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Abstract. It is well-known that cubic Thue equations have finitely many
integer points, and once one associates these equations with elliptic curves,

then there exist algorithms to determine whether they have infinitely many

rational points. In the case of infinitely many rational solutions, we explain
how to explicitly find “large” rational points of a cubic Thue equation.

The paper proceeds as follows. First we exhibit a map from the cubic

Thue equation C having a rational point of inflection to an elliptic curve of
the form E : y2 = x3 − D, then prove that a “large” rational point on C

maps to a rational point of “approximate” order 3 on E. Second, following
an idea of Zagier, we compute rational points of “approximate” order 3 using

continued fractions of elliptic logarithms. Third, we investigate how to modify

the algorithm by considering homogeneous spaces when a rational point of
inflection does not exist.

1. Introduction

For centuries, mathematicians have studied various methods of finding rational
solutions to Diophantine equations. Such luminaries as Brahmagupta and Fermat
have made significant contributions to the study of Pell’s Equation: u2 − d v2 = 1,
while another (none other than Euler!) named it after the wrong person. If d > 0,
then it is known that Pell’s Equation has infinitely many integral solutions.

The equation C : u3 − d v3 = 1 is called a cubic Thue equation. In a sense,
it generalizes Pell’s Equation. It is known that it has only finitely many integer
solutions. However, depending on the value of d, it may have infinitely many
rational solutions. The number of rational solutions of the cubic Thue equation is
not the focus of this paper; there are several computer packages, including apecs
and mwrank, that determine the set of those solutions. Our goal is to find an
algorithm that produces large rational points on such a cubic Thue equation.

We explain the main results and approach. We consider nonsingular rational
cubic curves of the form

(1) C : au3 + bu2v + cuv2 + dv3 = m.

If C has a rational point of inflection, then we have a birational equivalence between
C and an elliptic curve of the form E : y2 = x3 − D for some nonzero rational
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number D. (If C does not have a rational point of inflection, we find a rational
map from C to an isogeneous elliptic curve E′ : Y 2 = X3 + 27D.) An increasing
sequence of rational points on C tends to a point of order three on E. Therefore, we
exhibit an algorithm that can generate a sequence of points that tends to a point
of order three on the elliptic curve.

This is done by using elliptic logarithms, following an idea of Zagier [Zag87]
explained by Guy [Guy95]. Choose one rational point P = (x, y) on the elliptic
curve such that its y-coordinate is positive. We then compute the quotient of the
elliptic logarithm of the point over the real period of E:

(2)
3
2
·
∫ ∞

x

dξ√
ξ3 −D

/∫ ∞

3√
D

dξ√
ξ3 −D

By using continued fractions, we obtain successive convergents p/q of this quo-
tient as a sequence of rational approximations. Choose the denominators q of this
sequence such that numerators p are not divisible by 3. Then the multiple [q]P ap-
proximates a point of order three on the elliptic curve, and by using the birational
equivalence between C and E, we can translate each point calculated on the elliptic
curve back onto the cubic Thue equation. Then we will have our desired sequence
of large rational points.

2. Pell’s Equation

In order to motivate our discussion of a generalization of Pell’s equation, we first
analyze the structure of the standard Pell’s equation u2 − dv2 = 1.

2.1. Algebraic Integers. Fix a nonsquare d ∈ Z. Then

(3) u2 − dv2 =
(
u+ v

√
d
)(

u− v
√
d
)
.

Consider the ring of algebraic integers

(4) Z
[√
d
]

= {a = u+ v
√
d
∣∣u, v ∈ Z}.

Since we are interested in u2 − dv2 = 1, we want those elements a from the ring
that are units. Denote ā = u− v

√
d as the conjugate of a; and denote N(a) = aā =

u2 − dv2 as the norm of a.

Lemma 2.1.1. If d is not a square, then both the conjugate and the norm of a are
well-defined.

Proof. Let a = u+ v
√
d and b = w + z

√
d. Now, let a = b but say either u 6= w or

v 6= z. We have

(5)

0 = a− b

0 = (u− w) + (v − z)
√
d

−(u− w) = (v − z)
√
d

(u− w)2 = d(v − z)2

Since d is not a perfect square, d 6= 0. For the equation to hold, it must be true
that both u 6= w and v 6= z. This implies that

(6) d =
(
u− w
v − z

)2

.
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Here, d is a perfect square, but this contradicts our statement. We must have u = w
and v = z, which completes the proof. �

Example. Let d = 1. Then

(7)
a = 4 + 0

√
d = 4

b = 3 + 1
√
d = 4

which implies that
ā = 4− 0

√
d = 4

b̄ = 3− 1
√
d = 2.

Hence the conjugate of a is not well-defined.
Consider the set

(8) G =
{
a ∈ Z

[√
d
] ∣∣∣ N(a) = 1

}
⊆ C×,

as contained in the set of nonzero complex numbers. It follows that if a = u+v
√
d ∈

G, then u2 − dv2 = 1. Note that G is an abelian group under multiplication:
Since G is a subset of the complex numbers, the operation is both associative and
commutative. Given two elements a, b ∈ G, we have

(9) N(a · b) = N(a) · N(b) = 1 · 1 = 1,

so G is closed. The identity element of G is 1, and the inverse of any a ∈ G is ā.
Note that as a corollary, if we are given just one solution to Pell’s equation, we can
find other solutions by raising the given solution to some arbitrary integral power
i.e. if N(a) = 1 then N(an) = 1 as well.

2.2. The Fundamental Solution.

Proposition 2.2.1. Fix d and G as above, and assume d is positive. There exists a
unique δ = u1 +v1

√
d ∈ G, with δ > 1, such that for each element a = u+v

√
d ∈ G

there exists n ∈ Z such that a = ±δn.

Such a δ is called the fundamental solution of u2 − dv2 = 1.

Proof. We are motivated by LeVeque [LeV77]. Let a = u+ v
√
d ∈ G. Consider the

following identities:

(10) ±a = ±
(
u+ v

√
d
)

and a±1 = u± v
√
d.

