
<td>256</td>
<td>509</td>
<td>839</td>
</tr>
<tr>
<td></td>
<td>(0.02%)</td>
<td>(0.02%)</td>
<td>(0.02%)</td>
<td>(0.03%)</td>
<td>(0.03%)</td>
</tr>
<tr>
<td>$s = 7$</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>(0.00%)</td>
<td>(0.00%)</td>
<td>(0.00%)</td>
<td>(0.00%)</td>
<td>(0.00%)</td>
</tr>
</tbody>
</table>
Computation of Mordell-Weil Ranks

- Data for $N = 1000$ and $s = 3$
- 16,933 curves in this list
- 12 of these curves are known to have $r = 3$
- Can we find more?
New Curves we found

<table>
<thead>
<tr>
<th>Parameter t</th>
<th>Rank r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{19}{84}$</td>
<td>3</td>
</tr>
<tr>
<td>$\frac{101}{299}$</td>
<td>3</td>
</tr>
<tr>
<td>$\frac{86}{333}$</td>
<td>3</td>
</tr>
<tr>
<td>$\frac{12}{65}$</td>
<td>$2 \leq r \leq 3$</td>
</tr>
<tr>
<td>$\frac{21}{92}$</td>
<td>$2 \leq r \leq 3$</td>
</tr>
<tr>
<td>$\frac{9}{296}$</td>
<td>$2 \leq r \leq 3$</td>
</tr>
<tr>
<td>$\frac{65}{337}$</td>
<td>$2 \leq r \leq 3$</td>
</tr>
</tbody>
</table>
Family of Elliptic Curves with $E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}_2 \times \mathbb{Z}_8$

Algorithm

Computations

Distribution of 2-Selmer Ranks

Radon at Purdue University

Rollick, Weigandt

SUMSRI, Miami University

2-Selmer Ranks
Q: What do we do while mwrank is running?

A: Consider 2-Selmer ranks, of course!
Family of Elliptic Curves with $E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}_2 \times \mathbb{Z}_8$

Computations

Distribution of 2-Selmer Ranks

Poisson Distribution?

Histogram of Ranks of 2-Selmer Groups for $N = 5000$

Rollick, Weigandt

SUMSRI, Miami University

2-Selmer Ranks
Is this Poisson?
Poisson Distributions

- Observed: \(O(s) \) with average \(\bar{s} = \frac{\sum_{s=0}^{m(N)} s \cdot O(s)}{\sum_{s=0}^{m(N)} O(s)} \)

- Expected: \(E(s) = \left[\sum_{m=0}^{m(N)} O(m) \right] \cdot \frac{\lambda^s}{s!} e^{-\lambda} \) with \(\lambda = \bar{s} \)

- Chi-square distribution: \(\chi^2 = \sum_{s=0}^{m(N)} \frac{[O(s) - E(s)]^2}{E(s)} \)

- Compare with value of \(\chi^2_{\alpha, df} \) where \(\alpha = 5\% \) and \(df = m(N) - 1 \). If \(\chi^2 \leq \chi^2_{\alpha, df} \), accept hypothesis.
Chi-Square Distribution of 2-Selmer Ranks

<table>
<thead>
<tr>
<th>Bound N</th>
<th>$m(N)$</th>
<th>\bar{s}</th>
<th>χ^2</th>
<th>$\chi^2_{\alpha, df}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000</td>
<td>6</td>
<td>1.529456</td>
<td>7 700.072</td>
<td>11.070</td>
</tr>
<tr>
<td>2 000</td>
<td>7</td>
<td>1.558704</td>
<td>29 761.771</td>
<td>12.592</td>
</tr>
<tr>
<td>3 000</td>
<td>7</td>
<td>1.569643</td>
<td>65 653.675</td>
<td>12.592</td>
</tr>
<tr>
<td>4 000</td>
<td>7</td>
<td>1.575738</td>
<td>115 008.433</td>
<td>12.592</td>
</tr>
<tr>
<td>5 000</td>
<td>7</td>
<td>1.579246</td>
<td>177 788.496</td>
<td>12.592</td>
</tr>
</tbody>
</table>
Poisson Distribution?

<table>
<thead>
<tr>
<th>Bound N</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s = 0$</td>
<td>19,309</td>
<td>75,384</td>
<td>167,581</td>
<td>296,135</td>
<td>461,127</td>
</tr>
<tr>
<td></td>
<td>(15.32%)</td>
<td>(14.96%)</td>
<td>(14.79%)</td>
<td>(14.70%)</td>
<td>(14.65%)</td>
</tr>
<tr>
<td>$s = 1$</td>
<td>45,807</td>
<td>179,361</td>
<td>401,351</td>
<td>711,392</td>
<td>1,110,462</td>
</tr>
<tr>
<td></td>
<td>(36.35%)</td>
<td>(35.59%)</td>
<td>(35.41%)</td>
<td>(35.31%)</td>
<td>(35.27%)</td>
</tr>
<tr>
<td>$s = 2$</td>
<td>40,044</td>
<td>161,031</td>
<td>362,152</td>
<td>643,340</td>
<td>1,004,658</td>
</tr>
<tr>
<td></td>
<td>(31.75%)</td>
<td>(31.96%)</td>
<td>(31.95%)</td>
<td>(31.93%)</td>
<td>(31.91%)</td>
</tr>
<tr>
<td>$s = 3$</td>
<td>16,933</td>
<td>70,481</td>
<td>160,695</td>
<td>287,682</td>
<td>450,939</td>
</tr>
<tr>
<td></td>
<td>(13.44%)</td>
<td>(13.99%)</td>
<td>(14.18%)</td>
<td>(14.28%)</td>
<td>(14.32%)</td>
</tr>
<tr>
<td>$s = 4$</td>
<td>3,550</td>
<td>15,845</td>
<td>36,956</td>
<td>67,289</td>
<td>106,791</td>
</tr>
<tr>
<td></td>
<td>(2.82%)</td>
<td>(3.14%)</td>
<td>(3.26%)</td>
<td>(3.34%)</td>
<td>(3.39%)</td>
</tr>
<tr>
<td>$s = 5$</td>
<td>338</td>
<td>1,707</td>
<td>4,370</td>
<td>8,208</td>
<td>13,371</td>
</tr>
<tr>
<td></td>
<td>(0.27%)</td>
<td>(0.34%)</td>
<td>(0.39%)</td>
<td>(0.41%)</td>
<td>(0.42%)</td>
</tr>
<tr>
<td>$s = 6$</td>
<td>22</td>
<td>112</td>
<td>256</td>
<td>509</td>
<td>839</td>
</tr>
<tr>
<td></td>
<td>(0.02%)</td>
<td>(0.02%)</td>
<td>(0.02%)</td>
<td>(0.03%)</td>
<td>(0.03%)</td>
</tr>
<tr>
<td>$s = 7$</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>(0.00%)</td>
<td>(0.00%)</td>
<td>(0.00%)</td>
<td>(0.00%)</td>
<td>(0.00%)</td>
</tr>
</tbody>
</table>
Family of Elliptic Curves with $E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}_2 \times \mathbb{Z}_8$

Computations

Distribution of 2-Selmer Ranks

Generating Functions

$$f_{\text{sel}}(z) \approx 0.146 + 0.353 z + 0.319 z^2 + 0.143 z^3 + \cdots$$
Acknowledgments and References

- SUMSRI and Miami University
- Residential Computing at Miami University
- Rosen Center for Advanced Computing at Purdue
- Dr. Goins and Maria Salcedo
- Dr. Waikar and Ashley Swandby
- NSF and NSA

References

