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4.4, Periodic points. The results in this subsection are due to Pommerenke
[121]. ,

THEOREM 2.26. Let a be a repelling periodic point of the Blaschke product
B=y ' Sfow . Then the nontangential limit f = y(a) exists and is a repelling
periodic point of f .

CoROLLARY. The repelling periodic points are dense on the boundaries of sim-
ply connected Schrdder domains, Boettcher domains, and Leau domains.

THEOREM 2.27. Suppose that B € dD is a repelling periodic point of a func-
tion f. Then the set of periodic points of B at which w has nontangential limit
equal to B is finite (it is not known whether this set can be empty).

§5. Critically finite endomorphisms

This section is devoted to rational endomorphisms with the simplest behavior
for orbits of critical points: these orbits are absorbed by cycles. We study the
theory of Thurston, following [77] and [142].

5.1. Orbifolds (see [142]). A two-dimensional orbifold & = (S, v) (of finite
type) is defined to be a compact Riemann surface .S with finitely many marked
points {x;}, to which are assigned certain weights v(x 1) € NU{oo}, v(x =2,
The weight function v can be assumed to be given on the whole surface S by
setting v(x) = 1 away from the marked points. Manifolds can be regarded
as orbifolds with weight function » = 1. Our notation will correspond to this
convention: S = (S, 1). We use S to denote S\ {x:v(x)=oc0}.

The Euler characteristic of an orbifold @ = (s, v) is defined to be

1) =18~ 3 (1 -t )

x€S

An orbifold is defined to be hyperbolic (parabolic, elliptic) if x(&Z) < 0 (respec-
tively, x(@) =0, x(@) >0).

A cover of orbifolds (S|, v,) — (S,, v,) is defined to be a branched cover

N S? — Sg such that »,(fx) = v (x)deg, f for x € Sf. For covers of

orbifolds &, — ¢, the Riemann-Hurwitz formula has the simplest possible

appearance:
x(@)) =deg f - x(F)).

For an arbitrary hyperbolic (parabolic) orbifold @ = (S, v) there exists a

universal cover V- — & , where V is the hyperbolic (respectively, Euclidean)

plane. This gives a representation S* = V \I', where I' is a group of motions

of V', that gives rise to a hyperbolic (Euclidean) metric on S* with conical
singularities at the marked points. We call this metric the natural metric.

5.2. Lifting f~' to the universal covering. Let f: C — C be a branched
cover, and C | the set of branch points of f.

The mapping f is said to be critically finite if the invariant set P, =
Unei /7 C, s finite. Let v/(x) be the least common multiple of the degrees

deg, f overall ke N and z€ f ~* X . The function v, is the smallest function

v such that v(fz) is a multiple of v(z)deg, f forall ze€ C. If z belongs to
the cycle of a branch point, then v(z)=o00.

With each critically finite mapping f: C — C we associate the orbifold
g, = (C,v 7). Then the multivalued mapping f ~! can be lifted to a single-
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valued mapping of the universal covering, and we get the following result:
THEOREM 2.28 [142]. Let f be a critically finite rational endomorphism.

Then there exists a regular branched cover P:V — f# where V is the hyper-
bolic or Euclidean plane, and an analytic transformation g: V — V such that
the diagram

vty
[
7
-t
commutes. The transformation g is invertible if and only if V = C. In this case

g 'z kz, where k| =+/degf .

An immediate consequence of this theorem and Schwarz’ lemma is

~

CoROLLARY 1. A critically finite rational endomorphism [ is expanding with
respect to the natural metric of the orbifold é"f :

IDf(2)|24>1, zeC\f7'P,.

CoroOLLARY 2. If f is a critically finite rational endomorphzsm without su-
perattracting cycles, then J(f) =C.

The last corollary can be obtained in at least two more ways: the first goes
back to Fatou (see [§1], pp. 60-61, and [25]), and the second is obtained from
the complete description of the dynamics on F(f) [136].

5.3. Combinatorial class and transformation of the Teichmiiller space. Two
critically finite mappings f and g are taken to be equivalent if there exist
homeomorphisms 6, §,: (C, P;) — (C, P,) such that fof=go6,,and 6 is
isotopic to 6, (rel P;). An equivalence class is called a (finite) combinatorial
class and denoted by [f]. Does a given combinatorial class contain a rational
Junction, and if so, how many? This is the main question answered by Thurston’s
theory.

First of all, f can be assumed to be a quasiregular mapping, since every
combinatorial class contains such a mapping. Let Tf be the Teichmiiller space
of the orbifold é’ , 1.e., of the sphere with marked points. With the combina-
torial class [f] we assomate the transformation 7 Ty — T generated by the
action u+— f*u on conformal structures. The questlon forrnulated above can
be reduced to the problem of fixed points of the transformation 7 r

LeEMMA 2.2, There exists a natural 1-1 correspondence between the rational
Sunctions (regarded to within a conformal conjugacy) in the combinatorial class
[f1 and the fixed points of T,

The transformation 7 ’ is contracting in the Teichmiiller metric. This is
natural, because the latter coincides with the Kobayashi metric on T, [129].
Actually, we can say more:

LemMma 2.3. If the orbifold é’f is hyperbolic, then the transformation rf, is
strictly contracting in the Teichmiiller metric. If é’f is parabolic, then T, Isan
isometry.

This at once implies the following uniqueness theorem.
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THEOREM 2.29. If the orbifold @’f is hyperbolic, then the combinatorial class
Lf] contains at most one rational function, to within conformal conjugacy.

In particular, we get

THE THURSTON RIGIDITY THEOREM. A critically finite rational endomor-
phism with hyperbolic orbifold does not admit quasiconformal deformations.

In [76] there is a classification of critically finite polynomials with the help
of certain combinatorial objects—the Hubbard trees.

We discuss the parabolic case in more detail below.

5.4. An existence criterion. A Jordan curve y C C\ P, is said to be non-
peripheral if each component of C\ 7 contains at least two points in Pf. A
multicurve is defined to be a system I' = {y, ..., y,} consisting of disjoint
nonperipheral curves y; that are nonhomotop1c in C\ P A multicurve F is

said to be f stable if each nonpempheral component of the inverse image f y
is homotopic'in C\ P to some curve ;. . With each f-stable multlcurve we

associate the Thurston linear operator f.: RN - R" R where R' is the real hn-
ear space with basis {y j};;l . This operator is defined on the basis as follows.

Suppose that .y, Lk are the components of the complete inverse image f _‘ly
that are homotopic to y; in C\ P,, and a' ik is the degree of the mapping

L1960y, Let
B )= Sr T

LEMMA 2, 4 For a gtven degree d of the functzon f and a gzven number p
of points in P,, there are only ﬁmtely many possibilities for the matrix of the
Thurston operator.

We can now formulate the main result of Thurston s theory.

THEOREM 2.30. A critically finite branched cover f: C — C with hyperbolzc
orbifold is equivalent to a rational function if and only if the spectral radzus of
the Thurston operator is less than 1 for every f-stable multicurve T, ‘.

“Unfortunately, a practical verification of this criterion is extremely difficult.

5.5. ' The parabolic case. It is easy to list all the parabolic orbifolds. One of
them: is the torus- T without marked points, -and the others are the sphere C
with the following weight functions:

1) (00, 0), 2)(2,2,00), 3)(2,4,4),
4)(2,3,6), 5)(3,3,3), 6)(2,2,2‘,2).‘

The  Teichmiiller space Tf in cases 1)-5) is a single point, and hence by
Theorem 2.2 each combinatorial class contains a unique (to within conformal
conjugacy) rational function. In case 6), f is the hyperbolic plane, and there
is the theoretical possibility of nonuniqueness (here 7 ;= =id). We shall soon
see that this possibility is actually realized. '

Suppose that a: z+— z+ 1, p =exp(ni/3), and p(z, 7) is the Weierstrass
function with primitive periods 1 and 7. Corresponding to the orbifolds 1)-6)
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are the following groups I" of motions and covers P:

)T ={a), P(z) = exp2niz;
)T =(a,z>-2z), - P(z)=cos2nz;
3)T=(a, z iz), P(z) =p’(z, i);
HT=(a,zmpz), ~ P2)=Ip'(z, p);
T=(a,zmp'2),  P(2)=p(z,p);

6)T=(a, 2z 247,z -2), P(z)=p(z,1), Im7>0.

