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Abstract. This ia a translation of the monograph originally published in
1970. It contains a comprehensive exposition of the Nevanlinna theory of
meromorphic functions of one complex variable, with the emphasis on the de-
tailed study of deficiencies, distribution of values with respect to arguments
and asymptotic properties of meromorphic functions. A self-contained expo-
sition of the inverse problem for meromorphic functions of finite order with
finitely many deficiencies is given in full detail. Many of the results included
in the book belong to the authors, and were previously available only in journal
publications.

The exposition is completely self-contained: the only prerequisite is an
undergraduate course in one complex variable.

There are two appendices: the first contains Govorov’s proof of the Paley
conjecture, and the second a survey of the results obtained after 1970, with
extensive bibliography.
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Preface to the second edition

In this edition we corrected some errors and misprints and added references
and footnotes related to recent achievements in the topics considered in the original
edition. A survey of the results obtained since 1970 is in a separate appendix at
the end of the book. This appendix has its own list of references. In the footnotes
to the main text these references are marked with the letter A (like for example
[A12]).

vii
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Preface to the first edition

The origins of the value distribution theory of meromorphic functions go back
to the classical theorems of Sokhotskii-Casorati (1868), Weierstrass (1876), Picard
(1879). In the last decade of the XIX-th and the first two decades of the XX-th
centuries, these theorems underwent further development through investigations on
the zero distribution of entire functions carried out mainly by the French school
(Hadamard, Borel, Valiron and others). The analytical machinery intrinsically con-
nected with meromorphic functions was built in the 20-ies of the XX-th century by
the Finnish mathematician Rolf Nevanlinna. After his work, the value distribution
theory acquired, in some way, a complete form. The main classical results of the
theory of entire functions have been included in Nevanlinna’s theory in a natural
way.

The results of Nevanlinna’s theory, which, at the present time, can be regarded
as classical, are considered in the first part of the present book, consisting of chap-
ters I, II, III, and sec. 1-3 of IV. Aiming to help beginning mathematicians, we
consider the subject here in detail. We foresee reproaches of more qualified readers
in this respect.

While the first part of this monograph treats mostly results obtained before
the 50-ies, the remainder is dedicated to modern research.

In spite of a certain completeness of the value distribution theory, the study of
even some of the most classical problems has not been brought to an end. On the
contrary, the study is conducted more and more extensively. A lot of important
problems remain open, and new ones arise during the process of further investiga-
tions.

Achievements are so essential and diverse that they admit the free coexistence
of several monographs on the theory of value distribution. In any case, the reader
who is acquainted with Hayman’s book [Hay64], will not find any substantial
intersection with our book except for classical theorems which had been known as
early as the 30-ies of XX century.

The value distribution theory of meromorphic functions occupies one of the
central places in Complex Analysis. Numerous works are devoted to studying its
connections with other areas of mathematics (topology, differential geometry, mea-
sure theory, potential theory and others); extending its inferences to wider classes
of functions (meromorphic functions in arbitrary plane regions and Riemann sur-
faces, algebroid functions, functions of several variables, meromorphic curves), and
also its applications, mainly to the analytic theory of differential equations.

In this book, the related topics are left aside, and the main attention is con-
centrated on the problems internal to the value distribution theory, which include
the following problems:
(i) To what extent the main inferences of Nevanlinna’s theory have final character

ix



x PREFACE TO THE FIRST EDITION

and cannot be improved further;
(ii) What properties of Picard’s exceptional values are preserved for a wider class
of exceptional values considered in the value distribution theory;
(iii) Which are the connections between Nevanlinna’s characteristics and other
quantities characterizing asymptotic properties of entire and meromorphic func-
tions;
(iv) Study of asymptotic properties and value distribution of meromorphic func-
tions belonging to some special classes which are on one hand sufficiently narrow
to give new information not implied by general theorems, and on the other hand
sufficiently wide for being of interest for the general theory;
(v) Study of the value distribution with respect to arguments (not only with respect
to moduli as in classical Nevanlinna theory).

We pay great attention to examples of functions with “exotic” properties. With-
out them the reader will get a restricted image of the theory under consideration.
Examples of functions having unusual properties play in the theory a role as im-
portant as counterexamples do in Real Analysis.

Notation and Conventions. Functions meromorphic in the complex plane
will be called meromorphic functions, unless otherwise explicitly stated. Uniform
(absolute, or usual) convergence of a series or of an infinite product is understood
as the convergence of the corresponding type of its remainder. Thus, behavior of a
finite number of terms does not affect the convergence or its type.

If we consider a continuous function with a removable discontinuity, the dis-
continuity is assumed to be removed. For example f(0) = 1 for f(λ) = πλ cotπλ.

By [α] we denote the integer part of the number α. Square brackets are used
to separate expressions in the cases when it cannot cause any confusion. We also
use square brackets for references. We denote the number (|α|+ α)/2 by α+.

The closure of the angle {α < arg z < β} in the complex plane is denoted by
{α ≤ arg z ≤ β}. Thus 0 ∈ {α ≤ arg z ≤ β}.

Writing
∑

k ak or
∏
k ak we do not exclude the case when the sequence {ak} is

finite or empty. In the latter case we assume
∑

k ak = 0 and
∏
k ak = 0.

Each chapter has its own numeration of formulas, the number (4.20) refers to
formula number 20 in section 4 of the same chapter. Analogous numeration is used
for theorems. When we refer to a formula or a theorem from another chapter, we
refer to the chapter number also.

All of the facts related to the history of the problems under consideration
along with references on the subject are placed in the Notes at the end of the book.
References in the text are given only in the case where we refer to results lying
beyond the scope of standard graduate courses in Real and Complex Analysis.

Note that results of sec. 3 and 5 of Chapter 1 and of sec. 3 of Chapter 3 are
used in Chapter 6 only, and can be skipped in the first reading.

Preliminary versions of sec. 7,8 of Ch.I; Ch.II; sec. 1,2 of Ch.III; sec.1-4,6 of
Ch.IV; sec 1,2 of Ch.V; Ch.VII; Appendix I have been written by A. Goldberg;
sec. 1-5 of Ch.I, sec.3 of Ch.III, sec.5 of Ch.IV, sec.3-6 of Ch.V; Ch.VI have been
written by I. Ostrovskii.

We express our deep gratitude to Nikolaj Govorov, Larisa Kudina, Victor Pe-
trenko, David Potyagajlo, Elena Sergienko, and Stanislav Tushkanov for their var-
ious help in our work. Our special thanks to our editor Naum Landkof.
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CHAPTER 1

Characteristics of the Behavior of a Meromorphic

Function and the First Fundamental Theorem

The basis of the value distribution theory of meromorphic functions consists
of several formulae connecting the behavior of a meromorphic function with the
distribution of its zeros and poles. At the beginning of this chapter we derive these
formulae. Later, we use them to introduce the main characteristics of the behavior
of a meromorphic function, and study connections between them. One of the most
important connections is the celebrated theorem which R. Nevanlinna called “the
first fundamental theorem of the value distribution theory”.

1. Auxiliary results

Let D be a bounded domain in the complex plane, whose boundary Γ consists
of finitely many piecewise-analytic curves; by ∂

∂n
we shall denote the operator of

differentiation in the direction of the inwardly directed normal vector to Γ, by ∆

we denote the operator
∂2

∂x2
+

∂2

∂y2
.

We shall use the following formula:∫∫
D

(u∆v − v∆u)dσ = −
∫

Γ

(
u
∂v

∂n
− v ∂u

∂n

)
ds,(1.1)

where u = u(x, y) and v = v(x, y) are twice continuously differentiable in some
domain containing the closure D̄ of the domain D, σ is the Lebesgue measure
in the plane and s is the one-dimensional Lebesgue measure (length) on Γ. This
formula is usually called the second Green formula. It can be obtained from the
well-known Green formula∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dσ =

∫
Γ

Pdx+Qdy

in the following way. Let

P = −u∂v
∂y
, Q = u

∂v

∂x
.

We get the formula∫∫
D

(
u∆v +

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dσ =

∫
Γ

−u∂v
∂y
dx+ u

∂v

∂x
dy,

which can be rewritten as∫∫
D

(
u∆v +

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dσ = −

∫
Γ

u
∂v

∂n
ds.(1.2)

Subtracting from (1.2) the formula which is obtained from (1.2) if we inter-
change u and v, we get (1.1).
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2 1. CHARACTERISTICS AND THE FIRST FUNDAMENTAL THEOREM

We also need the notion of a Green function. The Green function of a domain D
is a function G(ζ, z), defined for ζ ∈ D̄, z ∈ D̄, ζ 6= z, and satisfying the following
conditions:

(i) For each fixed z ∈ D

G(ζ, z) = ln
1

|ζ − z| + hz(ζ),

where hz(ζ) is a function, harmonic in D and continuous in D̄.

(ii) If ζ ∈ Γ, z ∈ D̄, ζ ∈ D̄, and z ∈ Γ, then

G(ζ, z) = 0.

The Green function exists and is unique. The uniqueness can be proved in
the following way. Assuming that G1(ζ, z) and G2(ζ, z) are two Green functions
of D, we choose z ∈ D and consider the function v(ζ) = G1(ζ, z) − G2(ζ, z). The
condition (i) implies that this function is harmonic in D and continuous in D̄,
and the condition (ii) implies that it is equal to zero on Γ. By the maximum
and the minimum principles for harmonic functions we get v(ζ) = 0, and, hence,
G1(ζ, z) ≡ G2(ζ, z).

We would like to observe that the condition (i) implies that there exists a disc
Kz centered at z and such that G(ζ, z) > 0 for ζ ∈ Kz. Using the minimum
principle for D\Kz, we conclude that G(ζ, z) > 0 for all ζ ∈ D, z ∈ D.

We will not use the existence of the Green functions for multiply connected
domains, for this reason we do not discuss this matter.

For a simply connected domain the existence of the Green function follows from
classical results on conformal mappings. In fact, by the Riemann theorem there
exists a conformal mapping w = fz(ζ) which maps the region D onto the disc
{|w| < 1} in such a way that fz(z) = 0. By the theorem on the boundary behavior
of conformal mappings the function fz is continuous on D̄, and |fz(ζ)| = 1 for
ζ ∈ Γ. Let

G(ζ, z) = ln
1

|fz(ζ)|
,(1.3)

it is easy to check that this function satisfies (i) and (ii).

Example 1. Let D = {|ζ| < R}. Then

fz(ζ) =
R(ζ − z)

R2 − ζz̄ , G(ζ, z) = ln

∣∣∣∣ R2 − ζz̄
R(ζ − z)

∣∣∣∣ .(1.4)

Example 2. Let D = {|ζ| < R, Imζ > 0}. Then

fz(ζ) =
R(ζ − z)

R2 − ζz̄
R2 − ζz
R(ζ − z̄) , G(ζ, z) = ln

∣∣∣∣ R2 − ζz̄
R(ζ − z)

R(ζ − z̄)
R2 − ζz

∣∣∣∣ .(1.5)

Suppose thatD is simply connected. Let γ1, γ2, ..., γp be analytic curves forming
Γ, let Al, l = 1, 2, ..., p be the common end point of γl and γl+1 (we use the
convention: γp+1 ≡ γ1), let παl (0 < αl ≤ 2), l = 1, 2, ..., p, be the angles between
γl and γl+1. By the Riemann-Schwarz symmetry principle (see Privalov [Pri56],



1. AUXILIARY RESULTS 3

Chapter XII, §2.4) the function fz has an analytic extension to a certain domain
containing D̄\{A1, ..., Ap}.

We shall assume (without mentioning this) that in the intersection of a suffi-
ciently small neighborhood Ul of Al with D the function fz has a representation

fz(ζ) = (ζ −Al)1/αlϕl(ζ) + wl,(1.6)

where ϕl(ζ) is an analytic function in Ul, ϕl(Al) 6= 0, |wl| = 1, l = 1, 2, ..., p. We
omit the discussion of the conditions on D under which such a representation holds.
For our purposes it is enough to observe that the domain D = {|ζ| < R} satisfies
this condition since it is bounded by an analytic curve and there are no points Al.
The domain D = {|ζ| < R, Imζ > 0} also belongs to this class. In fact, in this case
the points Al, l = 1, 2, are the points ζ = ±R, αl = 1

2 , l = 1, 2. The equation (1.5)

implies that fz(ζ) is analytic at ζ = ±R and d
dζ fz(ζ) has simple zeros at ζ = ±R,

hence the representation (1.6) holds.

Further we deal with the derivative ∂G
∂n

with respect to ζ as a function of z. This
derivative exists for all ζ 6= Al (l = 1, . . . , p). Since G(ζ, z) > 0 for ζ ∈ D, z ∈ D
and G(ζ, z) = 0 for ζ ∈ Γ, z ∈ D, then ∂G

∂n ≥ 0. Along the curve Γ the following
equation is satisfied:

f ′z(ζ)

fz(ζ)
dζ = i

∂G

∂n
ds (ζ 6= Al, l = 1, ..., p).(1.7)

In fact, computing the differential of d ln fz(ζ) along the curve Γ and using the
Cauchy-Riemann conditions, we get

d ln fz(ζ) =
∂

∂s
ln fz(ζ)ds =

(
∂

∂s
ln |fz(ζ)| + i

∂

∂s
arg fz(ζ)

)
ds

= i
∂

∂s
arg fz(ζ)ds = −i ∂

∂n
ln |fz(ζ)|ds = i

∂G

∂n
ds.

The equation (1.7) sometimes can be used to find ∂G
∂n .

Example 1. Let D = {ζ : |ζ| < R}, then

∂G

∂n
ds = −i

[
ln
R(ζ − z)

R2 − ζz̄

]′
dζ =

R2 − |z|2
|ζ − z|2 dθ, ζ = Reiθ.(1.8)

The function R2−|z|2
|ζ−z|2 is called the Poisson kernel. Observe that

R2 − |z|2
|ζ − z|2 =

R2 − r2

R2 + r2 − 2Rr cos(ϕ− θ) = Re
ζ + z

ζ − z , ζ = Reiθ, z = reiϕ.(1.9)

Example 2. Let D = {ζ : |ζ| < R, Imζ > 0}. Then

∂G

∂n
ds = −i

[
ln

(
R(ζ − z)

R2 − ζz̄
R2 − ζz
R(ζ − z̄)

)]′
dζ.

On the semi-circle {ζ = Reiθ, 0 < θ < π} we have

∂G

∂n
ds =

{
R2 − |z|2
|ζ − z|2 −

R2 − |z|2
|ζ − z̄|2

}
dθ;(1.10)



4 1. CHARACTERISTICS AND THE FIRST FUNDAMENTAL THEOREM

on the interval {ζ = t, −R < t < R} we have

∂G

∂n
ds = 2

{
r sinϕ

|z − t|2 −
R2r sinϕ

|R2 − zt|2

}
dt, z = reiϕ.(1.11)

Since the function fz(ζ) is analytic on Γ, except at the points Al, l = 1, ..., p,
then (1.7) implies that with the exception of these points the function ∂G

∂n is infin-

itely differentiable on Γ. By (1.6) the singularities of ∂G
∂n at the points Al are such

that the product |ζ − Al|
1
2
∂G
∂n

(
≤ |ζ −Al|1−

1
αl
∂G
∂n

)
is bounded. This observation

implies that all integrals containing ∂G
∂n

which we will consider later are convergent.

Theorem 1.1. Let D be a simply connected domain with a piecewise analytic
boundary Γ, and let u(z) be a twice continuously differentiable1 function in some
domain containing D̄, excluding a finite set {c1, c2, ..., cq} ⊂ D̄. In a neighborhood
of these points u(z) has the form

u(z) = dk ln |z − ck|+ uk(z),(1.12)

where dk are constants and uk(z) are twice continuously differentiable functions in
a neighborhood of points ck (k = 1, ..., q). Then

u(z) +
1

2π

∫∫
D

G(ζ, z)∆u(ζ)dσ =
1

2π

∫
Γ

u(ζ)
∂G

∂n
ds−

∑
ck∈D

dkG(ck, z)(1.13)

for z ∈ D, z 6= c1, ..., cq.

Proof. Let us exclude from D discs of radius ε centered at c1..., cq, z, and
A1, ..., Ap. We assume that ε is so small that the discs do not intersect, and that
if the center of such a disc is inside D, then the whole disc is inside D. We denote
the domain so obtained by Dε and the part of Γ which is not in any of the discs by
Γε. By C(ε, a) we denote the intersection of {z : |z − a| = ε} and D.

Letting u = u(ζ) and v = G(ζ, z), we write the second Green formula for Dε.
Since ∆v = 0, we get2∫∫

Dε

v∆udσ

=

(∫
Γε

+

∫
C(ε,z)

+

q∑
k=1

∫
C(ε,ck)

+

p∑
l=1

∫
C(ε,Al)

)(
u
∂v

∂n
− v ∂u

∂n

)
ds.

(1.14)

Let us find the limits of each of the integrals as ε → 0. Since v = 0 for ζ ∈ Γ,
then

lim
ε→0

∫
Γε

(
u
∂v

∂n
− v ∂u

∂n

)
ds =

∫
Γ

u(ζ)
∂G

∂n
ds.

Furthermore, by the mean value theorem, for each a ∈ D̄ we have∫
C(ε,a)

(
u
∂v

∂n
− v ∂u

∂n

)
ds = (the length of C(ε, a))

(
u
∂v

∂n
− v

∂u

∂n

)∣∣∣∣
ζ∗
,

1with respect to the variables x and y, z = x+ iy
2If some points are repeated twice among {c1, . . . , cq} and {A1, . . . , Ap}, we write the corre-

sponding integrals only once.
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where ζ∗ is a point on C(ε, a). Since the length of C(ε, z) is 2πε and on C(ε, z) the
following asymptotic estimates hold as ε→ 0

v = ln
1

ε
+O(1),

∂v

∂n
=
∂v

∂ε
= −1

ε
+O(1), u = u(z) + o(1),

∂u

∂n
= O(1),

then

lim
ε→0

∫
C(ε,z)

(
u
∂v

∂n
− v ∂u

∂n

)
ds = −2πu(z).

If ck ∈ D, then on C(ε, ck) the following asymptotic estimates hold as ε→ 0

u = dk ln ε+O(1),
∂u

∂n
=
∂u

∂ε
=
dk

ε
+O(1),

v = G(ck, z) + o(1),
∂v

∂n
= O(1).

Therefore for ck ∈ D we have

lim
ε→0

∫
C(ε,ck)

(
u
∂v

∂n
− v ∂u

∂n

)
ds = −2πdkG(ck, z).

If a is either one of the points ck belonging to Γ, or one of the points Al, l =
1, ..., p, then, in any case, the length of C(ε, a) is O(ε), and the following asymptotic
estimates are valid on C(ε, a)

u = O(| ln ε|), ∂u
∂n

= O

(
1

ε

)
, v = o(1),

∂v

∂n
= O

(
1√
ε

)
(the last estimate follows from (1.6) and (1.3)). Therefore we have

lim
ε→0

∫
C(ε,a)

(
u
∂v

∂n
− v ∂u

∂n

)
ds = 0.

Taking the limit as ε→ 0 in (1.14), we get the statement of the theorem. �

Observe that the integral in the left-hand side of (1.13) is, by definition, as-
sumed to be equal to

lim
ε→0

∫∫
Dε

G(ζ, z)∆u(ζ)dσ.

Remark. The statement of Theorem 1.1 remains true even if the function u(z),
in addition to singularities ck on the boundary Γ of the region D whose behavior
is determined by (1.12), has a finite set of singularities µk, k = 1, ..., q, such that
on the arcs C(ε, µk) the following asymptotic estimates hold (as ε→ 0)

u = o

(
1√
ε

)
,
∂u

∂n
= O

(
1

ε

)
.

2. The Nevanlinna, Poisson-Jensen, and Shimizu–Ahlfors formulae

We are going to use several formulae connecting the behavior of a meromorphic
function with the distribution of its zeros and poles. Most of the formulae we need
are special cases of (1.13).



6 1. CHARACTERISTICS AND THE FIRST FUNDAMENTAL THEOREM

Theorem 2.1. Let D be a simply connected region with a piecewise analytic
boundary Γ and f(z) 6≡ 0 be a meromorphic function in D̄. Then

ln |f(z)| = 1

2π

∫
Γ

ln |f(ζ)|∂G
∂n

ds−
∑
am∈D

G(am, z) +
∑
bn∈D

G(bn, z),(2.1)

where am’s are zeros of f(z), and bn’s are its poles.3

Proof. We apply Theorem 1.1 with u(z) = ln |f(z)|. If z is neither a pole nor
a zero of f(z), then ∆u(z) = 0. Therefore the integral in the left-hand side of (1.13)
is equal to zero. If the point ck is a zero (pole) of f(z) of order χk, then the equality
(1.12) with dk = χk (dk = −χk) is valid in the neighborhood of ck. Therefore the
right-hand side of (1.13) is equal to the right-hand side of (2.1). �

Remark. The remark after Theorem 1.1 implies that the formula (2.1) re-
mains valid if f(z) is meromorphic everywhere in D̄ except possibly finitely many
singular points µk ∈ Γ, k = 1, ..., q, such that in the intersection of a small enough
neighborhood of µk with D̄ the function f(z) admits a representation

f(z) = gk((z − µk)αk),

where gk(ζ) are functions meromorphic in the neighborhood of ζ = 0, and αk > 0
are some constants (k = 1, ..., q).

One of the most important special cases of the formula (2.1) is the case when
D is a disc {|z| < R}.

Theorem 2.2. Let f(z) 6≡ 0 be a meromorphic function in {|z| ≤ R}. Then
the following formula, called the Poisson-Jensen formula, holds:

ln |f(z)| = 1

2π

∫ 2π

0

ln |f(Reiθ)|Re
Reiθ + z

Reiθ − z dθ

−
∑
|am|<R

ln

∣∣∣∣ R2 − āmz
R(z − am)

∣∣∣∣+
∑
|bn|<R

ln

∣∣∣∣ R2 − bnz
R(z − bn)

∣∣∣∣ ,(2.2)

where am’s are zeros of f(z), and bn’s are its poles.

The proof immediately follows from the formulae (1.4), (1.8), and (1.9).
Applying (2.1) to the half-disc D = {|z| < R, Imz > 0}, and using the identities

(1.5), (1.6), and (1.11), we get the following result.

3Summands related to multiple zeros and poles are repeated in the right hand side of (2.1)
an appropriate number of times.
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Theorem 2.3. Let f(z) 6≡ 0 be a meromorphic function in the half-disc {|z| ≤
R, Imz ≥ 0}. Then

ln |f(z)| = 1

π

∫ R

−R
ln |f(t)|

{
r sinϕ

|z − t|2 −
R2r sinϕ

|R2 − zt|2

}
dt

+
1

2π

∫ π

0

ln |f(Reiθ)|
{

R2 − r2

|Reiθ − z|2 −
R2 − r2

|Re−iθ − z|2

}
dθ

−
∑

|am|<R, Imam>0

ln

∣∣∣∣ R2 − āmz
R(z − am)

· R(z − ām)

R2 − amz

∣∣∣∣
+

∑
|bn|<R, Im bn>0

ln

∣∣∣∣ R2 − b̄nz
R(z − bn)

· R(z − b̄n)

R2 − bnz

∣∣∣∣ ,
(2.3)

where am’s are zeros of the function f(z), and bn’s are its poles.

Remark. The formulae (2.2) and (2.3) are valid for functions f(z) satisfying
the conditions of the remark after Theorem 2.1 in the disc {|z| ≤ R} and the
half-disc {|z| ≤ R, Imz ≥ 0}, respectively.

Theorem 2.4. Let f(z) be a non-identically zero function meromorphic in the
disc {|z| ≤ R}. The following formulae hold (the last of them under the assumption
f(0) 6= 0, ∞):

ln f(z) =
1

2π

∫ 2π

0

ln |f(Reiθ)|Re
iθ + z

Reiθ − z dθ

−
∑
|am|<R

ln
R2 − āmz
R(z − am)

+
∑
|bn|<R

ln
R2 − b̄nz
R(z − bn)

+ iC;
(2.4)

dp

dzp
ln f(z) =

1

2π

∫ 2π

0

ln |f(Reiθ)| p!2Reiθ

(Reiθ − z)p+1
dθ

+ (p− 1)!
∑
|am|<R

(
āpm

(R2 − āmz)p
− (−1)p

(z − am)p

)

− (p− 1)!
∑
|bn|<R

(
bpn

(R2 − bnz)p
− (−1)p

(z − bn)p

)
;

(2.5)

dp

dzp
ln f(z)

∣∣∣∣
z=0

=
2p !

Rp
1

2π

∫ 2π

o

ln |f(Reiθ)|e−ipθdθ

+ (p− 1)!
∑
|am|<R

(
āpm
R2p
− 1

apm

)
− (p− 1)!

∑
|bn|<R

(
bpn
R2p
− 1

bpn

)
,

(2.6)

where C is a real constant, p = 1, 2, 3, ...; am’s are zeros of the function f(z), and
bn’s are its poles.

Proof. The functions in both sides of (2.4) are analytic as functions of z.
By Theorem 2.2 the real parts of these functions coincide. By Cauchy-Riemann
equations it follows that the functions are equal up to a purely imaginary additive
constant. The validity of (2.4) follows. The formula (2.5) follows from (2.4) by
differentiation. Finally, the formula (2.6) follows from (2.5) if we let z = 0. �
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Observe that in the case when f(z) does not have poles and zeros in {|z| ≤ R},
the formula (2.4) coincides with the classical Schwartz formula written for ln f(z).
We refer to (2.1) and (2.3)-(2.6) as the Nevanlinna formulae.

Exercise. Obtain analogues of (2.4) and (2.5) for functions meromorphic in
the half-disc {|z| ≤ R, Imz ≥ 0}.

Theorem 2.5. Let f(z) 6≡ 0 be a function meromorphic in the disc {|z| ≤ R}
and let

f(z) = cλz
λ + cλ+1z

λ+1 + . . . , cλ 6= 0(2.7)

be its Laurent expansion in the neighborhood of z = 0. Then the following formula
(called the Jensen formula) holds:

ln |cλ| =
1

2π

∫ 2π

0

ln |f(Reiθ)|dθ −
∑

o<|am|<R
ln

R

|am|

+
∑

0<|bn|<R
ln

R

|bn|
− λ lnR,

(2.8)

where am’s are zeros of f(z), and bn’s are its poles.

Proof. Let z → 0 in the Poisson-Jensen formula. For sums in the right-hand
side we get

−
∑
|am|<R

+
∑
|bn|<R

= −
∑

0<|am|<R
+

∑
0<|bn|<R

+λ ln
|z|
R

= −
∑

0<|am|<R
ln

R

|am|
+

∑
0<|bn|<R

ln
R

|bn|
+ o(1) + λ ln

|z|
R
.

Since in the left-hand side we get

ln |f(z) = λ ln |z|+ ln |cλ|+ o(1),

the formula (2.8) follows. �

Theorem 2.6. Let f(z) 6≡ 0 be a function meromorphic in the disc {|z| ≤ R}.
If f(0) 6=∞, then the following formula (called the Shimizu–Ahlfors formula) holds:

1

π

∫∫
|z|≤R

(
ln
R

|z|

)
|f ′(z)|2

(1 + |f(z)|2)2
dσ(z)

=
1

2π

∫ 2π

0

ln
√

1 + |f(Reiθ)|2dθ − ln
√

1 + |f(0)|2 +
∑
|bn|<R

ln
R

|bn|
,

(2.9)

where bn’s are poles of f(z). In the case f(0) = ∞ the right-hand side should be
replaced by

1

2π

∫ 2π

0

ln
√

1 + |f(Reiθ)|2dθ − ln |cλ| − λ lnR+
∑

0<|bn|<R
ln

R

|bn|
,

where cλ is the same as in (2.7).



2. THE NEVANLINNA, POISSON-JENSEN, AND SHIMIZU–AHLFORS FORMULAE 9

Proof. We use Theorem 1.1 with u(z) = ln
√

1 + |f(z)|2, D = {|z| ≤ R}. To
compute ∆u we let A(z) = Ref(z), B(z) = Imf(z). Then

u =
1

2
ln(1 +A2 +B2),

∂u

∂x
=
A∂A
∂x +B ∂B

∂x

1 +A2 +B2
,

∂2u

∂x2
=

1

(1 +A2 +B2)2

{[(
∂A

∂x

)2

+

(
∂B

∂x

)2

+A
∂2A

∂x2
+B

∂2B

∂x2

]

× (1 +A2 +B2)− 2

(
A
∂A

∂x
+B

∂B

∂x

)2
}
,

∂2u

∂y2
=

1

(1 +A2 +B2)2

{[(
∂A

∂y

)2

+

(
∂B

∂y

)2

+A
∂2A

∂y2
+B

∂2B

∂y2

]

× (1 +A2 +B2)− 2

(
A
∂A

∂y
+B

∂B

∂y

)2
}
.

Since

∆A = ∆B = 0,(
∂A

∂x

)2

+

(
∂B

∂x

)2

=

(
∂A

∂y

)2

+

(
∂B

∂y

)2

= |f ′(z)|2,

∂A

∂x

∂B

∂x
+
∂A

∂y

∂B

∂y
= 0,

we get

∆u =
2|f ′(z)|2

(1 + |f(z)|2)2
.(2.10)

Observe that in a neighborhood of a pole bk of order χk of the function f(z),
the relation (1.12) is valid with ck = bk, and dk = −χk. Taking into account (1.4)
and (1.8), we get

ln
∑√

1 + |f(z)|2 +
1

π

∫∫
|ζ|≤R

ln

∣∣∣∣ R2 − ζz
R(z − ζ)

∣∣∣∣ |f ′(ζ)|2
(1 + |f(ζ)|2)2

dσ(ζ)

=
1

2π

∫ 2π

0

R2 − |z|2
|Reiθ − z|2 ln

√
1 + |f(Reiθ)|2dθ +

∑
|bn|<R

ln

∣∣∣∣ R2 − b̄nz
R(z − bn)

∣∣∣∣ .(2.11)

If f(0) 6= ∞, then, letting z = 0, we get (2.9). If f(0) = ∞, we take into account
that

ln
√

1 + |f(z)|2 = λ ln |z|+ ln |cλ|+ o(1),∑
|bn|<R

ln

∣∣∣∣ R2 − bnz
R(z − bn)

∣∣∣∣ = λ ln
|z|
R

+
∑

0<|bn|<R
ln

R

|bn|
+ o(1),

when z → 0. It remains only to let z → 0 in (2.11). �
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3. The Carleman and Levin formulae

Theorem 3.1. Let f(z) be a non-identically-zero function in the semi-annulus
{0 < R0 ≤ |z| ≤ R, Imz ≥ 0}. Then the following formula (called the Carleman
formula) holds∑

m

(
1

rm
− rm

R2

)
sinϕm −

∑
n

(
1

ρn
− ρn

R2

)
sinψn

=
1

2π

∫ R

R0

(
1

t2
− 1

R2

)
ln |f(t)f(−t)|dt+

1

πR

∫ π

0

ln |f(Reiθ)| sin θdθ

+Q(R,R0; f),

(3.1)

where rme
iϕm ’s are the zeros, and ρne

iψn ’s are the poles of the function f(z) in
{R0 < |z| < R, Imz > 0}, and Q(R,R0; f) = O(1) as R→∞.

We start by proving the following analog of Theorem 1.1.

Theorem 3.2. Let D = {R0 < |z| < R, Imz > 0}, and let the function u(z)
satisfy the conditions of Theorem 1.1. Then

− 1

2π

∫∫
D

[
Im

(
1

ζ
+

ζ

R2

)]
∆u(ζ)dσ(ζ)

=
1

2π

∫ R

R0

(
1

t2
− 1

R2

)
[u(t) + u(−t)]dt+

1

πR

∫ π

0

u(Reiθ) sin θdθ

+
∑
ck∈D

dkIm

(
1

ck
+
ck

R2

)
+Q(1)(R,R0;u),

(3.2)

where Q(1)(R,R0;u) = O(1).

Proof. First we consider the case when none of the points ck belongs to
{|z| = R0, Imz ≥ 0}. We exclude from D discs of sufficiently small radius ε
centered at c1, ..., cq. We use the second Green formula for the obtained region with

u = u(ζ), v = −Im

(
1

ζ
+

ζ

R2

)
.

It is easy to see that the function v(ζ) satisfies the conditions:

a) ∆v = 0;

b) For ζ in the semi-circle {|z| = R, Imz ≥ 0} the following conditions are
satisfied

v = 0,
∂v

∂n
=

2

R2
sin θ, ζ = Reiθ;

c) For ζ in the line segments {z = t, R0 < t < R} and {z = t, −R < t < −R0}
the following equalities are satisfied

v = 0,
∂v

∂n
=

1

t2
− 1

R2
.

Let ε→ 0. Computing integrals over the boundaries of the excluded discs using an
argument similar to the one used in the proof of Theorem 1.1, we get the formula
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(3.2) with

Q(1)(R,R0;u) =
1

2π

∫
|ζ|=R0 0≤arg ζ≤π

(
u
∂v

∂n
− v ∂u

∂n

)
ds

= − 1

2π

∫ π

0

[
u(R0e

iθ)

(
1

R2
0

+
1

R2

)
sin θ +

(
1

R0
− R0

R2

)
sin θ

∂

∂R0
u(R0e

iθ)

]
×R0dθ = O(1) as R→∞.

We shall get rid of the condition that none of the points ck belongs to {|z| =
R0, Imz ≥ 0} in the following way. We choose R′0 > R0 in such a way that the
semi-circle {|z| = R′0, Imz ≥ 0} does not contain points ck. We write the formula
(3.2) for the region D′ = {R0 < |z| < R′0, Imz > 0}. Then we set

Q(1)(R,R0;u) = Q(1)(R,R′0;u)− 1

2π

∫ R′0

R0

(
1

t2
− 1

R2

)
[u(t) + u(−t)]dt

−
∑

ck∈D\D′
dkIm

(
1

ck
+
ck

R2

)
+

1

2π

∫∫
D\D′

[
−Im

(
1

ζ
+

ζ

R2

)]
∆u(ζ)dσ(ζ).

It is easy to see that Q(1)(R,R0;u) = O(1) as R→∞, and that the equation (3.2)
is satisfied. �

Theorem 3.1 can be derived from Theorem 3.2 if we let u(ζ) = ln |f(ζ)| (cf.
proof of Theorem 2.1); we take into account, also, the equalities

−Im

(
1

ζ
+

ζ

R2

)
=

(
1

r
− r

R2

)
sin θ, ζ = reiθ

Letting u(z) = ln
√

1 + |f(z)|2 in (3.2), and using (2.10), we get an analog of
the Shimizu–Ahlfors formula.

Theorem 3.3. Let f(z) 6≡ 0 be a function meromorphic in the semi-annulus
{0 < R0 ≤ |z| ≤ R, Imz ≥ 0}. Then

1

π

∫ R

R0

∫ π

0

(
1

r
− r

R2

)
sin θ

|f ′(reiθ)|2
(1 + |f(reiθ)|2)2

rdrdθ

=
1

2π

∫ R

R0

(
1

t2
− 1

R2

)
ln
√

(1 + |f(t)|2)(1 + |f(−t)|2)dt

+
1

πR

∫ π

0

ln
√

1 + |f(Reiθ)|2 sin θdθ

+
∑
n

(
1

ρn
− ρn

R2

)
sinψn +Q(2)(R,R0; f),

where ρne
iψn ’s are the poles of f(z), and Q(2)(R,R0; f) = O(1) as R→∞.

Let us turn to the Levin formula.
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Theorem 3.4. Let f(z) be a non-identically-zero function, meromorphic in the

domain

{∣∣∣∣z − iR2
∣∣∣∣ ≤ R

2

}
∪ {|z| ≤ R0}, 0 < R0 < R. Then

∑
m

(
sinϕm
rm

− 1

R

)
−
∑
n

(
sinψn
ρn

− 1

R

)

=
1

2π

∫ π−arcsin(R0R
−1)

arcsin(R0R−1)

ln |f(R sin θeiθ)| dθ

R sin2 θ
+ Q̃(R,R0; f),

(3.3)

where rme
iθ’s are zeros and ρne

iψn ’s are poles of the function f(z) belonging to the

domain

{∣∣∣∣z − iR2
∣∣∣∣ < R

2
, |z| > R0

}
; and Q̃(R,R0; f) = O(1) as R→∞.

We shall derive this theorem from a suitable analog of Theorem 1.1.