It follows that we may assume u and v are nonnegative integers. If a = 1 we are
done, so assume a 6= 1. Since the elements of G are real, let δ ∈ G be the smallest
element such that δ > 1. Then 1 < δ ≤ a. Choose n ∈ Z in terms of the floor
function as n =

⌊
log a
log δ

⌋
≥ 1. This implies δn ≤ a < δn+1. We multiply through by

δ−n and get 1 ≤ a δ−n < δ. Denote b = a δ−n. Note that since G is a group, b ∈ G.
Now by the minimality of δ, we must have b = 1. Thus a = δn. �

Example. For d = 2, the fundamental solution to u2 − dv2 = 1 is δ = 3 + 2
√

2
where (u1, v1) = (3, 2). Some other fundamental solutions are listed below.

d (u1, v1) δ

3 (2, 1) 2 +
√

3
5 (9, 4) 9 + 4

√
5

6 (5, 2) 5 + 2
√

6
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2.3. Continued Fractions. The fundamental solution of u2 − dv2 = 1 can be
found using continued fractions. Again, we are motivated by the exposition in
LeVeque [LeV77]. Given a real number x, define the sequence xk+1 = 1/ (xk − bxkc)
in terms of the floor function, and beginning with x0 = x. We define the continued
fraction of x by

(11) bx0c+
1

bx1c+
1

bx2c+
1

bx3c+ · · ·

.

Denote ak = bxkc as integers. We use the notation

(12) {a0; a1, a2, a3, . . . } = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

= a0 +
1
a1+

1
a2+

1
a3+

· · ·

to denote the continued fraction. For each nonnegative integer n, the quantity
obtained by including n terms of the continued fraction

(13) {a0; a1, a2, a3, . . . , an} = a0 +
1

a1 +
1

a2 +
1

· · ·+
1
an

is called the nth convergent. This is some rational number which we denote in
lowest terms by un/vn. Each convergent is an approximation of x, and the greater
the number of terms that are included, the better the approximation.

It is well-known that the continued fraction of the square root of a squarefree
integer is of the form

(14)
√
d = {a0; a1, a2, ..., ah−1, 2a0}

where the bar means the sequence of terms repeats indefinitely. Let h denote the
number of terms that repeat indefinitely. Consider the hth convergent:

(15) {a0; a1, a2, ..., ah−1} =
uh

vh
=⇒ u2

h − dv2
h = (−1)h.

We can use this to find the fundamental solution δ. The process in case h is odd
is slightly different than if h is even. If h is even we have u2

h − dv2
h = +1, and so

δ = uh + vh

√
d. If h is odd we have u2

h − dv2
h = −1, and so δ = u2h + v2h

√
d =(

uh + vh

√
d
)2

.

Examples. It is easy to compute that
√

6 = {2; 2, 4, 2, 4, . . . }, so h = 2 is even.
Then u2

v2
= {2; 2} = 5

2 so that δ = 5 + 2
√

6. Also,

(16)
√

61 =
{
7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14

}
.

where here h = 11 is odd. We have the convergent

(17)
u11

v11
= {7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1} =

29718
3805

.
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This satisfies u2
11 − 61 v2

11 = −1, which is the wrong sign. On the other hand,

(18)
u22

v22
= {7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1} =

1766319049
226153980

.

Hence the fundamental solution for u2 − 61 v2 = 1 is

(19) δ = 1766319049 + 226153980
√

61 =
(
29718 + 3805

√
61
)2

.

Proposition 2.3.1. Say δ = u1 + v1
√
d is a fundamental solution to u2−dv2 = 1.

Denote δn = un + vn

√
d for n = 0, 1, 2, . . . As n −→ ∞ the sequences un −→ ∞

and vn −→∞. Moreover, the ratio un

vn
−→
√
d as n −→∞.

Proof. Since δn = un + vn

√
d we have δ−n = un − vn

√
d. By forming δn ± δ−n we

derive:

(20) un =
δn + δ−n

2
and vn =

δn − δ−n

2
√
d

.

Note that δ > 1, but 0 < δ−1 < 1, so δn −→ ∞ and δ−n −→ 0 as n −→ ∞. Hence
un, vn −→∞.

Since δ is the fundamental solution, we have u2
n − dv2

n = 1. Divide through by

v2
n to find

(
un

vn

)2

− d = 1
v2

n
. As un and vn −→ ∞ we have

(
un

vn

)2

− d −→ 0. Thus
un

vn
−→
√
d. �

Example. Let x =
√

5 = 2.236067978. We define a sequence of real numbers
recursively by x0 = x and xk+1 = 1/ (xk − bxkc). Similarly, define a sequence of
integers by ak = bxkc. We have

(21)

x0 = 2.23607
x1 = 4.23607
x2 = 4.23607
x3 = 4.23607

a0 = 2
a1 = 4
a2 = 4
a3 = 4

{a0} = 2

{a0; a1} = 9/4 = 2.25

{a0; a1, a2} = 38/17 = 2.23529

{a0; a1, a2, a3} = 161/72 = 2.23611

Hence
√

5 = {2; 4, 4, 4, . . . }.

3. Cubic Thue Equations with Rational Points of Inflection

3.1. Definitions. In 1909, Axel Thue considered the equation

(22) aNu
N + aN−1u

N−1v + aN−2u
N−2v2 + .....+ a0v

N = m

in terms of integers N ≥ 3, ai, m 6= 0. He proved that this equation has only
finitely many integer solutions whenever the homogeneous polynomial in u and v
has no repeated (complex) roots; see Silverman and Tate [ST92] for the proof. We
will consider N = 3; i.e. we study the following cubic equation:

(23) C : au3 + bu2v + cuv2 + dv3 = m,

such that the discriminant

(24) Disc = b2c2 − 4ac3 − 4b3d+ 18abcd− 27a2d2
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is nonzero. In order to study rational solutions to this cubic equation, we will first
focus on curves C that have a rational point of inflection. A point of inflection is
a point (u0, v0) that satisfies the following two equations

(25)
au3

0 + bu2
0v0 + cu0v

2
0 + dv3

0 = m

(b2 − 3ac)u2
0 + (bc− 9ad)u0v0 + (c2 − 3bd)v2

0 = 0

The cubic equation guarantees the point will be on the curve, and the quadratic
equation guarantees the determinant of Hessian matrix of the cubic polynomial will
vanish. We remark that as the quadratic equation has a rational root, the quantity√
−3 Disc will be an integer.
Example. Let a = m = −1 and b = c = 0. Then we have the system

(26) u3
0 − d v3

0 = 1 and 9 d u0 v0 = 0,

so that we choose (u0, v0) = (1, 0) as the point of inflection.
We will eventually show that if a curve C has a rational point of inflection, then

it will be birationally equivalent to an elliptic curve. This equivalence will allow us
to study the rational points on C.