The meromorphic functions P(z) arising in cases 1)~6) (and also the composi-
tions LoP , where L is a Mobius transformation) will be called Ritt functions in
honor of the author who discovered that they are distinguished among all mero-
morphic functions by a number of remarkable properties (see §11). In view
of Theorem 2.28 each cr1t1ca11y finite rational endomorphism with parabohc
orbifold is connected with the ¢ multlphcatlon theorem” for some Ritt function:

Plaz +b) = feeE). . (z.i)

The ratlonal endomorphisms correspondlng to case 1) are the monomials

fize 24 ; here J(f) =T. In case 2) we get Tchebycheff polynomials; J(f)
is a closed interval. In the -remaining cases J(f) = C. The endomorphlsm

—.((z - 2) /z)? serves as an example of case 3). A complete list of the
possible constants g and b in the multiplication formula (2.1) is contained in
[77].

Finally, we mention the promised exceptions to the unlqueness theorcm for
a rational function in a finite combinatorial class. They are obtained in case
6) for a € Z and b = 0. These are none other than the examples of Lattes
(see 1.2). For each a € Z with [a| > 2 the whole one-parameter family R,
is contained in a single combinatorial class. See [77] for a criterion for the
existence of a rational endomorphism in other combinatorial classes of type 6).

§6. Holomorphic families of rational endomorphisms

" In this section we investigate the dependence of the dynamlcs of a rational
endomorphism on parameters. The problems under discussion go back to the
work of Fatou, but are standard from the point of view of the modern theory of
dynamical systems (see [38], [43]): 1) Is it true that a rational endomorphism
in general position is structurally stable? 2) How is such an endomorphism
constructed? The answer to the first question is positive (see 6.1-6.3). A hypo-
thetical answer to the second is that a structurally stable endomorphism satisfies
axiom A (subsection 6.4). In the conclusion we present a certain application
of the theory developed to iteration algonthms :

6.1. The A-lemmas. Let M/ be a simply connected analytic manifold, and
let Ay € M . A holomorphic motion of a set A C C over M (with origin at 1)
is deﬁned to be a mapping ¢: M x A — C with the following propertles

a):The mapplng A (L, a) is analytlc in A foreach ae 4. '

b) The mapping ¢,: a — ¢(4, a) is injective for each 1€ M .

) ¢, =id.

REMARK If M is not s1mp1y connected, then it is necessary to pass to the

universal covering in the definition,
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THE FIRST A-LEMMA. a) A holomorphic motion of a set A can be extended
to a holomorphic motion of the closure A ([26], [27], [115]).
b) The mapping ¢,: A — C is quasiconformal for each 1. € M [115].

A sharp estimate of the dilatation K of the quasiconformal mapping 9,
A4 — C isgivenin [60]. If M =U and 4, =0, then K < (1+|A])/(1 —A]).
In the general case the answer is formulated in terms of the Kobayashi metric.

THE SECOND A-LEMMA [141]. A holomorphic motion of an arbitrary set can
be extended to a holomorphic motion of the whole sphere over some neighborhood
V C M of the point A,.

In the case when M = U and 4, = 0, we can take U1/3 as V [60]. Itis
unknown whether V' = U works.

6.2.  J-stability. A holomorphic (analytic) family of f, of rational endo-
morphisms is an analytic mapping M — R, . In other words, the degree of f;
is constant, and its coefficients depend holomorphically on 1 € M .

Let J, = J(f,). The endomorphism f, is said to be J-stable (in the family
f) if for all A close to a 4, the restriction fi1J; is topologically conjugate
to j;0|J .’ and the conjugating map ¢, : Jﬂo — J, depends continuously on 4.
The family f; is said to be J -stable if all its elements are J-stable.

Let a be a periodic point of j;o . Then under a perturbation of the parameter

~ the point « is either simply perturbed, or splits into several periodic points. If

all these points happen to be neutral (for all A close to 4y) > then o is called a
stably neutral periodic point. _

Moreover, we consider the complex space Z = {(4, ¢) € MxC: Df,(c) = 0},
and on it the sequence of holomorphic mappings W,o L — C, y,(A,¢c) =
f ;’(c). In the case when the critical points ¢; are single-valued functions of
the parameter, the sequence {y,} can be regarded as a family of functions
fie;(A) of A (i=1,...,2d—-2; neN). Such a family was first considered
by Levin [21]. A family of mappings Z — C is said to be normal if it is
precompact.

TrEOREM 2.31 ([26], [27], [115]). Suppose that f, is a holomorphic family
of rational endomorphisms. Then the following conditions are equivalent:
- a) For every A € M the neutral periodic points of the function f, are stably
neutral,
b) The Julia set J, moves holomorphically over M .
c) The family f, is J-stable.
d) The sequence {w,} is normal.

In proving that a)=-b) it is natural first to construct the holomorphic motion
¢, on the repelling periodic points, and then to extend it to the whole Julia

~set by the first A-lemma. This motion gives the conjugacy required for c):

Ao¢l:¢loﬁo on J/lo'

THEOREM 2.32 ([26], [271, [115]). The set of J-stable endomorphisms is open
and dense in every holomorphic family.

Thus, the manifold M has a nowhere dense subset A of J-unstable values of
the parameter such that A partitions M into domains of J-stability. The set A
has a very complicated structure: every neighborhood of a point in it intersects
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countably many components of the complement M \ A. The following can be
said about the dynamics of the set of J-unstable functions:

THEOREM 2.33. a)-A dense subset of A is formed by those A such that the
orbit of one of the critical points of S, is absorbed by a repelling cycle ([21], [26]).
b) If A € A, then there exists a sequence Ay — A such that ]jk has a super-

attracting cycle of order k > k, ([21], [26]).

c) For those A € A that are typical (residual) in the Baird sense(4) the orbit
of one of the critical points is contained in the Julia set J, and is dense there

- ([26], [27]).

6.3. Structural stability. An endomorphism S, is said to be structurally
stable in a holomorphic family S, if for all A sufficiently close to a Ay the
endomorphisms f/10 and f, are topologically conjugate on the whole sphere

C, and the conjugating homeomorphism depends continuously on A.

THEOREM 2.34[115]. The set of structurally stable endomorphisms is open and
dense in every holomorphic family. A conjugacy is generated by a holomorphic
motion of the sphere.

Structural stability differs from J-stability by natural supplementary require-
ments. In the case when {f;} is the whole manifold of rational functions they
are formulated as follows: the critical points are nondegenerate and lie in dif-
ferent large orbits.

6.4. The Fatou problem. Is it true that a rational endomorphism in general
position satisfies axiom A?

From the point of view of Theorem 2.34 the problem reads as follows: is it
true that J-stability implies axiom A?

(The converse is true: this follows, for example, from d)=c) in Theorem
2.31.) The components of the set M \ A in which f, satisfies axiom A will be
called the A -domains.

Assume that with each point z of a measurable set X ¢ J of positive
measure we associate a line L_ of the tangent plane T » - Such an object is called
a measurable field of lines on J (although this field is not defined everywhere
on J). If the set X is invariant and Df: (L,)=L 12 » then the field of lines is
said to be invariant. Away from oo and the poles of f an invariant field of
lines is analytically determined by a measurable function 8 on X such that
0(fz) =0(z) +arg f'(z) (mod 7).

THEOREM 2.35 ([115], [104]). If a rational endomorphism is J-stable and
does not have measurable invariant fields of lines on the Julia set, then it satisfies
axiom A.

Thus, the Fatou problem has been reduced to the ergodic problem of the
absence of invariant measurable fields of lines on J(f). We remark that the
analogous ergodic problem for Kleinian groups has been solved (Sullivan [135]).

6.5. The McMullen rigidity theorem and iteration algorithms. A family 5
will be said to be subordinate to a family g, if each function £, is conformally
conjugate to some function 8, - A family subordinate to a single-element family
is said to be trivial.

(4)That is, the set of such A is the complement of a set of first category in A .
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A manifold M is said to be a Liouville manifold if all the bounded holo-
morphic functions on M are constant (for example, Riemann surfaces of finite
type are such manlfolds)

: THEOREM 2. 36 [107]. A J -stable holomorphic family {f,} 1em Darametrized
by a Liouville manifold M s either trivial or subordinate to the one-paraineter
Jamily of Lattes (see 1.2). ,

Using Theorem 2.36, McMullen investigated iterative algorithms for solvmg
algebraic equations. An iterative algorithm is defined to be a rational mapping
p— f € R, , where p is a polynomial of degree m, such that the iterates

f ;’ converge to roots of the polynomial p on an open dense subset of C. For
m =2 the Newton iterative process is such an algorithm. The next result gives
a solution of a problem of Smale [134]. »

THEOREM 2.37 [134]. There are no iterative algorithms for polynomials of
degree m > 4. For m =2 and 3 there are such algorithms, and they admit a
complete description.