Theorem 3.5. Let D =

{∣∣∣∣z − iR2
∣∣∣∣ < R

2
, |z| > R0

}
, and let u(z) satisfy the

conditions of Theorem 1.1 in the domain D ∪ {|z| < R1}, R0 < R1 < R. Then

− 1

2π

∫∫
D

Im

(
1

ζ
+

i

R

)
∆u(ζ)dσ(ζ) =

1

2π

∫ π−arcsin(R0R
−1)

arcsin(R0R−1)

u(R sin θeiθ)

× dθ

R sin2 θ
+
∑
ck∈D

dkIm

(
1

ck
+

i

R

)
+ Q̃(1)(R,R0;u),

(3.4)

where Q̃(1)(R,R0;u) = O(1) as R→∞.

Proof. The argument is similar to the one used in the proof of Theorems 1.1
and 3.2. First we assume that none of the points ck belongs to the semi-circle
{|z| = R0, Imz > 0}. We delete from the domain D discs of radius ε centered at
c1, ..., cq, and use the second Green formula for the obtained region with

u = u(ζ), v = −Im

(
1

ζ
+

i

R

)
.

Letting ε→ 0 and observing that for z from the set

{∣∣∣∣z − iR2
∣∣∣∣ =

R

2
, |z| ≥ R0

}
=

{z = R sin θeiθ, arcsin(R0R
−1) ≤ θ ≤ π − arcsin(R0R

−1)}, we have

v = 0,
∂v

∂n
=

1

R2 sin2 θ
,

we get formula (3.4), furthermore

Q̃(1)(R,Ro;u) =
1

2π

∫ π−arcsin(R0R
−1)

arcsin(R0R−1)

{u(R0e
iθ)

(
−− sin θ

R2

)
−
(

sin θ

R0
− 1

R

)
∂

∂R0
u(R0e

iθ)}R0dθ = O(1) as R→∞.

If the semi-circle {|z| = R0, Imz > 0} contains some of the points ck, then we
first use the formula (3.4) for the domain D′ =

{∣∣z − iR2 ∣∣ < R
2 , |z| > R′0

}
, where

R′0, R0 < R′0 < R, is chosen in such a way that {|z| = R′0, Imz > 0} does not
contain points ck. We get the result for the region D in a way similar to the one
used at the end of the proof of Theorem 3.2. �
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We get Theorem 3.4 from Theorem 3.5 by letting u(ζ) = ln |f(ζ)|. If we let

u(ζ) = ln
√

1 + |f(ζ)|2, we get the following analog of the Shimizu–Ahlfors formula.

Theorem 3.6. Let f(z) be a non-identically-zero function meromorphic in the

domain

{∣∣∣∣z − iR2
∣∣∣∣ ≤ R

2

}
∪ {|z| ≤ R0}, 0 < R0 < R. Then

1

π

∫∫
|z−iR2 |≤R2 , |z|≥R0

(
sin θ

r
− 1

R

)
|f ′(reiθ)|2

(1 + |f(reiθ)|2)2
rdrdθ

=
1

2π

∫ π−arcsin(R0R
−1)

arcsin(R0R−1)

ln
√

1 + |f(R sin θeiθ)|2 dθ

R sin2 θ

+
∑
n

(
sinψn
ρn

− 1

R

)
+ Q̃(2)(R,R0; f),

where ρne
iψn’s are poles of f(z) belonging to the domain

{∣∣z − iR2 ∣∣ < R
2 , |z| > R0

}
,

and Q̃(2)(R,R0; f) = O(1) as R→∞.

4. The Nevanlinna characteristics. The first fundamental theorem of
the value distribution theory

Let f(z) be a meromorphic function. We shall introduce several real functions
defined on [0,∞) which characterize the behavior of f(z). The functions to be
introduced will be called the Nevanlinna characteristics of f(z).

The number of poles of f(z) in the disc {|z| ≤ r} will be denoted by n(r, f);
we assume that a pole of order m contributes m to the value of n(r, f). It is clear
that n(r, f) is integer-valued, non-decreasing, and right semi-continuous on [0,∞).
A point r0 ∈ (0,∞) is a point of discontinuity for n(r, f) if and only if the circle
{|z| = r0} contains poles of f(z), the value of the jump at r0 is equal to the number
of such poles. The set of points of discontinuity of n(r, f) cannot have limit points
in [0,∞), therefore on each interval [a, b] ⊂ [0,∞) the function n(r, f) is piecewise
constant.

Let

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) ln r.

This characteristic also describes the location of poles of f(z). The function
N(r, f) is a continuous non-decreasing function on (0,∞). Furthermore, as a func-
tion of ln r, this function is convex, that is, N(eu, f) is a convex function of u for
−∞ < u <∞. In fact, since

N(eu, f) =

∫ u

−∞
[n(ev, f)− n(0, f)]dv + n(0, f)u,

then N(eu, f) is an integral of a non-decreasing function. It is worth mentioning
that the characteristics n(r, f) and N(r, f) take into account the absolute values of
poles of f(z) only.

Characteristics N(r, f) is useful because it is related, in a natural way, to the
Jensen formula (2.8). The Jensen formula can be written as

N

(
r,

1

f

)
−N(r, f) =

1

2π

∫ 2π

0

ln |f(reiθ)|dθ − ln |cλ|.(4.1)
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This statement follows from the equalities∑
0<|bn|<r

ln
r

|bn|
= N(r, f)− n(0, f) ln r,

∑
0<|am|<r

ln
r

|am|
= N

(
r,

1

f

)
− n

(
0,

1

f

)
ln r,

−λ = n(0, f)− n
(

0,
1

f

)
,

where am’s are zeros of f(z), bn’s are its poles, and the number λ is determined from
(2.7). The validity of the third equality is obvious, the other two can be obtained
by using properties of the Stieltjes integral. In fact,∑

0<|bn|<r
ln

r

|bn|
=

∫ r

+0

ln
r

t
dn(t, f) =

∫ r

0

ln
r

t
d[n(t, f)− n(0, f)]

= ln
r

t
[n(t, f)− n(0, f)]

∣∣∣r
+0

+

∫ r

0

n(t, f)− n(0, f)

t
dt

=

∫ r

0

n(t, f)− n(0, f)

t
dt.

In order to introduce other characteristics we need the function ln+ x, defined
on the semi-axis {x ≥ 0} by the equality

ln+ x = max(lnx, 0).

The following relations are obvious:

lnx = ln+ x− ln+ 1

x
, | lnx| = ln+ x+ ln+ 1

x
, ln+ x = lnx∧,(4.2)

where x ≥ 0, x∧ = max(x, 1). We need also the following inequalities:

ln+

∣∣∣∣∣
n∏
ν=1

xν

∣∣∣∣∣ ≤
n∑
ν=1

ln+ |xν |,(4.3)

ln+

∣∣∣∣∣
n∑
ν=1

xν

∣∣∣∣∣ ≤
n∑
ν=1

ln+ |xν |+ lnn,(4.4)

| ln+ |x1| − ln+ |x2|| ≤
∣∣∣∣ln ∣∣∣∣x1

x2

∣∣∣∣∣∣∣∣ ,(4.5)

| ln+ |x1| − ln+ |x2|| ≤ ln+ |x1 − x2|+ ln 2,(4.6)

where x1, x2, ..., xn are arbitrary complex numbers. Inequalities (4.3) and (4.4) can
be obtained in the following way:

ln+

∣∣∣∣∣
n∏
ν=1

xν

∣∣∣∣∣ = ln+

(
n∏
ν=1

|xν |
)
≤ ln+

(
n∏
ν=1

|xν |∧
)

= ln

(
n∏
ν=1

|xν |∧
)

=

n∑
ν=1

ln |xν |∧ =

n∑
ν=1

ln+ |xν |;
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ln+

∣∣∣∣∣
n∑
ν=1

xν

∣∣∣∣∣ ≤ ln+

(
n∑
ν=1

|xν |
)
≤ ln+

(
n∑
ν=1

|xν |∧
)

= ln

(
n∑
ν=1

|xν |∧
)
≤ ln

(
n max

1≤ν≤n
|xν |∧

)
= ln

(
max

1≤ν≤n
|xν |∧

)
+ lnn ≤

n∑
ν=1

ln |xν |∧ + lnn =

n∑
ν=1

ln +|xν |+ lnn.

Inequalities (4.5) and (4.6) follow from (4.3) and (4.4), respectively. In fact, the
inequality (4.3) implies

ln+ |x1| = ln+

∣∣∣∣x1

x2
x2

∣∣∣∣ ≤ ln+

∣∣∣∣x1

x2

∣∣∣∣+ ln+ |x2|,

therefore, using the second of the relations (4.2), we get

(4.5′) ln+ |x1| − ln+ |x2| ≤
∣∣∣∣ln ∣∣∣∣x1

x2

∣∣∣∣∣∣∣∣ .
Similarly, by (4.4)

ln+ |x1| ≤ ln+(|x1 − x2|+ |x2|) ≤ ln+ |x2|+ ln+ |x1 − x2|+ ln 2,

hence

(4.6′) ln+ |x1| − ln+ |x2| ≤ ln+ |x1 − x2|+ ln 2.

Since the inequalities (4.5′) and (4.6′) are symmetric with respect to the variables
x1 and x2, we can interchange their positions, and we get the inequalities (4.5) and
(4.6).

Let

m(r, f) =
1

2π

∫ 2π

0

ln+ |f(reiϕ)|dϕ.

This function characterizes the growth of the function f(z). Later we shall see
that m(r, f) is a continuous function of r. We would like to mention only that
the behavior of this function can be less regular than the behavior of the function
N(r, f), which, as we have already mentioned, is a non-decreasing convex function
of ln r.

Example. Let

f(z) =
3

π2

∞∑
n=1

1

n2(z − n)
.

Then

|f(z)| ≤ 3

π2

∞∑
n=1

2

n2
= 1

outside the union of the discs
{
|z − n| < 1

2

}
, therefore m

(
n+ 1

2 , f
)

= 0, n =
1, 2 . . . . At the same time, it is clear that m(n, f) > 0, n = 1, 2, . . . .

Let a 6= ∞ be a complex number. The function m
(
r, 1
f−a

)
characterizes

the proximity of f(z) to a on the circle {|z| = r}. It is clear that the functions
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n
(
r, 1
f−a

)
and N

(
r, 1
f−a

)
characterize the moduli of the a-points of the function

f(z), that is, the moduli of roots of the equation

f(z) = a.

In the cases when the function f(z) we deal with is clear from context, we write

m(r, a), n(r, a), and N(r, a) instead of m
(
r, 1
f−a

)
, n
(
r, 1
f−a

)
, and N

(
r, 1
f−a

)
.

Also, we shall write m(r,∞), n(r,∞), and N(r,∞) instead of m(r, f), n(r, f),
and N(r, f). We shall use also the notation m(r, a, f), n(r, a, f), N(r, a, f). We
introduce the characteristic

T (r, f) = m(r, f) +N(r, f).

It turns out that for each non-constant function f(z) the sum m(r, a) +N(r, a)
is “almost independent” of a. Roughly speaking, this means that if f(z) takes the
value a more often than the value b, then it “approaches” to a more slowly than
it “approaches” to b. The precise statement of this result is given in the following
theorem, which Nevanlinna named “the first fundamental theorem of the value
distribution theory”.

Theorem 4.1. Let f(z) be a non-constant meromorphic function. Then

m(r, a) +N(r, a) = T (r, f) + ε(r, a)(4.7)

for each complex number a 6=∞, where ε(r, a) = O(1) as r →∞.

Proof. We use the Jensen formula in the form (4.1) for f(z)− a (we can do
this because f(z) is non-constant). Since the poles of this function coincide with
the poles of f(z), we get

(4.1′) N

(
r,

1

f − a

)
−N(r, f) =

1

2π

∫ 2π

0

ln |f(reiϕ)− a|dϕ− ln |cλ(a)|,

where cλ(a) is the first non-zero coefficient in the Laurent series of f(z)− a in the
neighborhood of z = 0.

Since by the first of the equalities in (4.2) we have

1

2π

∫ 2π

0

ln |f(reiϕ)− a|dϕ = m(r, f − a)−m
(
r,

1

f − a

)
,

then (4.1′) can be rewritten in the form

N

(
r,

1

f − a

)
+m

(
r,

1

f − a

)
= N(r, f) +m(r, f − a)− ln |cλ(a)|.

The inequality (4.6) implies that

| ln+ |f − a| − ln+ |f || ≤ ln+ |a|+ ln 2,

therefore |m(r, f − a)−m(r, f)| ≤ ln+ |a|+ ln 2. Letting

ε(r, a) = m(r, f − a)−m(r, f)− ln |cλ(a)|,
we get (4.7). To finish the proof, it remains to observe that

|ε(r, a)| ≤ ln+ |a|+ ln 2 + | ln |cλ(a)|| = O(1) as r →∞.
�
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Let us show that for a non-constant meromorphic function f(z) the charac-
teristic T (r, f) tends to ∞ as r → ∞, and hence the term ε(r, a) in (4.7) can be
regarded as unessential. Let a = f(0), then n(0, a) > 0, and we have

N(r, a) =

∫ r

0

n(t, a)− n(0, a)

t
dt+ n(0, a) ln r ≥ n(0, a) ln r→∞.

Since m(r, a) is non-negative, then (4.7) implies

T (r, f) ≥ N(r, a) +O(1)→∞ as r→∞.
Our next purpose is to find integral representations of the characteristics T (r, f).

We write f(z) as a quotient

f(z) =
f1(z)

f2(z)
,

where f1(z) and f2(z) = zλ + cλ+1z
λ+1 + ...(λ ≥ 0) are entire functions without

common zeros. Let
u(z) = max(|f1(z)|, |f2(z)|).

Then, despite the non-uniqueness of the choice of f1(z) and f2(z), we have

T (r, f) =
1

2π

∫ 2π

0

lnu(reiϕ)dϕ.(4.8)

In fact, it is easy to see that

ln+ |f(z)| = lnu(z)− ln |f2(z)|,
on the other hand, by the Jensen formula (4.1) we have

N

(
r,

1

f2

)
=

1

2π

∫ 2π

0

ln |f2(reiϕ)|dϕ.

Since N(r, f) = N
(
r, 1
f2

)
, then

T (r, f) = m(r, f) +N(r, f) =
1

2π

∫ 2π

0

[lnu(reiϕ)− ln |f2(reiϕ)|]dϕ

+
1

2π

∫ 2π

0

ln |f2(reiϕ)|dϕ =
1

2π

∫ 2π

0

lnu(reiϕ)dϕ.

Shimizu and Ahlfors proved a more refined theorem than Theorem 4.1. Also,
their theorem admits an interesting geometric interpretation.

Denote the Riemann sphere by S0, and the map inverse to the stereographic
projection of S0 onto the extended complex w-plane by ω = p(w). Let w and a
be two different points in the extended complex plane. Denote by [w, a] the length
of the line segment joining the points p(w) and p(a) on the sphere S0. Since the
diameter of S0 is equal to 1, then [w, a] ≤ 1 for each pair of points. It is easy to
check that

[w, a] =
|w − a|√

1 + |w|2
√

1 + |a|2
, w, a 6=∞

[w,∞] =
1√

1 + |w|2
.

The ratio between the length elements on S0 and on w-plane is equal to

|dp(w)|
|dw| =

1

1 + |w|2 ,
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and the ratio between the area elements dω(w) on S0 and dσ(w) on w-plane is equal
to

dω(w)

dσ(w)
=

(
|dp(w)|
|dw|

)2

=
1

(1 + |w|2)2
.

We introduce the spherical derivative of a meromorphic function f(z) by

◦
f (z) =

|f ′(z)|
1 + |f(z)|2 =

|dp(f(z))|
|df(z)|

|df(z)|
|dz| =

|dp(f(z))|
|dz| .

It is easy to see that the function f◦(z) is continuous at each finite point of the
z-plane.

Suppose that the function w = f(z) maps the disc {|z| ≤ r} onto the Riemann
surface Fr. The average number of sheets of the surface Fr can be determined as
the quotient of the area of Fr in the spherical metric and the area of the sphere S0,

that is π. If we denote the average number of sheets by
◦
A (r, f), we get

◦
A (r, f) =

1

π
area(Fr) =

1

π

∫∫
Fr

dω(w) =
1

π

∫∫
|w|≤∞

n(r, w)dω(w).

On the other hand

◦
A (r, f) =

1

π

∫∫
Fr

dω(w) =
1

π

∫∫
|z|≤r

(
dω(w)

dσ(z)

)
dσ(z) =

1

π

∫∫
|z|≤r

(
◦
f (z))2dσ(z).

Let f(z) be a non-constant meromorphic function. If f(0) 6= a, we let

◦
m (r, a) =

1

2π

∫ 2π

0

ln
1

[f(reiϕ), a]
dϕ− ln

1

[f(0), a]
,

if f(0) = a, we let

◦
m (r, a) =

1

2π

∫ 2π

0

ln
1

[f(reiϕ), a]
dϕ− ln

√
1 + |a|2
|cλ(a)| , a 6=∞,

◦
m (r,∞) =

1

2π

∫ 2π

0

ln
1

[f(reiϕ),∞]
dϕ− ln |cλ(0)|,

where cλ(a) is the first non-zero coefficient in the Laurent series of f(z)− a in the

neighborhood of z = 0. Observe that the integral from the definition of
◦
m (r, a) is

different from the one in the definition of m(r, a): now the distance between f(reiϕ)
and a is not the plane distance, but the length of a chord of the Riemann sphere.

The function

◦
T (r, f) =

∫ r

0

◦
A (t, f)

t
dt

is called the Shimizu–Ahlfors characteristic of f(z). By the continuity of
◦
f (z), the

function
◦
A (r, f) is a continuous function of r, and

◦
A (r, f) = O(r2) as r → 0,

therefore the function
◦
T (r, f) is finite and continuous for 0 ≤ r <∞. Since

d
◦
A (r, f)

dr
=
r

π

∫ 2π

0

(
◦
f (reiϕ))2dϕ > 0 for r > 0,

then the function
◦
A (r, f) is strictly increasing on [0,∞), and the function

◦
T (r, f)

is twice continuously differentiable and strictly increasing on [0,∞), and convex as
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a function of ln r. Also, the second derivative of
◦
T (r, f) with respect to ln r is

continuous for r ≥ 0 and positive for r > 0.

Theorem 4.2. Let f(z) be a non-constant meromorphic function. Then

◦
m (r, a) +N(r, a) =

◦
T (r, f)(4.9)

for each complex number a from the extended plane.

Proof. We need the equality

◦
T (r, f) =

1

π

∫∫
|z|≤r

(
ln

r

|z|

)
(
◦
f (z))2dσ(z),(4.10)

which can be obtained in the following way:

1

π

∫∫
|z|≤r

(
ln

r

|z|

)
(
◦
f (z))2dσ(z) =

∫ r

0

ln
r

t

{
1

π

∫ 2π

0

(
◦
f (teiϕ))2tdϕ

}
dt

=

∫ r

0

ln
r

t
d
◦
A (t, f) = ln

r

t

◦
A (t, f)

∣∣∣r
0

+

∫ r

0

◦
A (t, f)

t
dt =

◦
T (r, f).

Using the introduced notation, we can rewrite (2.9) from Theorem 2.6 in the
form

(4.9′)
◦
T (r, f) =

◦
m (r,∞) +N(r,∞).

Thus (4.9) has been proved for a = ∞; observe that a similar equality for the
Nevanlinna characteristic T (r, f) is valid by definition.

Now assume a 6=∞. Let

F (z, a) =
1 + āf(z)

f(z)− a .(4.11)

Let us show that (a)
◦
T (r, F (z, a)) =

◦
T (r, f), (b) the value

◦
m (r,∞) for the

function F (z, a) coincides with the value
◦
m (r, a) for the function f(z). Therefore

the result will follow if we write the equality (4.9′) for F (z, a).
Using the identities

F ′(z, a) = − 1 + |a|2
(f(z)− a)2

f ′(z)

and

|f − a|2 + |1 + āf |2 = (1 + |a|2)(1 + |f |2),

we get

◦
F (z, a) =

|F ′(z, a)|
1 + |F (z, a)|2 =

(1 + |a|2)|f ′(z)|
|f(z)− a|2 + |1 + āf(z)|2 =

◦
f (z).

As a consequence we get
◦
A (r, F (z, a)) =

◦
A (r, f), and, hence, the statement (a).

The equation (4.11) implies

[F,∞] =
1√

1 + |F |2
=

|f − a|√
|f − a|2 + |1 + āf |2

=
|f − a|√

1 + |a|2
√

1 + |f |2
= [f, a].
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If f(0) 6= a, this equality immediately implies (b). If f(0) = a, we should take
into account also the fact that the Laurent series for F (z, a) in the neighborhood
of z = 0 is of the form

F (z, a) =
1 + |a|2
cλ(a)

z−λ + . . . .

�

Remark. The basic idea of the argument used to derive (4.9) from its partic-
ular case a =∞ is the following. The Möbius transformation

w1 =
1 + āw

w − a
can be geometrically interpreted as the rotation of the Riemann sphere S0 under
which the image p(a) of the point a is mapped onto the North pole p(∞) of S0. If
we use this idea, the argument becomes intuitively obvious.

Let us prove that Theorem 4.1 is a corollary of Theorem 4.2. To do this it is
enough to show that

|m(r, a)− ◦
m (r, a)| < d(a),(4.12)

where d(a), 0 < d(a) <∞, depends on a only.
For a 6=∞ we have

1

[f, a]
=

√
1 + |f |2

√
1 + |a|2

|f − a| ≥
(

1

|f − a|

)∧
;

1

|f, a| ≤
√

1 + (|f − a|+ |a|)2
√

1 + |a|2
|f − a|

≤ 1 + |f − a|+ |a|
|f − a|

√
1 + |a|2 ≤

(
1 + |a|
|f − a| + 1

)
(1 + |a|)

≤
[(

1

|f − a|

)∧
(1 + |a|) +

(
1

|f − a|

)∧]
(1 + |a|) ≤

(
1

|f − a|

)∧
(2 + |a|)2.

Hence

ln+ 1

|f − a| ≤ ln
1

[f, a]
≤ ln+ 1

|f − a| + 2 ln(2 + |a|),

and we get (4.12). It is obvious that

|f |∧ ≤ 1

[f,∞]
≤ |f |∧

√
2,

therefore

ln+ |f | ≤ ln
1

[f,∞]
≤ ln+ |f |+ 1

2
ln 2,

and (4.12) remains true for a =∞.
Observe that (4.12) implies

|T (r, f)−
◦
T (r, f)| ≤ d1(f),

where d1(f) = 1
2 ln(2 + 2|f(0)|2) if f(0) 6= ∞, and d1(f) = 1

2 ln 2 + | ln |cλ(0)|| if

f(0) =∞, that is, the characteristics T (r, f) and
◦
T (r, f) have a bounded difference

as r→∞.
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Exercise. Prove the following formula, similar to (4.8):

◦
T (r, f) =

1

2π

∫ 2π

0

ln v(reiϕ)dϕ− ln v(0),

where

v(z) =
√
|f1(z)|2 + |f2(z)|2,

and f1(z), f2(z) have the same meaning as in the definition of the function u(z)

used in (4.8). (Hint. Use the equality ln v(z) = ln
√

1 + |f(z)|2 − ln |f2(z)|, the
Jensen formula for f2(z), and (4.9′).)

As we have already mentioned, the characteristic
◦
T (r, f) is a non-decreasing

convex function of ln r. It turns out that the same statement is valid for T (r, f).
This fact is not a trivial one because the behavior of the term m(r, f) in the sum
m(r, f) + N(r, f) can be quite irregular (see the example on p. 14). We shall use
the following theorem of H. Cartan.

Theorem 4.3. Let f(z) be a non-constant meromorphic function. Then

T (r, f) =
1

2π

∫ 2π

0

N(r, eiθ)dθ + d(f),(4.13)

where the constant d(f) does not depend on r.

Proof. Observe that in passing we shall prove measurability of N(r, eiθ) as a
function of θ.

Since N(r, a) is non-decreasing convex in ln r, then (4.13) immediately implies
that T (r, f) is also non-decreasing convex in ln r.

We need the formula:

1

2π

∫ 2π

0

ln |w − eiθ|dθ = ln+ |w|(4.14)

and the inequality

1

2π

∫ 2π

0

| ln |w − eiθ||dθ ≤ ln+ |w|+ 2 ln 2.(4.15)

The formula (4.14) can be proved in the following way. We use (2.8) for f(z) =
w − z and R = 1. If |w| ≥ 1, then this function does not have zeros and poles in
the disc {|z| < 1}, and we get

ln |w| = 1

2π

∫ 2π

0

ln |w − eiθ|dθ.

If 0 < |w| < 1, then f(z) has, in {|z| < 1}, a zero at w, and (2.8) implies

ln |w| = 1

2π

∫ 2π

0

ln |w − eiθ|dθ − ln
1

|w| .

Thus (4.14) has been proved for w 6= 0. For w = 0 the formula is obvious.
Further, using (4.2), we get

1

2π

∫ 2π

0

| ln |w − eiθ||dθ

= − 1

2π

∫ 2π

0

ln |w − eiθ|dθ + 2 · 1

2π

∫ 2π

0

ln+ |w − eiθ|dθ.
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Observing that ln+ |w − eiθ| ≤ ln+ |w| + ln 2, and using (4.14), we get (4.15).
We turn to the proof of Theorem 4.3. First we assume that f(0) 6= ∞. We

apply the Jensen formula (4.1) to f(z)− eiθ. If f(0) 6= eiθ, we get

N(r, eiθ)−N(r,∞) =
1

2π

∫ 2π

0

ln |f(reiϕ)− eiθ|dϕ− ln |f(0)− eiθ|.(4.16)

The right-hand side of this equality is measurable in θ. Since the equality holds
for all θ ∈ [0, 2π), except possibly one (for which eiθ = f(0)), then N(r, eiθ) is also
measurable in θ on [0, 2π). We integrate the equality (4.16) over [0, 2π] and divide
the result by 2π. We get

1

2π

∫ 2π

0

N(r, eiθ)dθ −N(r,∞)

=
1

2π

∫ 2π

0

{
1

2π

∫ 2π

0

ln |f(reiϕ)− eiθ|dϕ
}
dθ − 1

2π

∫ 2π

0

ln |f(0)− eiθ|dθ,
(4.17)

provided that the first integral in the right-hand side is well-defined. We shall show
this and also justify the change the order of integration in this integral. By the
Fubini theorem, it suffices to establish that

I =
1

2π

∫ 2π

0

{
1

2π

∫ 2π

0

| ln |f(reiϕ)− eiθ||dθ
}
dϕ <∞.

This follows from (4.15):

I ≤ 1

2π

∫ 2π

0

{ln+ |f(reiϕ)|+ 2 ln 2}dϕ = m(r, f) + 2 ln 2 <∞.

Changing the order of integration in (4.17) and using (4.14), we get

1

2π

∫ 2π

0

N(r, eiθ)dθ −N(r,∞) =
1

2π

∫ 2π

0

ln+ |f(reiϕ)|dϕ − ln+ |f(0)|.

The obtained equality is equivalent to (4.13) with d(f) = ln+ |f(0)|.
If f(0) = ∞, then the right-hand side of (4.16) will contain ln |cλ| instead of

ln |f(0)− eiθ|, where cλ is defined in (2.7). Therefore, using the same argument as
above, we get (4.13) with d(f) = ln |cλ|. �

The integral in the right-hand side of (4.13) can be regarded as an integral
average of N(r, a) over the circle |a| = 1 or over the equator of the sphere S0. One
can get analogous formulas for averages of N(r, a) over certain other sufficiently
large subsets of the sphere S0 (see R. Nevanlinna [NevR74, Chapter VI, §4]). We

shall give here only one identity for
◦
T (r, f) which will be used in Chapter IV.

Theorem 4.4. Let f(z) be a non-constant meromorphic function. Then

◦
T (r, f) =

1

π

∫∫
|a|≤∞

N(r, a)dω(a).(4.18)

Proof. Identity (4.18) could be obtained by a change of the order of integra-
tion:

◦
T (r, f) =

∫ r

0

◦
A (t, f)

t
dt =

1

π

∫ r

0

dt

t

∫∫
|a|≤∞

n(t, a)dω(a)

=
1

π

∫∫
|a|≤∞

dω(a)

∫ r

0

n(t, a)

t
dt =

1

π

∫∫
|a|≤∞

N(r, a)dω(a).
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However, in order to justify the change, we need to show that n(t, a) is measurable
in the two variables t and a on {0 ≤ t ≤ r, |a| ≤ ∞}. This would require a lengthy
argument. We pass over the difficulty in the following way. We use the equality∫∫

|a|≤∞
ln

1

[w, a]
dω(a) =

π

2
,(4.19)

which is valid for an arbitrary complex number w, |w| ≤ ∞. In fact, making the
change of variables

a′ =
1 + aw̄

a− w ,

which is equivalent to a rotation of the sphere S0, under which the point p(w) is
mapped onto p(∞), we get∫∫

|a|≤∞
ln

1

[w, a]
dω(a) =

∫∫
|a′|≤∞

ln
1

[∞, a′]dω(a′)

=

∫∫
|a′|≤∞

ln
√

1 + |a′|2
(1 + |a′|2)2

dσ(a′) = 2π

∫ ∞
0

ln
√

1 + r2

(1 + r2)2
rdr =

π

2
.

The equation (4.9) implies

N(r, a) =
◦
T (r, f)− 1

2π

∫ 2π

0

ln
1

[f(reiϕ), a]
dϕ+ ln

1

[f(0), a]
(4.20)

provided that a 6= f(0). We integrate this equation with respect to dω(a) over
|a| ≤ ∞. The measurability of N(r, a) in a follows from the measurability of the
right hand side of (4.20). Using (4.19) and changing the order of integration, we
get

1

π

∫∫
|a|≤∞

N(r, a)dω(a)

=
◦
T (r, f)− 1

2π

∫ 2π

0

dϕ
1

π

∫∫
|a|≤∞

ln
1

[f(reiϕ), a]
dω(a)

+
1

π

∫∫
|a|≤∞

ln
1

[f(0), a]
dω(a) =

◦
T (r, f)− 1

2π

∫ 2π

0

1

2
dϕ+

1

2
=
◦
T (r, f),

that is, (4.18). The legitimacy of the change of the order of integration follows
immediately from Fubini’s theorem, since the integrand is non-negative and mea-
surable in ϕ and a. �

5. The angular Nevanlinna characteristics, Tsuji chracteristics and
related analogs of the first fundamental theorem

The characteristics introduced in the previous section are fundamental for the
study of functions meromorphic in the whole complex plane. These characteristics
do not take into account, at least explicitly, the arguments of a-points. For this rea-
son in the studies devoted to the distribution of arguments of a-points an essential
role is played by different characteristics which we shall introduce now.

Let f(z) be meromorphic in the closed half-plane {Imz ≥ 0}. Let ρne
iψn ’s be

its poles; we count each of the poles according to its multiplicity. Let

c(r, f) =
∑

1<ρn≤r
sinψn.
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The value of the characteristic c(r, f) heavily depends on the arguments of poles of
f(z). Roughly speaking, the contribution of the pole ρne

iψn to c(r, f) is smaller the
closer it closer to the real line {Imz = 0} (in the sense that ψn is close to either 0
or π). The poles lying on the line {Imz = 0} do not contribute to c(r, f) at all. It
is clear that c(r, f) is non-decreasing, right-continuous in r on [1,∞) and piecewise
constant on each line segment [a, b] ⊂ [1,∞).

Let

C(r, f) = 2

∫ r

1

c(t, f)

(
1

t2
+

1

r2

)
dt.

This characteristic is naturally connected with the Carleman formula (3.1), which
can be written in the form

C

(
r,

1

f

)
− C(r, f) =

1

π

∫ r

1

(
1

t2
− 1

r2

)
ln |f(t)f(−t)|dt

+
2

πr

∫ π

0

ln |f(reiθ)| sin θdθ +Q(r, 1; f).

(5.1)

This statement follows from the equation

(5.1′) C(r, f) = 2
∑

1<ρn<r

(
1

ρn
− ρn

r2

)
sinψn,

which can be verified as follows:

2
∑

1≤ρn≤r

(
1

ρn
− ρn

r2

)
sinψn = 2

∫ r

1

(
1

t
− t

r2

)
dc(t, f)

= 2

(
1

t
− t

r2

)
c(t, f)

∣∣∣∣r
1

+ 2

∫ r

1

c(t, f)

(
1

t2
+

1

r2

)
dt = C(r, f).

Since each summand in (5.1′) is non-negative and non-decreasing, then C(r, f) is a
non-decreasing in r.

We introduce, also, characteristics:

A(r, f) =
1

π

∫ r

1

(
1

t2
− 1

r2

)
[ln+ |f(t)|+ ln+ |f(−t)|]dt,

B(r, f) =
2

πr

∫ π

0

ln+ |f(reiϕ)| sinϕdϕ, 1 ≤ r ≤ ∞.

These functions characterize the growth of f(z) as |z| → ∞; the function A charac-
terizes the growth along the real line {Imz = 0}, and the function B characterizes
the growth of f in the interior of the half-plane {Imz > 0}.

When there is no danger of confusion, the functions

A

(
r,

1

f − a

)
, B

(
r,

1

f − a

)
, C

(
r,

1

f − a

)
, a 6=∞,

will be denoted by

A(r, a), B(r, a), C(r, a),

respectively. These functions characterize the proximity of f(z) to a and the dis-
tribution of a-points. We also denote

A(r,∞) = A(r, f), B(r,∞) = B(r, f), C(r,∞) = C(r, f).
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Finally, we introduce

S(r, f) = A(r, f) +B(r, f) + C(r, f).

The characteristics A,B,C, c, and S will be called the Nevanlinna characteris-
tics for a half-plane.

The following result is an analog of the first fundamental theorem.

Theorem 5.1. Let f(z) be non-constant function meromorphic in the upper
half-plane {Imz ≥ 0}. Then

A(r, a) +B(r, a) + C(r, a) = S(r, f) + ε1(r, a)(5.2)

for each complex a 6=∞, where ε1(r, a) = O(1) as r →∞.

Proof. Following the analogy with Theorem 4.1 we apply the Carleman for-
mula in the form (5.1) to f(z) − a. Taking into consideration the first of the
equations in (4.2), we get

A

(
r,

1

f − a

)
+B

(
r,

1

f − a

)
+ C

(
r,

1

f − a

)
= A(r, f − a) +B(r, f − a) + C(r, f) +Q(r, 1; f − a).

Now we use (4.6) and get

|A(r, f − a)−A(r, f)| ≤ 2(ln+ |a|+ ln 2)
1

π

∫ r

1

(
1

t2
− 1

r2

)
dt

≤ 2

π
(ln+ |a|+ ln 2),

|B(r, f − a)−B(r, f)| ≤ (ln+ |a|+ ln 2)
2

πr

∫ π

0

sinϕdϕ

≤ 4

π
(ln+ |a|+ ln 2).

Hence we get (5.2) with

|ε1(r, a)| ≤ 6

π
(ln+ |a|+ ln 2) + |Q(r, 1; f − a)| = O(1)

as r→∞. �

Later we will need a more general result, dealing with functions meromorphic
in an angle {α ≤ arg z ≤ β}, 0 < β − α ≤ 2π. Letting k = π(β − α)−1, 1 ≤ r <∞,
we introduce functions, which we shall call angular Nevanlinna characteristics:

Aαβ(r, f) =
k

π

∫ r

1

(
1

tk
− tk

r2k

)
[ln+ |f(teiα)|+ ln+ |f(teiβ)|]dt

t
;

Bαβ(r, f) =
2k

πrk

∫ β

α

ln+ |f(reiϕ)| sin k(ϕ− α)dϕ;

Cαβ(r, f) = 2k

∫ r

1

cαβ(t, f)

(
1

tk
+

tk

r2k

)
dt

t
,

where

cαβ(r, f) =
∑

1<ρn≤r, α≤ψn≤β
sin k(ψn − α),
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and ρne
iψn ’s are poles of f(z) counted according to their multiplicity;

Sαβ(r, f) = Aαβ(r, f) +Bαβ(r, f) + Cαβ(r, f).

Note, that the characteristics A(r, f), B(r, f), C(r, f), and S(r, f) will be ob-
tained from the angular characteristics if α = 0, β = π. For functions Aαβ(r, a),
Bαβ(r, a), and Cαβ(r, a) we shall use the same convention as for their half-plane
analogs.

Theorem 5.2. Let f(z) be a non-constant, function meromorphic in the angle
{α ≤ arg z ≤ β}, 0 < β − α ≤ 2π. Then

Aαβ(r, a) +Bαβ(r, a) + Cαβ(r, a) = Sαβ(r, f) + ε2(r, a)

for each complex a 6=∞, where ε2(r, a) = O(1) as r →∞.