3.2. Elliptic Curves. An elliptic curve is a projective variety associated to a cubic
equation of the form

(27) E : y2 = x3 + ax+ b,

such that the discriminant 4a3 + 27b2 is nonzero. More precisely,

(28) E =
{

(X : Y : Z) ∈ P2
∣∣ Y 2Z = X3 + aXZ2 + bZ3

}
,

where x = X/Z and y = Y/Z as expressed in projective coordinates. If a and
b are integers, the collection E(Q) of rational points (x, y) on an elliptic curve
form a finitely generated abelian group, called the Mordell-Weil group. We explain
how to define the group operation ⊕ on elliptic curves: Given two rational points
P = (x1, y1) and Q = (x2, y2), we find the intersection of the cubic curve and the
line defined by these two points. Denote this point as P ∗ Q. Reflecting P ∗ Q
over the x-axis will yield a point which we define as P ⊕ Q. We can define the
identity as O = (0 : 1 : 0), the “point at infinity.” We also define the inverse of a
point P = (x, y) as [−1]P = (x,−y). (Note that the line through P and [−1]P will
be vertical and can be said to intersect the curve at the “point at infinity” which
is our identity.) Doubling a point involves drawing the tangent line to the point
and then reflecting the point of intersection of this tangent line with the curve over
the x-axis. The torsion subgroup E(Q)tors of an elliptic curve is the collection of
points of finite order, and the rank of an elliptic curve is defined as the number
of generators for the quotient E(Q)/E(Q)tors (since it is a finitely generated free
group). For more information, see Silverman and Tate [ST92]. (For more advanced
reading, see Silverman [Sil86] and [Sil94].)
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Proposition 3.2.1. Assume that the cubic Thue equation C has a rational point
of inflection (u0, v0). Define the rational substitution

(29)

x = 4m
v0(u− u0)− u0(v − v0)

(3au0 + bv0)(u− u0) + (bu0 + cv0)(v − v0)
w0

y = 4m
(3au0 + bv0)(u+ u0) + (bu0 + cv0)(v + v0)
(3au0 + bv0)(u− u0) + (bu0 + cv0)(v − v0)

√
−3Disc

where w0 is a nonzero rational number satisfying v0w0 = b2 − 3ac. This sub-
stitution gives a birational transformation from C to E : y2 = x3 − D, where
D = −16m2 Disc. Moreover, this transformation sends (u0, v0) 7→ O on E.

Proof. This can be verified with the aid of a symbolic computer package. �

It is also important to note that the inverse transformation from E to C is

(30)

u = u0
y + 4m

√
−3 Disc

y − 4m
√
−3 Disc

+
b u0 + c v0

w0

2
√
−3 Discx

y − 4m
√
−3 Disc

v = v0
y + 4m

√
−3 Disc

y − 4m
√
−3 Disc

− 3 a u0 + b v0
w0

2
√
−3 Discx

y − 4m
√
−3 Disc

Example. We consider the curve u3 − dv3 = 1. Using the formula above, this
curve transforms to the elliptic curve E : y2 = x3 − 432d2. The equations for the
transformation between (u, v) and (x, y) reduce to

(31)
u =

y + 36d
y − 36d

v =
6x

y − 36d

←→
x = 12d

v

u− 1

y = 36d
u+ 1
u− 1

Theorem 3.2.2. Say the cubic Thue equation C has a rational point of inflec-
tion. Assume we have a sequence of rational points {(un, vn)} on C such that
|un| , |vn| −→ ∞ as n −→ ∞. This corresponds to a sequence of rational points
{(xn, yn)} on E such that

(32) (xn, yn) −→

(
−4m

(
Disc
m

) 1
3

, 4m
√
−3Disc

)
as n −→∞.

Moreover, this limit is a point of order 3 on E.

Proof. According to (29) we have:

(33)

yn

4m
√
−3Disc

=
(3 a u0 + b v0) (un + u0) + (b u0 + c v0) (vn + v0)
(3 a u0 + b v0) (un − u0) + (b u0 + c v0) (vn − v0)

=
(3 a u0 + b v0)

(
un

vn
+ u0

vn

)
+ (b u0 + c v0)

(
1 + v0

vn

)
(3 a u0 + b v0)

(
un

vn
+ u0

vn

)
+ (b u0 + c v0)

(
1 + v0

vn

)
Dividing both sides of the Thue equation by v3

n gives us

(34) a

(
un

vn

)3

+ b

(
un

vn

)2

+ c

(
un

vn

)
+ d =

m

v3
n
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As n→∞, |vn| → ∞, so un

vn
approaches a constant, say z. Therefore we see that:

(35)
yn

4m
√
−3Disc

−→ (3 a u0 + b v0)z + (b u0 + c v0)
(3 a u0 + b v0)z + (b u0 + c v0)

= 1,

and so yn −→ 4m
√
−3Disc. Plugging 4m

√
−3Disc into the Weierstrass equation,

with D = −16m2 Disc, gives us the following:

(36)

(4m
√
−3Disc)2 = x3 + 16m2Disc

x3 = 16m2(−3Disc)− 16m2Disc

x3 = −64m2Disc

x = −4m
2
3 (Disc)

1
3

x = −4
m

m
1
3

(Disc)
1
3

x = −4m
(

Disc
m

) 1
3

.

Therefore, as n→∞, the numbers xn −→ −4m
(

Disc
m

) 1
3 and yn −→ 4m

√
−3 Disc.

We will now show that this point is a point of order 3 on the elliptic curve.
This point (x, y) has order 3 if x is a zero of the 3-division polynomial, i.e. 3x4 +
6ax2 + 12bx − a2 = 0. In our case, a = 0 and b = 16m2 Disc. So we can see that
x = −4m

(
Disc
m

) 1
3 is a root of the 3 division polynomial as follows:

(37)

3x4 + 6ax2 + 12bx− a2

= 3

[
−4m

(
Disc
m

) 1
3
]4

+ 12 · 16m2Disc ·

[
−4m

(
Disc
m

) 1
3
]

= 3 · 256 ·m4 · Disc
4
3

m
4
3
− 768m3 · Disc

4
3

m
1
3

= 768m
8
3 Disc

4
3 − 768m

8
3 Disc

4
3

= 0.

Therefore, the point (x∞, y∞) =
(
−4m(Disc

m )
1
3 , 4m

√
−3Disc

)
is a point of order 3

on E. �

3.3. Finding Large Rational Solutions. The following is a special case of the
result in Silverman [Sil94, Corollary 2.3.1, pg. 420]. We give the proof since it will
be relevant to our algorithm.