§7. The Mandelbrot set

In this sect1on we consider a one-parameter family of quadratic polynomials
fiizw— 2 4e (c € C). Despite the elementary nature of the situation, the
bifurcation diagram of this family has an exceedingly rich and intricate structure
(Figure 5). It was the picture of this diagram obtained by Mandelbrot with
the help of a computer [111] that stimulated the great interest in the circle
of problems as a whole. The theoretical investigation of the Mandelbrot set
requires invoking subtle techniques of quasiconformal surgery. The main results
in this direction have been obtained by Douady and Hubbard ([751, [76], [78])

7.1. Trees of A-domains. The polynomials foiz— 22 + ¢ are pairwise not
conformally conjugate, and each quadratlc polynom1a1 is conformally conjugate
to some f . Thus, the family J, is the quotient of the space of quadratic
polynornlals w1th respect to the action of the aﬁine group z — az +b by
conjugacies.

The only critical point of the polynomials S, is 0. Its orb1t as a function
of the parameter ¢ is given by the sequence of polynomials y,(c) =f Z(O) s

degy, = 2" . It is easy to see that either lw,(c)] <2, 0r |y, (c)| — oo,
n — oo. In the first case the Julia set is connected and in the second case it
is a Cantor set (Theorems 2.10 and 2.20). The Mandelbrot set is defined to be
M= {ce C: J(f,) is connected} .

THEOREM 2.38. a) The Mandelbrot set is compact,

b) its complement C\ M is connected;

c) each component of its interior M s simply connected;

d) the set of J-unstable endomorphisms f, coincides with the boundary oM.

If an endomorphism /. has an attracting cycle a(c), then it satisfies axiom

A, and hence ¢ € M. Let ¥V be the component of m° containing ¢ (an
A-domain). In this domain the multiplier 1,(c) of the cycle afc) is a single-
valued analytlc function. On its boundary |4, (c)] = 1, from which it is clear
that OV is a piecewise analytic Jordan curve, and Ay V — U is branched
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FIGURE 5. The Méndelbrot set

cover. A much more subtle fact actually holds:

THEOREM 2.39 ([75], [76]). The multiplier A,,: V — U is a conformal iso-
morphism in each A-domain V.

Consequently, the A-domain V contains a unique value of the parameter
¢, for which A(c;) =0, i.e, the cycle a(c,) is superattracting. The point c, is
called the center of the A-domain. The boundary 8 V' contains a unique point
¢, for which A(c,) = 1. This point is called the root of the A-domain.

The largest domain‘in Figure 5 is an A-domain with center at zero. It is
bounded by a curve of cardioid type with singularity (cusp) at the point ¢ = 1/4,
the root of the domain. Lying in this domain are all polynomials f satlsfymg
axiom A and such that the Julia set is a Jordan curve.

As the parameter ¢ runs through the boundary 8V, the mulupher A, runs
around the circle T once. Of main interest are the values c € 8V for which
A,(c) is a root of unity (of order g > 1). At such a point the cycle § merges
with the cycle a to an order g times greater. If 8V is regularly intersected,
then these cycles again dissociate, but f becomes attracting.

Thus, other A-domains abut V' at a dense set of points ¢ € 8V . Countably
many A-domains abut each of them in turn, and so on. As a result we obtain
an infinite tree of domains. Such a tree D, is nicely visible in Figure 5, growing
from the A-domain with center at zero. The Mandelbrot set actually contains
not one, but countably many, such trees D, . Is it true that | D, is dense in M?
This question, which is a variant of Fatou s problem (subsectlon 6.4) remains
open so far. Douady and Hubbard showed that a positive answer would follow
from local connectedness of the Mandelbrot set M .
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An A-domain is said to be primitive if it is not obtained from another A-
domain by a bifurcation. In pictures it is easy to distinguish primitive A-
domains from nonprimitive ones, since the former are bounded by curves of
cardioid type (with cusp at the root), while the latter are smooth curves.

7.2.  Uniformization of C\ M.

THEOREM 2.40 ([75], [76]). The Mandelbrot set M is connected.

In other words, the complement C \ M can be mapped conformally onto
the unit disk U. This mapping can be constructed explicitly: ®(c) = ¢,(c),
where ¢, is the Boettcher function of the polynomial f, for co. According to
Carathéodory’s theorem, the Mandelbrot set is locally connected if and only if
the inverse function ® ' can be continuously extended to the closed disk U.
Douady and Hubbard obtained the following result in this direction.

THEOREM 2.41 [76]. For every rational number 6 = p/q the function ol
U — C\M has a radial limit c, at the point exp(2nif). Further:
a) if q is even, then the endomorphism fcg is critically finite, since the orbit

of zero is absorbed by a repelling cycle;
b) if q is odd, then c, is a root of some A-domain.

The value of the parameter c, is called a Misiurewicz point in case a). The
next theorem shows that in a neighborhood of Misiurewicz points the Mandel-
brot set is similar to the corresponding Julia set. We consider the natural topol-
ogy on the space of subsets of the complex plane: X, — ¥ if X, U, — YnU,

in the Hausdorff metric(s) for all r >0, where U, = {z: |z| <r}.

THEOREM 2.42 [76]. Suppose that ¢ € M is a Misiurewicz point, and A is
the multiplier of a cycle that absorbs the orbit of zero. Then there exists a closed
set Z C C such that AZ =Z, and

A(I(f)—¢c)— Z,
VM—c)— pZ, n— 00
Jor some peC.,

The critically finite functions of the second type with 0 a periodic point
correspond to the centers of A-domains. Let P, be the set of centers of A-

domains of period n (P, consists of degy, = 2! points). Let u, be the
uniform probability measure on P,. It turns out that u, — u, where u is
the equilibrium measure on the Mandelbrot set (Levin and Lyubich, 1981).
Using subtle estimates of the rate of convergence, Levin [22] obtained a number
of interesting arithmetic properties of the coefficients of a conformal mapping
U — C\M (see also [97]).

7.3. The monotonicity of the entropy. In conclusion we dwell on a certain
problem in the theory of one-dimensional dynamical systems that was dealt with
successfully by using complexification and the Teichmiiller theory (Douady and
Hubbard [76], Thurston [142]).

For real ¢ the transformation f, have the invariant circle R. Let h,. be the
topological entropy of the restriction f |R. It can be defined by

.1 :
h,= lim —InN,(c),

nh—oo K

(S)The distance between sets 4 and B in the Hausdorff metric is sup,e 4 infyp pla, b).
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where N, (c) is the number of real periodic points with period n for the endo-
morphism f, .

THEOREM 2.43. The topological entropy h, increases monotonically as ¢ de-
creases.

In fact, more can be proved: the real periodic points cannot go off into the
complex plane as ¢ decreases. The proof uses the kneading theory of Milnor
and Thurston (see [65]). This theory gives us that in the contrary case there
are two A-domains with real centers ¢, and c¢, such that the critically finite
endomorphisms fc1 and fc2 are contained in a single combinatorial class. This

contradicts the uniqueness Theorem 2.29,
§8. Quasiconformal deformation

The maximal quasiconformal deformation of an endomorphism f is defined
to be the space of all rational endomorphisms that are quasiconformally con-
jugate to f. Let qc(f) be the maximal quasiconformal deformation, factored
by the action of the Mobius group of conjugacies. We write g € qc(f) with
the understanding that the endomorphism g is considered up to conformal
conjugacy. In this section we describe a parametrization of qc(f) by a suitable
Teichmiiller space.

Let S be the union of the Riemann surfaces (w1th marked points and possibly
an action of the rotation group) associated with the cycles of the components
of the Fatou set (see §2), T the corresponding Teichmiiller space, and T,
the space of measurable invariant fields of lines on the Julia set (see 6.4). The
Teichmiiller space of the function f is defined to be T(f) = T¢x T, . The space
T(f) is a finite-dimensional complex analytic manifold.