Proof. This theorem is a corollary of Theorem 5.1. In fact, considering in

the half-plane {Imz ≥ 0} the branch of w = z
1
k positive for z > 0, we introduce

the function f1(z) = f(z
1
k eiα). This function is meromorphic in the half-plane

{Imz ≥ 0}, except at the origin. Straightforward verification shows that

A(r, f1) = Aαβ(r
1
k , f), B(r, f1) = Bαβ(r

1
k , f), C(r, f1) = Cαβ(r

1
k , f),

hence

S(r, f1) = Sαβ(r
1
k , f).

Applying Theorem 5.1 to f1(z), we get the desired result. �

Now we turn to the characteristics generated by the Levin formula (3.3). These
characteristics will be called the Tsuji characteristics.

Let f(z) be a non-constant function, meromorphic in the half-plane {Imz ≥ 0}.
Denote by n(r, f) the number of poles of f(z) contained in the set{∣∣∣z − i r

2

∣∣∣ ≤ r

2
, |z| > 1

}
(each pole is counted according to its multiplicity). The characteristic n(r, f) takes
into account the arguments of the poles. The characteristic n(r, f) can only decrease
if we fix the moduli of the poles and change their arguments in such a way that
they will become closer to the real line {Imz = 0}.

Let

N(r, f) =

∫ r

1

n(t, f)

t2
dt, 1 < r <∞.

With this notation the Levin formula (3.3) can be written as

N

(
r,

1

f

)
−N(r, f) =

1

2π

∫ π−κ(r)

κ(r)

ln |f(r sinϕeiϕ)| dϕ

r sin2 ϕ
+ Q̃(r, 1; f),(5.3)

where

κ(r) = arcsin(
1

r
).

This statement follows from the equality∑
1<ρn≤r sinψn

(
sinψn
ρn

− 1

r

)
= N(r, f),



5. THE ANGULAR NEVANLINNA AND TSUJI CHARACTERISTICS 27

where ρne
iψn ’s are poles of the function f(z). Indeed, observe that the function

n(t, f) has jumps at the points t = ρn/ sinψn only, and the values of the jumps are
equal to the numbers of poles of f(z) lying on the circular arc{∣∣∣∣z − i t2

∣∣∣∣ =
t

2
, |z| > 1

}
.

Hence ∑
1<ρn≤sinψn

(
sinψn
ρn

− 1

r

)
=

∫ r

1

(
1

t
− 1

r

)
dn(t, f)

=

(
1

t
− 1

r

)
n(t, f)

∣∣∣∣r
1

+

∫ r

1

n(t, f)

t2
dt = N(r, f).

We introduce also

m(r, f) =
1

2π

∫ π−κ(r)

κ(r)

ln+ |f(r sinϕeiϕ)| dϕ

r sin2 ϕ

and

T(r, f) = m(r, f) +N(r, f).

With the customary convention for the meaning of the symbols m(r, a), n(r, a), and
N(r, a), we get the following analog of the first fundamental theorem.

Theorem 5.3. Let f(z) be a non-constant function, meromorphic in the half-
plane {Imz ≥ 0}. Then

m(r, a) +N(r, a) = T(r, f) + ε3(r, a), 1 < r <∞
for each complex number a 6=∞, where ε3(r, a) = O(1) as r →∞.

Proof. This is proved by an argument similar to those in the proofs of The-
orems 5.1 and 5.2. We apply the Levin formula in the form (5.3) to f(z) − a.
Combining this result with the observation that (4.6) implies

|m(r, f − a)−m(r, f)| ≤ (ln+ |a|+ ln 2)
1

2π

∫ π−κ(r)

κ(r)

dϕ

r sin2 ϕ

= (ln+ |a|+ ln 2)
1

2πr
2 cotκ(r)

= (ln+ |a|+ ln 2)

√
r2 − 1

πr
≤ 1

π
(ln+ |a|+ ln 2),

we get the desired result. �

Using Theorems 3.3 and 3.6 it is possible to prove analogs of the Shimizu–
Ahlfors theorem for angular Nevanlinna characteristics and for Tsuji characteristics.
Since these analogs will not be used in this book, we are not going to do this. Among
the results of this type we prove the following fact only.

Theorem 5.4. There exist continuous non-decreasing functions
◦
Sαβ(r, f) and

◦
T(r, f), such that

Sαβ(r, f) =
◦
Sαβ(r, f) +O(1),

T(r, f) =
◦
T(r, f) +O(1).
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Proof. Let
◦
S(r, f) =

1

π

∫ r

1

∫ π

1

(
1

t
− t

r2

)
(
◦
f(teiθ))2 sin θtdtdθ,

◦
T(r, f) =

1

π

∫∫
|z− ir2 |≤ r2 , |z|≥1

(
sin θ

t
− 1

r

)
(
◦
f(teiθ))2tdtdθ.

Since the integrands in both integrals are non-negative and are non-decreasing as

functions of r, then
◦
S (r, f) and

◦
T (r, f) are non-decreasing functions of r. Using

the inequality ∣∣∣ln+ |f | − ln
√

1 + |f |2
∣∣∣ ≤ 1

2
ln 2,

and Theorems 3.3 and 3.6, we get the estimates

|S(r, f)−
◦
S(r, f)| ≤ 2

π
· 1

2
ln 2 +

4

π
· 1

2
ln 2 + |Q(r, 1; f)|+ |Q(2)(r, 1; f)|,

and

|T(r, f)−
◦
T(r, f)| ≤ 1

π
· 1

2
ln 2 + |Q̃(r, 1; f)|+ |Q̃(2)(r, 1; f)|.

These estimates imply the statement of the theorem for S = S0π and T. General-
ization for Sαβ(r, f) can be achieved in the same way as in Theorem 5.2. �

In many situations the characteristics
◦
Sαβ(r, f) and

◦
T(r, f) are more convenient

than Sαβ(r, f) and T(r, f).

6. Some relations between the characteristics

The relations which we derive in this section will be used very often in this
book, usually without reference.

Let f1(z), ..., fq(z) be meromorphic functions. The inequalities (4.3) and (4.4)
immediately imply

m

r, q∏
j=1

fj

 ≤ q∑
j=1

m(r, fj)(6.1)

and

m

r, q∑
j=1

fj

 ≤ q∑
j=1

m(r, fj) + ln q.(6.2)

If fj(z) has a pole of order λj ≥ 0 at z0, then the order of the pole of
∏q
j=1 fj(z)

at z0 is at most
∑q
j=1 λj , and the order of the pole of

∑q
j=1 fj(z) at z0 is at most

max1≤j≤q λj ≤
∑q

j=1 λj . Hence, if we denote the number of poles of fj(z) in a set

D ⊂ C by nj(D), and the number of poles of
∏q
j=1 fj (or

∑q
j=1 fj) in D by n(D),

then

n(D) ≤
q∑
j=1

nj(D).

In particular, for D = {0 < |z| ≤ t} we get

n

t, q∏
j=1

fj

− n
0,

q∏
j=1

fj

 ≤ q∑
j=1

[n(t, fj)− n(0, fj)],
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n

t, q∑
j=1

fj

− n
0,

q∑
j=1

fj

 ≤ q∑
j=1

[n(t, fj)− n(0, fj)],

and for D = {z = 0} we get

n

0,

q∏
j=1

fj

 ≤ q∑
j=1

n(0, fj), n

0,

q∑
j=1

fj

 ≤ q∑
j=1

n(0, fj).

If r ≥ 1, these inequalities imply

N

r, q∏
j=1

fj

 ≤ q∑
j=1

N(r, fj)(6.3)

and

N

r, q∑
j=1

fj

 ≤ q∑
j=1

N(r, fj).(6.4)

Adding (6.1) to (6.3), and (6.2) to (6.4), we get for r ≥ 1:

T

r, q∏
j=1

fj

 ≤ q∑
j=1

T (r, fj),(6.5)

T

r, q∑
j=1

fj

 ≤ q∑
j=1

T (r, fj) + ln q.(6.6)

Theorem 4.1 can be considered as the following property of the characteristic
T (r, f):

T

(
r,

1

f − a

)
= T (r, f) +O(1).(6.7)

Let us prove the following more general fact

T (r, L(f)) = T (r, f) +O(1),(6.8)

where

L(w) =
αw + β

γw + δ
, αδ − βγ 6= 0,

is a Möbius transformation. Properties of Möbius transformations imply that it
suffices to consider the following cases: 1) L(w) = aw, 2) L(w) = w− a, 3) L(w) =
1
w
, where a is a complex number, a 6= 0,∞. By (4.5) and (4.6) we have

|m(r, af)−m(r, f)| ≤ | ln |a||,

|m(r, f − a)−m(r, f)| ≤ ln+ |a|+ ln 2.

Since it is clear that N(r, af) = N(r, f), N(r, f −a) = N(r, f), then we get (6.8) in
the cases 1) and 2). In the case 3) the relation (6.8) coincides with (6.7) for a = 0.

Observe that if |f(0)| = 1, then (4.1) immediately implies

(6.8′) T

(
r,

1

f

)
= T (r, f).
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In a similar manner, for functions meromorphic in an angle {α ≤ arg z ≤ β},
0 < β − α ≤ 2π, we get (r ≥ 1)

Dαβ

r, q∏
j=1

fj

 ≤ q∑
j=1

Dαβ(r, fj),(6.9)

Dαβ

r, q∑
j=1

fj

 ≤ q∑
j=1

Dαβ(r, fj) + ln q,(6.10)

where Dαβ(r, f) is any of the characteristics Aαβ(r, f), Bαβ(r, f), and Cαβ(r, f);

Sαβ(r, L(f)) = Sαβ(r, f) +O(1).(6.11)

For functions analytic in the half-plane

{Imz ≥ 0}

we get

D

r, q∏
j=1

fj

 ≤ q∑
j=1

D(r, fj),(6.12)

D

r, q∑
j=1

fj

 ≤ q∑
j=1

D(r, fj) +O(1),(6.13)

where D(r, f) is m(r, f) or N(r, f); and also

T(r, L(f)) = T(r, f) + O(1)(6.14)

From (6.5), (6.6), and (6.7) we get immediately

T (r,R(f1, ..., fq)) = O

 q∑
j=1

T (r, fj)

 ,(6.15)

where R(w1, ..., wq) is a rational function in w1, ..., wq. The equality (6.15) can be
made more precise in several important cases. Let

F (z) = f0(z) + f1(z)f(z) + ...+ fq(z)[f(z)]q,

where f0(z), ..., fq(z), f(z) are meromorphic functions. Then

T (r, F ) ≤ qT (r, f) +

q∑
j=0

T (r, fj) +O(1).(6.16)

This statement can be proved using induction in q. For q = 1 the inequality
(6.16) follows immediately from (6.5) and (6.6). Assume that (6.16) has been proved
for q − 1. Then

T (r, F1) ≤ (q − 1)T (r, f) +

q∑
j=1

T (r, fj) +O(1),
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where F1(z) = f1(z) + f2(z)f(z) + ... + fq(z)[f(z)]q−1. Since F (z) = f0(z) +
f(z)F1(z), then

T (r, F ) ≤ T (r, f0) + T (r, f) + T (r, F1) +O(1) ≤ qT (r, f) +

q∑
j=0

T (r, fj) +O(1).

The following inequalities can be proved using the same argument as were used to
prove (6.16)

m(r, F ) ≤ qm(r, f) +

q∑
j=0

m(r, fj) +O(1),(6.17)

N(r, F ) ≤ qN(r, f) +

q∑
j=1

N(r, fj).(6.18)

(The inequality (6.18) can be also easily proved directly).

Definition. A meromorphic function f(z) is called a rational function of
degree d if it can be written as a quotient of two polynomials, P (z) and Q(z), which
do not have common zeros, and the maximum of degrees of P (z) and Q(z) is equal
to d.

Theorem 6.1. If R(u) is a rational function of degree d and f(z) is a mero-
morphic function, then

T (r,R(f)) = dT (r, f) +O(1).(6.19)

We start by proving the following result.

Theorem 6.2. If P (u) is a polynomial of degree p and f(z) is a meromorphic
function, then

T (r, P (f(z))) = pT (r, f(z)) +O(1),(6.20)

m(r, P (f(z))) = pm(r, f(z)) +O(1),(6.21)

N(r, P (f(z))) = pN(r, f(z)).(6.22)

The equation (6.22) is obvious, because if f(z) has a pole of order λ ≥ 0 at z0,
then P (f(z)) has a pole of order λp at z0.

To prove (6.21) we need the following lemma, which will be used many times
later.

Lemma 6.1. Let K be a positive number and let E be the set of those ϕ satisfying
0 ≤ ϕ < 2π for which |f(reiϕ)| > K. Then

1

2π

∫
E

ln |f(reiϕ)|dϕ = m(r, f) +O(1).

This lemma immediately follows from the equality

1

2π

∫
E

ln |f(reiϕ)|dϕ = m

(
r,
f

K

)
+

mesE

2π
lnK = m(r, f) +O(1).

To prove (6.21) we observe that (6.17) implies

m(r, P (f)) ≤ pm(r, f) +O(1).(6.23)
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Let P (u) = apu
p + ap−1u

p−1 + ...+ a0, ap 6= 0. Let K > 1 be so large that∣∣∣ap +
ap−1

u
+ ...+

a0

up

∣∣∣ ≥ 1

2
|ap|

for |u| > K. Then for |f(z)| > K we have |P (f(z))| ≥ |f(z)|p
∣∣ap

2

∣∣ . Let us denote
by E the set of those arcs of {|z| = r} for which |f(z)| > K. Using the lemma we
get

m(r, P (f)) ≥ 1

2π

∫
E

ln |P (f(reiϕ))|dϕ ≥ 1

2π

∫
E

ln
{
|f(reiϕ)|p

∣∣∣ap
2

∣∣∣} dϕ
=

p

2π

∫
E

ln |f(reiϕ)|dϕ+O(1) = pm(r, f) +O(1).

(6.24)

The assertion (6.21) follows from (6.23) and (6.24). The assertion (6.20) follows
from (6.21) and (6.22).

Proof of Theorem 6.1. Let R(u) = P (u)/Q(u). Without loss of generality
we may assume that the degree of Q(u) is equal to d. If it is not the case we would
use

T

(
r,
P (f)

Q(f)

)
= T

(
r,
Q(f)

P (f)

)
+O(1).

Also, we may assume that the degree of P (u) is strictly less than d, because, if the
degree of P (u) is d, we may use the equation

T

(
r,
P (f)

Q(f)

)
= T

(
r,
P (f)

Q(f)
−R(∞)

)
+O(1) = T

(
r,
P1(f)

Q(f)

)
+O(1),

where P1(u) = P (u)−Q(u)R(∞) is a polynomial whose degree is strictly less than
d. So we assume that the degree of Q(u) is d and the degree of P (u) is strictly less
than d. We cover the zeros of Q(u) by a collection of open discs Γ in such a way
that none of the zeros of P (u) is contained in the closure of Γ. Denote by Ω the
complement of Γ in the extended complex plane. Since R(u)→ 0 and 1/Q(u)→ 0
as u→∞, then the functions R(u) and 1/Q(u) are bounded on Ω. There exist real
numbers 0 < M1,M2 <∞ such that M1 < |P (u)| < M2 for each u ∈ Γ. Hence for
u ∈ Γ we have

M1

|Q(u)| ≤ |R(u)| ≤ M2

|Q(u)| .

Let E1 and E2 be the subsets of {|z| = r} where f(z) ∈ Γ and f(z) ∈ Ω respectively.
Then

m(r,R(f)) =
1

2π

∫
z∈E1

ln+ |R(f(z))|dϕ+
1

2π

∫
z∈E2

ln+ |R(f(z))|dϕ

=
1

2π

∫
z∈E1

ln+ |R(f(z))|dϕ+O(1).

Further

1

2π

∫
z∈E1

ln+ |R(f(z))|dϕ ≤ 1

2π

∫
z∈E1

ln+ M2

|Q(f(z))|dϕ

≤ 1

2π

∫ 2π

0

ln+ M2

|Q(f(z))|dϕ = m

(
r,

M2

Q(f)

)
= m

(
r,

1

Q(f)

)
+O(1),
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1

2π

∫
z∈E1

ln+ |R(f(z))|dϕ ≥ 1

2π

∫
z∈E1

ln+ M1

|Q(f(z))|dϕ

= m

(
r,

M1

Q(f)

)
− 1

2π

∫
z∈E2

ln+ M1

|Q(f(z))|dϕ = m

(
r,

1

Q(f)

)
+O(1).

Combining these estimates we get

m(r,R(f)) = m

(
r,

1

Q(f)

)
+O(1).(6.25)

On the other hand poles of the functions R(f(z)) and 1/Q(f(z)) coincide. In
fact, if the function f(z) has a pole at z0, then the order of the pole of Q(f(z))
at z0 is greater than the order of the pole of P (f(z)) at z0, and R(f(z0)) = 0.
Hence the function R(f(z)) can have poles only at zeros of the function Q(f(z)).
The function Q(f(z)) has zeros only at those points at which f(z) is equal to one
of the zeros of Q(u). Since zeros of P (u) are different from zeros of Q(u), then
|P (f(z))|+ |Q(f(z))| > 0. Therefore the functions R(f(z)) and 1/Q(f(z)) have the
same poles. Hence N(r,R(f)) = N(r, 1/Q(f)). Adding this equality to (6.25) we
get

T (r,R(f)) = T (r, 1/Q(f)) +O(1)

By (6.20) we have

T (r, 1/Q(f)) = T (r,Q(f)) +O(1) = dT (r, f) +O(1).

Theorem 6.1 has been proved. �

The relations (6.14) and (6.20) are particular cases of Theorem 6.1. We would
like to mention also the following

Corollary. If R(z) is a rational function of degree d, then

T (r,R(z)) = d ln r +O(1).(6.26)

In fact, T (r, z) = ln+ r, and (6.26) follows from (6.19).

Exercises. (i) Let p be a natural number. Prove the relation T (r, [f(z)]p) =
pT (r, f(z)).

(ii) Prove that T (r, cosh z) = 2T (r, ez) +O(1) = 2
π r +O(1).

A theorem, analogous to Theorem 6.1, is valid for characteristics Sαβ and T.

Theorem 6.3. Let R(u) be a rational function of degree d. If f(z) is mero-
morphic in an angle {α ≤ arg z ≤ β}, 0 < β − α ≤ 2π, then

Sαβ(r,R(f)) = dSαβ(r, f) +O(1).

If f(z) is meromorphic in the half-plane {Imz ≥ 0}, then

T(r,R(f)) = dT(r, f) +O(1).

This theorem can be proved by minor modifications of the argument used in
the proof of Theorem 6.1. We leave the proof to the reader as exercise.

Definition. A meromorphic function is called transcendental if it is not ra-
tional.
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Theorem 6.4. A meromorphic function f(z) is transcendental if and only if

lim inf
r→∞

T (r, f)

ln r
=∞.(6.27)

Sufficiency of the condition (6.27) follows from (6.26). Let us prove the neces-
sity. Assume that (6.27) does not take place, that is,

lim inf
r→∞

T (r, f)

ln r
= K <∞.(6.28)

Then f(z) has at most p = [K] poles. In fact, let us number the poles according
to their moduli, the pole with the smallest modulus comes first. If there is a pole
number (p+ 1), denote its modulus by r0. We have

N(r, f) ≥
∫ r

r0

n(t, f)− n(0, f)

t
dt+ n(0, f) ln r

≥
∫ r

r0

p+ 1− n(0, f)

t
dt+ n(0, f) ln r

= [p+ 1− n(0, f)] ln
r

r0
+ n(0, f) ln r = (p+ 1) ln r +O(1).

Hence

lim inf
r→∞

T (r, f)

ln r
≥ lim inf

r→∞

N(r, f)

ln r
≥ p+ 1 > K,

we get a contradiction with (6.28). In a similar way we prove that f(z) has at most
p zeros. Therefore there exists a rational function R(z), such that

g(z) = f(z)R(z)

has neither zeros nor poles. Since

T (r, g) ≤ T (r, f) + T (r,R) = T (r, f) +O(ln r),

then

lim inf
r→∞

T (r, g)

ln r
≤ K1 <∞.

We need to show that g(z) ≡ const. This statement can be derived from the
following lemma.

Lemma 6.2. Let g(z) be an entire function without zeros satisfying

lim inf
r→∞

T (r, g)

rλ
= 0

for some λ > 0. Then

g(z) = eP (z),

where P (z) is a polynomial whose degree is less than λ.

Proof. Observe that the function

P (z) = ln g(z) =

∫ z

0

g′(ζ)

g(ζ)
dζ + ln g(0)

is an entire function. Let

P (z) =

∞∑
p=0

cpz
p.
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By (2.6) for all r > 0 and p = 1, 2, . . . we have

dp

dzp
ln g(z)

∣∣∣∣
z=0

=
2p!

rp
1

2π

∫ 2π

0

ln |g(reiθ)|e−ipθdθ,

hence

|cp| =
1

p!

∣∣∣∣ dpdzp ln g(z)

∣∣∣∣
z=0

∣∣∣∣ ≤ 2

rp
1

2π

∫ 2π

0

| ln |g(reiθ)||dθ

=
2

rp

[
m(r, g) +m

(
r,

1

g

)]
.

Since m(r, g) ≤ T (r, g), and (by Theorem 4.1) m
(
r, 1
g

)
≤ T (r, g) +O(1), then

|cp| ≤
2

rp
[2T (r, g) +O(1)].

Letting r →∞, we see that cp = 0 for p ≥ λ. �

We are mostly interested in transcendental meromorphic functions. For this
reason, in our estimates for T (r, f), terms which are O(ln r) can be disregarded.

Theorem 6.5. Let f(z) be a meromorphic function, Rj(z), 0 ≤ j ≤ p, be
rational functions, Rp(z) 6≡ 0; and

F (z) = Rp(z)[f(z)]p +Rp−1(z)[f(z)]p−1 + ...+R0(z).

Then

T (r, F ) = pT (r, f) +O(ln r),(6.29)

m(r, F ) = pm(r, f) +O(ln r),(6.30)

N(r, F ) = pN(r, f) +O(ln r).(6.31)

Proof. For rational f(z) the result is trivial. For this reason we assume that
f(z) is transcendental. Let M be a finite set containing the poles of all functions
Rj(z), 0 ≤ j ≤ p, and the zeros of Rp(z). If the function f(z) has a pole of
order λ(≥ 0) at some z0 /∈ M , then F (z) has a pole of order λp at z0. Hence
n(r, F ) = pn(r, f) + O(1), and we get the equality (6.31). From (6.17) we get
m(r, F ) ≤ pm(r, f) + O(ln r). Let us show that the inverse inequality is also true.
Let Rj(z) = βjz

αj(1+o(1)) as z →∞, where βj 6= 0,, and αj is an integer. Denote
by λ the largest of the differences αj−αp, 0 ≤ j ≤ p−1. Let χ = max(1, λ+1, αp).
Denote by E the set of those z for which

|f(z)| ≥ |z|χ,Ω = {|z| <∞}\E.
It is clear that for z ∈ E, |z| ≥ r0 we have∣∣∣∣1 +

Rp−1(z)

R0(z)

1

f(z)
+ · · ·+ R0(z)

Rp(z)

1

[f(z)]p

∣∣∣∣
=

∣∣∣∣1 +
βp−1

βp

zαp−1−αp(1 + o(1))

f(z)
+ · · ·+ β0

βp

zα0−αp(1 + o(1))

[f(z)]p

∣∣∣∣
≥ 1−

∣∣∣∣βp−1

βp

∣∣∣∣ |z|λ−χ(1 + o(1))− · · · −
∣∣∣∣β0

βp

∣∣∣∣ |z|λ−pχ(1 + o(1)) >
1

2
,

|F (z)| ≥ |βp|
2

(1 + o(1))|z|αp |f(z)|p.
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Let E(r) = E ∩ {|z| = r}, Ω(r) = Ω ∩ {|z| = r}. Then (z = reiϕ)

m(r, F ) ≥ 1

2π

∫
E(r)

ln+ |F (z)|dϕ ≥ O(ln r) +
1

2π

∫
E(r)

ln+{|f(z)|}pdϕ

= O(ln r) + pm(r, f)− 1

2π

∫
Ω(r)

ln+{|f(z)|p}dϕ

≥ O(ln r) + pm(r, f)− pχ ln r = pm(r, f) +O(ln r).

We have proved (6.30). The equality (6.29) follows from (6.30) and (6.31). �

Corollary. Let f(z) be a meromorphic function whose series in the neigh-
borhood of z = 0 is f(z) = cλz

λ + cλ+1z
λ+1 + ..., cλ 6= 0. Let f1(z) = f(z)/cλz

λ.
Then

T (r, f1) = T (r, f) +O(ln r), m(r, f1) = m(r, f) +O(ln r),

N(r, f1) = N(r, f) +O(ln r), m

(
r,

1

f1

)
= m

(
r,

1

f

)
+O(ln r),

N

(
r,

1

f1

)
= N

(
r,

1

f

)
+O(ln r).

This corollary allows us, in many cases, to assume that transcendental function
f(z) under consideration is normalized by the condition f(0) = 1.

Exercise. Let f(z) be a meromorphic function, and Rj(z) be rational func-
tions, 1 ≤ j ≤ 4, satisfying the condition: R1(z)R4(z)−R2(z)R3(z) 6≡ 0. Set

F (z) =
R1(z)f(z) +R2(z)

R3(z)f(z) +R4(z)
.

Show that T (r, F ) = T (r, f) +O(ln r).

Proofs of the following two theorems are left to the reader as exercises.

Theorem 6.6. Let f(z) be a meromorphic function, p be a natural number,
f1(z) = f(zp). Then

m(r, f1) = m(rp, f), N(r, f1) = N(rp, f),

T (r, f1) = T (rp, f).

Corollary. Let p be a natural number, f(z) be a meromorphic function,
such that f1(z) = f(z1/p) is single-valued. Then

m(r, f1) = m(r1/p, f), N(r, f1) = N(r1/p, f),

T (r, f1) = T (r1/p, f).

Theorem 6.7. Let f(z) be a meromorphic function, f1(z) = f(Az), where
A 6= 0. Then

m(r, f1) = m(|A|r, f), N(r, f1) = N(|A|r, f)− n(0, f) ln |A|,

T (r, f1) = T (|A|r, f)− n(0, f) ln |A|.
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7. Connection between the growth of the modulus of a meromorphic
function and the growth of its characteristic T (r, f)

Let f(z) be a meromorphic function. Let

M(r, f) = max
|z|=r

|f(z)|.

We shall study relations between M(r, f) and T (r, f). First we consider the case
when f is entire.

Theorem 7.1. Let f(z) be an entire function, and let 0 < r < R. Then

T (r, f) ≤ ln+M(r, f) ≤ R + r

R − rT (R, f).(7.1)

Proof. Since ln+ |f(z)| ≤ ln+M(r, f) for |z| = r, then

T (r, f) = m(r, f) ≤ ln+M(r, f).

Next we suppose that |f(z0)| = M(r, f), |z0| = r. We use the Poisson-Jensen
formula (2.2) for a disc {|z| ≤ R}. We get

lnM(r, f) = ln |f(z0)|

=
1

2π

∫ 2π

0

ln |f(Reiθ)|Re
Reiθ + z0

Reiθ − z0
dθ −

∑
|aµ|<R

ln

∣∣∣∣ R2 − āµz0

R(r0 − aµ)

∣∣∣∣ .(7.2)

Since the summands in the right-hand side of (7.2) represent the values of the Green
function for a disc, they are positive. Also

0 < Re
Reiθ + z0

Reiθ − z0
=

R2 − |z0|2
|Reiθ − z0|2

≤ R+ r

R− r .(7.3)

Therefore

1

2π

∫ 2π

0

ln |f(Reiθ)|Re
Reiθ + z0

Reiθ − z0
dθ

≤ 1

2π

∫ 2π

0

ln+ |f(Reiθ)|Re
Reiθ + z0

Reiθ − z0
dθ

≤ R+ r

R− r
1

2π

∫ 2π

0

ln+ |f(Reiθ)|dθ =
R+ r

R− rm(R, f)

(7.4)

and

lnM(r, f) ≤ R+ r

R− rm(R, f) =
R+ r

R− rT (R, f).

Since the right-hand side of this inequality is positive, the right side of the inequality
of (7.1) follows. �

Now we consider the connection between T (r, f) and lnM(r, f) for meromor-
phic functions. In distinction from an entire f , for a non-constant meromorphic f ,
it is possible that lim infr→∞M(r, f) <∞: in the example on page ??? we have

M(n+ 1/2, f) ≤ 1, n = 0, 1, 2, . . .

Hence, in general, the left inequality in (7.1) is not valid for meromorphic
functions. If f(z) has a pole on the circle {|z| = r}, then M(r, f) = +∞,. Hence, in
general, an estimate of M(r, f) from above in terms of T (R, f), R > r, is impossible.
Nevertheless for meromorphic functions there is a significantly weaker analogue of
the right inequality in (7.1). We mean the following theorem due to R. Nevanlinna.
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Theorem 7.2. Let f(z) be a meromorphic function, k > 1 be a real number.
Then

1

r

∫ r

0

ln+M(t, f)dt ≤ C(k)T (kr, f),(7.5)

where the constant C(k) > 1 depends on k only.

First we prove two lemmas, which will be used not only in the proof of Theorem
7.2.

Lemma 7.1. Let R′ > R > 1. Then

n(R, f) ≤ N(R′, f)

ln R′

R

≤ R′

R′ −RN(R′, f).

Proof. Indeed,

N(R′, f) ≥
∫ R′

R

n(t, f)− n(0, f)

t
dt+ n(0, f) lnR′

≥ [n(R, f)− n(0, f)] ln
R′

R
+ n(0, f) lnR′

= n(R, f) ln
R′

R
+ n(0, f) lnR ≥ n(R, f) ln

R′

R
= n(R, f)

∫ R′

R

dt

t
≥ n(R, f)

R′ −R
R′

.

�
Lemma 7.2. Let ϕ(x) be an even integrable real-valued function on (−a, a),

non-increasing on (0, a). (The case ϕ(0) = +∞ is allowed). Let E ⊂ (−a, a) be a
measurable subset, mesE = 2b. Then∫

E

ϕ(x)dx ≤
∫ b

−b
ϕ(x)dx.

Proof. Let E1 = E ∩ (−b, b), E2 = E\E1, E3 = (−b, b)\E1. It is clear that
mesE2 = mesE3 = 2b − mesE1. For x ∈ (−b, b) we have ϕ(x) ≥ ϕ(b), and for
x /∈ (−b, b) we have ϕ(x) ≤ ϕ(b). Hence∫

E2

ϕ(x)dx ≤ ϕ(b)mesE2 = ϕ(b)mesE3 ≤
∫
E3

ϕ(x)dx.

Adding the integral ∫
E1

ϕ(x)dx

to both sides of the inequality, we get the desired inequality. �
Proof. (Theorem 7.2) Denote zeros of f(z) by aµ’s, and poles of f(z) by

bν ’s. Let 0 ≤ t ≤ r, R =
√
kr. Using the Poisson-Jensen formula for the disc

{|z| ≤ R}, we get

ln|f(teiϕ)| = 1

2π

∫ 2π

0

ln |f(Reiθ)|Re

(
Reiθ + teiϕ

Reiθ − teiϕ

)
dθ

+
∑
|bν |<R

ln

∣∣∣∣ R2 − b̄νteiϕ
R(teiϕ − bν)

∣∣∣∣− ∑
|aµ|<R

ln

∣∣∣∣ R2 − āµteiϕ
R(teiϕ − aµ)

∣∣∣∣
≤ 1

2π

∫ 2π

0

ln |f(Reiθ)|Re

(
Reiθ + teiϕ

Reiθ − teiϕ

)
dθ +

∑
|bν |<R

ln

∣∣∣∣ R2 − b̄νteiϕ
R(teiϕ − bν)

∣∣∣∣ .
(7.6)
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We estimate the integral in the right hand side using (7.4), and estimate the sum
using ∣∣∣∣ R2 − bνteiϕ

R(teiϕ − bν)

∣∣∣∣ ≤ R2 + |bν |t
R|t− |bν ||

≤ 2R

|t− |bν ||
.

Then we get in succession the following inequalities

ln |f(teiϕ)| ≤ R+ t

R− tm(R, f) +
∑
|bν |<R

ln
2R

|t− |bν ||
;

ln+M(t, f) ≤ R+ t

R− tm(R, f) +
∑
|bν |≤R

ln
2R

|t− |bν ||

≤ R+ r

R− rm(R, f) +
∑
|bν |≤R

ln
2R

|t− |bν ||
;

1

r

∫ r

0

ln+M(t, f)dt ≤ R+ r

R− rm(R, f) +
∑
|bν |≤R

1

r

∫ r

0

ln
2R

|t− |bν ||
dt.(7.7)

Using Lemma 7.2 and straightforward transformations, we get∫ r

0

ln
2R

|t− |bν ||
dt =

∫ r−|bν |

−|bν |
ln

2R

|τ | dτ ≤
∫ r/2

−r/2
ln

2R

|τ | dτ

= 2

∫ r/2

0

ln
2R

τ
dτ = r ln

4eR

r
= r ln(4e

√
k).

Hence (7.7) implies

1

r

∫ r

0

ln+M(t, f)dt ≤
√
k + 1√
k − 1

m(
√
kr, f) + n(R, f) ln(4e

√
k).(7.8)

Taking R′ =
√
kR, we estimate n(R, f) from above using Lemma 7.1; also, we take

into account the inequalities

m(
√
kr, f) ≤ T (

√
kr, f) ≤ T (kr, f), N(R′, f) ≤ T (R′, f) ≤ T (kr, f).

Hence (7.8) implies (7.5) with

C(k) =

√
k + 1√
k − 1

+
ln(4e

√
k)

ln
√
k

.

�

Corollary. Under the conditions of Theorem 7.2 the inequality holds

1

r

∫ r

0

ln+M

(
t,

1

f − a

)
dt ≤ 2C(k)T (kr, f)

for r > r0, r0 = r0(k, a),

To prove this corollary, it suffices to apply Theorem 7.2 to the function 1/(f(z)−
a), and to use the first fundamental theorem (Theorem 4.1).

We shall prove two more theorems connecting the behavior of the modulus of
a meromorphic function f with the behavior of T (r, f).
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Theorem 7.3. Let f(z) be a meromorphic function, k, δ, r be real numbers
satisfying k > 1, 0 < δ ≤ 2π, r > 1. There exists a constant C1(k, δ) such that
each measurable subset Er ⊂ [−π, π] with mesEr = δ satisfies∫

Er

ln+ |f(reiϕ)|dϕ ≤ C1(k, δ)T (kr, f),(7.9)

where C1(k, δ) =
6k

k − 1
δ ln

2πe

δ
→ 0 as δ → 0.

Proof. First we assume that δ < π. We write the inequality (7.6) with t = r

for the disc {|z| ≤ R}, R =
√
kr:

ln |f(reiϕ)| ≤ 1

2π

∫ 2π

0

ln |f(Reiθ)|Re

(
Reiθ + reiϕ

Reiθ − reiϕ

)
dθ

+
∑
|bν |<R

ln

∣∣∣∣ R2 − b̄νreiϕ
R(reiϕ − bν)

∣∣∣∣ ≤ R+ r

R− rm(R, f) +
∑
|bν |<R

ln
2R

|reiϕ − bν |

≤ R+ r

R− rT (R, f) + n(0, f) ln
2R

r
+

∑
0<|bν |<R

ln
2R∣∣rei(ϕ−βν) − |bν |

∣∣ ,
βν = arg bν .

The right-hand side of the inequality is non-negative, therefore we may replace
ln |f(reiϕ)| by ln+ |f(reiϕ)| in the left-hand side. Let us integrate the obtained
inequality over the set Er. We get∫

Er

ln+ |f(reiϕ)|dϕ ≤ δR+ r

R− rT (R, f) + δn(0, f) ln
2R

r

+
∑

0<|bν |<R

∫
Er

ln
2R∣∣rei(ϕ−βν) − |bν |

∣∣dϕ.
We apply Lemma 7.2 and get∫

Er

ln
2R∣∣rei(ϕ−βν) − |bν |

∣∣dϕ ≤ ∫ δ/2

−δ/2
ln

2R

|reiϕ − |bν ||
dϕ

≤
∫ δ/2

−δ/2
ln

2R

r| sinϕ|dϕ ≤ 2

∫ δ/2

0

ln

√
kπ

ϕ
dϕ = δ ln

2e
√
kπ

δ
.

Hence ∫
Er

ln+ |f(reiϕ)|dϕ ≤ δ
√
k + 1√
k − 1

T (
√
kr, f) + δn(0, f) ln 2

√
k

+
{
n(
√
kr, f)− n(0, f)

}
δ ln

2
√
keπ

δ

≤ δ
√
k + 1√
k − 1

T (kr, f) + n(
√
kr, f)δ ln

2
√
keπ

δ
.