Theorem 3.3.1. Assume that we have the elliptic curve E : y2 = x3 − D, for
some nonzero D ∈ Z. There exists a group isomorphism Ψ : E(R) −→ R/Z defined
by

(38) (x, y) 7→ ± · 1
2ΩE

∫ ∞

x

dξ√
ξ3 −D

(mod Z)

with the ±1 sign chosen so that y = ±|y|. Here,

(39) ΩE =
∫ ∞

3√
D

dξ√
ξ3 −D
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is the real period of the elliptic curve.

Proof. Denote the roots of ξ3 − D = 0 by e1, e2, and e3; and define the complex
numbers

(40) ω1 = 2
∫ ∞

e1

dξ√
ξ3 −D

and ω2 = 2
∫ e3

e2

dξ√
ξ3 −D

.

We consider ΛE = {mω1 + nω2 |m, n ∈ Z} as a lattice in C. It is well-known that
the map E(C)→ C/ΛE defined by

(41) (x, y) 7→ ε

∫ ∞

x

dξ√
ξ3 −D

(mod ΛE)

is an isomorphism of Lie groups, where ε ∈ C× is chosen such that y = ε |y|. (If y =
0 we may choose ε = 1.) Hence we have an isomorphism E(R)→ R/ (ΛE ∩ R). If we
denote e1 = 3

√
D as the real root, then ω1 = 2 ΩE ∈ R while ω2 is purely imaginary,

so that ΛE ∩ R = 2 ΩE Z. Hence the composition Ψ : E(R)→ R/2 ΩE Z→ R/Z is
an isomorphism of Lie groups. �

Corollary 3.3.2. Assume C is a cubic Thue equation which has a rational point
of inflection, so that C is (birationally equivalent to) an elliptic curve. If C has
positive rank, then there exists a sequence of rational points {(un, vn)} such that
|un| , |vn| −→ ∞ as n −→∞.

Proof. We use an idea following Guy [Guy95], which in turn is motivated by a
paper of Zagier [Zag87]. Assume C has positive rank, and let P = (x1, y1) be a
point of infinite order. Define

(42) γ =
1

ΩE

∫ ∞

x1

dξ√
ξ3 −D

, with D = −16m2Disc.

Using continued fractions, find a sequence of convergents

(43)
pn

qn
≈ 3

2
γ for n = 1, 2, 3...

Define (xn, yn) = [qn](x1, y1). This point has “approximate” order 3:

(44)

ψ([3](xn, yn)) = ψ([3qn](x1, y1)) = 3qn ψ(x1, y1)

≡ sign(y) · 3qn ·
γ

2
(mod Z)

≈ ±pn (mod Z)

≡ 0 (mod Z)

Hence, since ψ is an isomorphism, (xn, yn) is “approximately” a point of order 3
on E, so the corresponding point (un, vn) on C has large rational coefficients. �

Example. We start with the Thue equation where a = m = −1, b = c = 0, and
d = 7, which gives us u3 − 7 v3 = 1. We wish to transform this curve to an elliptic
curve. We find D = −16 · 12 · Disc = 21168 so the corresponding elliptic curve
is y2 = x3 − 21168. We now implement the algorithm explained above to find a
point of order 3 on this elliptic curve, which transforms to a large rational point on
the cubic. Using a program such as mwrank, we determine that this elliptic curve
has rank 1 with the generator (84, 756). We compute 3

2γ = 0.7106994116, find the
convergents p

q of the corresponding continued fraction, and multiply the generator
by q – assuming that p is not divisible by three. Finally we use the transformation
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given above in (30) to find large rational points (u, v) satisfying u3 − 7 v3 = 1. We
construct the following table:

[q] [q] (x, y) (u, v) u
v

3 (57,−405) (4.2941, 2.2353) 1.921052631
7 (42.0481,−230.5966) (−22.5476,−11.7873) 1.912875562

121 (43.4989,−247.2625) (−105.3857,−55.0912) 1.912930638
159 (44.0055,−253.0765) (469.1832, 245.2693) 1.912931189

Our sequence on the elliptic curve should approach the point of order 3, namely the
point

(
−4m(Disc

m )
1
3 , 4m

√
−3Disc

)
, where Disc= −1323 and m = −1. This point

has the numerical value (4 ·(1323
1
3 ), −252) = (43.91166852, −252), and we see that

as q gets larger, we obtain a better approximation for this point. We also see that
|u|, |v| are also getting larger as q gets larger, and that the ratio u

v approximates
3
√

7 = 1.912931183.
In order for this algorithm to work, it is imperative that the rank of the elliptic

curve is positive since a positive rank implies that we can find an infinite sequence
of points on the elliptic curve and a corresponding sequence on the cubic. For d
from 1 to 1000, it was found that the rank of the curve y2 = x3−432d2 was positive
for about 63% of the curves. See the appendix for the empirical evidence.

4. Cubic Thue Equations without Rational Points of Inflection

4.1. Homogeneous Spaces and Isogeneous Curves. Given a cubic Thue equa-
tion

(45) C : au3 + bu2v + cuv2 + dv3 = m

with arbitrary integers a, b, c, d, it is usually the case that C does not have a rational
point of inflection. This is so if

√
−3 Disc is not an integer. (In fact, if a cubic C

with a nonzero discriminant is chosen “at random” it seems that there is a mere
0.16% chance of the cubic having a rational point of inflection. See appendix for
some empirical evidence.) In general, one does not expect C to be birationally
equivalent to an elliptic curve. However, we demonstrate the relation between C
and E.

Theorem 4.1.1. Let C be a cubic Thue equation. Then there exists a rational
map C → E′ to the elliptic curve

(46) E′ : Y 2 = X3 −D′, where D′ = −27D

such that E′ is 3-isogeneous to the elliptic curve

(47) E : y2 = x3 −D, where D = −16m2Disc.

Proof. Given a rational point (u, v) on C, denote

(48)

X = 4
[(
b2 − 3 a c

)
u2 + (b c− 9 a d)u v +

(
c2 − 3 b d

)
v2
]

Y = 4
[(

2 b3 − 9 a b c+ 27 a2 d
)
u3 + 3

(
b2 c− 6 a c2 + 9 a b d

)
u2 v

−3
(
b c2 − 6 b2 d+ 9 a c d

)
u v2 −

(
2 c3 − 9 b c d+ 27 a d2

)
v3
]
.