The automorphism group Aut f of f is the group of Mobius transformations
commuting with f. The modular group Mod f is the group of quasiconformal
homeomorphisms C — C commuting with f, factored by the component of
the identity. The modular group acts in a natural way on the Teichmiiller space

T(f).

THEOREM 2.44 (SuLLIVAN [140)). The group Mod f acts on T{(f) in prop-
erly discontinuous fashion. The orbit space T(f)/Mod f can be identified in a
natural way with qc(f). The isotropy group of a point x € T(f) is isomorphic
to the group Aut(g), where g € qc(f) corresponds to the orbit of x .

This theorem gives a unified look at a broad circle of questions considered
above: the absence of wandering domains, Theorem 2.39 on the multiplier, the
connectedness of the Mandelbrot set, Theorem 2.35, and others (see [140] and
[29] for more details).

§9. Quasiconformal surgery

In certain cases a holomorphic dynamical system can be cut into parts and
then a new system can be glued together from these parts. This procedure, whose
sources lie in the theory of Kleinian groups, Douady calls surgery. Surgery of
rational functions arose recently ([73], [74], [109], [139]), and in this area there
are many conjectures that have so far been confirmed only experimentally. We
confine ourselves here to certain results that have been rigorously proved.

9.1. Polynomial-like mappings. Let U, and U be simply connected domains

with UI c U. A polynomial-like mapping is defined to be a branched cover
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S:U; — U that is holomorphic in a neighborhood of U,. Denote by K(f)
the (closed) set of points z such that f"z € U, for n € N. Two mappings
f:U —U and g:V, =V are said to be quaszconformally equzvalent if there
exists a quaswonformal homeomorphism ¢: U' - V', where U and V' are
neighborhoods of K(f) and K(g), respectively, such that gop = po f on
[ (U ). An equivalence is said to be a hybrid equivalence if 6(0 =0 ae.
on K(f). An external equivalence is an analytic isomorphism ¢: U’ \ K(f) —
V'\ K(g) that conjugates f and g on f (U )\ K(f).

THEOREM 2.51 (Douady-Hubbard [78]). For each two polynomial-like map-
pings f and g of the same degree with connected sets K(f) and K(g) there
exists a third mapping that is hybrid-equivalent to f a_nd external-equivalent to
g.

COROLLARY 1. An arbitrary polynomial-like mapping is hybrzd-equzvalent to
a polynomial of the same degree.

COROLLARY 2. A polynomial of degree d has at most d — 1 nonrepelling
cycles.

Indeed, it is possible to perturb a polynomial in the class of polynomial-like
mappings of the same degree in such a way that all the nonrepelling cycles
become attracting, and then to use Corollary 1 and Theorem 2.7 in §2.

Suppose now that f = { Ji}1ea 18 @ holomorphic family of polynomial-like
mappings (the exact deﬁnition is in [78]). If deg f, = 2, then f, is equivalent
to some polynomial z — 2+ ¢, by Corollary 1. Let ¢ = y(4), x: M — C.
Denote by M- the set of values of the parameter A for which K(f;) is con-
nected. If M7 is compactly contained in M and certain additional conditions
are satisfied, then it can be asserted that y: MT — M is a quasiconformal
homeomorphism.

Suppose now that W is a primitive A-domain of order p in M, ¢, is its

center, and D is the Boettcher domain of f 1z 22+C0 containing 0. Then
there exists a nelghborhood D, of D such that f P |D1 is a polynomial-like

mapping of second degree. It turns out that this mapplng can be imbedded in
a holomorphlc family f whose parameter varies in a neighborhood M of the
set W in such a way that M C M . This implies the well-known experimental
fact that M contains znﬁmtely many homeomorphic copies of itself (Douady-
Hubbard [74], [78]).

To turn the sketch given above into a rigorous proof requires very subtle
techniques developed by Douady and Hubbard.

9.2. Proof of the Shishikura theorem. The results of Shishikura (§2.6) are
based on the following assertion, which is easily obtained from the measurable
Riemann theorem.

SHEHIKURA’S LEMMA. Suppose that g: C — C is a quasiregular mapping,
E; cC, 1<i<m, aredisjoint open sets, and p;: E; — El' are quasiconformal
mappings onto certain domains. Assume that:

1) g(E) C E, where E =, E;;

2) pog op"‘ are holomorphic on E' (here p is the union of the p,);

3) 5g=0 ae on C\ g~ E) where N is a fixed positive integer.
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Then there exists a quasiconformal mapping ¢: C — C such that pogo qokl
is a rational endomorphism, po ¢~ is conformal on ¢(E), and 8¢ =0 a.e.
on C\Ug "(E). - |

We first prove the estimate N, + N, + N; + Ng < 2d ~ 2. For this we
restructure f in such a way that the neutral irrational cycles become attracting
cycles, without affecting the nature of the attracting and neutral rational cycles.
Let {o;} and {B;} be the neutral irrational and neutral rational periodic points,
respectively. It can be assumed that they lie in C, and f(c0) =a,. Let & be
a polynomial of degree m with roots at the periodic points « ; and ,Bj , and -
assume that the f; are roots of high multiplicity (larger than the number of Leau

petals) and h'(ai) = —1. Denote by p a smooth function such that p(x) =1

for 0<x<1,and p(x) =0 for x > 2. Let H(z) =z + " h(z)p(e)z)) .
Obviously, H, is a quasiconformal homeomorphism (for sufficiently small &),
and H, — id as ¢ — 0. Consider the quasiregular transformation g, = fo H, .

It is holomorphic outside the set V, = {z: |z| > 8—1} , and its periodic points
have the required properties. Let D, be the Schroder domain of g, containing
the point «,, and let r, be the distance from «; to dD,. It can be shown
that r, decreases more slowly than &* as ¢ — O for every a > 0. Therefore,
the inclusion of gV, C D, holds for sufficiently small & > 0. Use of Shishi-
kura’s lemma (with p = id) gives a rational function f, such that N,(f) >
NAéé)l-'_]NS(f) + N,(f) and N,(f,) = N,(f). It remains to use Theorems 2.7
and 2.11.

Assume now that f has an invariant Arnol'd-Herman ring A, and consider
an invariant analytic curve y C A. This curve separates the sphere into two
parts D, and D_. Let p_ be a quasiconformal mapping of D_ onto the disk
that conjugates. f|y to a rotation T: z— Az.

Let
( ) f(Z)’ Ze—ﬁ+,
Z) =
&+ p,' oTop,, zeD_.

A transformation g_ coinciding with f on D_ is defined similarly. Shishi-
kura’s lemma is applicable to both the transformations g_ and g_. It is used
to construct rational endomorphisms f, and f_ such that each has a Siegel
disk and such that their sum has just as many critical points as f. As a result of
this surgical operation the invariant Arnol'd-Herman ring turns into two Siegel
disks. The construction leads to a proof of the Shishikura inequalities in the
case when all the annuli are invariant. The general case of periodic annuli
requires a certain complication in the construction.

The sharpness of the Shishikura estimates can be proved by applying inverse
surgery to Example 2.4 in 2.2,

'§10. The analogy with the theory of Kleinian groups

This analogy has served as a fruitful source of new ideas in both theories
since the time of Fatou. We refer the reader to the book [20] for the main
concepts and facts in the theory of Kleinian groups. The following (far from
complete) table is borrowed mainly from Sullivan’s paper [154]. A question
mark means that the analogous problem is open.
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TABLE 1
Finitely generated group I" of Rational endomorphism
Mobius transformations of the sphere of the sphere
Concepts
Set of discontinuity Q Fatou set F
Limit set A Julia set J
Fixed points of loxodromic ‘ Repelling (neutral rational)
(parabolic) transformations - periodic points
An invariant component of the A completely invariant
set Q component of F
T is a Kleinian group F#£Q
T is a Fuchsian group f is a Blaschke product
T is a quasi-Fuchsian group J is a Jordan curve
T is a geometrically finite group [ satisfies axiom A
without parabolic elements
T is a Schottky group [ satisfies Axiom 4 and J
i is a Cantor set
The Riemann surface Q/T" The Riemann surface §
Quasiconformal deformations and Quasiconformal deformations and
associated concepts associated concepts

Theorems and problems

A is perfect o J is perfect
A is nowhere dense or A=C J is nowhere dense or J = C
Q consists of 0, 1, 2, or F consists of 0, 1, 2, or
countably many components countably many components
The fixed points of loxodromic The repelling periodic points
transformations are dense in A are dense in J
The Ahlfors finiteness theorem Sullivan’s theorem on the
absence of wandering domains
The Ahlfors problem on the Fatou’s problem on the measure
measure of the limit set of the Julia set
There are no invariant measurable 7
fields of lines on A
? A rational endomorphism in

general position is

structurally stable

Structural stability = T is ?
geometrically finite and without
parabolic elements

It would seem useful to imbed the two parallel theories in a single theory of
semigroups of analytic transformations.