(7.10)

We estimate n(
√
kr, f) using Lemma 7.1 with R′ = kr. We get

n(
√
kr, f) ≤ N(kr, f)

ln
√
k
≤ T (kr, f)

ln
√
k
.(7.11)

Using (7.10) and (7.11) we get∫
Er

ln+ |f(reiϕ)|dϕ ≤ C(k, δ)T (kr, f),
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where

C(k, δ) = δ

(√
k + 1√
k − 1

+
ln 2
√
keπ
δ

ln
√
k

)
= δ

(
2
√
k√

k − 1
+

2

ln k
ln

(
2eπ

δ

))
<

(
4k

k − 1
+

2

ln k

)
δ ln

2eπ

δ
<

6k

k − 1
δ ln

2eπ

δ
= C1(k, δ),

and (7.9) is proved.
For π ≤ δ ≤ 2π we use the trivial estimate∫

Er

ln+ |f(reiϕ)|dϕ ≤ 2πm(r, f) ≤ 2πT (r, f).

Since T (r, f) ≤ T (kr, f) and 2π ≤ 2δ ≤ C1(k, δ), the inequality (7.9) has been
proved in this case also. �

Remark. It is clear that we can replace C1(k, δ) by C(k, δ) < C1(k, δ) in the
inequality (7.9), but C1(k, δ) is simpler than C(k, δ).

Theorem 7.4. Let E be a measurable subset of [−π, π], Φ(ϕ) be an integrable
non-negative function on E, R(r) be a positive function on {r ≥ r0 > 0}, satisfying
R(r) → ∞ as r → ∞, and such that R(kr) = O{R(r)}. for some real k > 1.
Suppose that f(z) is a meromorphic function, such that T (r, f) = O{R(r)}, and
for each δ > 0 there exists a subset Eδ ⊂ E,mesEδ = δ, such that one of the
following three conditions

(a) ln+ |f(reiϕ)| ≤ Φ(ϕ)R(r) + o(R(r)),

(b) ln+ |f(reiϕ)| ≥ Φ(ϕ)R(r) + o(R(r)),

(c) ln+ |f(reiϕ)| = Φ(ϕ)R(r) + o(R(r))

is satisfied uniformly in ϕ for ϕ ∈ E\Eδ. Then

(a′) lim sup
r→∞

1

R(r)

∫
E

ln+ |f(reiϕ)|dϕ ≤
∫
E

Φ(ϕ)dϕ,(7.12)

(b′) lim inf
r→∞

1

R(r)

∫
E

ln+ |f(reiϕ)|dϕ ≥
∫
E

Φ(ϕ)dϕ,(7.13)

(c′) lim
r→∞

1

R(r)

∫
E

ln+ |f(reiϕ)|dϕ =

∫
E

Φ(ϕ)dϕ,(7.14)

respectively.

Proof. Let us prove (a′). Using (7.9) we get∫
E

ln+ |f(reiϕ)|dϕ =

∫
E\Eδ

ln+ |f(reiϕ)|dϕ+

∫
Eδ

ln+ |f(reiϕ)|dϕ

≤ R(r)

∫
E\Eδ

Φ(ϕ)dϕ + o(R(r)) + C1(k, δ)T (kr, f)

≤ R(r)

∫
E

Φ(ϕ)dϕ + o(R(r)) + C1(k, δ)O{R(r)}.

Hence

lim sup
r→∞

1

R(r)

∫
E

ln+ |f(reiϕ)|dϕ ≤
∫
E

Φ(ϕ)dϕ + C1(k, δ)A,
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where A is a constant. Letting δ → 0, we get (a′). The proof of (b′) is trivial after
we observe that

lim
δ→0

∫
Eδ

Φ(ϕ)dϕ = 0.

The equation (c′) follows from (a′) and (b′). �

Remark 1. If we replace the function Φ(ϕ) in Theorem 7.4 by a bounded
function Φ(ϕ, r) depending on a parameter r, and allow the set Eδ to be dependent
on r also, then, under the condition (c), we have∫

E

ln+ |f(reiϕ)|dϕ = R(r)

∫
E

Φ(ϕ, r)dϕ + o(R(r)).(7.15)

The proof follows the same lines as the proof of Theorem 7.4. In the case when the
conditions (a) and (b) are satisfied, the equality in (7.15) will be replaced by the
corresponding inequality.

Remark 2. In the conditions (a), (b), and (c) of Theorem 7.4 the interval
[r0,∞) can be replaced by a set unbounded from above. Then (a′), (b′), and (c′)
will take place for the same set of values of r.



CHAPTER 2

Meromorphic Functions of Finite Order

1. The growth scale for meromorphic functions

We classify meromorphic functions according to the rate of growth of T (r, f)
as r→∞.

By Theorem 4.3 from Chapter 1, the characteristic T (r, f) is a non-decreasing
function of r. Now we introduce the basic notions related to the growth scale of
non-decreasing functions.

Let α(r) be a function defined for r > 0, which is non-negative and non-
decreasing for sufficiently large r (if α(r) satisfies this condition, we write α(r) ∈ Λ).
The number

ρ = ρ[α] = lim sup
r→∞

ln+ α(r)

ln r

is called the order of α(r). If we replace the upper limit by the lower limit in
this definition, we get the definition of the lower order, which will be denoted by
λ = λ[α]. The function α(r) is said to have finite (infinite) order if ρ <∞ (ρ =∞).
Suppose that α(r) has finite order ρ. The number

σ = σ[α] = lim sup
r→∞

α(r)

rρ

is called the magnitude of type of the function α(r). If σ = 0, we say that α(r) has
minimal type; if 0 < σ <∞, we say that α(r) has normal (or mean) type; if σ =∞,
we say that α(r) has maximal type.

Let ρ be order of α(r), ρ < ∞, and µ an arbitrary number satisfying µ > ρ.
Then, for sufficiently large r, we have α(r) < r(ρ+µ)/2, and the integral∫ ∞

1

α(r)

rµ+1
dr(1.1)

converges. On the other hand, if the integral (1.1) converges (µ > 0), then the
order of α(r) is not greater than µ, furthermore, if the order of α(r) is equal to µ,
then α(r) is of minimal type. In fact, for r > r0(ε) we have

ε >

∫ ∞
r

α(t)

tµ+1
dt ≥ α(r)

∫ ∞
r

dt

tµ+1
=
α(r)

µrµ
,

from which we get

α(r) < εµrµ.

Thus, the order of α(r) is equal to the infimum of those µ for which the integral
(1.1) converges (if the set is empty, then ρ[α] =∞).

43
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Let α(r) be a function of finite order ρ. We say that α(r) belongs to the
convergence class or to the divergence class depending on whether the integral∫ ∞

1

α(r)

rρ+1
dr

converges or diverges.
The reasoning presented above implies that α(r) has minimal type if it belongs

to the convergence class. Functions of normal and maximal type belong to the
divergence class.

Example. Let α(r) = rβ(ln r)γ for r > 2, 0 < β < ∞, −∞ < γ < ∞.
Then α(r) is of order β; α(r) is of maximal, normal, or minimal type depending on
whether γ > 0, γ = 0, or γ < 0. The function α(r) belongs to the divergence class
if γ ≥ −1, and to the convergence class if γ < −1.

Definition. We say that functions α1(r), α2(r) ∈ Λ are of the same growth
category if they have the same order, and, if the order is finite, have the same type
and either both belong to the convergence class, or both belong to the divergence
class. We say that α2(r) is of higher growth category than α1(r) if one of the
following conditions is satisfied.

1) ρ[α2] > ρ[α1].
2) ρ[α1] = ρ[α2] < ∞, α1(r) is of minimal type, and α2(r) is of normal or

maximal type.
3) ρ[α1] = ρ[α2] <∞, α1(r) is of normal type, and α2(r) is of maximal type.
4) ρ[α1] = ρ[α2] < ∞, α1(r) and α2(r) are of minimal type, α1(r) belongs

to the convergence class, and α2(r) belongs to the divergence class.

It is easy to see that

lim inf
r→∞

α1(r)

α2(r)
= 0

if α2(r) is of higher growth category than α1(r), but the condition α1(r) = o(α2(r))

does not have to be satisfied. Indeed, consider α2(r) = r2+sin(ln+ ln+ r) and α1(r) =
r2. It is clear that α1, α2 ∈ Λ, ρ[α2] = 3, and ρ[α1] = 2. Therefore α2(r) is of higher

growth category than α1(r). However, α2(rn) = o(α1(rn)) for rn = exp exp

(
3

2
π + 2πn

)
.

On the other hand, it can happen that α1(r) and α2(r) are of the same growth
category, but α1(r) = o(α2(r)). It happens, for example, for α1(r) = r ln+ r,

α2(r) = r(ln+ r)2.
It is easy to verify that the functions α(r) ∈ Λ, α1(r) = Aα(r) + B(A > 0)1,

and α2(r) = α(ar + b), where a > 0, are of the same growth category (here and
later we define functions αj(r) for sufficiently large r, the values of αj(r) on finite
intervals do not affect the growth category). The magnitudes of the types of these
functions are related in the following way: σ[α1] = Aσ[α], σ[α2] = aρσ[α]. If
α3(r) = α(rβ), β > 0, then ρ[α3] = βρ[α] and σ[α3] = σ[α]. We leave verification
of these statements to interested readers.

Theorem 1.1. Let α(r) ∈ Λ, α(r)→∞(r →∞),

α1(r) = C +

∫ r

r0

α(t)

t
dt, r0 > 0.

1If α(r) = O(1) and B < 0, we assume also that α1(r) ∈ Λ.
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Then the functions α(r) and α1(r) are of the same growth category.

Proof. We have

α1(er)− C ≥
∫ er

r

α(t)

t
dt ≥ α(r)

∫ er

r

dt

t
= α(r).(1.2)

Hence the growth category of α(r) cannot be higher than the growth category of
α1(r). On the other hand,

α1(r) ≤ C + α(r)

∫ r

r0

d ln t = C + α(r) ln
r

r0
,

ln+ α1(r)

ln r
≤ ln+ α(r)

ln r
+

ln+ ln r
r0

ln r
+O

(
1

ln r

)
=

ln+ α(r)

ln r
+ o(1),

hence ρ[α1] ≤ ρ[α]. Since the inverse inequality has been already verified, then
ρ[α1] = ρ[α] = ρ. If ρ = 0, then both functions α(r) and α1(r) are of maximal type
and thus are of the same growth category. Now let 0 < ρ < ∞. If σ[α] < ∞, then
for r > r1(ε) we have α(r) < (σ[α] + ε)rρ and

α1(r) ≤ O(1) +

∫ r

r1

(σ[α] + ε)tρ

t
dt ≤ O(1) +

σ[α] + ε

ρ
rρ.

Therefore σ[α1] ≤ ρ−1σ[α]. This inequality is trivial if σ[α] = ∞. The inequality
(1.2) implies that σ[α] ≤ eρσ[α1]. Combining these inequalities, we get that α1(r)
and α(r) are of the same type. If α1(r) belongs to the convergence class, then α(r)
also belongs to the convergence class (see (1.2)). If α(r) belongs to the convergence
class, then α(r) and thus, also, α1(r) have minimal type. On the other hand∫ r

1

α(t)

tρ+1
dt =

∫ r

1

dα1(t)

tρ
=
α1(r)

rρ
− α1(1) + ρ

∫ r

1

α1(t)

tρ+1
dt.

Letting r →∞, we get

ρ

∫ ∞
1

α1(t)

tρ+1
dt = α1(1) +

∫ ∞
1

α(t)

tρ+1
dt <∞.(1.3)

Hence α1(r) also belongs to the convergence class. �

Corollary. Let f(z) be a meromorphic function. Then

1) T (r, f),
◦
T (r, f), and

◦
A (r, f) have the same growth category, except in

the case when
◦
A (r, f) = O(1) as r →∞ and

◦
A (r, f) is not identically 0.

2) N(r, a) and n(r, a) have the same growth category, except in the case when
n(r, a) = O(1) and n(r, a) is not identically 0. For each a the category of
growth of N(r, a) cannot exceed the category of growth of T (r, f).

In the case when
◦
A (r, f) = O(1) and

◦
A (r, f) is not identically 0, it is clear that

◦
T (r, f) ∼ const · ln r. In the case when n(r, a) = O(1) and n(r, a) is not identically

0, we have N(r, a) ∼ const · ln r. Thus, in these cases the categories of
◦
A (r, f) and

n(r, a) are lower than the categories of
◦
T (r, f) and N(r, a), respectively.

To prove the corollary, it is enough to use the definitions of
◦
T (r, f) and N(r, a).

We write the definition of N(r, a) in the following way. Let r1 be the least absolute
value of a non-zero a-point of f(z), r > r1. Then
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N(r, a) =

∫ r

r1

n(t, a)− n(0, a)

t
dt+ n(0, a) ln r

=

∫ r

r1

n(t, a)

t
dt+ n(0, a) ln r1.

The first fundamental theorem implies that N(r, a) ≤ T (r, f)+O(1), hence the
growth category of N(r, a) does not exceed the growth category of T (r, f).

Proof of the following theorem is left to interested readers.

Theorem 1.2. Let α1(r) ∈ Λ, α2(r) ∈ Λ, such that α2(r) is not identically
0 and the growth category of α1(r) does not exceed the growth category of α2(r).
Then the growth category of α(r) = α1(r) +α2(r) +O(1) coincides with the growth
category of α2(r).

Definition. The order, lower order, type, class and the growth category of a
meromorphic function f are defined as that of the characteristics T (r, f).

Theorem 1.3. If f(z) is an entire function, then it has the same growth cate-
gory as lnM(r, f).

Proof. Letting R = kr, k > 1, in the formula (7.1) from Chapter 1, we get

T (r, f) ≤ ln+M(r, f) ≤ k + 1

k − 1
T (kr, f). Since T (r, f) and

k + 1

k − 1
T (kr, f) have the

same growth category, we get the desired result. �

Remark. If 0 < ρ[f ] = ρ[T (r, f)] = ρ < ∞, then the equation (7.1) from
Chapter 1 implies

σ[f ] ≤ σ[lnM(r, f) ≤ k + 1

k − 1
kρσ[f ].

When k > 1, the minimum of
k + 1

k − 1
kρ is attained at k = k(ρ) = 1

ρ
(1 +

√
1 + ρ2).

The estimate

σ[lnM(r, f) ≤ k(ρ) + 1

k(ρ)− 1
[k(ρ)]ρσ[f ]

is not precise for the class of entire functions. The following estimate holds

σ[lnM(r, f)] ≤
{
πρ csc πρσ[f ], if 0 ≤ ρ ≤ 1

2 ,

πρσ[f ], if 1
2 ≤ ρ <∞.

Proof of this estimate will be given in the Appendix, where we also show that this
estimate is precise.

Relations obtained in Section 6 of Chapter 1 imply several results on growth
of meromorphic functions.

Theorem 1.4. Let f(z) be a meromorphic function, f1(z) = R1[f(z)], f2(z) =
R2[z, f(z)], where R1(u) is a rational function of degree d, R2(u, v) is a rational
function of u and a polynomial of degree p of v. Then f(z), f1(z), and f2(z) are
of the same growth category, and the magnitudes of their types are related by the
equations σ[f1] = dσ[f ] and σ[f2] = pσ[f ].
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Theorem 1.5. Let f(z) be a meromorphic function, f1(z) = f(zn), where n
is a positive integer. Then ρ[f1] = nρ[f ], σ[f1] = σ[f ], and the functions f(z) and
f1(z) are in the same class.

Theorem 1.6. Let f(z) be a meromorphic function, f1(z) = f(az + b), a 6= 0.
Then f(z) and f1(z) (as well as N(r, f) and N(r, f1)) are of the same growth
category, furthermore σ[f1] = |a|ρσ[f ] and ρ = ρ[f ] = ρ[f1].

Proof. It suffices to prove Theorem 1.6 in the cases when either b = 0 or
a = 1. In the former case the theorem follows from Theorem 6.7 from Chapter 1.
In the latter case, the obvious (for r > |b|) inequalities

◦
A (r − |b|, f(z)) ≤

◦
A (r, f(z + b)) ≤

◦
A (r + |b|, f(z)),

n(r − |b|, f(z)) ≤ n(r, f(z + b)) ≤ n(r + |b|, f(z)),

and the corollary of Theorem 1.1 imply that f(z) and f(z+b) (as well as N(r, f(z))
and N(r, f(z + b))) have the same growth category.

Let 0 < ρ < ∞. Let us show that σ[f(z)] = σ[f(z + b)]. It is clear that
◦
A (r, f(z)) and

◦
A (r, f(z + b)) tend to ∞ as r → ∞ (otherwise we would have

◦
T (r, f(z)) = O(ln r) and

◦
T (r, f(z + b)) = O(ln r)). Let r > 2|b|. Then

◦
T (r, f(z + b)) =

∫ r

0

◦
A (t, f(z + b))

t
dt

≥
∫ r

2|b|

◦
A (t, f(z + b))

t
dt ≥

∫ r

2|b|

◦
A (t− |b|, f(z))

t
dt

=

∫ r−|b|

|b|

◦
A (t, f(z))

t+ |b| dt = (1 + o(1))

∫ r−|b|

0

◦
A (t, f(z))

t
dt

= (1 + o(1))
◦
T (r − |b|, f)

(we used the l’Hôpital’s rule). We get
◦
T (r, f(z)) =

◦
T (r, f [(z + b)− b]) ≥ (1 + o(1))

◦
T (r − |b|, f(z + b)).

Hence
◦
T (r, f(z + b)) ≥ (1 + o(1))

◦
T (r − |b|, f(z))

≥ (1 + o(1))
◦
T (r − 2|b|, f(z + b)).

(1.4)

Therefore σ[f(z + b)] = σ[f(z)]. �

Remark. The following inequality (for an arbitrary a) can be proved in the
same way as (1.4)

N(r, a, f(z + b)) ≥ (1 + o(1))N(r − |b|, a, f(z))

≥ (1 + o(1))N(r − 2|b|, a, f(z + b)).
(1.5)

Theorem 1.7. Let f1(z) and f2(z) be meromorphic functions, such that the
growth category of f1(z) does not exceed the growth category of f2(z). Then the
growth categories of f1(z)± f2(z), f1(z)f2(z), f1(z)/f2(z), and f2(z)/f1(z) do not
exceed the growth category of f2(z). Furthermore, they coincide with the growth
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category of f2(z) if f1(z) is not identically 0 and the growth category of f1(z) is
lower than the growth category of f2(z).

Proof. Since

T (r, f1 ± f2) ≤ T (r, f1) + T (r, f2) +O(1),

T (r, f1f2) ≤ T (r, f1) + T (r, f2) +O(1),

T

(
r,
f1

f2

)
≤ T (r, f1) + T (r, f2) +O(1),

Theorem 1.2 implies the first statement. We prove the second statement for f1(z)f2(z)
only (proofs for f1±f2, f1/f2, and f2/f1 are similar). Assume that the growth cat-
egory of f1(z)f2(z) is lower than the growth category of f2(z). Since f2(z) =
{f1(z)f2(z)}/f1(z), by the first part of the theorem, the growth category of f2(z)
does not exceed the maximum of the growth categories of f1(z)f2(z) and f1(z),
which are lower than the growth category of f2(z). We get a contradiction. �

Let {rν} be a non-decreasing sequence of positive numbers tending to ∞. De-
note by ν(r) the number of members of this sequence satisfying 0 < rν ≤ r. Let

ν1(r) =

∫ r

0

ν(t)

t
dt

It is clear that ν(r) ∈ Λ, ν1(r) ∈ Λ, and by Theorem 1.1, these functions have
the same growth category.

Theorem 1.8. Let ν(r) be of order ρ, 0 < ρ <∞. Then the series
∞∑
ν=1

(
1

rν

)µ
(1.6)

converges if µ > ρ, diverges if µ < ρ. For µ = ρ the series converges or diverges
depending on whether ν(r) belongs to the convergence class or to the divergence
class.

Proof. Obviously (see above) it suffices to show that the series (1.6) and the
integral ∫ ∞

r1

ν(r)

r1+µ
dr(1.7)

are either both convergent of both divergent. For 0 < r0 < r1 we have∑
rν≤r

(
1

rν

)µ
=

∫ r

r0

dν(t)

tµ
=
ν(r)

rµ
+ µ

∫ r

r0

ν(t)

tµ+1
dt.(1.8)

If the integral (1.7) diverges, then the inequality∑
rν≤r

(
1

rν

)µ
≥ µ

∫ r

r0

ν(t)

tµ+1
dt

implies that the series (1.6) also diverges. If the integral (1.7) converges, then, as
we saw, ν(r) = o(rµ), therefore, letting r →∞ in (1.8), we get

∞∑
ν=1

(
1

rν

)µ
= µ

∫ ∞
r0

ν(t)

tµ+1
dt.

�
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Corollary. Let f(z) be a meromorphic function, zν(a) be its non-zero a-
points. Let ρ = ρ[f ] and ρ1 = ρ[n(r, a)]. Then the series∑

ν

1

|zν(a)|µ(1.9)

converges if µ > ρ1, and hence if µ > ρ. The series (1.9) converges if µ = ρ1 and
n(r, a) belongs to the convergence class. If µ < ρ1, the series (1.9) diverges.

Definition. Let f(z) be a transcendental meromorphic function. A complex
number a is called a Picard exceptional value of the function f(z) if the number of
its a-points in {|z| <∞} is finite, that is, if N(r, a) = O(ln r). A complex number
a is called a Borel exceptional value if the growth category of n(r, a) is lower than
the growth category of f(z).

In the cases when the order of f(z) is non-zero, or when n(r, a)→∞ as r →∞,
we may replace n(r, a) by N(r, a) in the definition of a Borel exceptional value.

It is clear that a Picard exceptional value is a Borel exceptional value. The
converse is not true.

Example f(z) = ez
2

sin z. The function ez
2

has order 2, the function sin z has
order 1. Hence f(z) has order 2. On the other hand, n(r, 0) = 1 + 2[r/π]. Hence,
the order of n(r, 0) is 1. Thus 0 is a Borel exceptional value, but is not a Picard
exceptional value.

2. Proximate order

A function ρ(r) defined on [0,∞) is called a proximate order if it satisfies the
conditions

1) ρ(r) ≥ 0;
2) limr→∞ ρ(r) = ρ, 0 ≤ ρ <∞;
3) ρ(r) is continuously differentiable on [0,∞);
4) limr→∞ rρ

′(r) ln r = 0.

Proximate orders ρ1(r) and ρ2(r) are called equivalent if ρ1(r)ρ2(r) = o(ln−1 r).
Let α(r) ∈ Λ be of finite order ρ[α]. A proximate order ρ(r) is called a proximate
order of the function α(r) if 0 < σ∗[α] <∞, where

σ∗[α] = lim sup
r→∞

α(r)

rρ(r)
.

The number σ∗[α] is called the magnitude of type of α(r) with respect to the
proximate order ρ(r). It is clear that if ρ(r) is a proximate order of α(r), then
ρ(r) → ρ = ρ[α] as r → ∞. The magnitude of type σ∗[α] does not change if the
proximate order ρ1(r) is replaced by a proximate order ρ2(r), since rρ1(r) ∼ rρ2(r).
Using a proximate order ρ(r) and the magnitude of type σ∗[α] we can introduce
the notions of type, convergence class, and growth category of α(r) with respect to
ρ(r). It can be verified that all theorems of the previous section (except Theorem
1.1 in the case ρ = 0) remain true if we understand the category of α(r) as the
category with respect to a proximate order ρ(r). We are not going to use this.

If a function α(r) ∈ Λ has finite lower order λ[α], then its lower proximate order
is defined as a proximate order λ(r) such that 0 < σ∗[α] <∞, where

σ∗[α] = lim inf
r→∞

α(r)

rλ(r)
.
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It is easy to see, that if λ(r) is a lower proximate order of α(r), then λ(r) →
λ = λ[α].

Applications of proximate orders are based on the following theorem.

Theorem 2.1. Each positive continuous function α(r) ∈ Λ has a proximate
order. Each positive continuous function α(r) ∈ Λ of finite lower order has a lower
proximate order.

Proof. As is easy to see it suffices to find ρ(r) and λ(r) for which the condi-
tion 3) in the definition of a proximate order is replaced by the following weaker
condition: ρ(r) and λ(r) are continuous on [0,∞), and continuously differentiable
everywhere on [0,∞) except for a set of isolated points at which they have one-
sided derivatives. In fact, in sufficiently small neighborhoods of the points where
the derivatives do not exist, the functions ρ(r) and λ(r) can be corrected by at most
o{(ln r)−1} in such a way that the resulting functions are continuously differentiable
everywhere, and still satisfy the conditions 1), 2), and 4).

First we prove the existence of a proximate order ρ(r). Suppose that α(r) is
defined on [0,∞) and α(r)→∞ as r →∞. (If α(r) = O(1), we let ρ(r) ≡ 0.)

Let ρ be the order of α(r). Denote by d(r) the function

d(r) =
ln+ α(r)

ln r
.

Then

lim sup
r→∞

d(r) = ρ.

There are two possibilities:

A) there exists a sequence rk →∞, 1 ≤ k →∞, such that d(rk) > ρ;
B) d(r) ≤ ρ for all r ≥ r0 > e.

Assume that A is satisfied. Let ϕ(r) = maxx≥r d(x). It is clear that ϕ(r) is
well-defined and is a non-increasing, positive function, and ϕ(r)→ ρ as r →∞. It
is clear, also, that the set M of those r for which ϕ(r) = d(r) is unbounded.

Let r1 > ee
e

and r1 ∈ M . Set ρ(r) = ϕ(r1) for 0 ≤ r ≤ r1. Denote by t1
the least integer, exceeding 1 + r1 and such that ϕ(r1) > ϕ(t1). Set ρ(r) = ϕ(r1)
for r1 < r ≤ t1. Let u1 be the x-coordinate of the first point of intersection
of the curves y = ρ(r1) − ln3 x + ln3 t1 and y = ϕ(x) for x > t1

2. Set ρ(r) =
ρ(r1)− ln3 r + ln3 t1 for t1 ≤ r ≤ u1. It is clear that on this interval, ρ(r) ≥ ϕ(r),
and the equality takes place at r = u1 only. Let r2 = min(M ∩ {r ≥ u1}). If
r2 > u1, set ρ(r) = ϕ(r) for u1 ≤ r ≤ r2. Since ϕ(r) is constant when u1 ≤ r ≤ r2,
then ρ(r) is also constant on this interval. We repeat the same construction with
r1 replaced by r2. Continuing in such a manner we define ρ(r) on [0,∞), since
rn − rn−1 ≥ un−1 − rn−1 ≥ tn−1 − rn−1 ≥ 1 and rn → ∞. The function ρ(r) is
continuous and has a continuous derivative everywhere except points tn and un,
n ≥ 1, where it has one-sided derivatives. Since

ρ′(r) = 0 or ρ′(r) = − 1

r ln r ln2 r
,

2We use the notation lnj x for the j-th iteration of the logarithm (j ≥ 0): ln0 x = x,
lnj x = ln(lnj−1 x). We use the notation expj x for the j-th iteration of the exponential function:

exp0 x = x, expj x = exp(expj−1 x).
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the condition 4) is satisfied. Our construction is such that ρ(r) ≥ ϕ(r) ≥ d(r) if
r ≥ r1, ρ(rn) = ϕ(rn) = d(rn), n ≥ 1, and ρ(r) is a non-increasing function. Hence

lim
r→∞

ρ(r) = lim
r→∞

ϕ(r) = ρ,

and the condition 2) is satisfied. Furthermore,

α(r) ≤ rd(r) ≤ rρ(r) and α(rn) = rd(rn)
n = rρ(rn)

n

if r ≥ r1. Therefore

σ∗[α] = lim sup
r→∞

α(r)

rρ(r)
= 1.

Now we consider the case B. If d(rn) = ρ for a sequence {rn} satisfying rn →∞,
then we may let ρ(r) ≡ ρ. Now let 0 < d(r) < ρ for all r ≥ r0 > exp3 1. Set ψ(r) =
maxr0≤x≤r d(x). It is clear that ψ(r) is a continuous non-decreasing function, and
the set L of those r ≥ r0 for which d(r) = ψ(r) is unbounded. Let r1 > r0

and let s1 be the largest x-coordinate of the points of intersection of the curves
y = ρ + ln3 x − ln3 r1 and y = ψ(x). It is clear that if r1 is sufficiently large, then
then there exists a point of intersection such that r0 < s1 < r1 and L∩ [r0, s1] 6= ∅.
Let t1 = max{L ∩ [r0, s1]}. Set ρ(r) ≡ ψ(t1) = d(t1) for 0 ≤ r ≤ s1. Choose
r2 > r1 + 1 to be so large that the largest x-coordinate of points of intersection
of the curves y = ρ + ln3 x − ln3 r2 and y = ψ(x), denoted by s2, is greater than
r1, and L ∩ [r1, s2] 6= ∅. Let t2 = max{L ∩ [r1, s2]} Denote by u1, s1 ≤ u1 ≤ r1

the point at which ρ + ln3 x − ln3 r1 = ψ(t2). Set ρ(r) = ρ + ln3 r − ln3 r1 for
s1 ≤ r ≤ u1 and ρ(r) ≡ ψ(t2) = d(t2) for u1 ≤ r ≤ s2. We continue in an
obvious way. Since rn > rn−1 + 1, the function ρ(r) is defined for all r ≥ 0. It is
clear from the construction that ρ(r) is continuous for r ≥ 0, and the inequality
ρ ≥ ρ(r) ≥ ψ(r) ≥ d(r) is satisfied, furthermore ρ(tn) = ψ(tn) = d(tn), tn → ∞.
Therefore

σ∗[α] = lim sup
r→∞

α(r)

rρ(r)
= 1.

Since ψ(r)→ ρ as r →∞, we have ρ(r)→ ρ. Finally, the derivative ρ′(r) is de-
fined everywhere except the points sn, un, it is equal either to 0, or to (r ln r ln2 r)

−1,
thus the condition 4) is satisfied.

The desired function is constructed in all cases.
To construct a lower proximate order λ(r) we introduce a function d1(r) by

d1(r) =
ln r

ln r + ln+ α(r)
.

Then

lim sup
r→∞

d1(r) =
1

1 + λ
,

and, using the same argument as above, we can construct a proximate order ρ1(r)→
(1 + λ)−1, such that 0 < ρ1(r) < 1 and d1(r) ≤ ρ1(r) for all r, r0 ≤ r < ∞, and,
furthermore, d1(rn) = ρ1(rn) for a sequence {rn} satisfying limn→∞ rn =∞.

Set λ(r) = 1
ρ1(r) − 1. It is easy to see that λ(r) is a proximate order, λ(r) →

λ = λ[α], and, moreover, α(r) ≥ rλ(r) for all r satisfying r0 ≤ r < ∞, and

α(rn) = r
λ(rn)
n , n = 1, 2, . . . . Hence λ(r) is a lower proximate order of α(r). �
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Observe that the proximate order ρ(r) constructed in the proof is a monotone
function, α(r) ≤ rρ(r) for r ≥ r0, and there exists a sequence {rk}, rk → ∞, such
that α(r) = rρ(r) for r = rk.

A proximate order ρ(r) is convenient because the function rρ(r) has many prop-
erties of the power function rρ.

Definition. A positive continuous function L(r), defined for r ≥ r0, is called
slowly varying if

lim
r→∞

L(kr)

L(r)
= 1

uniformly on each interval 0 < a ≤ k ≤ b <∞.

Theorem 2.2. If ρ(r) is a proximate order, then L(r) = rρ(r)−ρ is a slowly
varying function.

Proof. Assume, without loss of generality, that 0 < a < 1 and b = 1/a. Then

ln
L(kr)

L(r)
= [ρ(kr)− ρ] ln k + [ρ(kr)− ρ(r)] ln r.

For each ε > 0 there exists r0, such that for ar > r0 > 1 the conditions

|ρ(r) − ρ| < ε

and
|ρ′(r)|r ln r < ε

hold. By Lagrange’s mean value theorem, applied to ρ(et), t = ln r (for r > r0),
there exists k∗ = k∗(r), a ≤ k∗ ≤ b, such that

|ρ(kr) − ρ(r)| = k∗r|ρ′(k∗r)|| ln k| < ε
ln b

ln(k∗r)
<

ε ln b

ln(ar)
.

Then ∣∣∣∣ln L(kr)

L(r)

∣∣∣∣ ≤ ε ln b+ ε ln b
ln r

ln(ar)
≤ ε ln b

(
1 +

ln r0
ln(ar0)

)
.

Hence ln(L(kr)/L(r)) converges uniformly to 0, and L(kr)L(r)) converges uni-
formly to 1. �

Corollary. If ρ(r) is a proximate order and 0 < a < b < ∞, then for each
ε > 0 there exists r0, such that for all r > r0 and a ≤ k ≤ b the inequality

(1− ε)kρrρ(r) < (kr)ρ(kr) < (1 + ε)kρrρ(r)

holds.

In fact, if L(r) is the function from Theorem 2.2, then

L(kr)

L(r)
=

(kr)ρ(kr)

kρrρ(r)
.

Theorem 2.3. If ρ(r) is a proximate order and ρ > 0, then the function
V (r) = rρ(r) is increasing for sufficiently large r.

In fact,
V ′(r) = rρ(r)−1{ρ(r) + ρ′(r)r ln r}.

The function in braces approaches ρ > 0 as r → ∞, hence, for sufficiently large r,
we have V ′(r) > 0.
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Theorem 2.4. Let ρ(r) be a proximate order, ρ(r)→ ρ as r →∞. Then∫ r

1

tρ(t)−qdt ∼ rρ(r)+1−q

ρ+ 1− q

if q < ρ+ 1; and ∫ ∞
r

tρ(t)−qdt ∼ rρ(r)+1−q

q − ρ− 1

if q > ρ+ 1.

The statements can be easily verified using the l’Hôpital’s rule.

Exercise 1. Let 0 ≤ p < ρ < p+1, and let ρ(r) be a proximate order satisfying
ρ(r)→ ρ. Prove

lim
r→∞

∫ ∞
c/r

(rτ)ρ(rτ)

rρ(r)
dτ

τp+1(1 + τ)
=

∫ ∞
0

τρ−p−1

1 + τ
dτ =

π

sinπ(ρ− p) ,

that is, it is possible to pass to the limit under the integral sign.

Hint. Split the interval [c/r,∞) into three subintervals: [c/r, ε], [ε, ε−1],
[ε−1,∞), where ε > 0 is a small positive number. The first integral is estimated as:∫ ε

c/r

(rτ)ρ(rτ)

rρ(r)
dτ

τρ+1(1 + τ)
≤ rp−ρ(r)

∫ εr

c

tρ(t)−p−1dt→r→∞
ερ−p

ρ− p .

The last relation can be obtained by combining Theorem 2.4 and Theorem 2.2
(instead of using Theorem 2.4 one can use the l’Hôpital’s rule). The third integral
can be estimated in a similar way. To estimate the second integral one can use the
corollary of Theorem 2.2.

Exercise 2. Let ρ(r) be a proximate order satisfying ρ(r)→ ρ. Then for each
fixed k > 0 we have

lim
R→∞

∫ kR

1

rρ(r)−ρ(R)−1dr =∞.

Hint. Let L(r) = rρ(r)−ρ, fix 0 < ε < k. We get∫ kR

1

rρ(r)−ρ(R)−1dr =

∫ kR

1

L(r)

L(R)

(
R

r

)ρ(R)−ρ
dr

r

≥
∫ kR

εR

L(r)

L(R)

(
R

r

)ρ(R)−ρ
dr

r
≥
(

min
εR≤r≤kR

L(r)

L(R)

)
ε|ρ(R)−ρ| ln

k

ε
.

Applying Theorem 2.2 we get

lim inf
R→∞

∫ kR

1

rρ(r)−ρ(R)−1dr ≥ ln
k

ε
.

It remains to use the possibility of choosing ε arbitrarily small.
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3. Infinite products

We assume knowledge of basic properties of infinite products of analytic func-
tions (see, for example [Pri56, Chapter IX]). It will be convenient for us to deviate
from the standard definitions, and to consider an infinite product

∏∞
k=1 fk(z) as

being convergent at z0, if for some N there exists a finite non-zero limit

lim
n→∞

n∏
k=N

fk(z0).

We consider
∏n
k=1 fk(z) as being uniformly convergent on a setM , if for someN

the products
∏n
k=N fk(z) converge uniformly on z ∈M to some function RN (z) 6=

0,∞ as n→∞.
In a similar way we modify the standard definition of the absolute convergence

of an infinite product.
This modification of the standard definitions is convenient for us, because, with

this modification, the fact that some terms of the product are equal to 0 or ∞ at
some points does not affect the convergence of the product and the type of this
convergence.