One checks that Y 2 = X3 −D′ where

(49) D′ = 432m2 Disc = −27 (−16m2 Disc) = −27D.
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These formulas may be found in Silverman [Sil82].
We have a map from E : y2 = x3 −D to E′ : Y 2 = X3 −D′ defined by

(50)
X =

x3 − 4D
x2

Y =
x3 + 8D

x3
y

 with dual map


x =

1
9
X3 − 4D′

X3

y =
1
27

X3 + 8D′

X3
Y

These are not linear substitutions. The composition of the map ψ : E → E′ and
its dual map ψ̂ : E′ → E yields ψ̂ ◦ψ = [3] as the “multiplication-by-3” map on E.
We see that E and E′ are isogeneous elliptic curves and ψ is an isogeny of degree
3. �

Examples. Consider the Thue equation 2u3 +9u2 v+13u v2 +6 v3 = 2. Here, a
trivial solution is (1, 0). Since Disc = 1, this implies that

√
−3 Disc is not rational.

Therefore, this Thue equation has no rational points of inflection. However, the
equation is “isogenous” to the elliptic curve E′ : Y 2 = X3 − D′ where D′ =
432m2 = 1728. In this case, the group of rational points on E′ consists of 2-torsion,
with generator (X,Y ) = (12, 0):

(51) E′(Q) = {(12, 0), O} ' Z/2 Z.
The isogenous curve is E : y2 = x3 − D where D = −16m2 = −64. The group
of rational points on this curve consists of 6-torsion, with all six rational points
generated by (x, y) = (8, 24):

(52) E(Q) =
{

[n] (8, 24)
∣∣∣∣n ∈ Z

}
' Z/6Z .

From the above map ψ of our isogeny, (8, 24) on E maps to (12, 0) on E′. Under
the dual map ψ̂, the torsion point (12, 0) maps to (−4, 0) = [3] (8, 24). Since
E : y2 = x3+64 has finitely many rational points, C : 2u3+9u2 v+13u v2+6 v3 = 2
will have finitely many as well. Therefore, we are unable to construct a sequence
of rational points tending to O.

We will now consider the curve C : 2u3 + 9u2v + 13uv2 + 6v3 = 6. Again, this
curve does not have a rational point of inflection so it is not birationally equivalent
to an elliptic curve. However, it will be “isogenous” to the elliptic curve

(53) E′ : Y 2 = X3 −D′, where D′ = 432m2 Disc = 15552.

Using mwrank, we determine that E′ has rank 1 with generator (X,Y ) = (28, 80).
Our goal is to use E′ to find rational points on C. The transformation from C to
E′ given above will simplify to the following transformation when a = 2, b = 9, c =
13, d = 6,m = 6:

(54) X = 4(3u2 + 9uv + 7v2), Y = −4v(3u+ 4v)(3u+ 5v).

Substituting X = 28 and Y = 80 into the transformations, we can use Maple to
solve for points (u, v) which satisfy these equations and are on the curve C. We
obtain the set {(−8, 5), (3,−1), (5,−4)}.

We explain the relationship between the rational maps above and points of in-
flection on the cubic Thue equation.

Corollary 4.1.2. Say C has a rational point of inflection (u0, v0). Under the
rational map above, this corresponds to a point (0, 12m

√
−3Disc) on E′, and this

point in turn is in the kernel of the dual isogeny ψ̂ : E′ → E.
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Proof. First we prove that a rational point of inflection on C will correspond to
(0, 12m

√
−3Disc) on E′. We substitute the x-coordinate of the point of inflection

(u0, v0) into our X transformation to yield:

(55) X = 4[(b2 − 3ac)u2
0 + (bc− 9ad)u0v0 + (c2 − 3bd)v2

0 ] = 0.

We now substitute X = 0 into E′ : Y 2 = X3 − 432m2Disc and solve for Y :

(56) Y 2 = −432m2Disc =⇒ Y =
√
−432m2Disc = 12m

√
−3Disc.

So our point of inflection on C maps to (0, 12m
√
−3Disc).

To say the point
(
0, 12m

√
−3Disc

)
is in the kernel of the dual isogeny from E′

to E means that this point is mapped to the “point at infinity.” Using the formulas
in equation (50) we see that X = 0 maps to O on E. Hence

(
0, 12m

√
−3 Disc

)
is

in the kernel of the dual isogeny as desired. �

4.2. Finding Large Rational Solutions. Continue the notation as above. We
explain how to compute a sequence of large rational points on a cubic Thue equation
which does not necessarily have a rational point of inflection.

Corollary 4.2.1. If C is a sequence of rational points (un, vn) that tend to infinity,
then this sequence maps to a sequence of points (Xn, Yn) that tend to infinity on
E′.

Proof. First we prove that as |un|, |vn| go to infinity, |Xn| also goes to infinity:

(57)

Xn = 4
[
(b2 − 3ac)u2

n + (bc− 9ad)unvn + (c2 − 3bd)v2
n

]
Xn

v2
n

= 4
[
(b2 − 3ac)(

un

vn
)2 + (bc− 9ad)

un

vn
+ (c2 − 3bd)

]
.

As n −→ ∞, un

vn
approaches a constant. (Recall the proof of Corollary 3.2.2.)

Therefore, looking at the above equation Xn

v2
n

must also approach a constant. Be-
cause |vn| → ∞, |Xn| → ∞ as well. We will now do a similar proof to show that
as |un|, |vn| → ∞, the number |Yn| → ∞:

(58)

Yn

v3
n

= 4
[
(2b3 − 9abc+ 27a2d)(

un

vn
)3 + 3(b2c− 6ac2 + 9abd)(

un

vn
)2

−3(bc2 − 6b2d+ 9acd)(
un

vn
)− (2c3 − 9bcd+ 27ad2)

]
Hence |Yn| → ∞ as well. �

Example. We will now use the cubic curve

(59) C : 2u3 + 9u2v + 13uv2 + 6v3 = 6.

As we stated above, this curve is isogenous to the curve Y 2 = X3 − 15552 which
has rank 1 and generator (28, 80). We will use E′ to find large rational points
on C. Looking at the transformations given above, we see that a large rational
point (X,Y ) will be the image of a large rational point (u, v). Looking at the
transformations, we see that a large point (u, v) will map to a large (X,Y ). We can
therefore use our algorithm given above to find large rational points on E′ and then
find the corresponding points on C. As explained above in the proof of Theorem
3.3.2, we calculate 3

2γ and find the continued fraction, convergents, and q such that
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p is not divisible by three. We know, from example above, that multiplying our
generator by q = 4 will give an approximate point of order 3. Therefore to find a
large rational point, we multiply our generator by q = 12 to obtain

(60)
X ≈ 7215.435188554671206180629850,
Y ≈ 612905.8775557362715732618242.