§11. Commuting functions

The papers [96] of Julia and [83] of Fatou are devoted to the problem of
describing commuting rational functions by means of methods in the theory of
iterates they created. Ritt [128] soon gave a solution of this problem complete
in a certain sense (and by another method). We formulate the main result:

THEOREM 2.52 [128]. Suppose that the rational functions f and g commute
and do not have common iterates; and that deg f > 2 and degg > 2 .(6) Then f

(6)The case when one of the functions is a M6bius function can be investigated directly.



THE DYNAMICS OF ANALYTIC TRANSFORMATIONS 601

and g are critically finite functions with a common parabolic orbifold. In other
words, [ and g satisfy equations (2.1) in §5 with a common Ritt function.

CoRrOLLARY ([96], [83]). Assume that the nonlinear polynomials f and g
commute and do not have common iterates. Then they can be reduced by a single
Mobius transformation to a pair of monomials z", z™ or a pair of Tchebycheff
polynomials.

We confine ourselves to a presentation of the approach of Julia and Fatou,
which leads to a proof of the corollary. If f and g commute, then g acts on
the set of fixed points of f while preserving their type. From this it follows,
first, that f and g have a common Julia set J. Second, replacing f and g
by certain of their iterates, we can assume that they have a common repelling
fixed point «. It will be assumed without loss of generality that a = 0. Let
A, = f'(0) and 1, = g'(0). We consider the Poincaré equation

DA, 2) = f(D(z)), DO =a, 0) =1 (2.2)

By Theorem 1.1, it has a unique normalized solution that is holomorphic in a
neighborhood of zero and that can then be uniquely exteénded to a meromorphic
solution on C. Let F(z) = g(®(z)). A direct verification shows that F also
satisfies equation (2.2); further, F(0) = 0 and F'(0) = A, . Consequently,
F(z) =®(4,z), and hence ®(4,z) = g(P(z)).

We have obtained that @ satisfies the two Poincaré equations with multipli-
ers 4, and 4,. This implies that A} # A, forall m, n € Z (otherwise f and

g would have a common iterate). We now consider the set G = @~ (J). Itis

invariant under the action of the free abelian group generated by the transfor-

mations z+ A,z and z+ A,z. An easy consequence of this is the alternative:

a) G is a finite union of logarithmic spirals; b) G = C. Only the first case is

possible for polynomials, and in this case Theorem 2.25 concludes the proof.
It remains to describe the functions with common iterates.

THEOREM 2.53 (Ritt [126], [128]). Suppose that f and g are a pair of poly-
nomials with f" = g™ . Then there exists a polynomial h(z) = zhl(zk) such

that  and g can be reduced simultaneously to form the elhs and 82/1[, where
&, and &, are kth roots of unity.

For general rational functions the corresponding result has a considerably
more complicated formulation, and Ritt himself regarded it as unsatisfactory
[128]. As we have already noted, the Julia sets of commuting functions coincide.
It is natural to try to prove the converse of this assertion;

THEOREM 2.54 (Baker and Eremenko, Ann. Acad. Sci. Fenn. Ser. A I Math.
12 (1987), 229-236). Let f and g be polynomials with a common Julia set
J . Assume that there do not exist Mobius transformations of finite order with
respect to which J is invariant. Then f and g commute.

The reader interested in investigating other functional equations is referred
to [95], [127], [8], and [82].

In conclusion we mention the article [9] of Veselov, who gives interesting mul-
tidimensional examples of commuting transformations connected with semisim-
ple Lie algebras.
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CHAPTER 3
MEASURABLE DYNAMICS OF RATIONAL ENDOMORPHISMS

In Chapter 2 we described a very complete picture of the dynamics of rational
endomorphisms on the Fatou set. The situation is different with dynamics on
the Julia set: mixing and denseness of cycles glve only a very general idea of the
1nstab111ty and chaos. It is at once clear that it is not possible to give a complete
picture of the chaotic dynamics. We can hope only to describe the behavior of
a trajectory that is typical in this or that sense. For example, we can specify an
invariant or quasi-invariant measure on J(f) and understand typicalness in the
sense of this measure. This is the approach used in the present chapter. Only
very natural measures are considered here: Lebesgue measure (§2), Hausdorff
measure (§3), the maximal entropy measure (§4), and harmonic measure (§5).
If an endomorphism satisfies axiom A , then it is relatively simple to investigate.
The theory of Markov partitions and Gibbs measures is a powerful aid here.
If we waive axiom A, then serious technical difficulties arise at once, and thus
many results in this chapter are only first steps.

§1. Elements of the general theory of dynainical systems

The present section sketches the necessary preliminary facts from the general
theory of dynamical systems. The novice cannot learn this theory from what is
given, but only absorb the concepts and facts given below and consider the ref-
erences to the literature cited. For a number of concepts we do not even present
the definitions common in systematic courses, but instead state theorems that
will actually be used as definitions. Special emphasis is given to concepts and
facts specific to noninvertible transformations, because almost no attention has
been given to them in the general literature, and for us they are the main ob-
ject of investigation. The theory of expanding endomorphisms has important
significance for us. On the other hand, it is directly applicable to rational en-
domorphisms satisfying axiom 4. On the other hand, it also models well the
situation beyond the limits of axiom A, since rational endomorphism are cor-
rectly interpreted in many problems as nonuniformly expanding mappings.

1.1. Measurable partitions of a Lebesgue space [40]. A measure space (X, u)
is called a Lebesgue space if it is isomorphic to a closed interval with a Lebesgue-
Stieltjes measure. For example, a complete separable metric space equipped
with a Borel measure(7) is a Lebesgue space (we shall deal only with such spaces
below). Versatile techniques of measurable partitions and condmonal measures
are available for Lebesgue spaces.

We remark first of all that we regard all partitions mod 0: & =5 1f ¢ and 7
coincide after restriction to some set Y C X of full measure. The element of a
partition ¢ containing a point x is denoted by &(x). A partition & is said to be
measurable if its elements are level sets of some measurable function ¢: X —
[0, 1]. The natural order is introduced on the set of measurable partitions:
¢ < n if the elements of & are formed from elements of n. Every family
{¢,} of measurable partitions has a supremum \/¢; and an infimum A¢; . The
partition ¢ into singleton sets is the largest partition, and the trivial partition v
consisting of the single element X is the smallest. For a measurable partition
¢ there exists a system of conditional measures u(-|€(x)) uniquely determined

(7)Borel measures will always be assumed to be regular and complete.
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by the followmg properties:
u(-|€(x)) is a probability measure concentrated on &(x);
)lf p €L (u),then [odu= [du(x)[e(y)du®&(x))
1.2, Endomorphlsms of a measure space ([41], [19], [46], and [44], Chapters 1—
3). Let f: X — X be a measurable mapping of a Lebesgue space. It transforms
the measure 4 on X into the measure f u as follows: if Y is a measurable

subset of X, then (f u)(Y) = u(f _IY) . The measure u is said to be invariant
if f,u = p (in this case one also says that f preserves the measure u or that
/ is an endomorphism of the measure space) and quasi-invariant if u and f,u
are equivalent (i.e., mutually absolutely continuous: u ~ f u).

Observe at once that Lebesgue measure on the sphere is quasi-invariant with
respect to a rational endomorphism (and with respect to an arbitrary smooth
endomorphism that is a.e. nondegenerate). .

A transformation with a quasi-invariant measure is said to be ergodic if there
is no partition of X into two invariant subsets of positive measure. The the-
ory of measurable partitions permits us to decompose each transformation with’
quasi-invariant measure into ergodic components and thereby to reduce the in-
vestigation of dynamics to the ergodic case. An idea of the dynamics of ergodic
transformations with finite invariant measure is obtained from the individual
ergodic theorem, which, roughly speaking, asserts that almost every trajectory
is uniformly distributed with respect to the- measure x. In this situation a
description of the dynamics is possible only in statistical terms. This applies:
also to the case when u is quasi-invariant but there exists an invariant measure
equivalent to u. The problem of the existence of such a measure is one of the
central problems in ergodic theory.