The following theorem is presented in many texts.

Theorem 3.1. Let fk(z), k = 1, 2, . . . , be analytic in a region G, such that
|fk(z)| ≤ ak, k ≥ k0 ≥ 1 for z ∈ G. If the series

∑
k ak is convergent, then the

product
∏∞
k=1[1 + fk(z)] converges uniformly and absolutely on G to an analytic

function.

Theorem 3.1 implies the following result.

Theorem 3.2. Let ak, k = 1, 2, . . . , be a sequence of complex numbers satisfy-
ing 0 < |a1| ≤ |a2| ≤ . . . , such that

∞∑
k=1

1

|ak|q
<∞,(3.1)

where q is a positive integer. Suppose that an entire function g(z) has a power
series representation of the form

g(z) = 1 + cqz
q + cq+1z

q+1 + . . .(3.2)

Then the product

f(z) =

∞∏
k=1

g

(
z

ak

)
(3.3)

converges absolutely and uniformly on each bounded disc to an entire function f(z).

Proof. By (3.2), |g(z) − 1| ≤ A|z|q for |z| < r0, where A is some constant.
Consider a disc {|z| ≤ R} of an arbitrarily large radius R. The inequality R < |ak|r0

holds for k ≥ k0 = k0(R). We have
∞∏

k=k0

g

(
z

ak

)
=

∞∏
k=k0

{
1 +

[
g

(
z

ak

)
− 1

]}
.

Since for k ≥ k0 and |z| ≥ R we have∣∣∣∣g( z

ak

)
− 1

∣∣∣∣ ≤ A ∣∣∣∣ zak
∣∣∣∣q ≤ ARq 1

|ak|q
,
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by (3.1) and Theorem 3.1, the product (3.3) converges absolutely and uniformly in
{|z| < R} to an analytic function f(z). �

Example 1. Denote by E(z, p) the entire function given by

E(z, p) =

{
1− z if p = 0.

(1− z)ez+
z2

2 +···+ zp

p if p ≥ 1.

The function E(z, p) is called a Weierstrass primary factor. It is clear that
E(z, p)− 1 has a zero of order (p+ 1) at z = 0. If p ≥ 1, we have

E′(z, p) = −zp exp

(
z +

z2

2
+ · · ·+ zp

p

)
.

Thus, if the sequence {ak} is such that the series (3.1) converges for q = p + 1,
then, by Theorem 3.2, the product

f(z) =

∞∏
k=1

E

(
z

ak
, p

)
(3.4)

converges absolutely and uniformly on each bounded disc, and hence is an entire
function, called the Weierstrass canonical product of genus p. It is clear that f(z)
has zeroes at points ak, and only there.

Example 2. Let g(z) be an arbitrary entire function satisfying g(0) = 1.
Suppose that in a neighborhood of z = 0 the function 1/g admits a representation
of the form 1/g(z) = 1 + c1z + c2z

2 + . . . . Let Pn−1(z) = 1 + c1z+ · · ·+ cn−1z
n−1,

Rn(z) =
∑∞

j=n cjz
j. Then the entire function

Pn−1(z)g(z) =

(
1

g(z)
−Rn(z)

)
g(z) = 1−Rn(z)g(z) = 1− cnzn + . . .

satisfied the conditions of Theorem 3.2 with q = n.

Example 3. If a sequence {ak} is such that the series (3.1) is convergent with
q = 2, then the product

∞∏
k=1

cos
z

ak

converges absolutely and uniformly in each bounded disc, and represents an entire
function.

Suppose that g(z) and f(z) satisfy the conditions of Theorem 3.2. Our next
purpose is to estimate from above lnM(r, f) provided an estimate from above of
lnM(r, g) is given.

Theorem 3.3. Suppose that the conditions of Theorem 3.2 are satisfied and
lnM(r, g) = O(rκ) as r → ∞, where 0 < κ < q. Denote by ν(r) the number of
points ak in the disc {|z| ≤ r}. Then there exists a constant C, depending on g(z),
but not on the sequence {ak}, such that

lnM(r, f) < C

∫ ∞
0

ν(rτ)

τ1+κ

dτ

1 + τq−κ
, 0 < r <∞.
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Proof. By C with different indices we denote constants which depend on g(z)
only. Since for r → 0 we have lnM(r, g) = O(rq), for all r, 0 < r <∞, the following
condition holds

lnM(r, g(z)) ≤ C1Ψ(r), where Ψ(r) =
rq

1 + rq−κ
.

By (3.3), we get

lnM(r, f) ≤
∞∑
k=1

lnM

(
r, g

(
z

ak

))
≤ C1

∞∑
k=1

Ψ

(
r

|ak|

)
= C1

∫ ∞
0

Ψ
(r
t

)
dν(t) = C1Φ(r).

Convergence of the series (3.1) implies that ν(r) = o(rq) as r →∞. In addition,
ν(r) = 0 when 0 ≤ r < |a1|. Taking this into account and integrating by parts we
get

Φ(r) =

∫ ∞
0

ν(t)Ψ′
(r
t

) rdt
t2

=

∫ ∞
0

ν(rτ)Ψ′
(

1

τ

)
dτ

τ2
.

It is easy to check that

κτ1−κ

1 + τq−κ
< Ψ′

(
1

τ

)
= τ1−κ qτq−κ + κ

(1 + τq−κ)2
<

qτ1−κ

1 + τq−κ
.

This immediately implies the conclusion of the theorem with C = C1q.
We will need also the following inequality

Φ(r) ≥ C1κ

∫ ∞
0

ν(rτ)

τ1+κ

dτ

1 + τq−κ
, 0 < r <∞.

Corollary. If f(z) is a Weierstrass canonical product of genus p (3.4), then

lnM(r, f) < C(p)

∫ ∞
0

n(rτ, 0)

τ1+p

dτ

1 + τ
= C(p)rp+1

∫ ∞
0

n(t, 0)dt

tp+1(r + t)
.(3.5)

In fact, if p ≥ 1, we can apply Theorem 3.3 with g(z) = E(z, p), κ = p, q = p+1.
If p = 0, we use the same argument as above with Ψ(r) = ln(1 + r). We get

lnM(r, f) ≤ C1

∫ ∞
0

n(rτ, 0)Ψ′
(

1

τ

)
dτ

τ2
.

But in this case Ψ′
(

1

τ

)
= τ/(1 + τ), and we immediately get the desired inequality.

Observe that, as is easy to see, if p = 0 we can set C(0) = 1. It can be shown that
C(p) can be chosen as 4(p+ 1)(2 + ln p) for p ≥ 1 (see Hayman [Hay64]).

Remark 1. If f(z) is a Weierstrass canonical product of genus p, then

lnM(r, f) ≤ C(p)

{
rp
∫ r

0

n(t, 0)

tp+1
dt+ rp+1

∫ ∞
r

n(t, 0)

tp+2
dt

}
.(3.6)

In fact, for each R, 0 < R <∞, we have

rp+1

∫ ∞
0

n(t, 0)

tp+1(r + t)
dt ≤ rp+1

∫ R

0

n(t, 0)

tp+1(t+ r)
dt

+ rp+1

∫ ∞
R

n(t, 0)

tp+1(t+ r)
dt ≤ rp

∫ R

0

n(t, 0)

tp+1
dt+ rp+1

∫ ∞
R

n(t, 0)

tp+2
dt.

(3.7)
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If R = r, from (3.5) and (3.7) we get (3.6).

Remark 2. If f(z) is a Weierstrass canonical product of genus p, then

lnM(r, f) = o(rp+1).(3.8)

This relation can be derived from (3.5) since∫ ∞
0

n(t, 0)dt

tp+1(r + t)
= o(1) as r →∞.

The legitimacy of passing to limit under the integral sign can be easily justified,
since the integrand tends to 0 monotonically as r →∞.

We establish the following convention: the value of p in the Weierstrass canoni-
cal products of genus p which we consider is, unless the contrary is explicitly stated,
the least non-negative integer such that the series (3.1) converges for q = p + 1.
This non-negative integer will be called the genus of the sequence {ak}.

Theorem 3.4 (Borel). The order of the Weierstrass canonical product f(z) is
equal to the order of n(r, 0).

Proof. Let ρ1 be the order of n(r, 0). This number is equal to the order of
N(r, 0) (see the corollary of Theorem 1.1), hence ρ1 ≤ ρ, where ρ is the order of
the canonical product. Since p is the least integer for which the series

∑
k |ak|−p−1

is convergent, then p ≤ ρ1 ≤ p + 1. By Remark 2 we get ρ ≤ p + 1, therefore, if
ρ1 = p+ 1, then ρ1 ≥ ρ. Now assume ρ1 < p+ 1. Then for each ρ′, ρ1 < ρ′ < p+ 1,
we have n(r, 0) < C2r

ρ′ for all r > 0, where C2 is some constant. From (3.5) we get

lnM(r, f) < C(p)C2r
ρ′
∫ ∞

0

τρ
′−p−1

1 + τ
dτ = C3r

ρ′ .

Hence ρ ≤ ρ′ and ρ ≤ ρ1. Therefore ρ ≤ ρ1 is satisfied in all cases, and together
with ρ1 ≤ ρ this proves the theorem. �

4. Hadamard and Lindelöf theorems

Canonical products can be use to find convenient representations of meromor-
phic functions of finite order.

Theorem 4.1 (Hadamard). Let f(z) be a meromorphic function of finite or-
der ρ, and let {aν} and {bµ} be the sequences of zeros and poles of the function
f(z), which are different from z = 0. Let p1 be the genus of {aν} and p2 be the
genus of {bµ}. Suppose that in the neighborhood of z = 0 the function f(z) has a
representation f(z) = cλz

λ + cλ+1z
λ+1 + . . . with cλ 6= 0. Then

f(z) = zλeP (z)

∏
aν

E

(
z

aν
, p1

)
∏
bµ

E

(
z

bµ
, p2

) ,(4.1)

where P (z) is a polynomial, whose degree q does not exceed [ρ].
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Proof. Consider an auxiliary function

F (z) = f(z)z−λ

∏
bµ

E

(
z

bµ
, p2

)
∏
aν

E

(
z

aν
, p1

) .
It is clear that F (z) is an entire function without zeros. By Theorems 1.7 and 3.4,
we have

ρ1 = ρ[F ] ≤ max(ρ[f ], ρ[n(r, 0, f)], ρ[n(r,∞, f)]) = ρ.

Using Lemma 6.2 from Chapter 1, we get F (z) = expP (z), where P (z) is a poly-
nomial whose degree does not exceed [ρ1] ≤ [ρ]. �

Definition. Let f(z) be a meromorphic function of finite order ρ. Then it
has a representation of the form (4.1). The number p = max(q, p1, p2) is called the
genus of the function f(z).

Exercise. Prove the inequality p ≤ ρ ≤ p+ 1.

Remark. Suppose that the conditions of Theorem 4.1 are satisfied. Denote
the sequence of zeros and poles of the function f(z) by {ck}. Then the representa-
tion (4.1) remains valid if we replace p1 and p2 by p′ in the Weierstrass canonical
products. The same representation remains valid if we replace p1 and p2 by the
genus p of the function f(z). In fact, suppose, for example, that p1 < p, p2 < p.
Then

f(z) = zλeP (z)+P1(z)+P2(z)

∏
aν

E

(
z

aν
, p

)
∏
bµ

E

(
z

bµ
, p

) ,
where

P1(z) = − z
p1+1

p1 + 1

∑
ν

1

ap1+1
ν

− · · · − zp

p

∑
ν

1

apν
,

P2(z) =
zp2+1

p2 + 1

∑
µ

1

bp2+1
µ

+ · · ·+ zp

p

∑
µ

1

bpµ
.

The series forming the coefficients of polynomials P1(z) and P2(z) are absolutely
convergent by the definitions of the numbers p1 and p2. Since the degree of the
polynomial P (z) + P1(z) + P2(z) does not exceed p, and, hence, does not exceed
[ρ], then the statement is proved in this case. All other cases can be considered in
a similar manner.

Denote by N(r; a, b), a 6= b, the sum N(r, a) + N(r, b), also let n(r; a, b) =
n(r, a) + n(r, b). We are going to establish connections between the orders and
types of the functions f(z) and N(r; a, b). It is clear that without loss of generality
we may assume that a = 0, b =∞, and f(0) = 1.

The easiest case is the case when the order ρ of the function f(z) is non-integer.

Theorem 4.2. If the order ρ of a meromorphic function f(z) is non-integer,
then the order of N(r; 0,∞) is equal to ρ. The types of T (r, f) and N(r; 0,∞) with
respect to an arbitrary proximate order ρ(r), ρ(r)→ ρ, coincide.
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Proof. We represent f(z) in the form (4.1). It is clear that ρ[N(r; 0,∞)] ≤
ρ[f ] = ρ. Suppose that ρ1 = ρ[N(r, 0)] ≥ ρ[N(r,∞)]. Then ρ[N(r; 0,∞)] = ρ1.

By Theorem 3.4 the order of the function

π(z) =

∏
aν

E

(
z

aν
, p1

)
∏
bµ

E

(
z

bµ
, p2

)
is equal to ρ1, since ρ1 = ρ[N(r, 0)] ≤ ρ[π(z)] ≤ max(ρ[N(r, 0)], ρ[N(r,∞)] = ρ1.
Since ρ[e−P (z)] ≤ p < ρ (ρ is non-integer!), then

ρ1 = ρ[π(z)] = max(ρ[f(z), ρ[e−P (z)]) = ρ.

Suppose that

lim sup
r→∞

N(r; 0,∞)

rρ(r)
= ∆N , lim sup

r→∞

T (r, f)

rρ(r)
= ∆f .(4.2)

By N(r; 0,∞) ≤ 2T (r, f) + O(1), we get ∆N ≤ 2∆f . Represent f(z) in the
form (4.1) with p1 = p2 = p (see the remark to Theorem 4.1). Using the formulae
(6.5) and (6.7) from Chapter 1 and the corollary of Theorem 3.3, we get

T (r, f) ≤ O(rp) + lnM

(
r,
∏
aν

E

(
z

aν
, p

))
+ lnM

r,∏
bµ

E

(
z

bµ
, p

)
≤ O(rp) + C(p)

∫ ∞
0

n(rτ, 0)

τ1+p

dτ

1 + τ
+ C(p)

∫ ∞
0

n(rτ,∞)

τ1+p

dτ

1 + τ

= O(rp) + C(p)

∫ ∞
0

n(rτ ; 0,∞)

τ1+p

dτ

1 + τ
= O(rp) + C(p)

∫ ∞
0

dN(rτ ; 0,∞)

τp(1 + τ)

= O(rp) + C(p)
N(rτ ; 0,∞)

τp(1+τ)
|τ=∞
τ=0 + C(p)

∫ ∞
0

N(rτ ; 0,∞)
(p+ 1)τ + p

τp+1(1 + τ)2
dτ

≤ O(rp) + C(p)(p+ 1)

∫ ∞
0

N(rτ ; 0,∞)

τp+1

dτ

1 + τ
.

(4.3)

We have used the facts that ρ < p + 1 and N(rτ ; 0,∞) = o(τp+1). Assume
that ∆N < ∞. Then the condition N(r; 0,∞) ≤ (∆N + ε)rρ(r) is satisfied for
r > c(ε), ε > 0. Then (4.3) implies

T (r, f)

rρ(r)
≤ o(1) + C(p)(p+ 1)(∆N + ε)

∫ ∞
c/r

(rτ)ρ(rτ)

rρ(r)
dτ

τp+1(1 + τ)
.

Taking in this inequality limits as r → ∞, and using Exercise 1 from Section 2 of
this chapter, we get

∆f ≤ C(p)(p+ 1)(∆N + ε)
π

sinπ(ρ− p) .

Since ε can be arbitrarily small, we get

∆f ≤ C(p)(p+ 1)
π

sinπ(ρ− p)∆N .(4.4)

This inequality is obvious if ∆N = ∞. Together with the inequality ∆f ≥ 2−1∆N

it concludes the proof. �
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Corollary. If a meromorphic function f(z) has non-integer order ρ, [ρ] = p,
then

(4.4′) lim sup
r→∞

N(r; 0,∞)

T (r, f)
≥ sinπ(ρ− p)
C(p)(p+ 1)π

> 0.

Let ρ(r) be a proximate order of T (r, f). Then, by (4.4) we get

lim sup
r→∞

N(r; 0,∞)

T (r, f)
≥ lim sup

r→∞

N(r; 0,∞)

∆frρ(r)
=

∆N

∆f
≥ sinπ(ρ− p)
C(p)(p+ 1)π

.

We consider now the case when a meromorphic function f(z) has integer order
ρ ≥ 1. Then the genus of f(z) is equal to ρ− 1 or ρ. Using (4.1), the function f(z)
can be represented in the form

(4.1′) f(z) = eP (z)

∏
aν

E

(
z

aν
, ρ

)
∏
bµ

E

(
z

bµ
, ρ

) ,
where

P (z) = cρz
ρ + cρ−1z

ρ−1 + · · ·+ c1z.

First we prove the following theorem.

Theorem 4.3. Let f(z) be a meromorphic function of integer order ρ ≥ 1, and
ρ(r) a proximate order, ρ(r)→ ρ as r →∞. Suppose that

∆n = lim sup
r→∞

n(r; 0,∞)

rρ(r)
<∞.

Then (ε > 0, r ≥ r(ε))

T (r, f) =
rρ

π
|K(r)| + (∆n + ε)ωε(r)r

ρ(r),(4.5)

where the value of |ωε(r)| is bounded by a constant Mρ, which depends on ρ only,
and

K(r) = cρ +
1

ρ

∑
|aν |≤r

a−ρν −
1

ρ

∑
|bµ|≤r

b−ρµ .

Proof. Using (4.1′), we represent the function f(z) as a product, f(z) =
f1(z)f2(z), where

f1(z) = exp{zρK(r)},

f2(z) = ecρ−1z
ρ−1+···+c1z ·

∏
|aν |≤r

E

(
z

aν
, ρ− 1

) ∏
|aν |>r

E

(
z

aν
, ρ

)
∏
|bµ|≤r

E

(
z

bµ
, ρ− 1

) ∏
|bµ|>r

E

(
z

bµ
, ρ

) .
It is easy to compute that

T (r, f1(z)) =
rρ

π
|K(r)|.

Since

|T (r, f)− T (r, f1)| ≤ T (r, f2) +O(1),
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it remains to estimate T (r, f2). Using the inequality (3.6) and the equality (6.8′)
from Chapter 1, we get

T (r,f2) ≤ T (r, ecρ−1z
ρ−1+···+c1z) + T

r, ∏
|aν |≤r

E

(
z

aν
, ρ− 1

)
+ T

r, ∏
|aν |>r

E

(
z

aν
, ρ

)+ T

r, ∏
|bµ|≤r

E

(
z

bµ
, ρ− 1

)
+ T

r, ∏
|bµ|>r

E

(
z

bµ
, ρ

)
≤ O(rρ−1) + lnM

r, ∏
|aν |≤r

E

(
z

aν
, ρ− 1

)+ lnM

r, ∏
|aν |>r

E

(
z

aν
, ρ

)
+ lnM

r, ∏
|bµ|≤r

E

(
z

bµ
, ρ− 1

)+ lnM

r, ∏
|bµ|>r

E

(
z

bµ
, ρ

)
≤ O(rρ−1) + C(ρ− 1)

{
rρ−1

∫ r

r0

n(t; 0,∞)

tρ
dt+ rρn(r; 0,∞)

∫ ∞
r

dt

tρ+1

}
+ C(ρ)rρ+1

∫ ∞
r

n(t; 0,∞)

tρ+2
dt = O(rρ−1)

+ C(ρ− 1)

{
rρ−1

∫ r

r0

n(t; 0,∞)

tρ
dt+

1

ρ
n(r; 0,∞)

}
+ C(ρ)rρ+1

∫ ∞
r

n(t; 0,∞)

tρ+2
dt, r0 > 0.

We may assume that the inequality n(r; 0,∞) ≤ (∆n + ε)rρ(r) is satisfied for
all r ≥ r0. Taking into account Theorem 2.4, we get

T (r, f2) ≤ O(rρ−1) + (∆n + ε){C(ρ− 1)rρ−1

∫ r

r0

tρ(t)−ρdt

+
C(ρ− 1)

ρ
rρ(r) + C(ρ)rρ+1

∫ ∞
r

tρ(t)−ρ−2dt}

= O(rρ−1) + (∆n + ε)(1 + o(1))rρ(r)
{
C(ρ− 1)

(
1 +

1

ρ

)
+ C(ρ)

}
= (∆n + ε)(1 + o(1))rρ(r)

{
C(ρ− 1)

(
1 +

1

ρ

)
+ C(ρ)

}
,

the proof is complete. �

Theorem 4.4 (Lindelöf). Suppose that the conditions of Theorem 4.3 are sat-
isfied. Let

L(r) = rρ(r)−ρ, ∆K = lim sup
r→∞

|K(r)|
L(r)

, Ω = max(∆K ,∆n).

Then the function f(z) has minimal, normal, or maximal type with respect to ρ(r)
depending on whether Ω = 0, 0 < Ω <∞, or Ω =∞, respectively.
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Proof. We denote by Aj various positive constants depending on ρ only. The
relation (4.5) implies that, if ∆n < ∞, then ∆f ≤ A1(∆K + ∆n + ε), hence
∆f ≤ A2Ω. If ∆n = ∞, the inequality is trivial. The relation (4.5) implies, also,
that ∆K ≤ A3(∆f + ∆n + ε) if ∆n < ∞, hence ∆K ≤ A3(∆f + ∆n). It is clear
that this inequality is valid also if ∆n = ∞. Lemma 7.1 from Chapter 1 implies
that n(r; 0,∞) ≤ N(er; 0,∞) ≤ 2T (er, f) + O(1). Therefore ∆n ≤ 2eρ∆f . Hence

∆K ≤ A3(1+2eρ)∆f . We get Ω ≤ A4∆f . Using the inequality A−1
4 Ω ≤ ∆f ≤ A2Ω

we complete the proof. �

Remark. It is easy to show (cf. the proof of Theorem 1.1) that e−ρ∆n ≤
∆N ≤ ρ−1∆n. Therefore Theorem 4.4 remains true if we replace Ω in its statement
by Ω′ = max(∆K ,∆N ).

Alternatively, Theorem 4.4 can be proved without using Theorem 4.3, but using
formula (2.6) from Chapter 1 instead. The idea of this proof is due to N.I. Akhiezer
[Akh27] and L.A. Rubel [Rub63]. For simplicity, we restrict our attention to the
case ρ(r) ≡ ρ, L(r) ≡ 1, leaving the general case to interested readers.

Without loss of generality we may assume that f(0) = 1. Suppose that in a
neighborhood of z = 0 we have

ln f(z) =

∞∑
k=1

γkz
k.

It is easy to derive from (4.1′) that

γk =

{
ck, k = 1, . . . , ρ

− 1
k

∑
ν a
−k
ν + 1

k

∑
µ b
−k
µ , k = ρ+ 1, ρ+ 2, . . .

(4.6)

Denote by Fk(r) the Fourier coefficient of the function ln |f(reiϕ)|, 0 ≤ ϕ ≤ 2π:

Fk(r) =
1

2π

∫ 2π

0

ln |f(reiϕ)|e−ikϕdϕ, k = 0,±1,±2, . . .

It is clear that

|Fk(r)| ≤ 1

2π

∫ 2π

0

| ln |f(reiϕ)||dϕ = m(r, f) +m

(
r,

1

f

)
≤ 2T (r, f).(4.7)

The formula (2.6) from Chapter 1 can be rewritten as (k = 1, 2, . . . ):

γk =
2

rk
Fk(r) +

1

k

∑
|aν |≤r

(
ākν
r2k
− 1

akν

)
− 1

k

∑
|bµ|≤r

(
b̄kµ
r2k
− 1

bkµ

)
(4.8)

If k = ρ and γk = cρ, the equality (4.8) can be rewritten as:

K(r) =
2

rρ
Fρ(r) +

1

ρ

∑
|aν |≤r

āρν
r2ρ
− 1

ρ

∑
|bµ|≤r

b̄ρµ
r2ρ

.(4.9)

Using (4.7) we get

|K(r)| ≤ 4T (r, f)

rρ
+

1

ρrρ

 ∑
|aν |≤r

(
|āν |
r

)ρ
+
∑
|bµ|≤r

(
|b̄µ|
r

)ρ
≤ 4T (r, f)

rρ
+
n(r; 0,∞)

ρrρ
.



4. HADAMARD AND LINDELÖF THEOREMS 63

Hence

∆K ≤ 4∆f + ρ−1∆n

Using this inequality we get, as in our first proof of Theorem 4.4, Ω ≤ A5∆f .
Assume now that Ω <∞. If r > r0(ε), then |K(r)| < ∆K + ε and n(r; 0,∞) <

(∆n + ε)rρ, ε > 0. We estimate the Fourier coefficients Fk(r). If k > ρ, from (4.8)
we get

−1

k

∑
|aν |>r

a−kν +
1

k

∑
|bµ|>r

b−kµ =
2

rk
Fk(r) +

1

k

∑
|aν |≤r

ākν
r2k
− 1

k

∑
|bµ|≤r

b̄kµ

r2k
,

hence

|Fk(r)| ≤ 1

2k
n(r; 0,∞) +

rk

2k

∫ ∞
r

dn(t; 0,∞)

tk

=
rk

2

∫ ∞
r

n(t; 0,∞)

tk+1
dt ≤ ∆n + ε

2(k − ρ)
rρ, k > ρ.

(4.10)

If 1 ≤ k ≤ ρ− 1, then using (4.8) we get

|Fk(r)| ≤ |ck|
2
rk +

1

2k
n(r; 0,∞) +

rk

2k

 ∑
|aν |≤r

|aν |−k +
∑
|bµ|≤r

|bµ|−k


≤ |ck|
2
rk +

n(r; 0,∞)

2k
+
rk

2k

∫ r

0

dn(t; 0,∞)

tk
dt

=
|ck|
2
rk +

n(r; 0,∞)

k
+
rk

2

∫ r

0

n(t; 0,∞)

tk+1
dt

≤ O(rρ−1) + (∆n + ε)

(
1

k
+

1

2(ρ− k)

)
rρ

(4.11)

From (4.9) we get

|Fρ(r)| ≤
|K(r)|

2
rρ +

n(r; 0,∞)

2ρ
≤ 1

2

(
∆K + ε+

∆n + ε

ρ

)
rρ.(4.12)

Finally, by Jensen’s formula,

F0(r) = N(r, 0)−N(r,∞)

and

|F0(r)| ≤ N(r; 0,∞) ≤ ∆n + ε

ρ
rρ +O(1).(4.13)

By the Parseval’s identity and the identity F−k = Fk(r), we get

1

2π

∫ 2π

0

ln2 |f(reiϕ)|dϕ =
∞∑

k=−∞
|Fk(r)|2 = |F0(r)|2 + 2

∞∑
k=1

|Fk(r)|2.(4.14)
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Using the inequalities (4.10), (4.11), (4.12), (4.13), and the elementary inequal-
ity (|a|+ |b|)2 ≤ 2(|a|2 + |b|2), we get

1

2π

∫ 2π

0

ln2 |f(reiϕ)|dϕ ≤ O(r2ρ−2) + 2{
(

∆n + ε

ρ

)2

+ (∆n + ε)2

ρ−1∑
k=1

(
1

k
+

1

2(ρ− k)

)2

+
(∆K + ε)2

2
+

(∆n + ε)2

2ρ2

+
(∆n + ε)2

4

∞∑
k=ρ+1

1

(k − ρ)2
}r2ρ = O(r2ρ−2) + {(∆K + ε)2 +A6(∆n + ε)2}r2ρ,

where

A6 =
3

ρ2
+ 2

ρ−1∑
k=1

(
1

k
+

1

2(ρ− k)

)2

+
1

2

∞∑
k=ρ+1

1

(k − ρ)2
<∞.

By the Cauchy-Buniakowsky inequality we get

m(r, f) +m

(
r,

1

f

)
=

1

2π

∫ 2π

0

| ln |f(reiϕ)||dϕ ≤
(

1

2π

∫ 2π

0

ln2 |f(reiϕ)|dϕ
)1/2

≤ rρ{(∆K + ε)2 +A6(∆n + ε)2 +O(r−2)}1/2,

2T (r, f) = m(r, f) +m

(
r,

1

f

)
+N(r; 0,∞)

≤ rρ{(∆K + ε)2 +A6(∆n + ε)2 +O(r−2)}1/2 +
∆n + ε

ρ
rρ +O(1).

Hence

2∆f ≤ {(∆K + ε)2 +A6(∆n + ε)2}1/2 +
∆n + ε

ρ
,

∆f ≤
1

2
{∆2

K +A6∆2
n}1/2

∆n

ρ
+A7Ω.

Therefore, we have proved the inequality A5Ω ≤ ∆f ≤ A7Ω, thus completing the
proof of Theorem 4.4.

Exercise. Prove Theorem 4.2 using the formula (4.8), the estimates (4.7),
(4.10), (4.11), (4.13), and the equality (4.14).

Now we consider the case of order ρ = 0.

Theorem 4.5. Let f(z) be a transcendental meromorphic function of order ρ =
0. Then the types of T (r, f) and N(r; 0,∞) with respect to an arbitrary proximate
order ρ(r), ρ(r)→ 0, coincide.

Proof. Let

f(z) =

∏
aν

(
1− z

aν

)
∏
bµ

(
1− z

bµ

) =
π1(z)

π2(z)
(4.15)
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From the inequality (3.6) we get

T (r, f) ≤ T (r, π1) + T (r, π2) ≤ lnM(r, π1) + lnM(r, π2)

≤
∫ r

0

n(t; 0,∞)

t
dt+ r

∫ ∞
r

n(t; 0,∞)dt

t2

= N(r; 0,∞) + r

∫ ∞
r

dN(t; 0,∞)

t
= N(r; 0,∞)−N(r; 0,∞)

+ r

∫ ∞
r

N(t; 0,∞)

t2
dt = r

∫ ∞
r

N(t; 0,∞)

t2
dt.

(4.16)

Suppose that ln r = o(rρ(r)). Then, using Theorem 2.4 it is easy to get ∆f ≤
∆N . On the other hand, it is clear that ∆N ≤ 2∆f . These two inequalities imply
the statement of the theorem in this case.

If the condition ln r = o(rρ(r)) is not satisfied, then T (r, f) has maximal type.
If N(r; 0,∞) has normal or minimal type, then for an infinite set of values of r the
relation N(r; 0,∞) = O(ln r) holds. In such a case the function f(z) has to have
finitely many zeros and poles, and hence by (4.15) is a rational function, so we get
a contradiction. �

Remark 1. Under the condition of Theorem 4.5, if f(z) is an entire function,
then ∆N ≤ ∆f , and hence ∆f = ∆N .

Remark 2. In the case when the proximate order ρ(r) approaches 0, the types
of the functions n(r; 0,∞) and N(r; 0,∞) can differ. For example, if n(r; 0,∞) ∼
Krρ(r), then N(r; 0,∞) ∼ K

∫ r

r0

tρ(t)−1dt and, as is easy to check,

rρ(r) = o

(∫ r

r0

tρ(t)−1dt

)
.

Denote by N̂(r; a, b) the function max(N(r, a), N(r, b)). Suppose that the con-
ditions of Theorem 4.5 are satisfied. We estimate T (r, f) from above, using instead
of the inequality

T

(
r,
π1

π2

)
≤ lnM(r, π1) + lnM(r, π2) +O(1)

a more precise one, which can be obtained using (4.8) from Chapter 1:

T

(
r,
π1

π2

)
≤ max{lnM(r, π1), lnM(r, π2)}.

Then, in the same way as we proved (4.16), we get

T (r, f) ≤ max{lnM(r, π1), lnM(r, π2)}

≤ max

{
r

∫ ∞
r

N(t, 0)

t2
dt, r

∫ ∞
r

N(t,∞)

t2
dt

}
≤ r

∫ ∞
r

N̂(t; 0,∞)

t2
dt.

(4.17)

This inequality implies ∆f ≤ ∆N̂ . On the other hand, N̂(r; 0,∞) ≤ T (r, f) +O(1)
and ∆N̂ ≤ ∆f . Hence ∆f = ∆N̂ , that is

lim sup
r→∞

T (r, f)

rρ(r)
= lim sup

r→∞

N̂(r; 0,∞)

rρ(r)
.
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It is clear that 0 and ∞ in the last equality can be replaced by arbitrary a and b.
Let ρ(r) be a proximate order of T (r, f). Then

1 ≥ lim sup
r→∞

N̂(r; a, b)

T (r, f)
≥ lim sup

r→∞

N̂(r; a, b)

∆frρ(r)
=

∆N̂

∆f
= 1,

that is,

lim sup
r→∞

N̂(r; a, b)

T (r, f)
= 1.(4.18)

In the case when f(z) is a rational function, the validity of (4.18) can be eas-
ily verified, using the equality (6.26) from Chapter 1. This implies the following
theorem.

Theorem 4.6 (Valiron). Let f(z) be a meromorphic function of order ρ = 0.
If the inequality

lim sup
r→∞

N(r, a)

T (r, f)
< 1

holds for some a, then

lim sup
r→∞

N(r, b)

T (r, f)
= 1

for all b 6= a.

5. Some examples

We consider some entire transcendental functions and find some relations for
them. We will use the relations on many occasions3.

1◦ Let p be a non-negative integer, p < η1 ≤ η2 < p+ 1. Let l(r) be a function,
continuously differentiable on [0,∞), and such that

1) l′(r)r ln r → 0 as r →∞,

2) lim infr→∞ l(r) = η1, lim supr→∞ l(r) = η2.

If η1 = η2, the function l(r) is a proximate order. The function l(r) preserves
many properties of a proximate order, sometimes with minor modifications. We
mention those among these properties which will be used later. 1) The function
rl(r) is increasing for sufficiently large r (this can be proved in the same way as
Theorem 2.3). 2) If 0 < a ≤ k ≤ b <∞, then

l(kr)− l(r) = o

(
1

ln r

)
and

(kr)l(kr)

(kr)l(r)
→ 1, (r →∞)

uniformly in k. The proof is based on the same tricks as our proof of Theorem 2.2,
we leave it to interested readers. 3) The following inequalities hold:

lim sup
r→∞

∫ r
1
tl(t)−p−1dt

rl(r)−p
≤ 1

η1 − p
,

lim sup
r→∞

∫∞
r
tl(t)−p−2dt

rl(r)−p−1
≤ 1

p+ 1− η2
.

3This section could be skipped in the first reading and be consulted when we refer to it in
the later sections.
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Let us prove, for example, the latter inequality. Using a well-known result from
Analysis, we get

lim sup
r→∞

∫ ∞
r

tl(t)−p−2dt

rl(r)−p−1
≤ lim sup

r→∞

d

dr

∫ ∞
r

tl(t)−p−2dt

d

dr
rl(r)−p−1

= lim sup
r→∞

1

p+ 1− l(r)− l′(r)r ln r
=

1

p+ 1− η2
.

Now we consider the Weierstrass canonical products of genus p with positive
zeros 1 ≤ a1 ≤ a2 ≤ . . . , such that n(r, 0) ∼ ∆rl(r) (0 < ∆ <∞):

f(z) =

∞∏
k=1

E

(
z

ak
, p

)
(5.1)

Let us find an asymptotic formula for ln f(z) in the angle δ < arg z < 2π − δ
for that branch of ln f(z) for which ln f(0) = 0. We represent ln f(z) as:

(5.1′)

ln f(z) =

∞∑
k=1

lnE

(
z

ak
, p

)
=

∫ ∞
0

lnE
(z
t
, p
)
dn(t, 0)

= n(t, 0) ln E
(z
t
, p
)∣∣∣∞
t=0
−
∫ ∞

0

n(t, 0)
d

dt
lnE

(z
t
, p
)
dt

= −zp+1

∫ ∞
0

n(t, 0)
dt

tp+1(t− z)
.

Consider an arbitrarily small number ε, 0 < ε < 1. If r > r0(ε), then |n(r, 0)−
∆rl(r)| < ε∆rl(r). Let z = reiϕ. Observe that for δ < ϕ < 2π− δ we have |t− z| ≥
(t + r) sin δ

2 (this statement can be easily proved by minimizing |x − eiϕ|/(x + 1)
over 0 ≤ x <∞).