Substituting these values into the transformations, we find the following set (u, v)
which also satisfy the cubic equation:
(61)
{(42.48017,−42.47684), (−127.41723, 84.94371), (84.93706,−42.46686)} .

5. Appendix

5.1. Table of Ranks and Torsion Subgroups. We consider the Mordell-Weil
group of the elliptic curve y2 = x3−432d2. The tables below contain 1 ≤ d ≤ 1000.
The rank was computed using mwrank, and the torsion subgroup was computed
using Maple. We place an asterisk (*) next to the number where the rank listed
is only the lower bound as determined by mwrank. Note that 32.4% have rank 0;
47.3% have rank 1; 14.9% have rank 2; and 0.9% have rank 3. (We could not
determine the exact value of the ranks for 4.6% of the curves below, only bounds.)

Table 1. Ranks of y2 = x3 − 432d2

Rank Torsion d

0 {O} 3, 4, 5, 10, 11, 14, 16, 21, 23, 24,
25, 29, 32, 36, 38, 39, 40, 41*, 44, 45,
46, 47, 52, 55, 57, 59*, 60, 66, 73, 74,
76, 77, 80, 81, 82, 83, 88, 93, 95, 99,
100, 101*, 102, 108, 109, 111, 112, 113, 116*, 118,
119, 121, 122*, 129*, 131*, 135, 137*, 138, 144, 145,
146, 147, 148, 149, 150, 154, 155, 158*, 165, 167,
168, 173, 174, 175, 181, 184, 185*, 188, 190, 191,
192, 194, 196, 199, 200, 204, 207*, 220, 221, 225,
226*, 227, 230, 232, 234, 235*, 237, 239, 242*, 245,
249*, 252, 253, 255, 256, 257, 260, 261, 262*, 263*,
266, 268, 270, 276, 281, 288, 290, 291, 292, 293,
297, 298*, 299, 300, 302*, 304, 307, 311*, 312, 315,
317, 318, 320, 326*, 327, 328*, 329, 332*, 334, 338,
340, 346*, 347*, 350, 352, 353*, 354, 360, 361, 362,
364, 365, 368, 369, 371, 374, 375, 376, 378, 381*,
382*, 383*, 389*, 393*, 398, 401*, 404, 406, 410, 412,
415, 416, 417*, 419, 423*, 426, 434, 437*, 440, 442,
443*, 445*, 451, 454*, 455, 456, 461, 470, 471, 472*,
473, 475, 476, 478, 479, 480, 482, 486, 487, 489*,
491*, 492, 500, 505, 507*, 508, 509*, 514, 515*, 517*,
518, 527, 528, 529*, 531, 533, 534, 541, 542, 543*,
545*, 551, 556*, 558, 561, 563*, 564, 567, 569*, 570,
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Rank Torsion d

575, 577, 580, 584, 585, 586*, 587, 591*, 592, 595,
597, 599, 606*, 608, 613, 616, 617*, 620, 621, 622,
623, 625, 626, 633, 634*, 636, 640, 641*, 642, 648,
649, 652, 653, 656, 659, 661*, 662*, 664, 666, 667,
669, 675, 677*, 678, 684, 685, 687, 689, 692*, 693,
694*, 695, 697*, 698, 703, 704, 705, 707, 708, 722,
723, 724*, 725*, 726, 731, 734, 739*, 741, 743, 744,
747, 749, 757, 758, 759, 760, 761, 764, 766*, 767,
770, 772, 774, 777, 778*, 779, 780, 783, 785, 788*,
792, 795*, 796*, 797, 800, 801, 802, 803, 806, 807*,
808*, 811, 815, 816, 821, 822, 830, 831, 833*, 836,
838, 839*, 841*, 842*, 844*, 849, 850*, 852, 857*, 858,
864, 865, 868, 869, 872, 878, 879*, 882, 887, 888,
893, 894, 895*, 896, 902, 904, 908, 909*, 910, 911,
913*, 914, 921, 923, 925, 928*, 929, 938, 939*, 941*,
944, 947, 948*, 952, 955*, 959, 963, 965, 968, 972,
974*, 976*, 977*, 980, 982, 983*, 985*, 986, 990, 991*,
993, 996

0 Z/2Z 2, 16, 54, 128, 250, 432, 686
0 Z/3Z 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000
1 {O} 6, 7, 9, 12, 13, 15, 17, 20, 22, 26,

28, 31, 33, 34, 35, 42, 43, 48, 49, 50,
51, 53, 56, 58, 61, 62, 63, 67, 68, 69,
70, 71, 72, 75, 78, 79, 84, 85, 87, 89,
90, 92, 94, 96, 97, 98, 103, 104, 105, 106,
107, 114, 115, 117, 120, 123, 130, 133, 134, 136,
139, 140, 141, 142, 143, 151, 156, 157, 158, 160,
161, 162, 164, 166, 169, 170, 171, 172, 176, 177,
178, 179, 180, 186, 187, 189, 193, 195, 197, 198,
202, 205, 206, 208, 211, 212, 213, 214, 215, 222,
223, 224, 228, 229, 231, 233, 236, 238, 241, 243,
244, 247, 248, 251, 258, 259, 264, 265, 267, 269,
272, 274, 275, 277, 278, 279, 280, 283, 284, 285,
286, 287, 289, 294, 295, 301, 303, 305, 306, 308,
310, 313, 314, 316, 319, 321, 322, 323, 324, 325,
330, 331, 333, 336, 337, 339*, 341, 344, 349, 351,
355, 356, 357, 358, 359, 363, 366, 367, 372, 373,
377, 380, 384, 385, 386, 387, 388, 391, 392, 394,
395, 396, 400, 402, 403, 405, 408, 409, 411, 413,
414, 418, 421, 422, 424, 425, 427, 428*, 429, 430,
431*, 438, 439, 441, 444, 447*,448, 449, 450, 452,
457, 458, 459, 460, 463, 464, 465, 466, 467, 474,
481, 483, 484, 485, 488, 490, 493, 494, 495, 496,
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Rank Torsion d