Besides ergodicity, there is a whole series of stronger stochastic properties,
among which exactness is one of the strongest for noninvertible transforma-
tions. A transformation with quasi-invariant measure is said to be exact if
/\:o of e=v. , : «

The Bernoulli shift o of the space Z+ (see Chapter 2, 3.2), endowed with
the product measure, is an example of an exact endomorphlsm The exactness
of this endomorphism is equivalent to the classical 0-1 law for a sequence of
independent random variables.

We assume below without specific mention that the complete inverse image
f x of almost every point x € X is at most countable. Let us consider the
partition & = f ¢ into complete inverse images of points.

The Jacobian of an endomorphism f with quasi-invariant measure u is
defined to be

(JN)x) = [u(xE)p(f0]7,

where p(x) = d(f u)/du is the Radon-Nikodym derivative. Intuitively, the
Jacobian is equal to the volume expansion coefficient in a neighborhood of x.

A finite or countable measurable partition & of a space is called a one-sided
generator if \/;° oS _ké = ¢. Not all endomorphisms have a one-sided genera-
tor,

Henceforth in this subsection, u is assumed to be a probability measure and
an f-invariant measure.

In classical ergodic theory the isometric operator U X Ly(u) — L,(u),
U,9 = gof, is associated with each endomorphism f of a measure space. The
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spectral invariants of the endomorphism arise naturally from this. However, for
all exact endomorphisms the corresponding operators are similar, and hence the
spectral invariants coincide. Therefore, ergodic theory comes to the forefront in
the classification of exact endomorphisms {and it is with such endomorphisms
that we shall deal below).

The entropy of a finite or countable partition ¢ = {Di};;l is defined to be
Hﬂ(é) = —Zu(D;)Inu(D;). If n < oo, then H#(é) < Inn, with equality only if
u(D;) = 1/n for all i. In the case of a countable partition it is possible that
H, (&) = 0.

If £ and n are two measurable partitions, and the restriction &|n(x) is at
most countable for a.e. x, then the conditional entropy

H,(En) = [ H,En00) du)

is defined. In particular, we can consider the conditional entropy H ﬂ(8| f _18) ,

and the following formula holds: Hu(slf"le) = fln(J#f) du.
We shall not give the usual definition of the metric entropy h, = hu( f) of
an endomorphism, but only the Rokhlin formula actually to be used.

THEOREM 3.1 [41]. Assume that the endomorphism f has a one-sided gener-
ator with finite entropy. Then

B = Hy(elf ™'9) = [0, d

The entropy 4 , can thus be interpreted as the mean logarithm of the Jaco-
bian.

In conclusion we describe the construction of the natural extension of an
endomorphism, which construction assigns an invertible transformation to a
noninvertible one. Consider the space X of sequences X = (x;, X;,...) (X, €
X) such that fx, = x,_,. Let =: X — X be the natural projection % —
X,. We define an invertible transformation Ve X — X as follows: f% =
(fxy, Xy, X, ...). The measure g can be lifted in a unique way to an f-

invariant measure 2 on X . The transformation of f is ergodic if and only if
[ is such that h,(f) = h,(f).

1.3. Expanding endomorphisms (see [130], [144]). We confine ourselves to
the smooth case, though much of what follows is valid in a more general situa-
tion. Let f: M — M be a smooth endomorphism of a Riemannian manifold
and let X C M be an invariant compact set. The endomorphism f is said to
be expanding on X if there exist a neighborhood U > X and constants C > 0
and A > 1 such that;

a) fT'XNU=4X;

b) |IDf"(x)v|| = CA"||v| for x € X and v € T M . For example, a rational
endomorphism satisfying axiom A is expanding on the Julia set.

We present the following fact for comparison with the results in 6.2 of Chap-
ter 2. :

THEOREM 3.2 (see [38], [152]). An invariant compact set X on which a
smooth endomorphism is expanding is structurally stable.
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This means that for each C'-close endomorphism g: M — M there exists
a g-invariant set X : on which g is conjugate to f|X, with the conjugating
homeomorphism #: ¢ X — X C M continuously dependent on g .-

1.4. Topological Markov chams and symbolic dynamics (see [6], [130], and
[44], Chapter 7). Let 4 be a matrix of 0’s and 1’s. Denote by Z+ the space of
one-sided sequences {f;}, in ! symbols with admissible transztzons A 5.5,

i+1

1. The restriction of the shift o: £} — X to X} is called a (one—szded)
topological Markov chain (TMC).

A Markov covering for the transformation f: X — X is defined to be a
covering of X by closed sets D; (1 <i</) such that

a) D,=intD;;

b) intDiﬂintDj =0, i#7];

¢) f is injective on D, ;

d) fD; is a union of some of the sets D, .

To a Markov covering there corresponds a TMC with /x/ matrix 4: 4, ;= 1

if fD; > D;. For an admissible sequence (i, ..., {,_;) of this TMC we set
; —k
Dl0 =iz f D
A Markov covering is sa1d to be a topological Markov generatorif D, ., —

0" " tn—1
0, n — oo. A transformation f having a topological Markov generator is
semiconjugate to the TMC o: X — X}. The intertwining map h: X —
X assigns to a sequence I = (zO, I, ) € Z+ the unique point in the set
o0
Mi=t Diomi,,_l :

THEOREM 3.3 (see [98], [130]). Let f: M — M be a smooth endomorphism
that is expanding on an invariant compact set X C M. Then the restriction
fIX has a topological Markov generator. The intertwining map h. Z — X is
one-to-one to within a set of Baire first category.

This result enables us to study expanding endomorphisms with the help of
symbolic dynamics.

1.5. Pressure, topological entropy, and the variational principle. We mention
at once the basic literature on subsections 1.5-1.7: [42], [6], [130], and [44],
Chapter 7. The pressure of f corresponding to a function ¢ is denoted by
Pr(p). We do not present the usual definition, which is not used below. The
variational principle formulated below (Theorem 3.4) can be taken as the defi-
nition of the pressure if desired.

Henceforth in this section, all measures are assumed to be Borel probability
measures.

In view of known theorems of functional analysis a continuous transforma-
tion f of a compact set X always has an invariant measure, and the space M f
of such measures is a compact convex set in the weak topology. The extreme
points of this compact are ergodic measures. The set of ergodic measures is
denoted by M;.

THEOREM 3.4. Let f: X — X be a continuous transformation of a compact
set, and let 9 € C(X). Then

sup (1, + [ o) = s (1,00 + [ 0du) = ryto)
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The pressure corresponding to the zero function is called the topological en-
tropy: h(f) = P,(0). In this case the variational principle takes the following
form:

sup h,(f) = sup h,(f) = h(f). -
HEM; reMy

The topological entropy is closely connected with homological invariants of

the transformation f (see [89]). We present a result of this kind:

THEOREM 3.5 [120]. Let f: M — M be a smooth endomorphism of a com-
pact manifold. Then h(f) > In|deg f]|.

1.6. Gibbs measures. An extremal measure of the variational principle is
called a Gibbs measure. Gibbs measures need not exist, but if they do exist,
then there must be ergodic measures among them. In the case ¢ = 0 a Gibbs
measure is called a maximal entropy measure.

THEOREM 3.6. Suppose that f: X — X is an expanding mixing endomor-
phism of a compact space, and ¢ is a Holder function on X. Then f has a
unique Gibbs measure u v corresponding to the function ¢ . Further, supp Ky, =

X, and the endomorphism f of the Lebesgue space (X, u ¢) is exact.

1.7.  Construction of Gibbs measures with the help of the Ruelle opera-
tor. With an expanding endomorphism f: X — X and a function ¢ € C (X)
we associate the Ruelle operator A ot C(X) = C(X)

4,8x) = Y e, (3.1)

yef'x

where g € C(X). The following result is called Ruelle’s variant of the Perron-
Frobenius theorem. :

THEOREM 3.7. Assume that the endomorphism f is expanding, and the func-
tion ¢ is Holder. Let r be the spectral radius of the Ruelle operator. Then r
is a simple eigenvalue of the operators Aq, and A; . Corresponding to it are a
positive eigenfunction h € C(X) and an eigenmeasure v with suppv = X . If
h is normalized so that [hdv =1, then

1
r_"Awg*’ (/gdv)h, n— 00

Jor all g € C(X). The measure v is the unique quasi-invariant measure such
that J, f =re”".