There exists a constant K ≥ ∆ > 0, such that for 0 < r < ∞ the inequality
n(r, 0) < Krl(r) holds. Let δ1 > 0 be such that 1 > K1 = η1 − p − δ1 > 0 and
K2 = p + 1 − η2 − δ1 > 0. Select numbers a and b, 0 < a < 1 < b < ∞, such
that 2KK−1

1 b−K1 < ε, 2KK−1
2 b−K2 < ε and find r1(ε) > a−1r0(ε), such that for

r ≥ r1(ε) the following inequalities hold:

1) (1− ε)(kr)l(r) ≤ (kr)l(kr) ≤ (1 + ε)(kr)l(r) for a ≤ k ≤ b;
2)

∫ ar

1

tl(t)−p−1dt ≤ K−1
1 (ar)l(ar)−p;

3)

∫ ∞
br

tl(t)−p−2dt ≤ K−1
2 (br)l(br)−p−1;

4) η1 − δ1 ≤ l(r) ≤ η2 + δ1.



68 2. MEROMORPHIC FUNCTIONS OF FINITE ORDER

Now we estimate for r ≥ r1(ε) the difference∣∣∣∣zp+1

∫ ∞
0

n(t, 0)dt

tp+1(t− z)
− zp+1∆

∫ ∞
0

tl(r)dt

tp+1(t− z)

∣∣∣∣
≤ rp+1

∣∣∣∣∣
∫ ar

0

n(t, 0)dt

tp+1(t− z)
+

∫ ∞
br

n(t, 0)dt

tp+1(t− z)
+

∫ br

ar

n(t, 0)−∆tl(t)

tp+1(t− z)
dt

+∆

∫ br

ar

tl(t) − tl(r)
tp+1(t− z)

dt−∆

∫ ar

0

tl(r)dt

tp+1(t− z)
−∆

∫ ∞
br

tl(r)dt

tp+1(t− z)

∣∣∣∣∣
≤ rp+1

sin
δ

2

{
1

r

∫ ar

1

n(t, 0)

tp+1
dt+

∫ ∞
br

n(t, 0)

tp+2
dt+

∫ br

ar

|n(t, 0)−∆tl(t)|
tp+1(t+ r)

dt

+∆

∫ br

ar

|tl(t) − tl(r)|
tp+1(t+ r)

dt+
∆

r

∫ ar

0

tl(r)dt

tp+1
+ ∆

∫ ∞
br

tl(r)

tp+2
dt

}

≤ rp+1

sin
δ

2

{
K

r

∫ ar

1

tl(t)−p−1dt+K

∫ ∞
br

tl(t)−p−2dt+ ε∆

∫ br

ar

tl(t)dt

tp+1(t+ r)

+
∆

rp+1

∫ b

a

|(τr)l(τr) − (τr)l(r)|
τp+1(τ + 1)

dτ +
∆

l(r)− p (ar)l(r)−p
1

r

+
∆

p+ 1− l(r) (br)l(r)−p−1

}
≤ rp+1

sin
δ

2

{
K

r
K−1

1 (ar)l(ar)−p +KK−1
2 (br)l(br)−p−1

+ ε∆r−p−1

∫ b

a

(τr)l(τr)dτ

τp+1(1 + τ)
+ ε∆r−p−1

∫ b

a

(τr)l(r)dτ

τp+1(1 + τ)

+∆K−1
1 r−p−1aK1rl(r) + ∆K−1

2 r−p−1b−K2rl(r)
}

≤ csc
δ

2

{
KK−1

1 a−p(1 + ε)(ar)l(r) +KK−1
2 b−p−1(1 + ε)(br)l(r)

+ε∆(2 + ε)

∫ b

a

(τr)l(r)dτ

τp+1(1 + τ)
+ εrl(r) + εrl(r)

}

≤ rl(r) csc
δ

2

{
KK−1

1 aK1(1 + ε) +KK−1
2 b−K2(1 + ε)

+ε∆(2 + ε)

∫ ∞
0

τ l(r)−p−1dτ

1 + τ
+ 2ε

}
≤ εrl(r) csc

δ

2

{
2(1 + ε) + ∆(2 + ε)

π

sinπ(l(r) − p) + 2ε

}
≤ εrl(r) csc

δ

2
{6 + 3∆πmax[cscπK1, csc πK2]} = εArl(r) csc

δ

2
.

The integral

I(z) =

∫ ∞
0

tl(r)dt

tp+1(t− z)
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can be easily evaluated using the Residue Calculus:

I(z) = − πe−iπ(l(r)−p)

sinπ(l(r) − p) · rest=z
tl(r)−p−1

t− z = − πe−iπ(l(r)−p)

sinπ(l(r) − p)z
l(r)−p−1.

Thus we get for {δ < arg z < 2π < 2π − δ, |z| > r1(ε)} the inequality∣∣∣∣ln f(z)− π∆

sinπ(l(r) − p)e
−iπ(l(r)−p)zl(r)

∣∣∣∣ ≤ εArl(r) csc
δ

2
,

that is, for δ < ϕ < 2π − δ we get uniformly the following:

ln f(reiϕ) =
π∆

sinπl(r)
eil(r)(ϕ−π)rl(r) + o(rl(r)), (5.21)

ln |f(reiϕ)| = π∆
cos l(r)(ϕ − π)

sinπl(r)
rl(r) + o(rl(r)), (5.22)

arg f(reiϕ) = π∆
sin l(r)(ϕ − π)

sinπl(r)
rl(r) + o(rl(r)). (5.23)

(5.2)

In the case when l(r) = ρ(r)→ ρ, p < ρ < p+ 1, that is, l(r) is a proximate order,
these formulas can be rewritten as

ln f(reiϕ) =
π∆

sinπρ
eiρ(ϕ−π)rρ(r) + o(rρ(r)) (5.31)

ln |f(reiϕ)| = π∆
cos ρ(ϕ− π)

sinπρ
rρ(r) + o(rρ(r)) (5.32)

arg f(reiϕ) = π∆
sin ρ(ϕ− π)

sinπρ
rρ(r) + o(rρ(r)) (5.33)

(5.3)

Now we estimate lnM(r, f). We cannot use for this purpose the estimate (5.22)
because (5.22) is known for δ < ϕ < 2π − δ only. For this reason we use a more
rough estimate. Inequality (3.5) and (5.1′) imply

lnM(r, f) < C(p)(−1)p ln f(−r)

Using (5.22) we get

π∆

| sinπl(r)|r
l(r) + o(rl(r)) < lnM(r, f) < C(p)

π∆

| sin πl(r)|r
l(r) + o(rl(r))

It is clear that for p = 0 we have

(5.2′2) lnM(r, f) = ln f(−r) =
π∆

sinπl(r)
rl(r) + o(rl(r))

Let us compute the Nevanlinna characteristic for the function f(z), defined by
(5.1). Note that if ψ(r) → ∞ as r → ∞, then {ψ(r) + o(ψ(r))}+ = {ψ(r)}+ +
o(ψ(r)). If, in addition, an estimate of o(ψ(r)) in the left-hand side is uniform
with respect to some parameter, then the same is true for o(ψ(r)) in the right-hand
side. The function rl(r) = R(r) satisfies the conditions of Theorem 7.4 (Chapter 1)
for an arbitrary k > 1. In fact, R(kr) ≤ (1 + o(1))kl(r)R(r) ≤ (1 + o(1))kη2R(r)
and T (r, f) ≤ lnM(r, f) = O(R(r)). Using the formula (7.15) from Chapter 1 and
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(5.22), we get

T (r, f) = m(r, f) =
1

2π

∫ 2π

0

ln+ |f(reiϕ)|dϕ

= rl(r)
∆

2

∫ 2π

0

{
cos l(r)(ϕ − π)

sinπl(r)

}+

dϕ+ o(rl(r)).

An elementary computation shows that for p < λ < p+ 1 we have

I1(λ) =
1

2

∫ 2π

0

{
cosλ(ϕ− π

sinπλ

}+

dϕ =


p+ | sinπλ|
λ| sinπλ| , if p < λ < p+ 1

2

p+ 1

λ| sinπλ| , if p+ 1
2 ≤ λ < p+ 1.

Hence

T (r, f) = ∆I1(l(r))rl(r) + o(rl(r)).(5.4)

Taking into account the condition 2) for l(r) we get that for r ≥ r0 the value of
I1(l(r)) is bounded below and bounded above by positive constants. Therefore the
function f(z) has order η2. The lower order of f(z) is equal to η1. If l(r) = ρ(r)→ ρ
as r→∞, then the relation (5.4) can be written as

(5.4′) T (r, f) = ∆I1(ρ)rρ(r) + o(rρ(r)).

It is clear that n(r, f) ≡ 0 and N(r, f) ≡ 0. We find m
(
r, 1
f

)
using a similar

argument:

m

(
r,

1

f

)
= rl(r)

∆

2

∫ 2π

0

{
−cos l(r)(ϕ − π)

sinπl(r)

}+

dϕ+ o(rl(r))

= ∆I2(l(r))rl(r) + o(rl(r)),

(5.5)

where

I2(λ) =
1

2

∫ 2π

0

{
−cosλ(ϕ− π)

sinπλ

}+

dϕ

=


p

λ| sin πλ| , if p < λ < p+ 1
2 ,

p+ 1− | sinπλ|
λ| sinπλ| , if p+ 1

2 ≤ λ < p+ 1.

Let us compute N
(
r, 1
f

)
. Choose an arbitrary ε > 0. Let r0(ε) be such that

|n(r, 0) − ∆rl(r)| < εrl(r) for r > r0(ε). Select a, 0 < a < 1 to be so small that
aη1 < η1ε. For r > r1(ε, a) ≥ a−1r0(ε) and a ≤ k ≤ 1 the inequality |(kr)l(r) −
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(kr)l(r)| < ε(kr)l(r) holds. We have the following estimate

∣∣∣∣N (r, 1

f

)
−∆

∫ r

ar

tl(r)−1dt

∣∣∣∣ ≤ ∫ ar

1

n

(
t,

1

f

)
t

dt

+

∣∣∣∣∣∣∣∣
∫ r

ar

n

(
t,

1

f

)
−∆tl(t)

t
dt

∣∣∣∣∣∣∣∣+

∣∣∣∣∆∫ r

ar

tl(t) − tl(r)
t

dt

∣∣∣∣
≤ K

∫ ar

1

tl(t)−1dt+ ε

∫ r

ar

tl(t)−1dt+ ∆

∫ r

a

|(τr)l(τr) − (τr)l(r)|
τ

dτ

≤ K
∫ ar

1

tl(t)−1dt+ ε(1 + ε)

∫ 1

a

(τr)l(r)

τ
dτ + ∆ε

∫ 1

a

(τr)l(r)

τ
dτ

= K

∫ ar

1

tl(t)−1dt+ ε(1 + ∆ + ε)rl(r)
∫ 1

a

τ l(r)−1dτ

≤ K
∫ ar

1

tl(t)−1dt+ ε
1 + ∆ + ε

l(r)
rl(r).

On the other hand,

lim sup
r→∞

∫ ar

1

tl(t)−1dt

rl(r)
≤ lim sup

r→∞

d

dr

∫ ar

1

tl(t)−1dt

d

dr
rl(r)

= lim sup
r→∞

al(r)
(ar)l(ar)

(ar)l(r)(l(r) + l′(r)r ln r)
=
aη1

η1
< ε.

Since ∫ r

ar

tl(r)−1dt =
rl(r)

l(r)
(1− al(r)),

for r ≥ r2 ≥ r1(ε, a) we have∣∣∣∣N (r, 1

f

)
− ∆rl(r)

l(r)

∣∣∣∣ ≤ εrl(r)(K + ∆ +
1 + ∆ + ε

η1

)
.

Thus

N

(
r,

1

f

)
=

∆

l(r)
rl(r) + o(rl(r)).(5.6)

Let a 6= 0,∞, and let Eδ(r) be the set
⋃
k{|l(r)(ϕ−π)−π(k+1/2)| < δ}∪[0, δ]∪

[2π − δ, 2π], where the union is taken over those integer k for which −l(r)− 1/2 ≤
k ≤ l(r) − 1/2 (if p = 0, it can happen that there are no such k). It is easy to see
that mesEδ(r) ≤ Aδ, where A is a constant which does not depend on r. From
(5.22) we get that for r ≥ r0 and ϕ ∈ [0, 2π]\Eδ(r) we have

ln+ 1

|f(reiϕ)− a| = O(1).

Hence by Theorem 7.4 from Chapter 1 and the Remark 1 following it, we get

m(r, a, f) = o(rl(r)).(5.7)
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The First Fundamental Theorem together with (5.7) and (5.4) implies

N(r, a, f) = T (r, f) + o(rl(r)) = ∆I1(l(r))rl(r) + o(rl(r))(5.8)

We already proved an estimate for lnM(r, f), but it is sharp for p = 0 only.
Now we shall get a sharp estimate in the case when l(r) = ρ(r)→ ρ as r →∞, that
is, when l(r) is a proximate order. We shall complement (5.32) by the following
asymptotic inequality:

ln |f(reiϕ)| ≤ π∆
cos ρ(ϕ− π)

sinπρ
rρ(r) + o(rρ(r))(5.9)

as r→∞, uniformly with respect to ϕ, 0 ≤ ϕ ≤ 2π.

Denote by Dδ the domain {|z| > 1, | arg z| < δ}, where 0 < δ <
π

2
min

(
1,

1

ρ

)
.

Choose an arbitrarily small ω > 0 and denote by µ the number

µ =
cos ρ(δ − π)

cos ρδ
+ ω

sinπρ

π∆ cos ρδ
.

Consider in the domain Dδ the function

ψδ(z) = f(z)[f(−z)]−µ.

For the ray arg z = δ we have the following estimate

ln|ψδ(reiδ)| = ln |f(reiδ)| − µ ln |f(rei(δ+π))|

= π∆
cos ρ(δ − π)

sinπρ
rρ(r) − µπ∆

cos ρδ

sinπρ
rρ(r) + o(rρ(r)) = −ωrρ(r) + o(rρ(r)).

An analogous estimate takes place for the ray arg z = −δ. Therefore the function
ψδ(z) is bounded on the boundary Dδ with ∞ excluded:

|ψδ(z)| ≤M, z ∈ ∂Dδ\{∞}.
Consider ρ′ satisfying ρ < ρ′ < π

2δ , and an arbitrary number ξ > 0. The

function ψδ(z) exp{−ξzρ′} is continuous in the closure of Dδ and in the closure of
Dδ in the extended complex plane, if we define its value at ∞ as 0. In fact, for
|ϕ| ≤ δ we have

ln
∣∣∣ψδ(reiϕ)e−ξr

ρ′eiϕρ
′ ∣∣∣ ≤ lnM(r, f)− µ ln |f(rei(|ϕ|+π))| − ξrρ′ cosϕρ′

≤ O(rρ(r))− µπ∆
cos ρ|ϕ|
sinπρ

rρ(r) + o(rρ(r))− ξrρ′ cos δρ′

= O(rρ(r))− ξrρ cos δρ′ → −∞ as r →∞.

Hence we may use for ψδ(z) exp(−ξzρ′) the principle of maximum modulus. On

the other hand, for z ∈ Dδ we have | exp(−ξzρ′)| < 1. Hence

|ϕδ(z) exp(−ξzρ
′
)| ≤M

for z ∈ Dδ. Passing in this inequality to the limit as ξ → 0, we get that for z ∈ Dδ

the inequality |ψδ(z)| ≤M holds. For |ϕ| ≤ δ we have

ln |f(reiϕ)| = µ ln |f(rei(|ϕ|+π))|+ ln |ψδ(reiϕ)|

≤ µπ∆
cos ρ|ϕ|
sinπρ

rρ(r) + o(rρ(r)) + lnM ≤ µπ∆

sinπρ
rρ(r) + o(rρ(r)).

(5.10)
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Let ε > 0 be an arbitrarily small positive number. Choose δ > 0 and ω > 0 in
such a way that for 0 ≤ ϕ ≤ δ and 2π − δ ≤ ϕ ≤ 2π the inequality

ε+ ∆π
cos ρ(ϕ− π)

sinπρ
> ∆π

cos ρπ

sinπρ
>

µπ∆

sinπρ
− ε

holds.
Then by (5.10) we get that for 0 ≤ ϕ ≤ δ and 2π − δ ≤ ϕ ≤ 2π the inequality

ln |f(reiϕ)| ≤ ∆π
cos ρ(ϕ− π)

sinπρ
rρ(r) + 2εrρ(r) + o(rρ(r))

holds uniformly with respect to ϕ.
By (5.32) this inequality holds also for δ ≤ ϕ ≤ 2π − δ. Thus, we have proved

the inequality (5.9).
The relation (5.32) implies that

ln |f(reiϕ0)| = π∆

sinπρ
rρ(r) + o(rρ(r)),

where ϕ0 = π for even p and ϕ0 = π + π
ρ for odd p. Together with (5.9) it implies

lnM(r, f) =
π∆

sinπρ
rρ(r) + o(rρ(r)).(5.11)

The function f(z) given by (5.1) will be used in several constructions. First,
let us mention the following theorem.

Theorem 5.1. Let ρ(r) be a proximate order, ρ(r) → ρ as r → ∞, L(r) =
rρ(r)−ρ. There exists a function F (z) analytic in {| arg z| < π} taking positive
values on the positive semi-axis, and such that for every δ satisfying 0 < δ < π the
condition

F (reiϕ) = (1 + o(1))L(r) < r→∞
holds uniformly with respect to ϕ in {|ϕ| < π − δ}.

Indeed , let f(z) be a canonical product with positive zeros, such that n(r, 0) ∼
π−1r1/2+ρ(r)−ρ. The desired function F (z) can be chosen in {| arg z| < π} as

F (z) =
ln f(−z)√

z
,

where the branch of
√
z is chosen in such a way that

√
r > 0 for r > 0. Since

f(−r) > 1, then F (r) > 0. Taking into account the inequality (5.31) we get
(|ϕ| < π − δ)

F (reiϕ) =
ei
ϕ
2 r

1
2 +ρ(r)−ρ + o

(
r

1
2 +ρ(r)−ρ

)
ei
ϕ
2 r

1
2

= L(r) + o(L(r)).

Let f(z) be an entire function of order ρ, 0 < ρ <∞. The inequality T (r, f) ≤
ln+M(r, f) ≤ 3T (2r, f) (see (7.1) in Chapter 1) implies that under the condition

0 < lim inf
r→∞

lnM(r, f)

rρ
≤ lim sup

r→∞

lnM(r, f)

rρ
<∞

we have

0 < lim inf
r→∞

T (r, f)

rρ
≤ lim sup

r→∞

T (r, f)

rρ
<∞,
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and vice versa. It is natural to ask whether the existence of the limit

lim
r→∞

lnM(r, f)

rρ
6= 0,∞(5.12)

implies the existence of the limit

lim
r→∞

T (r, f)

rρ
6= 0,∞,(5.13)

and vice versa. It turns out that in both cases the answer to this question is
negative. Let us give the corresponding examples.

Example 1. We give an example showing that the existence of the limit in
(5.12) does not imply the existence of the limit in (5.13). First we let 0 < ρ < 1/2.
We construct two proximate orders, ρ1(r) and ρ2(r), satisfying for r > r0 the
inequality

ρ− ln ln r

ln r
≤ ρj(r) ≤ ρ, j = 1, 2.

Observe that rρ−
ln ln r
ln r = rρ

ln r . Choose ρj(r) in such a way that

max(ρ1(r), ρ2(r)) ≡ ρ;

the inequality ρ1(rn) = ρ − ln ln rn
ln rn

is satisfied for some sequence rn → ∞, and

ρ1(r′n) = ρ2(r′n) = ρ for some sequence r′n → ∞. Let Vj(z) be canonical products

of genus 0 with positive zeros satisfying n(r, 0, Vj) ∼ rρj(r). Consider the function

f(z) = V1(z) + V2(−z).

It is clear that |f(z̄)| = |f(z)|, therefore it suffices to get suitable estimates for
|f(z)| in the upper half-plane {Imz ≥ 0}. We shall use the relations (5.32) and
(5.11). Since

M(r, f) ≤ 2 max
j=1,2

M(r, Vj),

we have

lnM(r, f) ≤ π

sinπρ
rρ + o(rρ).

On the other hand,

Vj(r) ≤ exp(π cotρπrρj (r) + o(rρj (r)))

and

Vj(−r) = exp

(
π

sin ρπ
rρj(r) + o(rρj (r))

)
.

Denote by s(r) the function which is equal to 1 at those values of r for which
ρ1(r) = ρ, and is equal to −1 when ρ1(r) < ρ (at such points ρ2(r) = ρ). It is easy
to see that

|f(−s(r)r)| = exp

{
π

sinπρ
rρ + o(rρ)

}
,

therefore

lnM(r, f) =
π

sinπρ
rρ + o(rρ),

and (5.12) is satisfied. For r = rn we have

T (rn, V1) ≤ lnM(rn, V1) = O(rρ1(rn)
n ) = O

(
rρn

ln rn

)
.
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Taking into account (5.4′), we get

T (rn, f) = T (rn, V2) +O

(
rρn

ln rn

)
= I1(ρ)rρ2(rn)

n + o(rρ2(rn)
n ) +O

(
rρn

ln rn

)
= I1(ρ)rρn + o(rρn) =

1

ρ
rρn + o(rρn).

For r = r′n and δ ≤ ϕ ≤ π/2− δ or π/2 + δ ≤ ϕ ≤ π − δ, δ > 0, by (5.32) we have

ln |f(r′ne
iϕ)| = π

max{cosρ(π − ϕ), cos ρϕ}
sinπρ

rρn′ + o(rρn′).

Using Theorem 7.4 from Chapter 1 and Remark 2 following it, we get

T (r′n, f) = m(r′n, f) =
r′
ρ
n

sinπρ

∫ π

0

max{cos ρ(π − ϕ), cos ρϕ}dϕ+ o(r′
ρ
n)

=
2r′

ρ
n

sinπρ

∫ π/2

0

cos ρϕdϕ + o(r′
ρ
n) =

2 sin
πρ

2
ρ sinπρ

r′
ρ
n + o(r′

ρ
n)

=
1

ρ
sec

πρ

2
r′
ρ
n + o(r′

ρ
n).

Hence

lim inf
r→∞

T (r, f)

rρ
≤ 1

ρ
<

1

ρ
sec

πρ

2
≤ lim sup

r→∞

T (r, f)

rρ
,

that is, the limit in (5.13) does not exist. If instead of f(z) we consider the functions
f(zp), p = 2, 3, 4, . . . , by Theorem 6.6 from Chapter 1 and the obvious inequality

lnM(r, f(zp)) = lnM(rp, f(z)), we get analogous examples for each ρ, 0 < ρ <
p

2
,

that is, for each ρ, 0 < ρ <∞.

Example 2. Now we show that the existence of the limit in (5.13) does not
imply the existence of the limit in (5.12). The idea of this example is similar
to the idea of Example 1, but the construction is somewhat more technical. Let
0 < ρ < 1/2. Consider the equation

F (x, y) = y cot ρπ

{
y

x cos ρπ
− 1

}

+

√√√√x2

[
1 + cot2 ρπ

{
y

x cos ρπ
− 1

}2
]
− y2

− 2 sin
ρπ

2

√
1 + cot2 ρπ

{
y

x cos ρπ
− 1

}2

= 0,

(5.14)

where the radical denotes the arithmetical value of the square root, x and y are real
variables. It is easy to check that F (1, 1) = 0, F ′x(1, 1) = tan ρπ

2 , F ′y(1, 1) = tan ρπ
2 .

Well-known theorems on implicit functions imply that the equation (5.14) defines
in a sufficiently small neighborhood of (1, 1) an univalent continuously differentiable
decreasing function y = y(x), y(1) = 1, |y′(x) − (−1)| < 1/2.

Let L1(r) = 1 + η sin ln ln(e + r), r ≥ 0, where η > 0 is chosen to be so small
that the interval [1− η, 1 + η] is contained in the interval where the function y(x)
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with the properties described above is defined. Let L2(r) = y(L1(r)). We may
assume that η is so small that for 1− η ≤ x ≤ +η the inequality

cosπρ < y(x)/x < sec πρ

is satisfied. Hence, for all r > 0 the inequality

cosπρ < L2(r)/L1(r) < secπρ(5.15)

holds. Denote by Vj(r) the canonical product of genus 0 with positive zeros, for
which n(r, 0, Vj) ∼ rρLj(r), j = 1, 2. It is easy to verify that the functions ρj(r)

defined by the equations rρj(r) = rρLj(r) are proximate orders, and ρj(r) → ρ as
r→∞. As in Example 1 we let

f(z) = V1(z) + V2(−z).

Using the same argument as in Example 1, we get

lnM(r, f) = max
j=1,2

lnM(r, Vj) + o(rρ)

=
π

sinπρ
rρ max{L1(r), L2(r)} + o(rρ).

Hence

lim sup
r→∞

lnM(r, f)

sinπρ
=

π

sinπρ
lim sup
r→∞

max{L1(r), L2(r)}

=
π

sinπρ
max{(1 + η), y(1 − η)} ≥ (1 + η)

π

sinπρ
,

lim inf
r→∞

lnM(r, f)

rρ
=

π

sinπρ
lim inf
r→∞

max{L1(r), L2(r)}

=
π

sinπρ
max{(1− η), y(1 + η)} < π

sinπρ
.

Thus the limit in (5.12) does not exist. Denote by ϕ(r), 0 < ϕ(r) < π, the
(unique) solution of the equation

L1(r) cos ρ(π − ϕ) = L2(r) cos ρϕ.(5.16)

The existence of the solution follows from (5.15). From (5.32) it is easy to get that
for each positive δ we have

ln |f(reiϕ)| =


πrρL2(r)

cos ρϕ

sin ρπ
+ o(rρ), δ ≤ ϕ ≤ ϕ(r) − δ,

πrρL1(r)
cos ρ(π − ϕ)

sin ρπ
+ o(rρ), ϕ(r) + δ ≤ ϕ ≤ π − δ.

Taking into account Theorem 7.4 from Chapter 1 and Remark 1 following it, we
get

T (r, f) =
rρ

sinπρ

{
L2(r)

∫ ϕ(r)

0

cos ρϕ+ L1(r)

∫ π

ϕ(r)

cos ρ(π − ϕ)dϕ

}

+ o(rρ) =
rρ

ρ sinπρ
{L2(r) sin ρϕ(r) + L1(r) sin ρ(π − ϕ(r))} + o(rρ).

(5.17)

Using (5.16) we get

tan ρϕ(r) = cot ρπ

(
L2(r)

L1(r) cos ρπ
− 1

)
,
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sin ρϕ(r) =

cot ρπ

(
L2(r)

L1(r) cos ρπ
− 1

)
{

1 + cot2 ρπ

(
L2(r)

L1(r) cos ρπ
− 1

)2
} 1

2

,

sin ρ[π − ϕ(r)] =

{
1−

[
L2(r)

L1(r)
cos ρϕ(r)

]2
} 1

2

=

{
1 + cot2 ρπ

{
L2(r)

L1(r) cos ρπ
− 1

}2

− L2
2(r)

L2
1(r)

} 1
2

{
1 + cot2 ρπ

{
L2(r)

L1(r) cos ρπ
− 1

}2
} 1

2

.

Taking into account (5.14) and the definition of the function L2(r) = y(L1(r)), we
get

L2(r) sin ρϕ(r) + L1(r) sin ρ(π − ϕ(r)) ≡ 2 sin
ρπ

2
.

Now we can rewrite (5.17) as

T (r, f) =
rρ

ρ cos
ρπ

2

+ o(rρ),

that is, the limit in (5.13) is defined. Considering the functions f(zp), as in Example
1, we drop remove the restriction ρ < 1/2.

It is worth mentioning that it is possible to construct examples of the type of
Example 1 using another idea. We restrict our attention to the case ρ = 1, because
in this case the construction is simpler.

Example 1
′
. We define an integer sequence {rk} using the following recurrent

relation: r1 = 1, rk+1 = 3r2
k. Let pk = r2

k; η2k = 1, k = 0, 1, 2, . . . . Let η2k+1 = 1
if r2n−1 ≤ 2k + 1 < r2n and η2k+1 = 0 if r2n ≤ 2k + 1 < r2n+1. Let η′2k = 0 and
η′2k+1 = η2k+1. Note that for integer s ≥ rk+1 we have

psk
s!
<
r2s
k e

s

ss
≤
(
r2
ke

rk+1

)s
=
(e

3

)s
.(5.18)

The function

f(z) =

∞∑
s=0

ηs
zs

s!

has the desired properties. It is clear that

cosh r ≤M(r, f) = f(r) ≤ er.

Hence

lim
r→∞

lnM(r, f)

r
= 1.
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If |z| = p2n−1 then (see (5.18)) the following inequality holds

|ez − f(z)| =
∣∣∣∣∣
∞∑
s=0

(1− ηs)
zs

s!

∣∣∣∣∣ ≤
r2n−1∑
s=0

|z|s
s!

+

∞∑
s=r2n

|z|s
s!

≤ pr2n−1

2n−1

∞∑
s=0

1

s!
+

∞∑
s=r2n

(e
3

)s
≤ ep

√
p2n−1

2n−1 + o(1).

Hence, for r = p2n−1 we have

f(reiϕ) = exp(reiϕ) +O(exp(
√
r ln r))

and

T (r, f) = T (r, ez) +O(
√
r ln r) =

r

π
+O(

√
r ln r).

Thus

lim inf
r→∞

T (r, f)

r
≤ 1

π
.(5.19)

In a similar manner, for |z| = p2n we get

|f(z)− cosh z| =
∣∣∣∣∣
∞∑
s=0

η′s
zs

s!

∣∣∣∣∣
≤

r2n∑
s=0

|z|s
s!

+

∞∑
s=r2n+1

|z|s
s!
≤ pr2n2n e+ o(1) = ep

√
p2n

2n + o(1).

Therefore for r = p2n we have

f(reiϕ) = cosh(reiϕ) +O(exp(
√
r ln r)),

T (r, f) = T (r, cosh z) +O(
√
r ln r) =

2r

π
+O(

√
r ln r).

(Here we have used the result of Exercise 2 to Theorem 6.1 from Chapter 1.) It
follows that

lim sup
r→∞

T (r, f)

r
≥ 2

π
(5.20)

Combining (5.19) and (5.20) we conclude that the limit of T (r, f)/r as r →∞ does
not exist.

2◦. Now we consider entire functions of integer order ρ > 0 with positive zeros,
such that n(r, 0) ∼ ∆rρ(r), where 0 < ∆ <∞, ρ(r) is a proximate order, ρ(r)→ ρ
as r → ∞. We shall use the notation from the proof of Theorem 4.3. In this case
f(z) = f1(z)f2(z), where

f1(z) = exp

zρ
cρ +

1

ρ

∑
0<aν≤r

a−ρν

 ,

f2(z) = ecρ−1z
ρ−1+···+c1z

∏
0<aν≤r

E

(
z

aν
, ρ− 1

) ∏
aν>r

E

(
z

aν
, ρ

)
= ecρ−1z

ρ−1+···+c1zf3(z).
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We consider the function ln f(z) in the angle {0 < δ ≤ arg z ≤ 2π − δ},
ln f(0) = ln f2(0) = ln f1(0) = ln f3(0) = 0. We have

| ln f(z)− ln f1(z)| = | ln f2(z)| ≤ O(|z|ρ−1) + | ln f3(z)|.
On the other hand, the function ln f3(z) can be represented in the form (cf. com-
putation in part 1◦ of this section):

ln f3(z) = −zρ
∫ r

0

n(t, 0)
dt

tρ(t− z)
− zρn(r, 0)

∫ ∞
r

dt

tρ(t− z)

− zρ+1

∫ ∞
r

{n(t, 0)− n(r, 0)} dt

tρ+1(t− z)
= −zρ

∫ r

0

n(t, 0)
dt

tρ(t− z)

− zρ

ρrρ
n(r, 0)− zρ+1

∫ ∞
r

n(t, 0)
dt

tρ+1(t− z)
.

For δ < ϕ < 2π − δ we have |t− reiϕ| ≥ sin δ
2 (t+ r), hence

| ln f3(reiϕ)| ≤ 1

sin
δ

2

{
rρ
∫ r

0

n(t, 0)

tρ(t+ r)
dt+

1

ρ
n(r, 0) + rρ+1

∫ ∞
r

n(t, 0)

tρ+1(t+ r)
dt

}
.

Estimating the sum in the braces we, as in the proof of Theorem 4.3, get

| ln f3(reiϕ)| = O(rρ(r))(5.21)

uniformly with respect to ϕ, δ < ϕ < 2π − δ. Hence

ln f(z) = zρ

cρ +
1

ρ

∑
0<aν≤r

a−ρν

+O(rρ(r)), (5.221)

ln |f(z)| = Re

zρ
cρ +

1

ρ

∑
0<aν≤r

a−ρν

+O(rρ(r)), (5.222)

arg f(z) = Im

zρ
cρ +

1

ρ

∑
0<aν≤r

a−ρν

+O(rρ(r)). (5.223)

(5.22)

Note, that in order to prove these relations, we used the relation n(r, 0) = O(rρ(r))
only. Consider first the case when the integral∫ ∞

1

tρ(t)−ρ−1dt(5.23)

is divergent. In this case we introduce the notation (r ≥ 2)

L1(r) =

∫ r

1

tρ(t)−ρ−1dt, rρ1(r) = rρL1(r).

It is easy to check that ρ1(r) is a proximate order,

ρ1(r)→ ρ, rρ = o(rρ1(r)), rρ(r) = o(rρ1(r)) as r→∞.
Using (5.221) we get

ln f(z) = zρ
1

ρ

∑
0<aν≤r

a−ρν + o(rρ1(r)).
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By the l’Hôpital rule, we get

1

ρ

∑
0<aν≤r

a−ρν =
1

ρ

∫ r

0

dn(t, 0)

tρ
=
n(r, 0)

ρrρ
+

∫ r

0

n(t, 0)

tρ+1
dt

= O(rρ(r)−ρ) + ∆(1 + o(1))

∫ r

1

tρ(t)−ρ−1dt = ∆(1 + o(1))L1(r).

Hence

ln f(reiϕ) = ∆eiρϕrρ1(r) + o(rρ1(r)), (5.241)

ln |f(reiϕ)| = ∆rρ1(r) cos ρϕ+ o(rρ1(r)), (5.242)
(5.24)

and these estimates are uniform with respect to δ < ϕ < 2π − δ. Using Theorem
4.3 we get

T (r, f) = m(r, f) =
∆

π
rρ1(r) + o(rρ1(r)).

By Theorem 7.4 from Chapter 1 we have

N(r, f) = 0, m

(
r,

1

f

)
=

∆

π
rρ1(r) + o(rρ1(r)),

N

(
r,

1

f

)
∼ ∆

ρ
rρ(r) = o(rρ1(r)),

and for a 6= 0,∞, we have

m

(
r,

1

f − a

)
= o(rρ1(r)).

Hence, by the First Fundamental Theorem,

N

(
r,

1

f − a

)
=

∆

π
rρ1(r) + o(rρ1(r)).

It is worth mentioning that using the method from part 1◦, it can be shown
that if in (5.242) we replace the equality sign by ≤, the obtained inequality will be
valid everywhere in the complex plane.

Exercise. Using the infinite product representation of the entire function
1/Γ(z), where Γ(z) is the Euler gamma-function, namely

1

Γ(z)
= zeγz

∞∑
n=1

E
(
− z
n
, 1
)

(γ = 0, 577 . . . is the Euler-Mascheroni constant), find an asymptotic formula for
Γ(z) in the region {| arg z| < π − δ}, δ > 0:

ln Γ(z) = z ln z + o(r ln r).

Now we suppose that the integral in (5.23) converges. Let

ρ2(r) = ρ+ (ln r)−1 ln

{∫ ∞
r

tρ(t)−ρ−1dt

}
, r > 1,

rρ2(r) = rρ
∫ ∞
r

tρ(t)−ρ−1dt = rρL2(r).
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As before, we check that rρ(r) = o(rρ2(r)), rρ2(r) = o(rρ). In the case under
consideration the function n(r, 0) belongs to the convergence class, and the function
f(z) can be represented as

f(z) = ec
′
ρz
ρ+...

∏
ν

E

(
z

aν
, ρ− 1

)
= f4(z)f2(z),

where f2(z) is defined as before, and

f4(z) = exp

zρ
c′ρ − 1

ρ

∑
|aν |>r

a−ρν

 .

The series
∑
ν a
−ρ
ν converges since n(r, 0) belongs to the convergence class.