499, 501, 502, 503, 504, 510, 511, 516, 519, 521,
522, 524, 525, 526, 530, 532, 535, 536, 537, 538,
539, 540, 544, 546, 547*, 549, 550, 552, 553, 555,
557, 560, 562, 565, 566, 568, 571, 572, 573*, 574,
576, 578, 582, 583, 588, 589, 593, 594, 596, 598,
600, 601, 602, 603, 604, 605, 607, 609, 610, 611,
612, 618, 619, 624, 627, 629, 630, 632, 637, 638,
643, 644, 645, 646, 647, 650, 654, 655, 660, 663,
665, 668, 670, 672, 673, 674, 676, 679, 680, 681,
682, 683, 690, 691, 696, 699, 700, 701, 702, 706,
709, 710, 711, 712, 715, 716, 717, 718*, 719, 720,
727, 732, 733, 735, 736, 737, 738, 740, 742, 745,
746, 748, 750, 751, 752, 753*, 754, 755, 756, 762,
763, 765, 768, 769, 771, 773, 775, 776, 781, 782,
784, 787, 789, 790, 791, 798, 799, 804, 805, 809,
812, 814, 817, 818, 819, 820, 823, 824, 826, 827,
828, 832, 834, 835, 837, 840, 845, 846, 847, 848,
853, 856, 859, 860, 861, 862, 863, 867, 870, 871,
873, 875, 876, 877*, 881, 884, 886*, 889, 890, 891,
892, 897, 898, 899, 900, 906, 907, 912, 915, 917,
918, 920, 922, 926, 927, 931, 932, 933*, 936, 942,
943, 945, 949, 950, 951, 953, 954, 956, 958, 960,
961, 962, 964, 967, 969, 970, 971, 975, 978, 979,
981, 984, 987, 989, 994, 997, 998

2 {O} 19, 30, 37, 65, 86, 91, 110, 124, 126, 127,
132, 152, 153, 163, 182, 183, 201, 203, 209, 210,
217, 218, 219, 240, 246, 254, 271, 273, 282, 296,
309, 335, 342, 345, 348, 370, 379, 390, 397, 399,
407, 420, 433, 435, 436, 446, 453, 462, 468, 469,
477, 497, 498, 506, 513, 520, 523, 554, 559, 579,
581, 590, 614, 615, 628, 631, 635, 639, 651, 658,
671, 688, 713, 714, 721, 728, 730, 786, 793, 794,
810, 813, 825, 829, 851, 855, 866, 874, 880, 883,
885, 901, 903, 905, 916, 919, 924, 930, 937, 940,
946, 957, 966, 973, 988, 992, 995, 999

3 {O} 657, 854

5.2. Cubic Thue Equations with Rational Points of Inflection. We consider
a list of integers a, b, c, and d such that |a|, |b|, |c|, |d| ≤ 5, gcd(a, b, c, d) = 1, and
Disc = b2c2 − 4ac3 − 4b3d+ 18abcd− 27a2d2 6= 0. We express the projective cubic
curve

(62) aU3 + b U2 V + cU V 2 + d V 3 = mW 3.

in the form (a, b, c, d;m). (The curves in the list below may be birationally equiva-
lent to others in the list.) We use Maple and apecs to compute the rank and the
generators; such points are expressed projectively as (U : V : W ).
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Note that 3.76% of such integers a, b, c, d appear in the table below i.e. in
the range |a|, |b|, |c|, |d| ≤ 5, there is a 3.76% chance that

√
−3 Disc is an integer.

However, if we increase the range to |a|, |b|, |c|, |d| ≤ 50, there is a 0.16% chance
that

√
−3 Disc is an integer. This larger table is not included.

Table 2. Ranks of a u3 + b u2 v + c u v2 + d v3 = m

Rank Curve Inflect’n Pt Generators
1 (−5,−2,−4, 2;−54) (2 : 1 : 1) (0 : 3 : −1)

(−5, 0, 0,−3;−5) (1 : 0 : 1) (11951 : 18030 : 17351)
(−5, 0, 0,−2;−5) (1 : 0 : 1) (11267 : 30555 : 23417)
(−5, 0, 0, 2;−5) (1 : 0 : 1) (−11267 : 30555 : −23417)
(−5, 0, 0, 3;−5) (1 : 0 : 1) (−11951 : 18030 : −17351)

(−5, 2,−4,−2;−189) (1 : 4 : 1) (−7891703 : 5228653 : −2691683)
(−5, 3, 3,−2;−3) (1 : 2 : 1) (2 : 1 : 2)

(−4,−3,−3,−1;−3) (1 : −1 : 1) (−1 : 4 : 2)
(−4, 0, 0,−3;−4) (1 : 0 : 1) (−17 : 42 : 37)
(−4, 0, 0, 3;−4) (1 : 0 : 1) (17 : 42 : −37)

(−4, 3,−3, 1;−3) (1 : 1 : 1) (1 : 4 : −2)
(−3,−3,−1,−4;−3) (1 : 0 : 1) (−1 : 1 : 1)
(−3,−3,−1,−3;−3) (1 : 0 : 1) (0 : 1 : 1)
(−3,−3,−1,−2;−3) (1 : 0 : 1) (−2 : 7 : 6)
(−3,−3,−1, 3;−3) (1 : 0 : 1) (0 : 1 : −1)
(−3,−1, 3,−3;−84) (3 : 1 : 1) (−855201 : 7891703 : 2691683)
(−3, 0, 0,−1;−3) (1 : 0 : 1) (−1 : 3 : 2)
(−3, 0, 0, 1;−3) (1 : 0 : 1) (1 : 3 : −2)
(−3, 1, 3, 3; 84) (−3 : 1 : 1) (−8075049 : −5485087 : −285067)

(−3, 3,−1,−3;−3) (1 : 0 : 1) (0 : 1 : 1)
(−3, 3,−1, 2;−3) (1 : 0 : 1) (2 : 7 : −6)
(−3, 3,−1, 3;−3) (1 : 0 : 1) (0 : 1 : −1)
(−3, 3,−1, 4;−3) (1 : 0 : 1) (1 : 1 : −1)

(−2,−4, 2,−5;−54) (−1 : 2 : 1) (3 : 0 : 1)
(−2,−3, 3,−1;−3) (1 : 1 : 1) (−1 : 2 : 2)

(−2,−3, 3, 5; 3) (−2 : 1 : 1) (−1 : −1 : −1)
(−2,−1,−3,−3;−51) (3 : −1 : 1) (−270 : 617 : 199)

(−2, 0, 0,−5;−2) (1 : 0 : 1) (−1 : 14 : 19)
(−2, 0, 0,−3;−2) (1 : 0 : 1) (−19 : 78 : 89)
(−2, 0, 0, 3;−2) (1 : 0 : 1) (19 : 78 : −89)
(−2, 0, 0, 5;−2) (1 : 0 : 1) (1 : 14 : −19)