We clarify the nature of this theorem from the point of view of functional
analysis in the next subsection.

THEOREM 3.8. Under the assumptions of the preceding theorem the pressure
P (p) is equal to Inr, and p = hv is a Gibbs measure of f corresponding to
the function ¢ .

The use of the Ruelle operator in constructing and investigating Gibbs mea-
sures goes far beyond the framework of the model expanding situation. It is
used in an especially interesting way in the theory of one-dimensional endomor-
phisms, both real (see [65]) and complex (see below). However, there is not yet
a sufficiently general description of its domain of applicability.
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1.8. The Perron-Frobenius theory for almost periodic operators (see [33]). A
bounded operator 4: B — B -in a Banach space is said to be almost periodic if
the orbit {4" t//}::() of an arbitrary vector y € B is precompact. ' .

An operator A: C(X) — C(X ) is said to be nonnegative if v > 0= Ay >
0. A nonnegative operator is said to be primitive if Vl// >0,y #0 Ine
N: A"y >0.

THEOREM 3.9. Let A: C(X) — C(X) be a primitive almost periodic operator
with spectral radius 1. Then there exists a unique nonnegative A-invariant
function h € C(X) and an A™-invariant measure v, normalized by the condition

[hdv =1. Further, h >0 and suppv = X . For every y € C(X) (8)

A"w—»(/wdy)h, n — 0o.

This theorem clarifies the meaning of the various conditions in Ruelle’s vari-
ant of the Perron-Frobenius theorem. The almost periodicity of the operator
is ensured by the fact that f is expanding and ¢ satisfies a Hélder condition,
and its primitivity is ensured by the fact that f is mixing [31].

1.9. Measurable dynamics of expanding endomorphisms. Let M be a com-
pact Riemannian manifold, v the Riemannian volumeon M ,and f: M - M
an endomiorphism of class C? that is expanding on an invariant compact set
X. »

THEOREM 3.10 (cf. [6]). Under the above assumptionsv(X) = 0 if X is
nowhere dense.

Assume now that X = M, and consider the function ¢(x) = —InJ f(x).
Since p € C ! , the results in 1.7-1.8 are applicable: there exists a unique Gibbs
measure £, , and it can be constructed with the help of the Ruelle operator
A p S hv,, where h and v, are an eigenfunction and an eigenmeasure of the
operators A4, and A; , respectively.

It can be shown that the spectral radius of A¢ is equal to 1, and hence
P,(¢) = 0 (Theorem 3.8). Furthermore, by the change of variable rule, the
Riemannian volume is an invariant measure of the operator A s Yy=V.

"The invariant function /4 of A satisfies the equation

h(y)
= Y 20
J b
erix L, S)
which means that % is the density of the invariant measure, which is absolutely
continuous with respect to the Riemannian volume. Thus, we have

THEOREM 3.11 [99]. Let f: M — M be a C*-smooth expanding endomor-
phism of a compact manifold M. Then f has a unique invariant measure i
that is equivalent to the Riemannian volume v . This measure is the Gibbs mea-
sure for the function ¢ = —1InJ f. The endomorphism f of the space (M, u)
is exact. The measure p is the unique invariant measure satisfying the Pesin
Jormula [39] :

= /In(Jyf) du.

The last assertion follows from the variational principle.

(B)The convergence is understood in the strong topology of the space C(X).
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§2. Regular and stochastic dynamics of rational endomorphisms

In this section we investigate the measurable dynamics of rational endomor-
phisms with respect to Lebesgue measure.

2.1. Regular dynamics: orbits converge to cycles a.e. The following is one of
the central problems in the theory of iterates of rational functions.

CoNJECTURE. If J(f) # C, then measJ(f) =0.(°)

In view of Theorem 3.10 this conjecture is valid if the endomorphism f
satisfies axiom A . Using the Koebe distortion theorem, we prove a more general
result. Let U, = {r: |Z| <r}.

KoEBE DisTORTION THEOREM (see [12]). Suppose that the function y: U, —
C is univalent, and let q € (0, 1). Then there exists a constant K = K(q)
independent of ¢ and r such that

1Do(x,))
IDoteyl = X

Jorall x, x, € u,.

Let B(x, &) ={y: p(x, y] < e} be a disk in the spherical metric, and r,(x)
the spherical radius of the maximal disk about f”(x) in which the branch of
7" with £7"(f"x) = x is univalent.

LeEmMa 3.1 [25). Let X be an invariant measurable set contained in J(f)
with meas(C\ X) > 0. Then r,(z) =0 as n — oo forae z€X.

PROOF. Let z € X be such that lim,_,__r,(z) > 0. Then r, (z) > 26 >0

for some sequence {n,}. Consequently, there exists a neighborhood D; , of

the point z such that f"* maps D, , univalently onto B(f "z,8), 6 <2€.
By the Koebe theorem,

meas(D, , \ X) S Cmeas(B(fn"Z, &)\ X)
measD, , e’ ’

(3.2)

where C does not depend on k. It is not hard to show that the expression on
the right-hand side of (3.2) is bounded away from zero by a constant indepen-
dent of k. According to the Koebe theorem, D, . is an oval with bounded
distortion, and hence (in view of Theorem 2.4) diamD, , — 0, k — oo. Con-
sequently, the lower density of X at z is less than 1. The Lebesgue theorem
on points of density concludes the proof. e

COROLLARY. Assume that J(f) # C. Then w(z) C |, w(c) for ae. z €
J(f), where c runs through the set of critical points lying on J(f).

A consequence of this is

THEOREM 3.12 ([25], [76]). Assume that the orbits of all the critical points
converge to cycles, and these cycles are not neutral irrational cycles. Then the

following alternative holds: a) J(f)=C; orb) measJ(f)=0.

2.2. Global convergence of the Newton iterative process. Let P(z) = 2+

alzd_l +---+a, be a complex polynomial with d > 1. The Newton iterative

(9)This conjecture has an unsolved analogue in the theory of Kleinian groups: the well-known
Ahlfors problem.
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process is one of the main numerical methods for finding roots of the polynomial
p(z). The sequence of approximations z, constructed by this method is an
orbit of the rational endomorphism f: z — z — P(z)/P'(z). Assume that the
roots o, of P are simple. Then degf = d, and the o; are superattracting
fixed points of f. Moreover, f has the repelling fixed point co. The points
a; and the roots of the polynomial P"(z) are critical points of f.

If the initial approximation z, is sufficiently close to «;, then the Newton
process converges to «; at a superexponential rate. On the other hand, it is at
once clear that convergence can fail for some initial approximations: it auto-
matically fails when z, € J(f). But convergence can fail even on the set F(f).
The main reason for failure of convergence is the presence of attracting cycles
of order > 1 (example: P(z) = 2-z+ 1/v2). Also connected with it are
general results of McMullen on the absence of iterative algorithms (see Chapter
2, §6). However, there are some positive results, too.

THEOREM 3.13 (see [29], [134]). Assume that the roots of the polynomial P
are real and simple. Then: a) the Newton process {z,} converges to one of the
roots for a.e. z, € C; b) the Newton process converges to one of the roots for a.e.
z, € R (with respect to linear measure).

The fact of the matter is that under the conditions of the theorem of orbits
of the inflection points of P converge to roots of P, and Theorems 2.19 and
3.10 are applicable.

We mention also Manning’s paper [117], in which an algorithm is presented
for finding an initial approximation z, such that the Newton process converges
to one of the roots.

In conclusion we dwell on a simple example.

ExaMmPpLE 3.1. Consider the Newton process f: z -“7[(d - 1)z+a/ zd_l]

for finding the roots of the equation Y = a. The only critical point of f
different from the root /a is the point ¢ = 0. Further, f: ¢ — oo+ 00, i.e.,
the endomorphism f is critically finite. By Theorem 3.12, its orbits converge
to roots a.e.

Many impressive computer plctures concerned with the Newton iteration
process have been made in recent years ([67], [151]).