The relation (5.21) implies that uniformly in ϕ = arg z within the angle 0 <
δ < arg z < 2π − δ, the relation

| ln f(reiϕ)− ln f4(reiϕ)| ≤ O(rρ(r)) +O(rρ−1) = o(rρ2(r)).(5.25)

holds. In the same way as before we get

−1

ρ

∑
aν>r

a−ρν = −1

ρ

∫ ∞
r

dn(t, 0)

tρ
=

1

ρ

n(r, 0)

rρ
−
∫ ∞
r

n(t, 0)

t1+ρ
dt

= O(rρ(r)−ρ)−∆(1 + o(1))

∫ ∞
r

tρ(t)−ρ−1dt = −∆(1 + o(1))L2(r).

By (5.25) we get

ln f(reiϕ) = eiρϕc′ρr
ρ −∆eiρϕrρ2(r) + o(rρ2(r)).

If c′ρ = 0, then

ln f(reiϕ) = −∆eiρϕrρ2(r) + o(rρ2(r)), (5.261)

ln |f(reiϕ)| = −∆ cos ρϕrρ2(r) + o(rρ2(r)). (5.262)
(5.26)

If c′ρ 6= 0, then

ln f(reiϕ) = eiρϕc′ρr
ρ + o(rρ), (5.271)

ln |f(reiϕ)| = |c′ρ| cos(ρϕ+ arg c′ρ)r
ρ + o(rρ). (5.272)

(5.27)

As in the previous example, it can be shown that if we replace in (5.262) and (5.272)
the equality sign by ≤, then the obtained inequality will be valid everywhere in the
complex plane.

For Nevanlinna characteristics we get the same formulas as in the case when the
integral (5.23) diverges, but with ρ1(r) replaced by ρ2(r) in the case when c′ρ = 0,
and with ρ1(r) replaced by ρ and ∆ replaced by |c′ρ| in the case when c′ρ 6= 0. To
apply (4.5) we take into account

cρ = c′ρ −
1

ρ

∑
ν

a−ρν .

Finally, we consider the case ρ = 0. Let ρ(r) be a proximate order satisfying
ρ(r) → 0 as r → ∞, rρ(r) is monotone when r ≥ r0 and goes to ∞ as r → ∞.
Consider a canonical product of genus 0 with positive zeros, such that n(r, 0) ∼
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∆rρ(r), 0 < ∆ < ∞. Without loss of generality we may assume that all zeros are
greater than 1. It is easy to check that

N(r, 0) =

∫ r

1

n(t, 0)

t
dt = ∆(1 + o(1))

∫ r

1

tρ(t)−1dt = ∆(1 + o(1))L1(r),

L1

(r
2

)
∼ L1(r), rρ(r) = o(L1(r)) as r →∞.

Let δ < ϕ < 2π − δ. We apply (5.1′) to f(z). We get

ln f(reiϕ)−N(r, 0) = −z
∫ ∞

1

n(t, 0)dt

t(t− z)
−
∫ r

1

n(t, 0)

t
dt

= −
∫ r

1

n(t, 0)

t− z dt− z
∫ ∞
r

n(t, 0)

t(t− z)
dt,

| ln f(reiϕ)−N(r, 0)| ≤ csc
δ

2

{∫ r

1

n(t, 0)

t+ r
dt+ r

∫ ∞
r

n(t, 0)

t(t+ r)
dt

}
≤ csc

δ

2

{
n(r, 0) + r

∫ ∞
r

n(t, 0)

t2
dt

}
≤ ∆(1 + o(1)) csc

δ

2

{
rρ(r) + r

∫ ∞
r

tρ(t)−2dt

}
= 2∆(1 + o(1)) csc

δ

2
rρ(r) = o(N(r, 0)).

Therefore uniformly with respect to ϕ satisfying δ < ϕ < 2π − δ the relations

ln f(reiϕ) = N(r, 0) + o(N(r, 0)), (5.281)

ln |f(reiϕ)| = N(r, 0) + o(N(r, 0)), (5.282)

arg f(reiϕ) = o(N(r, 0)). (5.283)

(5.28)

hold. It is clear that lnM(r, f) = ln f(−r) = N(r, 0) + o(N(r, 0)). Since

N(r, 0) ≤ T (r, f) ≤ lnM(r, f),(5.29)

we get

T (r, f) = N(r, 0) + o(N(r, 0)), m

(
r,

1

f

)
= o(N(r, 0)).(5.30)

It is easy to check that relations (5.30) take place even without the requirement of
positivity of zeros. In fact, let

f(z) =
∏
ν

(
1− z

aν

)
, f̌(z) =

∏
ν

(
1− z

|aν |

)
.

It is clear that M(r, f) ≤M(r, f̌) = f̌(−r) and N(r, 0, f) = N(r, 0, f̌). From (5.29)
and (5.30) we get

N(r, 0, f) ≤ T (r, f) ≤ lnM(r, f̌) = N(r, 0, f̌) + o(N(r, 0, f̌))

= N(r, 0, f) + o(N(r, 0, f)),

that is, (5.30) remains true. Using the condition of positivity of zeros of f(z), using
(5.282), the First Fundamental Theorem, and Theorem 7.4 from Chapter 1, we get

m(r, a, f) = o(N(r, 0)), N(r, a) = (1 + o(1))N(r, 0), a 6= 0,∞.
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3◦. Finally we consider the entire Mittag-Leffler function

Eρ(z) =

∞∑
k=0

zk

Γ

(
1 +

k

ρ

) , 0 < ρ <∞.(5.31)

Using Stirling’s formula, it is easy to verify that this power series has an infinite
radius of convergence. The function Eρ(z) is a generalization of the exponential
function ez, which corresponds to the case ρ = 1. For ρ = 1/2 we have E1/2(z) =

cosh
√
z. We are going to find some asymptotic relations forEρ(z). To do so we need

the Hankel integral representation for Γ-function. Let s = σ + iτ be an arbitrary
complex number. Denote by L(θ, a), π

2 < θ ≤ π, 0 < a < ∞, the boundary of the
region {| arg z| < θ, |z| > a}, parameterized in the negative direction.

Consider the integral

F (s) =
1

2πi

∫
L(θ,a)

ett−sdt,(5.32)

where by t−s we mean the principal value of the power function. It is easy to check
that the integral (5.32) converges absolutely and uniformly with respect to s, for
|s| ≤ R, where R is an arbitrarily large number. Using the Morera theorem for
the function F (s) and changing the order of integration, we conclude that F (s) is
an entire function. The integral (5.32) does not depend on a, since the integral of
ett−s over the boundary of the region {| arg z| < θ, a1 < |z| < a2} is equal to zero
by the Cauchy theorem. The integral (5.32) does not depend on θ, π

2 < θ ≤ π,
either. In fact, let π

2 < θ1 < θ2 ≤ π. The difference∫
L(θ1,a)

ett−sdt−
∫
L(θ2,a)

ett−sdt(5.33)

does not depend on a, and is equal to the integral of ett−s taken over the boundary of
the set {θ1 < | arg z| < θ2, |z| > a}. On the other hand, on the arcs {θ1 < | arg z| <
θ2, |z| = a} the integrand satisfies the estimate |ett−s| ≤ ea cos θ1a−σeθ2τ = o(a−1)
as a → +∞. Therefore the difference (5.33) approaches zero as a → +∞. Since
the difference (5.33) does not depend on a, it should be equal to 0.

Thus, in (5.32) we do not need to indicate the dependence of F (s) on θ and a.
Now we let 0 < s = σ < 1. We have

F (σ) =
1

2πi

∫
L(π,a)

ett−σdt =
eπiσ

2πi

∫ −a
−∞

ex|x|−σdx

+
1

2π

∫ π

−π
eae

iϕ

a1−σei(1−σ)ϕdϕ+
e−πiσ

2πi

∫ −∞
−a

ex|x|−σdx

=
sinπσ

π

∫ ∞
a

e−xx−σdx+ a1−σ 1

2π

∫ π

−π
eae

iϕ+i(1−σ)ϕdϕ.

Letting a→ 0 and using the formula for the complement of the Γ-function, we get

F (σ) =
sinπσ

π

∫ ∞
0

e−xx−σdx =
sinπσ

π
Γ(1− σ) =

1

Γ(σ)
.
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Since the entire functions F (s) and 1/Γ(s) coincide on the interval 0 < σ = s < 1,
they are identically equal. We get from (5.32) the Hankel formula

1

Γ(s)
=

1

2πi

∫
L(θ,a)

ett−sdt,
π

2
< θ ≤ π, 0 < a <∞.(5.34)

We introduce notation α = 1/ρ. Let |z| < 1, a > 1, and π
2 < θ ≤ π. Using (5.31)

and (5.34) we get

Eρ(z) =

∞∑
k=0

zk

2πi

∫
L(θ,a)

ett−αk−1dt

=
1

2πi

∫
L(θ,a)

et

t

{ ∞∑
k=0

( z
tα

)k}
dt =

1

2πi

∫
L(θ,a)

ettα−1

tα − z dt.
(5.35)

The integral in the right-hand side of (5.35) defines for |z| < aα an analytic
function of z, which coincides with Eρ(z). Since a can be chosen to be arbitrarily
large, we get the following integral representation for Eρ(z):

Eρ(z) =
1

2πi

∫
L(θ,a)

ettα−1

tα − z dt,
π

2
< θ ≤ π, a > |z|ρ.(5.36)

First we suppose that 1/2 < ρ < ∞. Assume that |z| > 1. Let z = reiϕ.
Suppose that |ϕ| ≤ π

2ρ + δ, 0 < δ < π − π
2ρ . Then

Eρ(re
iϕ) =

1

2πi

∫
L(π,(2r)ρ)

ettα−1

tα − z dt

=
1

2πi

∫
L(π,1)

ettα−1

tα − z dt+ rest=zρ
ettα−1

tα − z .
(5.37)

In writing this representation we take into account the fact that the function

ettα−1(tα − z)−1

has in the region {| arg t| < π, 1 < |t| < (2r)ρ} only one pole at t = rρeiρϕ. Since

for |ϕ| ≤ π
2ρ + σ, tα = |t|αe±iπα, r ≥ 1, |t| ≥ 1, the absolute value

∣∣ tα
z
− 1
∣∣ is

bounded below by a positive constant m, then∣∣∣∣∣ 1

2πi

∫
L(π,1)

ettα−1

tα − z dt
∣∣∣∣∣ ≤ 1

|z|
1

2πm

∫ ∞
1

e−xxα−1dx <
1

|z|
Γ(α)

2πm
.

Therefore we get, using (5.37):

Eρ(z) = O

(
1

|z|

)
+ ρez

ρ

, | arg z| ≤ π

2ρ
+ δ <

π

ρ
.(5.38)

If π
2ρ + δ ≤ |ϕ| ≤ π, we choose θ satisfying π

2 < θ < π
2 + ρδ. Then

Eρ(re
iϕ) =

1

2πi

∫
L(θ,(2r)ρ)

ettα−1dt

tα − z =
1

2πi

∫
L(θ,1)

ettα−1

tα − z dt,(5.39)

since under the conditions listed above we have |ρϕ| > θ, ρϕ−2kπρ ≤ ρπ−2kπρ <
−θ and ρϕ + 2kπ ≥ −πρ + 2kπ > θ, for k = 1, 2, 3, . . . ; and the integrand does
not have poles in the region {| arg t| ≤ θ, |t| > 1}. In the same way as before we
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show that the integral in the right-hand side of (5.39) is O(|z|−1). Thus we get the
following uniform estimate in the complex plane:

Eρ(z) =

ρe
zρ +O

(
1
|z|

)
, | arg z| ≤ π

2ρ ,

O
(

1
|z|

)
, π ≥ | arg z| ≥ π

2ρ .
(5.40)

In some cases, for π ≥ | arg z| ≥ π
2ρ +δ, δ > 0, a more precise estimate for Eρ(z)

than O
(

1
|z|

)
is needed. To get it, we transform the integral (5.39) in the following

way:

1

2πi

∫
L(θ,1)

ettα−1

tα − z dt = −1

z

1

2πi

∫
L(θ,1)

ettα−1dt+
1

z

1

2πi

∫
L(θ,1)

ett2α−1

tα − z dt

= −1

z

1

Γ(1− α)
+O

(
1

|z|2

)
.

We took into account (5.34). Hence

(5.40′) Eρ(z) = −1

z

1

Γ(1− α)
+O

(
1

|z|2

)
for π ≥ | arg z| ≥ π

2ρ
+ δ.

When ρ > 1/2 and ρ 6= 1, then 1/Γ(1− α) 6= 0. If ρ = 1, the formula (5.40′) gives
a more rough estimate, because E1(z) = ez. If ρ = 1/2, then, as we noted above,
Eρ(z) = cosh

√
z, and we easily get

E1/2(z) =
1

2
ez

1/2

+ ω(z), |ω(z)| ≤ 1

2
.(5.41)

If 0 < ρ < 1/2, the investigation of the function is somewhat more complicated.
Let |ϕ0| ≤ π. We find θ = θ(ϕ0), π ≥ θ > π

2 , and a small number ε(ϕ0) > 0, such
that for |ϕ − ϕ0| ≤ ε(ϕ0) and an arbitrary integer k, the numbers ρϕ + 2kπρ are
not equal to θ or −θ. Then, as before, we get

Eρ(z) =
1

2πi

∫
L(θ,1)

ettα−1dt

tα − z +
∑

res
ettα−1

tα − z ,(5.42)

where the sum of residues is taken over all poles of the function ettα−1(tα − z)−1

which are in the region {| arg t| < θ, |t| > 1}, that is, at the points t = rρeiρ(ϕ+2kπ),
where the integers k are such that −θ < ρϕ+ 2kπρ < θ. The integral in (5.42) can
be estimated using the same method as before. Therefore

Eρ(z) = O

(
1

|z|

)
+

∑
|ϕ+2kπ|< θ

ρ

ρez
ρei2kπρ , | arg z| ≤ π.(5.43)

This estimate is uniform with respect to |ϕ − ϕ0| ≤ ε(ϕ0). Using the Heine-
Borel lemma, we cover the interval [−π, π] by finitely many intervals {|ϕ − ϕµ| ≤
ε(ϕµ)}, µ = 1, 2, . . . , µ0, and conclude that the estimate (5.43) is uniform in the
complex plane. It is necessary to take into account that θ in (5.43) will take,
depending on ϕ = arg z, µ0 different values. If we restrict our attention to the
main term of the decomposition, we get from (5.43) that

Eρ(z) = (1 + o(1))ρez
ρ

,(5.44)

uniformly with respect to arg z for | arg z| ≤ π − δ, δ > 0.
Since the coefficients in (5.31) are positive, then (ρ > 0):

M(r, Eρ(z)) = Eρ(r) = (1 + o(1))ρer
ρ

, T (r, Eρ) ≤ rρ +O(1).
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Applying Theorem 7.4 from Chapter 1, we get

T (r, Eρ) =

{
1
πρ
rρ + o(rρ), 1

2 ≤ ρ <∞,
sinπρ
πρ rρ + o(rρ), 0 < ρ ≤ 1

2 .

Taking into account (5.40′), we conclude

m

(
r,

1

Eρ

)
=

{
o(rρ), ρ 6= 1,
r
π
, ρ = 1,

m

(
r,

1

Eρ − a

)
= o(rρ), 0 < ρ <∞, a 6= 0,∞

By the First Fundamental Theorem we get

N(r, 0, Eρ) =

{
T (r, Eρ) + o(rρ), ρ 6= 1,

0, ρ = 1,

N(r, a, Eρ) = T (r, Eρ) + o(rρ), a 6= 0,∞; 0 < ρ <∞.



CHAPTER 3

The second fundamental theorem

1. Lemma on the logarithmic derivative

The second fundamental theorem is the deepest and the most important result
of the value distribution theory. As we shall see later, the classical Picard and
Borel theorems are its corollaries. To prove the second fundamental theorem we
need some auxiliary results, which we are going to present now.

Theorem 1.1. Let f(z) be a meromorphic function satisfying f(0) = 1. For
all r and R satisfying 1 < r < R <∞ and all α, 0 < α < 1, the inequality

m

(
r,
f ′

f

)
≤ 1

α
ln+ T (R, f) + max

(
2,

1

α

){
ln+ 1

R− r + lnR

}
+

1

α
ln

64

1− α

(1.1)

holds.

We need the following lemma.

Lemma 1.1. Let f(x) and g(x) be non-negative measurable functions on [a, b],
and let

A =

∫ b

a

g(x)dx > 0.

Then the inequality

1

A

∫ b

a

{ln+ f(x)}g(x)dx ≤ ln+

{
1

A

∫ b

a

f(x)g(x)dx

}
+ ln 2(1.2)

holds.

Proof. Note that in the case g(x) ≡ 1 the inequality (1.2) becomes

(1.2′)
1

b− a

∫ b

a

ln+ f(x)dx ≤ ln+

{
1

b− a

∫ b

a

f(x)dx

}
+ ln 2.

To prove the lemma set

m =
1

A

∫ b

a

[f(x)]∧g(x)dx, ϕ(x) = [f(x)]∧ −m.

Note that m ≥ 1. It is clear that∫ b

a

ϕ(x)g(x)dx = 0.

87
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We have

1

A

∫ b

a

{ln+ f(x)}g(x)dx =
1

A

∫ b

a

{ln[f(x)]∧}g(x)dx

= lnm+
1

A

∫ b

a

ln

(
1 +

ϕ(x)

m

)
g(x)dx ≤ lnm+

1

A

∫ b

a

ϕ(x)

m
g(x)dx = ln+m.

Thus

1

A

∫ b

a

{ln[f(x)]∧}g(x)dx ≤ ln+

{
1

A

∫ b

a

[f(x)]∧g(x)dx

}

≤ ln+

{
1

A

∫ b

a

[f(x) + 1]g(x)dx

}
= ln+

{
1

A

∫ b

a

f(x)g(x)dx + 1

}

≤ ln+

{
1

A

∫ b

a

f(x)g(x)dx

}
+ ln 2.

�

Proof. (Theorem 1.1) Note that the condition f(0) = 1 implies (see (6.8′)

from Chapter 1) that T
(
r, 1
f

)
= T (r, f), therefore we have

m

(
r,

1

f

)
+m(r, f) ≤ 2T (r, f), N(r; 0,∞) ≤ 2T (r, f).

Using the formula (2.5) from Chapter 1 for the disc {|z| < s}, s > 0, and letting
p = 1 in this formula, we get

f ′(z)

f(z)
=

1

2π

∫ 2π

0

ln |f(seiθ)| 2seiθ

(seiθ − z)2
dθ

+
∑
|am|<s

s2 − |am|2
(s2 − āmz)(z − am)

−
∑
|bn|<s

s2 − |bn|2
(s2 − b̄nz)(z − bn)

, |z| < s.
(1.3)

Denote by {cq} the set-theoretic sum of the sequences {am} and {bn}. Observe
that

1

2π

∫ 2π

0

| ln |f(seiθ)||dθ = m

(
s,

1

f

)
+m(s, f) ≤ 2T (s, f),

and for |cq| < s∣∣∣∣ s2 − |cq|2
(s2 − c̄qz)(z − cq)

∣∣∣∣ ≤ s2 − |cq|2
(s2 − |cq|s)|z − cq|

=
s+ |cq|

s
· 1

|z − cq|
≤ 2

|z − cq|
,

we have ∣∣∣∣f ′(z)

f(z)

∣∣∣∣ ≤ 4sT (s, f)

(s− |z|)2
+ 2

∑
|cq|<s

1

|z − cq|
, |z| < s. (1.3′)

Using the well-known inequality(∑
k

dk

)α
≤
∑
k

dαk , dk ≥ 0, 0 < α < 1,
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we get∫ 2π

0

∣∣∣∣f ′(reiϕ)

f(reiϕ)

∣∣∣∣α dϕ ≤ ∫ 2π

0

4sT (s, f)

(s− r)2
+ 2

∑
|cq|<s

1

|reiϕ − cq|


α

dϕ

≤
∫ 2π

0

4αsαTα(s, f)

(s− r)2α
+ 2α

∑
|cq|<s

1

|reiϕ − cq|α

 dϕ

= 2π
4αsαTα(s, f)

(s− r)2α
+ 2α

∑
|cq|<s

∫ 2π

0

dϕ

|reiϕ − cq|α
.

Since∫ 2π

0

dϕ

|reiϕ − cq|α
=

∫ 2π

0

dϕ

|reiϕ − |cq||α
≤
∫ 2π

0

dϕ

|r sinϕ|α

=
4

rα

∫ π/2

0

dϕ

sinα ϕ
≤ 4

rα

(π
2

)α ∫ π/2

0

dϕ

ϕα
=

2π

rα(1− α)
,

we get the inequality∫ 2π

0

∣∣∣∣f ′(reiϕ)

f(reiϕ)

∣∣∣∣α dϕ ≤ 2π
4αsαTα(s, f)

(s− r)2α
+ 2π

2αn(s; 0,∞)

(1− α)rα
.

Now let s = 1
2 (R + r). Observe that then

r < s < R, s− r = R− s =
1

2
(R − r),

and since the function T (s, f) is non-decreasing, we get

T (s, f) ≤ T (R, f).

By Lemma 7.1 from Chapter 1 we get

n(s; 0,∞) ≤ R

R− sN(R; 0,∞) =
2R

R − rN(R; 0,∞) ≤ 4R

R− rT (R, f).

Thus we get (R > r ≥ 1)

1

2π

∫ 2π

0

∣∣∣∣f ′(reiϕ)

f(reiϕ)

∣∣∣∣α dϕ ≤ 24αRαTα(R, f)

(R − r)2α
+

22+2αRT (R, f)

(1 − α)(R − r)rα

≤ 16

1− αT
∧(R, f)

{
1

Rα

(
1− r

R

)−2α

+
1

rα

(
1− r

R

)−1
}

≤ 32

1− αT
∧(R, f)r−α

(
1− r

R

)−(2α)∧

.

(1.4)

By Lemma 1.1 we have

m

(
r,
f ′

f

)
=

1

α

1

2π

∫ 2π

0

ln+

∣∣∣∣f ′(reiϕ)

f(reiϕ)

∣∣∣∣α dϕ
≤ 1

α

{
ln+

[
1

2π

∫ 2π

0

∣∣∣∣f ′(reiϕ)

f(reiϕ)

∣∣∣∣α dϕ]+ ln 2

}
,

therefore

m

(
r,
f ′

f

)
≤ 1

α
ln+

{
32

1− αT
∧(R, f)r−α

(
1− r

R

)−(2α)∧
}

+
1

α
ln 2.(1.5)



90 3. THE SECOND FUNDAMENTAL THEOREM

Using the inequality (4.3) from Chapter 1, we easily get the conclusion of the
theorem. �

Later we shall need an estimate for m
(
r, f

′

f

)
in terms T (r, f) rather than in

terms of T (R, f), R > r. It is clear that we cannot get such an estimate taking
the limit as R → r in (1.1). We shall use for this matter the following theorem of
Borel–Nevanlinna.

Theorem 1.2 (Borel–Nevanlinna). Let u(r) be a continuous, non-decreasing
function on [r0,∞), tending to +∞ as r → ∞. Let ϕ(u) be a continuous positive
non-increasing function on [u0,∞), u0 = u(r0), having zero limit as u → ∞ and
satisfying ∫ ∞

u0

ϕ(u)du <∞.(1.6)

Then for all r ≥ r0 except, possibly, a set of finite measure the inequality

u{r + ϕ(u(r))} < u(r) + 1(1.7)

is satisfied.

Proof. Denote by E the closed subset of [r0,∞) on which the inequality (1.7)
is not satisfied, that is, the inequality

u{r + ϕ(u(r))} ≥ u(r) + 1(1.8)

holds. Denote E ∩ [r,∞) by E(r). We assume that for all r ≥ r0 the sets E(r) are
non-empty, otherwise the theorem is trivial. Let r1 = min r, r ∈ E; r1 ≥ r0. Let r′1
be the least value of r satisfying u(r) = u(r1) + 1; it is clear that r′1 > r1. On the
other hand u{r1 + ϕ(u(r1))} ≥ u(r1) + 1 = u(r′1). Since the function u(r) is non-
decreasing, we have r1 + ϕ(u(r1)) ≥ r′1, r′1 − r1 ≤ ϕ(u(r1)). Suppose that we have
already found the values r1, . . . , rn, r

′
1, . . . , r

′
n. Set rn+1 = min r, r ∈ E(r′n), and

let r′n+1 be the least number r satisfying u(r) = u(rn+1) + 1 and r′n+1 > rn+1. We
have u{rn+1 +ϕ(u(rn+1))} ≥ u(rn+1)+1 = u(r′n+1) and r′n+1−rn+1 ≤ ϕ(u(rn+1)).
Since u(rn+1) ≥ u(r′n) = u(rn) + 1, we get u(rn+1) − u(rn) ≥ 1 and u(rn+1) ≥
u(r1) + n ≥ u0 + n. Therefore u(rn)→∞ and rn →∞ as n→∞. The definition
of the sequence rn implies that (1.7) holds on (r′n−1, rn), n = 1, 2, . . . , r′0 = r0.
Hence the set E is covered by the sets [rn, r

′
n], n = 1, 2, . . . . On the other hand

∞∑
n=1

(r′n − rn) ≤
∞∑
n=1

ϕ(u(rn)) ≤
∞∑
n=1

ϕ(u0 + n− 1)

≤ ϕ(u0) +

∫ ∞
u0

ϕ(u)du <∞.

�

Observe that we also have proved that the set E can be covered by pairwise
disjoint segments with finite total lengths and end points going to infinity.

R. Nevanlinna showed that the condition (1.6) cannot be weakened. In fact,
let u0 be a real number, ϕ(u) be a function satisfying the conditions of Theorem
1.2, but ∫ ∞

u0

ϕ(u)du =∞.(1.9)
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Set

r(u) =

∫ u

u0

ϕ(t)dt, u ≥ u0.

Then the function u(r) inverse to r(u) satisfies all conditions of Theorem 1.2. The
condition (1.9) implies that u(r) is defined everywhere on [0,∞). Let us show that
(1.8) is satisfied everywhere on [0,∞). Indeed, by the mean value theorem we get

u{r + ϕ(u(r))} − u(r) = u′r{r + θϕ(u(r))}ϕ(u(r)),

where 0 < θ = θ(r) < 1. On the other hand

u′r{r + θϕ(u(r))} =
1

r′u{u(r + θϕ(u(r)))}

=
1

ϕ{u(r + θϕ(u(r)))} ≥
1

ϕ(u(r))
,

hence (1.8) is satisfied.

Exercise 1. Let u(r) be a function satisfying the conditions of Theorem 1.2,
ε > 0. Then for all r ≥ r0 except, possibly, a set of finite measure, the inequality

u

(
r +

1

lnu(r)

)
< {u(r)}1+ε

holds.

Hint. Use the argument of Theorem 1.2 with u1(r) =
√

lnu(r) instead of u(r)
and with ϕ(u) = u−2.

Exercise 2. A set E ⊂ [1,∞) is called a set of finite logarithmic measure
if the integral

∫
E
r−1dr converges. For all r ≥ r0 except, possibly, a set of finite

logarithmic measure, the inequality

u

(
r +

r

lnu(r)

)
< {u(r)}1+ε

holds.

Hint. Use the result of Exercise 1 for u(er), and observe that

exp

(
r +

1

lnu(er)

)
≥ er

(
1 +

1

lnu(er)

)
.

Let f(z) be a meromorphic function. Denote by Q(r, f) an arbitrary function
defined on {0 ≤ r <∞} and such that:

1) If the function f(z) has finite order, then Q(r, f) = O(ln r) as r→∞.
2) If the function f(z) has infinite order, then Q(r, f) = O(ln T (r, f) + ln r) as

r goes to ∞, excluding, possibly, some set of segments in [0,∞) with finite total
length.

It is clear that Q(r, f) ± Q(r, f) = Q(r, f), AQ(r, f) = Q(r, f); if T (r, f1) =
o(T (r, f)), then

Q(r, ff1) = Q(r, f), Q(r, f1 + f) = Q(r, f).
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Theorem 1.3 (Lemma on the logarithmic derivative). Each meromorphic func-
tion f(z) satisfies

m

(
r,
f ′

f

)
= Q(r, f).(1.10)

Proof. Observe that it is enough to prove the theorem for functions f(z)
satisfying f(0) = 1. In fact, in the general case f(z) = Azpϕ(z), where A is a
constant, p is an integer, and ϕ(0) = 1. If we assume that for ϕ(z) the theorem has
already been proved, we get

m

(
r,
f ′

f

)
= m

(
r,
p

z
+
ϕ′

ϕ

)
= m

(
r,
ϕ′

ϕ

)
+O(1)

= Q(r, ϕ) +O(1) = Q(r, f).

So let f(0) = 1. Assume that T (r, f) > 1 for r ≥ r0 > 1. Letting R > r,
α = 1/2 in the inequality (1.1), we get for r ≥ r0

m

(
r,
f ′

f

)
≤ 2 lnT (R, f) + 2 ln+ 1

R− r + 2 lnR+ 2 ln 128.(1.11)

If the function f(z) has finite order, then lnT (r, f) = O(ln r) and letting R = 2r
in (1.11), we get

m

(
r,
f ′

f

)
= O(ln 2r) = O(ln r).

Now suppose that f(z) has infinite order. Let R in (1.11) be equal to R = r +
{T (r, f)}−2 ≤ 2r. By Theorem 1.2 everywhere except, possibly, a set of finite
measure the inequality

(1.7′) T (R, f) = T (r + {T (r, f)}−2, f) < T (r, f) + 1

holds. Here we use (1.7) with u(r) = T (r, f) and ϕ(u) = u−2. Now it follows from
(1.11) that outside the exceptional set of values of r the inequality

m

(
r,
f ′

f

)
≤ 6 lnT (r, f) + 2 ln r +O(1)

holds, that is (1.10) is satisfied. �

The question arises, whether Theorem 1.3 is valid in the general case for func-
tions of infinite order, if in the definition of Q(r, f) we drop the mention of the
exceptional set, that is, whether the following estimate holds:

m

(
r,
f ′

f

)
= O(ln T (r, f) + ln r), r →∞.(1.12)

Observe that the estimate

m

(
r,
f ′

f

)
= O(ln T (kr, f) + ln r), r →∞(1.13)

holds for each k > 1; to get this estimate it is enough to let R = kr in (1.11).
Following Hayman [Hay65] we show, however, that the estimate (1.12) is not

true in general. If the estimate (1.12) were valid, then for each transcendental entire
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function f(z) we would have

T (r, f ′) = m(r, f ′) ≤ m(r, f) +m

(
r,
f ′

f

)
= T (r, f) +O(ln T (r, f) + ln r) = (1 + o(1))T (r, f).

It turns out that not only this estimate is not always true (as R. Nevanlinna sup-
posed), but for each positive arbitrarily rapidly increasing function Ψ(T ), Ψ(T )→
∞ as T →∞, there exists an entire function f(z), such that

lim sup
r→∞

T (r, f ′)

Ψ(T (r, f))
=∞.(1.14)

Let rn = 2n−1, n = 1, 2, . . . , and let λ1, λ2, . . . be a strictly monotone indef-
initely increasing sequence of positive integers satisfying λn > n, n = o(lnλn),
nλn2nλn = o(λn+1), Ψ(nλn−1) = o(ln λn) as n→∞. Set

f(z) =
∞∑
n=1

(
z

rn

)λn
.

Then

f ′(z) =
∞∑
n=1

λn

rn

(
z

rn

)λn−1

.

For |z| = rν , ν ≥ 2 we have

|f(z)| ≤
∞∑
n=1

(
rν

rn

)λn
≤

ν−1∑
n=1

rλnν + 1 +

∞∑
n=ν+1

2−λn ≤ (ν − 1)rλν−1
ν + 2,

T (rν , f) ≤ λν−1 ln rν + ln(ν − 1) +O(1) ∼ νλν−1 ln 2.(1.15)

For x ≥ (ln 2)−1, the function x2−x is decreasing, therefore λn2−λn < n2−n for
n ≥ 2. If |z| = rν , ν ≥ 2, then

|f ′(z)| ≥ λν

rν
−
ν−1∑
n=1

λn

rn

(
rν

rn

)λn−1

−
∞∑

n=ν+1

λn

rn

(
rν

rn

)λn−1

≥ λν

rν
− (ν − 1)λν−1r

λν−1−1
ν − 1

rν

∞∑
n=ν+1

λn

(
rν

rn

)λn
≥ 1

rν

{
λν − (ν − 1)λν−1r

λν−1
ν −

∞∑
n=ν+1

λn2−λn

}

≥ 1

rν
{λν − (ν − 1)λν−12(ν−1)λν−1 − 2} = (1 + o(1))

λν

rν
.

Hence

T (rν , f
′) = m(rν , f

′) ≥ lnλν − ln rν + o(1) = (1 + o(1)) ln λν .(1.16)

Using (1.15) and (1.16) we get for ν ≥ ν0

T (rν , f
′)

Ψ(T (rν , f))
≥ (1 + o(1)) ln λν

Ψ(νλν−1)
→∞ as ν →∞,

that is, (1.14) holds.
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If T = o(Ψ(T )) as T →∞, then

m(rν , f
′/f)

Ψ(T (rν , f))
≥ T (rν , f

′)

Ψ(T (rν , f))
− T (rν , f)

Ψ(T (rν , f))
→∞ as ν →∞.

Thus, not only the estimate m(r, f ′/f) = o(T (r, f)) is not always true for
functions of infinite order (this is weaker than (1.12)), but no estimate of the form
m(r, f ′/f) = O(Ψ(T (r, f))) is true unless we exclude some values of r.

For functions of finite order the estimate m(r, f ′/f) = O(ln r) can be made
more precise. We show that if f(z) has order ρ, then

lim sup
r→∞

(ln r)−1m

(
r,
f ′

f

)
≤ (ρ− 1)+.(1.17)

From the argument in the beginning of the proof of Theorem 1.3 we see that without
loss of generality we may assume that f(0) = 1.

Let R = 2r in (1.5). We have

m

(
r,
f ′

f

)
≤ 1

α
ln+

{
32

1− αT
∧(2r, f)r−α22

}
+

1

α
ln 2.

Since for each ε > 0 the relation T (2r, f) = O(rρ+ε) holds, we get

m

(
r,
f ′

f

)
≤ 1

α
ln+{O(rρ+ε−α)}+O(1) ≤ 1

α
(ρ+ ε− α)+ ln r +O(1),

therefore

lim sup
r→∞

(ln r)−1m

(
r,
f ′

f

)
≤ 1

α
(ρ+ ε− α)+.

Letting ε→ 0 and α→ 1 in this inequality, we get (1.17).
Observe that the function f(z) = ez

p

(p is a positive integer) satisfies ρ = p,
m(r, f ′/f) = (ρ− 1) ln r + ln ρ, r ≥ 1, and hence the sides of (1.17) are equal.

Exercise 1. Prove that for functions of order ρ < 1 the relation

m

(
r,
f ′

f

)
= o(1), r →∞,

holds.

(We havem

(
r,
f ′

f

)
≤ 1

α

1

2π

∫ 2π

0

∣∣∣∣f ′(reiϕ)

f(reiϕ)

∣∣∣∣α dϕ; we use the estimate (1.4) with

R = 2r for the integral; we choose the number α in such a way that ρ < α < 1.)

Exercise 2. Prove that for functions of finite lower order λ the inequality

lim inf
r→∞

(ln r)−1m

(
r,
f ′

f

)
≤ (λ− 1)+

holds.

(Let r = rn, R = 2rn in (1.5), where the sequence {rn} is such that T (2rn, f) =
O(rλ+ε

n ).)

Exercise 3. Prove∫ s

1

m

(
r,
f ′

f

)
dr = O

{∫ s

s/2

[lnT (r, f) + ln r]dr

}
, s→∞.

(Let R = (s+ r)/2 in (1.11), then integrate with respect to r from 1 to s.)
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Exercise 4. Prove that everywhere outside a set of finite logarithmic measure
the relation

m

(
r,
f ′

f

)
= O(lnT (r, f))

holds.

(Use the inequality (1.5) and the Exercise 2 after Theorem 1.2.)

Exercise 5. Show that for non-integer ρ and for f(z) =
∏∞
k=1 E

(
z

k1/ρ , [ρ]
)

the two sides of (1.17) are equal.

First we need to prove that for every δ > 0 uniformly in ϕ satisfying δ ≤ ϕ ≤
2π − δ the relation

f ′(reiϕ)

f(reiϕ)
=

πρ

sinπρ
e−iρπei(ρ−1)ϕrρ−1 + o(rρ−1)

holds. This can be done using the asymptotic formula (5.21) from Chapter 2. In
fact, letting z = reiϕ, zρ = rρeiρϕ, and using the mentioned formula we get that
the function

g(z) = ln f(z)− π

sinπρ
e−iρπzρ,

analytic for 0 < ϕ < 2π, admits an estimate

g(z) = o(rρ),

for δ
2 ≤ ϕ ≤ 2π − δ

2 , uniform with respect to ϕ.