(−2, 1,−3, 3;−51) (3 : 1 : 1) (270 : 617 : −199)
(−2, 3, 3, 1; 3) (−1 : 1 : 1) (−2 : −1 : −1)

(−2, 4, 2, 5; 189) (−4 : 1 : 1) (−14855117 : −5485087 : −285067)
(−1,−5, 1,−1;−21) (−1 : 2 : 1) (4373452 : 3518251 : 2691683)
(−1,−3,−3, 5;−1) (1 : 0 : 1) (−4 : 21 : −37)
(−1,−1,−5, 1;−21) (2 : 1 : 1) (−3518251 : 4373452 : −2691683)
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Rank Curve Inflect’n Pt Generators
(−1, 1,−5,−1;−6) (1 : 1 : 1) (−1 : 1 : −1)
(−1, 3,−3,−5;−1) (1 : 0 : 1) (4 : 21 : 37)

(−1, 5, 1, 1; 6) (−1 : 1 : 1) (−5 : −1 : −1)
(1,−5,−1,−1;−6) (−1 : 1 : 1) (1 : 1 : 1)

(1,−3, 3, 5; 1) (1 : 0 : 1) (16 : −21 : −17)
(1,−1, 5, 1; 6) (1 : 1 : 1) (1 : −5 : 1)
(1, 1, 5,−1; 21) (2 : 1 : 1) (−1294981 : −6780068 : 285067)
(1, 3, 3,−5; 1) (1 : 0 : 1) (−16 : −21 : 17)
(1, 5,−1, 1; 21) (−1 : 2 : 1) (−6780068 : 1294981 : −285067)

(2,−4,−2,−5;−189) (−4 : 1 : 1) (5228653 : 7891703 : 2691683)
(2,−3,−3,−1;−3) (−1 : 1 : 1) (1 : 2 : 2)
(2,−1, 3,−3; 51) (3 : 1 : 1) (−199 : −242 : 30)
(2, 0, 0,−5; 2) (1 : 0 : 1) (−19 : −14 : 1)
(2, 0, 0,−3; 2) (1 : 0 : 1) (−89 : −78 : 19)
(2, 0, 0, 3; 2) (1 : 0 : 1) (89 : −78 : −19)
(2, 0, 0, 5; 2) (1 : 0 : 1) (19 : −14 : −1)
(2, 1, 3, 3; 51) (3 : −1 : 1) (199 : −242 : −30)

(2, 3,−3,−5;−3) (−2 : 1 : 1) (−1 : 2 : 2)
(2, 3,−3, 1; 3) (1 : 1 : 1) (2 : −1 : −1)
(2, 4,−2, 5; 54) (−1 : 2 : 1) (−11 : 4 : −1)
(3,−3, 1,−4; 3) (1 : 0 : 1) (−4 : −3 : 2)
(3,−3, 1,−3; 3) (1 : 0 : 1) (−4 : −3 : −1)
(3,−3, 1,−2; 3) (1 : 0 : 1) (−25 : −21 : −1)
(3,−3, 1, 3; 3) (1 : 0 : 1) (2 : −3 : −1)

(3,−1,−3,−3;−84) (−3 : 1 : 1) (855201 : 7891703 : 2691683)
(3, 0, 0,−1; 3) (1 : 0 : 1) (−2 : −3 : 1)
(3, 0, 0, 1; 3) (1 : 0 : 1) (2 : −3 : −1)

(3, 1,−3, 3; 84) (3 : 1 : 1) (8075049 : −5485087 : −285067)
(3, 3, 1,−3; 3) (1 : 0 : 1) (−2 : −3 : 1)
(3, 3, 1, 2; 3) (1 : 0 : 1) (25 : −21 : 1)
(3, 3, 1, 3; 3) (1 : 0 : 1) (4 : −3 : 1)
(3, 3, 1, 4; 3) (1 : 0 : 1) (4 : −3 : −2)

(4,−3, 3,−1; 3) (1 : 1 : 1) (−2 : −5 : 1)
(4, 0, 0,−3; 4) (1 : 0 : 1) (−37 : −42 : 17)
(4, 0, 0, 3; 4) (1 : 0 : 1) (37 : −42 : −17)
(4, 3, 3, 1; 3) (1 : −1 : 1) (2 : −5 : −1)

(5,−3,−3, 2; 3) (1 : 2 : 1) (−1 : 1 : −1)
(5,−2, 4, 2; 189) (1 : 4 : 1) (5485087 : −14855117 : 285067)
(5, 0, 0,−3; 5) (1 : 0 : 1) (−17351 : −18030 : −11951)
(5, 0, 0,−2; 5) (1 : 0 : 1) (−23417 : −30555 : −11267)
(5, 0, 0, 2; 5) (1 : 0 : 1) (23417 : −30555 : 11267)
(5, 0, 0, 3; 5) (1 : 0 : 1) (17351 : −18030 : 11951)

(5, 2, 4,−2; 54) (2 : 1 : 1) (−4 : −11 : 1)
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Rank Curve Inflect’n Pt Generators
2 (−5, 1, 5, 2; 3) (−1 : 1 : 1) (−5 : −4 : −1), (−23 : −16 : 17)

(−3,−3,−1, 2;−3) (1 : 0 : 1) (−2 : 9 : −8), (−10 : 13 : −12)
(−3,−3,−1, 4;−3) (1 : 0 : 1) (−4 : 9 : −10), (11 : 21 : −19)
(−3, 3,−1,−4;−3) (1 : 0 : 1) (4 : 9 : 10), (−11 : 21 : 19)
(−3, 3,−1,−2;−3) (1 : 0 : 1) (2 : 9 : 8), (10 : 13 : 12)
(−2, 5,−1,−5;−3) (1 : 1 : 1) (11 : 2 : 8), (23 : 10 : 12)

(2,−5, 1, 5; 3) (1 : 1 : 1) (−4 : 5 : −1), (−16 : 23 : 17)
(3,−3, 1, 2; 3) (1 : 0 : 1) (5 : −9 : −1), (23 : −39 : 17)
(3,−3, 1, 4; 3) (1 : 0 : 1) (7 : −9 : 1), (4 : −7 : −6)
(3, 3, 1,−4; 3) (1 : 0 : 1) (−7 : −9 : −1), (−4 : −7 : 6)
(3, 3, 1,−2; 3) (1 : 0 : 1) (−5 : −9 : 1), (−23 : −39 : −17)

(5,−1,−5,−2;−3) (−1 : 1 : 1) (−2 : 11 : 8), (−10 : 23 : 12)
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