2.3. The existence of an absolutely continuous invariant measure, and ergod-
icity.

THEOREM 3.14. Let f be a critically finite endomorphism without superat-
tracting cycles. Then f has a unique invariant measure v equivalent to Lebesgue
measure. The endomorphism f of the space (C, v) is exact, and the Pesin for-
mula holds:

h(f) = z/m ID,lldv > .

This theorem can be proved with the use of the natural metric of the orbifold
é’f (Chapter 2, §5) and the Ruelle operator in the same way as in the case of
expanding endomorphisms (subsection 1.9). The set A of endomorphisms
satisfying the conditions of Theorem 3.14 has zero measure in the space R, of
all rational functions of degree d . However, as shown by the following result of
Mary Rees, stochasticity holds for an essentially larger class of endomorphisms.

THEOREM 3.15 [124]. The set of ergodic endomorphisms (with respect to
Lebesgue measure) has positive measure in the space R .
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‘Note that the ergodic endomorphisms constructed in this theorem are in the
closure of the set A. ‘

THEOREM 3.16 (Sullivan [139]). J(f) does not contain wandering sets X of
positive measure on which all iterates f"|X are injective.

This property (proved with the help of quasiconformal deformation tech-
niques) can be regarded as weak conservativity on the Julia set. It is unknown
whether ' f|J is conservative in the strong sense (i.e., whether the recurrence

- theorem holds).

2.4. The characteristic exponent and local instability of a manifold. The local
manifold technique is a powerful apparatus for investigating smooth dynamical
systems. It was developed by Pesin [39] for diffeomorphisms in a very general
context [39]. The difficulties connected with noninvertibility can be overcome
by passing to the natural extension. We confine ourselves to the case of a rational
endomorphism.

Let 4 be an invariant measure of a rat10nal endomorphlsm /. By the ergodic
theorem, the limit

xﬂ(x) = lim l1n||Df" ()| € [-0, 00)

exists for u-ae xeC, and fx du = fln]|Df|| d/t The quantity x, (x) is
called the characteristic exponent It characterizes the exponential mstablhty
a.e. of trajectories. If u is ergodic, then the characteristic exponent does not
dependon x a.e., and is equal to X, = S In||Df]||du. The following result is a
special case of the Margulis-Ruelle 1nequality (see [131]):

h,(f) < 2max (/mupfn du, o). (3.3)

it shows that the positivity of the entropy has to do with the exponential insta-
bility a.e. of the trajectories.

The diameter of a partition n is defined to be the supremum of the diameters
of its elements. A partition # is said to be p-open if it consists mod 0 of open
sets, and znjectlve if f|D; is injective for all D, ep.

Let f: C — C be the natural extension of the endomorphism f, 7: C — C
the natural projection, and £ the lifting of the measure u.

THEOREM 3.17 ON UNSTABLE MANIFOLDS (Ledrappier [100], [101]). Suppose
that X,(x) >0 for p-ae. x. Then there exists a countable y-open injective

partition 1 of the sphere C having arbitrarily small diameter and finite entropy
such that. _

a) n is a one-sided generator of f;

b) the partition & = V/iio f k(n"I n) (mod 0) consists of sets whose projections
on C are open; '

c) the uniform estimate

D
C(x)‘llDf( >u—C(x)

of distortion holds on &(%), where % = {x,}rc, and = {y, }ro, € E(X);
d) lim,_,  +Inp(x,, »,) = —x,(x,) for y €&(X).
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Note that y € £(X) means that for all » € N the points x, and y, are
contained in a single element of the partition #. The sets &(%) are called local
unstable manifolds. Theorem 3.17 enables us to regard an endomorphism with
positive characteristic exponent as nonuniformly expanding.

COROLLARY. If x,(x) >0 ae., then mnm r,(x)>0 forae x (r,(x) is
defined in 2.1).

Proor. Consider the set ¥, C C consisting of those % such that né(X)
contains the disk B(x,, a). By the Poincaré recurrence theorem, there exists

for a.e. ¥ € Y, a sequence n, — oo such that /™% e Y, . This implies
that rnk(xo) > a. Since ﬁ(Ua>0 Y) = 1, the required inequality has been
verified. e

2.5. Stochastic properties of endomorphisms having an a.c.i. measure. (10)
Ledrappier showed that if a rational endomorphism has an a.c.i. measure with
positive characteristic exponent, then it has all the properties inherent in Gibbs
distributions (see 1.6).

THEOREM 3.18 ([100], [101]). Let u be an f-invariant measure with positive
characteristic exponent: X, (x) >0 for p-a.e x. Then the following properties
are equivalent:

a) u is absolutely continuous with respect to Lebesgue measure.
b) The Pesin formula

m(=2 [ z,du=2 [m|ps)dp

is valid. Further, J(f) = suppu = C, and the endomorphism f of the space
(C, u) is exact. The measure with the indicated properties is unique.

SOME IDEAS IN THE PROOF. If a) is satisfied, then

y(fz
J, f(2) (2
where y is the density of the measure u. By Theorem 3.17, f has a one-
sided generator. Therefore, Theorem 3.1 is applicable, and together with (3.4)
it implies b). In proving the reverse implication Ledrappier explicitly writes
out the density of u. The property supp u = C and the ergodicity follow from
Lemma 3.1 and the corollary to Theorem 3.17 (cf. [25]). The ergodicity implies
that u is unique.

\iDs)?, (3.4)

§3. Hausdorff dimension

3.1. Definition. Let X be a metric space with metric p, andlet Y C X .
An e-covering of Y is defined to be a covering by balls B(x;, r;) of radius less

than ¢. For ¢ > 0 let s
(Y, ¢)= ianri ,
!

where the infimum is over all e-coverings of Y. Then /;(:) =1lim,_,/s(-, &) is
a Borel measure on X . It is called the Hausdorff measure corresponding to the
exponent J .

(IO)That is, an absolutely continuous (with respect to Lebesgue measure) invariant measure.
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To define the Hausdorff dimension we study the dependence of the Hausdorff
measure on J. It turns out that for every set ¥ C X there exists a value
6(Y) such that /,(Y) = 0 for § > 6(Y) and [;(Y) = oo for < 4(Y).
This value of the exponent is called the Hausdorff (or fractal) dimension of the
set Y: dimY = §(Y). The reader can acquaint himself with details of the
construction and elementary properties of the dimension in the book [5].

The (Borel) dimension of a measure it on a set X is defined to be

dim?Y.

)=0

3.2. Dimension, characteristic exponent, and entropy. The quantities in the
heading are closely connected in a fairly general situation, but this connection
usually bears the character of estimates (see [44], Chapter 7). For conformal
systems they pass into equalities.

dimp = Y ;&{y

THEOREM 3.19 [101]. Let f be a rational endomorphism, and p an invariant

ergodic measure. Then(] h
h#(f) = max(x#, 0) dim u.
Further, for a.e. x
dimy = il_l}g) ____ln,u(ﬁl(zc, 6)).

COROLLARY 1. An invariant measure with positive entropy has positive dimen-
sion.

COROLLARY 2. The Julia set always has positive dimension: dim J(f) > 0.

Proor. By Theorem 5.5 (Misiurewicz-Przytycki), if deg f > 1, then A(f) >
0. Consequently (the variational principle), f has an invariant ergodic measure
u of positive entropy. Since Xy > 0, it follows that suppu C J(f). Thus,
dimJ(f)>dimu>0. e

3.3. The Bowen formula and the conformal measures. If a rational endo-
morphism satisfies axiom A, then the restriction f|J is an expanding endo-
morphism, and the general theory in §1 is applicable to it. The pressure of the
endomorphism f|J corresponding to the function ¢ will be denoted by P(¢).

THEOREM 3.20 ([62], [132]). Suppose that the rational endomorphism f sat-
isfies axiom A. Then the equation

P(~8In||Df]) =0 (3.5)
has a unique root 6 = dimJ equal to the Hausdorff dimension of the Julia set.
The formula (3.5) bears the name of Bowen, who discovered an analogue of

it for quasi-Fuchsian groups. Further results were obtained by Sullivan [138].
In the formulations below we set ¢ = dim J .

THEOREM 3.21. If the endomorphism [ satisfies axiom A, then 0 < I3(J) <
oo and 0 < dimJ < 2. The measure 5 is quasi-invariant and exact with respect

to f.
A measure m is said to be conformal (with exponent ) for the rational
endomorphism f if J_f(z)= ||Df(z)||6 a.c.

m

(""YCf. the Margulis-Ruelle inequality (3.3).