Assuming that z is in the angle {δ ≤ ϕ ≤ 2π − δ}, and observing that then
the circle

{
|ζ − z| = |z| sin δ

2

}
is contained in

{
δ
2 ≤ ϕ ≤ 2π − δ

2

}
, by the Cauchy

formula

g′(z) =
1

2πi

∫
|ζ−z|=|z| sin δ

2

g(ζ)

(ζ − z)2
dζ

we get
g′(z) = o(rρ−1)

uniformly for δ ≤ ϕ ≤ 2π − δ.

2. The Nevanlinna second fundamental theorem

We shall need some auxiliary functions. Let f(z) be a meromorphic function.
Denote by n1(r, a, f) = n1(r, a) the number of a-points of the function f(z) in the
disc {|z| ≤ r}, an a-point of order m is counted m−1 times. If the orders of a-points
are disregarded, and each a-point is counted once, we get the function n̄(r, a). It
is clear that n(r, a) = n1(r, a) + n̄(r, a). Using the functions n1(r, a) and n̄(r, a) we
define functions N1(r, a) and N̄(r, a), in the same way as we defined N(r, a) using
n(r, a).

For example,

N1(r, a) =

∫ r

0

n1(t, a)− n1(0, a)

t
dt+ n1(0, a) ln r.

It is clear that the function n1(r, a) does not count simple a-points at all. Since for
a 6=∞ to each a-point of order m of f(z) there corresponds a zero of order m− 1
of f ′(z), we have ∑

a6=∞
n1(r, a, f) = n(r, 0, f ′),
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where the sum in the left-hand side has at most a finite number of non-zero terms.
To each pole of order m of the function f(z) there corresponds a pole of order
m + 1 of the function f ′(z). Therefore n(r,∞, f ′) = n(r,∞, f) + n̄(r,∞, f) and
n1(r,∞, f) = 2n(r,∞, f) − n(r,∞, f ′). We set n1(r, f) = n1(r,∞, f), N1(r, f) =
N1(r,∞, f), etc. From the equalities above we get

n1(r) =
∑
a

n1(r, a, f) = n

(
r,

1

f ′

)
+ 2n(r, f)− n(r, f ′),

and hence

N1(r) =
∑
a

N1(r, a, f) = N

(
r,

1

f ′

)
+ 2N(r, f)−N(r, f ′).

One drawback of the introduced notation n1(r) and N1(r) is that it does not re-
flect the function f(z) which is used in the definition, but it will not cause any
inconvenience.

We observe one more equality which will be needed on many occasions:

N

(
r,
f ′

f

)
= N̄(r, f) + N̄

(
r,

1

f

)
.

This equality immediately follows from the easily verifiable fact that f ′/f has simple
poles at zeros and poles of f(z), and does not have any other poles.

Now we are ready to state the second fundamental theorem, which is due to
R. Nevanlinna.

Theorem 2.1. Let f(z) be a non-identically-constant meromorphic function,
let a1, . . . , aq be distinct complex numbers, one of which can be equal to ∞. Then

q∑
ν=1

m(r, aν) ≤ 2T (r, f)−N1(r) +Q(r, f).(2.1)

Proof. It is clear that it suffices to consider the case when all numbers aν ,
ν = 1, . . . , q, are finite, and to prove the inequality

m(r,∞) +

q∑
ν=1

m(r, aν) +N1(r) ≤ 2T (r, f) +Q(r, f).(2.2)

Consider the rational function

h(w) =

q∑
ν=1

1

w − aν
,

it has degree q. Let H(z) = h(f(z)). By Theorem 6.1 from Chapter 1 we get

T (r,H) = qT (r, f) +O(1).

It is easy to see that

N(r,H) =

q∑
ν=1

N(r, aν , f).

Taking into account the first fundamental theorem, we get

m(r,H) = T (r,H)−N(r,H)

= qT (r, f)−
q∑

ν=1

N(r, aν , f) +O(1) =

q∑
ν=1

m(r, aν , f) +O(1).
(2.3)
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Observe that by the lemma on the logarithmic derivative we have

m(r,H) ≤ m
(
r,

1

f ′

)
+m(r, f ′H)

≤ m
(
r,

1

f ′

)
+

q∑
ν=1

m

(
r,

f ′

f − aν

)
+ ln q = m

(
r,

1

f ′

)
+Q(r, f).

(2.4)

From (2.3) and (2.4) we get
q∑

ν=1

m(r, aν) ≤ m
(
r,

1

f ′

)
+Q(r, f).(2.5)

Thus

m(r,∞) +

q∑
ν=1

m(r, aν) +N1(r)

≤ m(r, f) +m

(
r,

1

f ′

)
+N

(
r,

1

f ′

)
+ 2N(r, f)−N(r, f ′) +Q(r, f)

= T (r, f) + T

(
r,

1

f ′

)
+N(r, f)−N(r, f ′) +Q(r, f)

= T (r, f) + {T (r, f ′)−N(r, f ′)}+N(r, f) +Q(r, f)

= T (r, f) +N(r, f) +m(r, f ′) +Q(r, f).

(2.6)

Since

m(r, f ′) ≤ m(r, f) +m

(
r,
f ′

f

)
= m(r, f) +Q(r, f),(2.7)

the inequality (2.6) implies (2.2). �

Remark 1. It is easy to check that the quantity 2T (r, f) − N1(r) from the
right-hand side of (2.1) can be replaced by

− 1

2π

∫ 2π

0

ln
◦
f (reiϕ)dϕ,

where
◦
f (z) is the spherical derivative of f(z) (see section 4 of chapter 1).

In fact,

− 1

2π

∫ 2π

0

ln
|f ′(reiϕ)|

1 + |f(reiϕ)|2 dϕ+N1(r)

= − 1

2π

∫ 2π

0

ln |f ′(reiϕ)dϕ+ 2
1

2π

∫ 2π

0

ln
√

1 + |f(reiϕ)|2dϕ+N1(r)

= −m(r, f ′) + m

(
r,

1

f ′

)
+ 2

◦
m (r, f) +N

(
r,

1

f ′

)
+ 2N(r, f)

−N(r, f ′) = 2T (r, f) +O(1)− T (r, f ′) + T

(
r,

1

f ′

)
= 2T (r, f) +O(1).

Remark 2. The result of the Exercise 1 on p. ?? implies that for functions of
order less than 1, we may assume Q(r, f) = O(1) in (2.1).
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Remark 3. The inequality (2.5) implies the following lemma which will play
an important role in Chapter 6.

Lemma 2.1. Let a1, . . . , ap be distinct complex numbers, different from 0 and
∞. The inequality

p∑
ν=1

m(r, aν) ≤ m
(
r,
f

f ′

)
+Q(r, f)

holds. In particular, for each a 6= 0,∞ the inequality

m(r, a) ≤ m
(
r,
f

f ′

)
+Q(r, f)

holds.

In fact, writing (2.5) for the numbers 0, a1, . . . , ap (q = p + 1), and observing
that

m

(
r,

1

f ′

)
≤ m

(
r,
f

f ′

)
+m

(
r,

1

f

)
= m

(
r,
f

f ′

)
+m(r, 0),

we get the desired inequality.
Let us write down some inequalities, immediately following from (2.1). Letting

m(r, aν) = T (r, f)−N(r, aν) +O(1) in (2.1), we get

(q − 2)T (r, f) ≤
q∑

ν=1

N(r, aν)−N1(r) +Q(r, f).(2.8)

Replacing N1(r) by the quantity
∑q
ν=1 N1(r, aν) ≤ N1(r), we get from (2.1) and

(2.8), respectively, the following inequalities:

q∑
ν=1

{m(r, aν) +N1(r, aν)} ≤ 2T (r, f) +Q(r, f)(2.9)

(q − 2)T (r, f) ≤
q∑

ν=1

N̄(r, aν) +Q(r, f).(2.10)

Theorem 2.1 immediately implies the following theorem, which goes back to
Borel.

Theorem 2.2. A transcendental meromorphic function f(z) cannot have more
than two Borel exceptional values.

Proof. Assume that f(z) has three Borel exceptional values a1, a2, a3. From
(2.10) with q = 3 we get

T (r, f) ≤
3∑

ν=1

N(r, aν) +Q(r, f).(2.11)

If the function f(z) has infinite order, then N(r, aν), ν = 1, 2, 3, have finite or-
der, hence, there is a constant K < ∞, such that for r ≥ r0 the inequality∑3
ν=1N(r, aν) ≤ rK holds. Then outside some set E of finite measure L the

inequalities

T (r, f) ≤ rK +O(ln T (r, f) + ln r) ≤ rK +
1

2
T (r, f)
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and
T (r, f) ≤ 2rK

hold. If r ∈ E, then there exists r′, r ≤ r′ ≤ r + L+ 1, such that r′ /∈ E. Then

T (r, f) ≤ T (r′, f) ≤ 2r′
K ≤ 2(r + L+ 1)K ≤ 3rK ,

if r is sufficiently large. Hence T (r, f) has finite order, and we get a contradiction.
If f(z) is of finite order, then Q(r, f) = o(T (r, f)), and (2.11) can be rewritten

as

(1 + o(1))T (r, f) ≤
3∑

ν=1

N(r, aν).(2.12)

This implies immediately that the growth category of at least one of the functions
N(r, aν), ν = 1, 2, 3, is not lower than the growth category of T (r, f). If f(z) has
positive order, we already have a contradiction. If f(z) has zero order, we need to
consider also the case when n(r, aν) = O(1), that is, N(r, aν) = O(ln r), ν = 1, 2, 3.
From (2.12) we get T (r, f) = O(ln r), that is, f(z) is a rational function. �

Corollary. (Picard) A transcendental meromorphic function f(z) cannot
have more than two Picard exceptional values.

Exercise. Prove the corollary using (2.11) directly, without using Theorem
2.2.

Theorem 2.3. If f(z) is a meromorphic function, then (l = 1, 2, 3, . . . )

T (r, f (l)) ≤ (l + 1)T (r, f) +Q(r, f),(2.13)

Q(r, f (l)) = Q(r, f).(2.14)

Proof. Combining the inequality (2.7) with N(r, f ′) = N(r, f) + N̄(r, f) ≤
2N(r, f), we get T (r, f ′) ≤ 2T (r, f) + Q(r, f). From here it is easy to derive that
Q(r, f ′) = Q(r, f), and prove (2.14) for an arbitrary l ≥ 1 using induction. Then
by the lemma on the logarithmic derivative,

m(r, f (l)) ≤ m
(
r,

f (l)

f (l−1)

)
+ · · ·+m

(
r,
f ′

f

)
+m(r, f)

= Q(r, f (l−1)) + · · ·+Q(r, f) +m(r, f) = m(r, f) +Q(r, f).

(2.15)

On the other hand,

N(r, f (l)) = N(r, f) + lN̄(r, f) ≤ (l + 1)N(r, f).(2.16)

The inequality (2.13) follows from (2.15) and (2.16). �

Corollary. If f(z) is a meromorphic function, then

m

(
r,
f (l)

f

)
= Q(r, f).

The second fundamental theorem can be generalized in many directions, if
we consider inequalities involving not only the characteristics of the meromorphic
function itself, but also characteristics of its derivatives. We consider here only the
simplest generalizations of the inequality (2.11), which we will need later.
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Theorem 2.4 (Milloux). Let f(z) be a meromorphic function such that f (k)(z)
is not identically constant for k ≥ 1. Let a and b be (finite) complex numbers, b 6= 0.
Then the inequality

T (r, f) ≤ N̄(r, f) +N

(
r,

1

f − a

)
+ N̄

(
r,

1

f (k) − b

)
−N

(
r,
f (k) − b
f (k+1)

)
+Q(r, f)

(2.17)

holds.

Proof. It is clear that it is enough to prove (2.17) for a = 0, b = 1, that is, to
prove

T (r, f) ≤ N̄(r, f) + N

(
r,

1

f

)

(2.17′) +N̄

(
r,

1

f (k) − 1

)
−N

(
r,
f (k) − 1

f (k+1)

)
+Q(r, f),

since (2.17) is obtained from (2.17′) by passing to the function F (z) = (f(z)−a)/b.
By the first fundamental theorem we have

T (r, f) = m

(
r,

1

f

)
+N

(
r,

1

f

)
+ O(1).

On the other hand, by the corollary to Theorem 2.3 we have

m

(
r,

1

f

)
= m

(
r,
f (k)

f
− f (k) − 1

f (k+1)

f (k+1)

f

)
≤ m

(
r,
f (k)

f

)
+m

(
r,
f (k) − 1

f (k+1)

)
+m

(
r,
f (k+1)

f

)
+ ln 2 = m

(
r,
f (k) − 1

f (k+1)

)
+Q(r, f).

By the first fundamental theorem

m

(
r,
f (k) − 1

f (k+1)

)
= m

(
r,

f (k+1)

f (k) − 1

)
+N

(
r,

f (k+1)

f (k) − 1

)
−N

(
r,
f (k) − 1

f (k+1)

)
+O(1).

Since
f (k+1)

f (k) − 1
=

(f (k) − 1)′

f (k) − 1
,

we have

m

(
r,

f (k+1)

f (k) − 1

)
= Q(r, f (k) − 1) = Q(r, f)

and

N

(
r,

f (k+1)

f (k) − 1

)
= N̄

(
r,

1

f (k) − 1

)
+ N̄(r, f (k) − 1)

= N̄

(
r,

1

f (k) − 1

)
+ N̄(r, f).

Combining these estimates we get (2.17′). �

It is not difficult to prove an inequality similar to (2.17) in which the char-
acteristics T (r, f) would be estimated from above through three functions N , but
without taking into account the number of poles.
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Theorem 2.5 (Hiong King-Lai). Let f(z) be a meromorphic function such that
f (k)(z) is not identically constant for some k ≥ 1. Let a, b, c be (finite) complex
numbers, b 6= 0, c 6= 0. Then the inequality

T (r, f) ≤ N
(
r,

1

f − a

)
+N

(
r,

1

f (k) − b

)
+N

(
r,

1

f (k) − c

)
+Q(r, f)(2.18)

holds.

Proof. By the first fundamental theorem

T (r, f) = m(r, f − a) +N(r, f − a) +O(1)(2.19)

and

m(r, f − a) ≤ m(r, f (k)) +m

(
r,
f − a
f (k)

)
= m(r, f (k)) +m

(
r,
f (k)

f − a

)
+N

(
r,

f (k)

f − a

)
−N

(
r,
f − a
f (k)

)
+O(1).

(2.20)

Later we shall use the equality

N

(
r,
f (k)

f − a

)
−N

(
r,
f − a
f (k)

)
= N(r, f (k))−N

(
r,

1

f (k)

)
+N

(
r,

1

f − a

)
−N(r, f − a),

which follows easily from the Jensen formula (4.1) from Chapter 1. Since

m

(
r,
f (k)

f − a

)
= Q(r, f),

using (2.19) and (2.20) we get

T (r, f) ≤ T (r, f (k))−N
(
r,

1

f (k)

)
+N

(
r,

1

f − a

)
+Q(r, f).(2.21)

Using for f (k)(z) the inequality (2.8) with q = 3, a1 = 0, a2 = b, a3 = c, we get

T (r, f (k)) ≤ N
(
r,

1

f (k)

)
+N

(
r,

1

f (k) − b

)
+N

(
r,

1

f (k) − c

)
−N1(r, f (k))−N

(
r,

1

f (k+1)

)
+Q(r, f (k)).

(2.22)

By (2.14), (2.21), (2.22) and the obvious equality N1(r, f (k)) = N(r, f) + (k −
1)N̄(r, f), we get the inequality

T (r, f) ≤ N
(
r,

1

f − a

)
+N

(
r,

1

f (k) − b

)
+N

(
r,

1

f (k) − c

)
−
{
N(r, f) + (k − 1)N̄(r, f) +N

(
r,

1

f (k+1)

)}
+Q(r, f).

Leaving out the expression in braces, we get (2.18). �

We show that in (2.18) we can delete N(r, 1/(f (k) − c)) if we multiply the
summands N(r, 1/(f − a)) and N(r, 1/(f (k) − b)) by 3 and 4, respectively. More
precisely, we prove the following theorem.
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Theorem 2.6 (Hayman). Under the conditions of Theorem 2.4 the inequality

T (r, f) ≤
(

2 +
1

k

)
N

(
r,

1

f − a

)
+

(
2 +

2

k

)
N̄

(
r,

1

f (k) − b

)
+Q(r, f)(2.23)

holds.

Proof. As in the proof of Theorem 2.4, it suffices to consider the case a = 0,
b = 1. We introduce the following notation:

ϕ(z) = f (k)(z)− 1, g(z) =

(
ϕ′

ϕ

)k+1
1

ϕ
.

If the function ϕ(z) has a zero of order µ at z0, then g(z) has a pole of order
µ+ k+ 1 at z0. If the function f(z) has a pole of order m ≥ 1 at z0, then ϕ(z) has
a pole of order m+k at z0, (ϕ′/ϕ)k+1 has a pole of order k+ 1, and g(z) has a zero
of order m − 1, if m ≥ 2, and g(z0) 6= 0,∞, if m = 1. The function g(z) has zeros
also at zeros of ϕ′/ϕ, and g(z) 6= 0,∞ at all points except those listed above. Let
Ns(r, f) take into account simple poles of the function f(z) in the disc {|z| ≤ r}
only. The argument above implies

N̄(r, g) = N̄

(
r,

1

ϕ

)
,

N̄

(
r,

1

g

)
= N̄(r, f)−Ns(r, f) + N̄

(
r,
ϕ

ϕ′

)
.

Hence

N

(
r,
g′

g

)
= N̄(r, g) + N̄

(
r,

1

g

)
= N̄

(
r,

1

ϕ

)
+ N̄(r, f)

−Ns(r, f) + N̄

(
r,
ϕ

ϕ′

)
.

(2.24)

Suppose that f(z) has pole of the first order at z0. Then in the neighborhood of z0

the function ϕ(z) and its derivatives can be represented as

ϕ(z) =
A

(z − z0)k+1
+ h(z), ϕ′(z) =

−(k + 1)A

(z − z0)k+2
+ h′(z),

ϕ′′(z) =
(k + 1)(k + 2)A

(z − z0)k+3
+ h′′(z),

where A 6= 0, and h(z) is a function holomorphic in the neighborhood of the point
z0. We have

g′(z)

g(z)
=

(k + 1)ϕϕ′′ − (k + 2)ϕ′
2

ϕϕ′
= (k + 1)

ϕ′′

ϕ′
− (k + 2)

ϕ′

ϕ
.

It is easy to see that

(k + 1)ϕϕ′′ − (k + 2)ϕ′
2

=
(k + 1)2(k + 2)Ah(z0)

(z − z0)k+3
+ P (z),

where P (z) has a pole of order at most k + 2 at z0, hence, g′/g has a zero of order
at least k at z0. Thus1

kNs(r, f) ≤ N
(
r,
g

g′

)
.(2.25)

1If g′ ≡ 0 then f is rational with f(∞) = infty and (2.23) holds trivially in this case.
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Using the first fundamental theorem, the lemma on the logarithmic derivative, and
(2.14), we get from (2.24) and (2.25):

kNs(r, f) ≤ N
(
r,
g′

g

)
+m

(
r,
g′

g

)
−m

(
r,
g

g′

)
+O(1)

≤ N
(
r,
g′

g

)
+Q(r, f) = N̄

(
r,

1

ϕ

)
+ N̄(r, f)

−Ns(r, f) + N̄

(
r,
ϕ

ϕ′

)
+Q(r, f).

(2.26)

Since in N(r, f) multiple poles are counted at least twice, then, using (2.17′), we
get

Ns(r, f) + 2{N̄(r, f)−Ns(r, f)} ≤ N(r, f)

≤ T (r, f) ≤ N̄(r, f) +N

(
r,

1

f

)
+ N̄

(
r,

1

ϕ

)
−N

(
r,
ϕ

ϕ′

)
+Q(r, f)

and

N̄(r, f) ≤ Ns(r, f) +N

(
r,

1

f

)
+ N̄

(
r,

1

ϕ

)
−N

(
r,
ϕ

ϕ′

)
+Q(r, f).

Multiplying this inequality by k + 1 and adding it with the inequality (2.26)
we get

kN̄(r, f) ≤ (k + 1)N

(
r,

1

f

)
+ (k + 2)N̄

(
r,

1

ϕ

)
− kN

(
r,
ϕ

ϕ′

)
−N1

(
r,
ϕ

ϕ′

)
+Q(r, f).

Substituting this inequality into (2.17′) and leaving out the negative summands,
we get

T (r, f) ≤
(

2 +
1

k

)
N

(
r,

1

f

)
+

(
2 +

2

k

)
N̄

(
r,

1

ϕ

)
+Q(r, f),

that is, the inequality (2.23) with a = 0, b = 1. �
Using Theorems 2.4, 2.5, and 2.6 it is possible to prove analogues of Theorem

2.2 and the corollary of Theorem 2.2. For example, using Theorem 2.6 we get that
if a meromorphic function f(z) has a Borel (Picard) exceptional value a 6=∞, then
f (k)(z), k ≥ 1, cannot have a Borel (Picard) exceptional value b 6= 0,∞.

In fact, if f(z) has infinite order, then N(r, a, f) and N(r, b, f (k)) have finite
order, and there is a constant K > 0, such that

N(r, a, f) +N(r, b, f (k)) < rK

for r ≥ r0. Arguing in the same way as in the proof of Theorem 2.2, but using (2.23)
instead of (2.11), we conclude that T (r, f) < 3rK for sufficiently large r. Hence
f(z) has finite order. For transcendental functions of finite order (2.23) implies

(1 + o(1))T (r, f) ≤
(

2 +
1

k

)
N(r, a, f) +

(
2 +

2

k

)
N(r, b, f (k)).(2.27)

The category ofN(r, a, f) is lower than the category of T (r, f), and the category
of N(r, b, f (k)) is lower than the category of T (r, f (k)), by the definition of a Borel
exceptional value. On the other hand, by Theorem 2.3 the category of T (r, f (k))
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does not exceed the category of T (r, f). Therefore the right-hand side of (2.27) has
lower category than the left-hand side, and we get a contradiction.

Theorem 2.6 implies the following result.

Theorem 2.7 (Hayman). If g(z) is an entire function and g(z)g′′(z) does not
have zeros, then g(z) = eAz+B, where A and B are constants, A 6= 0.

Proof. Let

f(z) = g(z)/g′(z).

It is clear that N(r, 0, f) ≡ 0 and that 1/f(z) is an entire function. Since

f ′(z) = 1− g(z)g′′(z)

[g′(z)]2
,

we have also N(r, 1, f ′) ≡ 0. Applying (2.23) with k = 1, a = 0, b = 1, we get

T (r, f) = Q(r, f),

therefore

T (r, f) = O(ln r),

and, hence, the function f(z) is rational, and 1/f(z) is a polynomial. It follows that

g(z) = expP (z), where P (z) is a polynomial. Since g′′(z) = (P ′
2

+ P ′′)eP , then

g′′(z) has no zeros if and only if P ′
2

+ P ′′ = const 6= 0, that is, if P (z) = Az +B,
A 6= 0. �

Remark. The statement of Theorem 2.7 remains true, if we replace the con-
dition g(z)g′′(z) 6= 0 by the condition g(z)g(n)(z) 6= 0 for some n ≥ 2 (Tumura,
Clunie). Proof of this result is rather deep, and we do not include it (it can be
found in Hayman’s book [Hay64, §3.5]).

Editor’s remark. Langley [A103] generalized Theorem 2.7 to meromorphic
functions: the only meromorphic functions with the property f(z)f ′′(z) 6= 0 are
the exponential function and f(z) = c(z− a)−n. The same result with ff (k), k ≥ 3
was earlier proved by Frank [A52].

3. Analogues of the second fundamental theorem for angular
Nevanlinna characteristics and for Tsuji characteristics

First we prove the corresponding analogues of the lemma on the logarithmic
derivative.

It is natural to expect that for the function f(z) meromorphic in the angle
α ≤ arg z ≤ β, 0 < β − α ≤ 2π, the relation

Aαβ

(
r,
f ′

f

)
+Bαβ

(
r,
f ′

f

)
= o(Sαβ(r, f))

holds as r → ∞, outside an exceptional set. However, this statement conjectured
by R. Nevanlinna [NevR25b] in 1925 has not been proved or disproved yet.2We
shall estimate the sum Aαβ(r, f ′/f) +Bαβ(r, f ′/f) for functions f(z) meromorphic
everywhere in the complex plane only, and we give it in terms of T (r, f), and not
Sαβ(r, f).

2A counterexample was constructed by Goldberg [A63].
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Let f(z) be a meromorphic function, {α ≤ arg z ≤ β} be an angle, k = π/(β −
α). Denote by Qαβ(r, f) an arbitrary function defined for {1 ≤ r < ∞} and such
that

1) If the function f(z) satisfies the condition∫ ∞
1

r−k−1 ln+ T (r, f)dr <∞,(3.1)

then Qαβ(r, f) = O(1),
2) If the condition (3.1) is not satisfied, then Qαβ(r, f) = O(ln T (r, f) + ln r)

as r→∞, possibly omitting a set of finite measure.

Theorem 3.1. Each meromorphic function f(z) satisfies

Aαβ(r, f ′/f) +Bαβ(r, f ′/f) = Qαβ(r, f).

Proof. It is easy to see that

Bαβ

(
r,
f ′

f

)
=

2k

πrk

∫ β

α

ln+

∣∣∣∣f ′(reiϕ)

f(reiϕ)

∣∣∣∣ sin k(ϕ− α)dϕ ≤ 4k

rk
m

(
r,
f ′

f

)
.(3.2)

If the function f(z) satisfies the condition (3.1), then ln+ T (r, f) = o(rk) because

ln+ T (r, f)

2k+1rk
≤
∫ 2r

r

ln+ T (t, f)

tk+1
dt = o(1).

Using the estimate (1.13) for m(r, f ′/f), we get

Bαβ

(
r,
f ′

f

)
≤ 4k

rk
(o[(2r)k] +O(ln r)) = o(1) = Qαβ(r, f).

If the condition (3.1) is not satisfied, then the estimate Bαβ(r, f ′/f) = Qαβ(r, f)
follows from (3.2) and the lemma on the logarithmic derivative.

Thus, everything is reduced to a proof of the relation

Aαβ

(
r,
f ′

f

)
= Qαβ(r, f).(3.3)

We prove the following lemma which plays the same role as Theorem 1.1 in the
proof of the lemma on the logarithmic derivative.

Lemma 3.1. Let f(z) be a meromorphic function satisfying f(0) = 1. Then the
inequality

Aαβ

(
r,
f ′

f

)
≤ K

{(
R

r

)k ∫ R

1

ln+ T (t, f)

tk+1
dt+ ln+ r

R− r + ln
R

r
+ 1

}
(3.4)

holds, where 1 ≤ r < R <∞, and K is a constant which does not depend on r and
R.

Proof. Our argument is based on the inequality (1.3′) (we use the same no-

tation as in the proof of Theorem 1.1). Let z = teiϕ and s =
√
λt, where λ = Rr−1

in the inequality (1.3′). We get∣∣∣∣f ′(teiϕ)

f(teiϕ)

∣∣∣∣ ≤ U1(t) + U2(t),

where

U1(t) =
4
√
λ

t(
√
λ− 1)2

T (
√
λt, f) ≤ 16λ3/2

(λ− 1)2
T (λt, f), t ≥ 1,
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U2(t) =

√
λ√

λ− 1

∑
|cq|<

√
λt

1

|t− |cq||
≤ 2λ

λ− 1

∑
|cq|<

√
λt

1

|t− |cq||
.

Therefore

Aαβ

(
r,
f ′

f

)
=
k

π

∫ r

1

(
1

tk
− tk

r2k

)[
ln+

∣∣∣∣f ′(teiα)

f(teiα)

∣∣∣∣+ ln+

∣∣∣∣f ′(teiβ)

f(teiβ)

∣∣∣∣] dtt
≤ k

π

∫ r

1

(
1

tk
− tk

r2k

)
2 ln+[U1(t) + U2(t)]

dt

t

≤ 2k

π

∫ r

1

(
1

tk
− tk

r2k

)
[ln+ U1(t) + ln+ U2(t) + ln 2]

dt

t

≤ 2k

π

{∫ r

1

t−k−1 ln+ U1(t)dt+

∫ r

1

(
1

tk
− tk

r2k

)
ln+ U2(t)

dt

t
+

ln 2

k

}
=

2k

π

{
I1 + I2 +

ln 2

k

}
.

Now we estimate the integrals I1 and I2. By K we denote positive constants
which do not depend on t, r, λ, and hence, on R = λr.

We have

I1 ≤
∫ r

1

ln+

{
16λ3/2

(λ− 1)2
T (λt, f)

}
dt

tk+1

≤
∫ r

1

{
ln 16 +

3

2
lnλ+ 2 ln+ 1

λ− 1
+ ln+ T (λt, f)

}
dt

tk+1

≤
∫ r

1

ln+ T (λt, f)

tk+1
dt+K

(
ln+ 1

λ− 1
+ lnλ+ 1

)
.

In a similar way we get

I2 ≤
∫ r

1

ln+

 2λ

λ− 1

∑
|cq|<

√
λt

1

|t− |cq||


(

1

tk
− tk

r2k

)
dt

t

≤
∫ r

1

ln+

 ∑
|cq|<

√
λt

1

|t− |cq||


(

1

tk
− tk

r2k

)
dt

t

+K

(
ln+ 1

λ− 1
+ lnλ+ 1

)
= Ĩ2 +K

(
ln+ 1

λ− 1
+ lnλ+ 1

)
.
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Consider the integral Ĩ2. Integrating by parts we get

Ĩ2 =

∫ r

1


∫ t

1

ln+

 ∑
|cq|<

√
λτ

1

|τ − |cq||

 dτ

{
k + 1

tk+2
+
k − 1

r2k
tk−2

}
dt

≤ 2(k + 1)

∫ r

1


∫ t

1

ln+

 ∑
|cq|<

√
λτ

1

|τ − |cq||

 dτ
 dt

tk+2

= 4(k + 1)

∫ r

1


∫ t

1

ln+

 ∑
|cq|<

√
λτ

1

|τ − |cq||

1/2

dτ

 dt

tk+2

≤ 4(k + 1)

∫ r

1

 1

t− 1

∫ t

1

ln+

 ∑
|cq|<

√
λτ

1

|τ − |cq||1/2

 dτ
 dt

tk+1
.

To estimate the expression in braces, we use the inequality (1.2′). We get3

1

t− 1

∫ t

1

ln+

 ∑
|cq|<

√
λτ

1

|τ − |cq||1/2

 dτ
≤ ln+

 1

t− 1

∫ t

0

 ∑
|cq|<

√
λt

1

|τ − |cq||1/2

 dτ
+ ln 2

≤ ln+

 1

t− 1

∑
|cq|<

√
λt

∫ t

0

dτ

|τ − |cq||1/2

+ ln 2

≤ ln+

{
1

t− 1
n(
√
λt; 0,∞)

∫ t

−t

dτ

|τ |1/2

}
+ ln 2

= ln+

{
1

t− 1
4
√
tn(
√
λt; 0,∞)

}
+ ln 2.

Since by Lemma 7.1 from Chapter 1,

n(
√
λt; 0,∞) ≤ λt

λt−
√
λt
N(λt; 0,∞) ≤

√
λ√

λ− 1
2T (λt, f) ≤ 4λ

λ− 1
T (λt, f),

thus we get the following estimate for I2

I2 ≤ K
{∫ r

1

t−k−1 ln+ T (λt, f)dt+ ln+ 1

λ− 1
+ lnλ+ 1

}
.

3Below we use Lemma 7.2 from Chapter 1
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Therefore

Aαβ

(
r,
f ′

f

)
≤ K

{∫ r

1

t−k−1 ln+ T (λt, f)dt+ ln+ 1

λ− 1
+ lnλ+ 1

}
≤ K

{
λk
∫ λr

1

t−k−1 ln+ T (t, f)dt+ ln+ 1

λ− 1
+ lnλ+ 1

}
.

Recalling that λ = Rr−1, we get the estimate (3.4). �

Now we prove (3.3). As in the proof of Theorem 1.3 we observe that we may
assume without loss of generality that f(0) = 1. If the function f(z) satisfies the
condition (3.1), then, letting R = 2r in (3.4), we get Aαβ(r, f ′/f) = O(1). Now
suppose that the condition (3.1) is not satisfied. The inequality (3.4) implies that

Aαβ

(
r,
f ′

f

)
≤ K

{(
R

r

)k
ln+ T (R, f) + ln+ R

R− r + ln
R

r
+ 1

}
.

We set

R = r + {T (r, f)}−2

and observe that then the condition (1.7′) is satisfied everywhere except a set
of finite measure. We get that, outside a set of finite measure, Aαβ(r, f ′/f) =
O(ln T (r, f) + ln r). This proves (3.3) and concludes the proof of the theorem. �

It turns out to be possible to prove a complete analogue of the lemma on the
logarithmic derivative for Tsuji characteristics.

Let f(z) be a function, meromorphic in the half-plane {Imz ≥ 0}. Denote by
Q(r, f) an arbitrary function defined for {1 ≤ r <∞} and such that

1) If
◦
T (r, f) is of finite order, then Q(r, f) = O(ln r),

2) If
◦
T (r, f) is of infinite order, then

Q(r, f) = O(ln
◦
T (r, f) + ln r),

as r→∞, except, possibly, a set of finite measure.

Theorem 3.2. For each function f(z) meromorphic in the half-plane {Imz ≥
0}, the relation

m

(
r,
f ′

f

)
= Q(r, f)

holds.

Proof. First we obtain the following estimate, similar to the estimate (1.1):

m

(
r,
f ′

f

)
≤ K

(
ln+ ◦
T (R, f) + ln+ 1

R− r + lnR+ 1

)
,(3.5)

where R and r are arbitrary numbers satisfying the condition 2 ≤ r < R <∞, and
K is a constant which does not depend on r and R.
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We write the formula (1.3) for the disc
{
|z| ≤ 1

2s
}

and the function f
(
z + 1

2 is
)
,

and after that set z + 1
2 is = ζ. We get

f ′(ζ)

f(ζ)
=

1

2π

∫ 2π

0

ln

∣∣∣∣f (s2eiθ +
is

2

)∣∣∣∣ seiθ(
s

2
eiθ − ζ +

is

2

)2 dθ

+
∑

|am− is2 |< s
2

s2

4
−
∣∣∣∣am − is

2

∣∣∣∣2(
s2

4
−
[
am −

is

2

] [
ζ − is

2

])
(ζ − am)

−
∑

|bn− is2 |< s
2

s2

4
−
∣∣∣∣bn − is

2

∣∣∣∣2(
s2

4
−
[
bn −

is

2

] [
ζ − is

2

])
(ζ − bn)

,
∣∣∣ζ − i s

2

∣∣∣ < s

2
.

(3.6)

Thereafter we use the notation ζ = r sinϑeiϑ, κ(r) ≤ ϑ ≤ π − κ(r), κ(r) =
arcsin 1

r
, s = 1

2 (R + r), and denote by K positive constants which do not depend
on R and r. Observe that∣∣∣∣ζ − is

2

∣∣∣∣ ≤ ∣∣∣∣r sinκ(r)eiκ(r) − is

2

∣∣∣∣ =

√
1− s

r
+
s2

4
,

implies

s

2

∣∣∣∣ζ − is

2

∣∣∣∣ ≥ s

2
−
√

1− s

r
+
s2

4
≥ s− r

st
.

Formula (3.6) implies the inequality∣∣∣∣f ′(ζ)f(ζ)

∣∣∣∣ ≤ Φ1(ζ) + Φ2(ζ),(3.7)

where

Φ1(ζ) =
s3r2

(s− r)2

1

2π

∫ 2π

0

∣∣∣∣ln ∣∣∣∣f ( s2eiθ +
is

2

)∣∣∣∣∣∣∣∣ dθ,(3.8)

Φ2(ζ) =
s2r

s− r
∑

|cq− is2 |< s
2

1

|ζ − cq|
,

and {cq} = {am} ∪ {bn}. By (3.7) we

m

(
r,
f ′

f

)
≤ 1

2π

∫ π−κ(r)

κ(r)

ln+[Φ1(ζ) + Φ2(ζ)]
dϑ

r sin2 ϑ

≤ 1

2π

∫ π−κ(r)

κ(r)

ln+ Φ1(ζ)
dϑ

r sin2 ϑ
+

1

2π

∫ π−κ(r)

κ(r)

ln+ Φ2(ζ)
dϑ

r sin2 ϑ

+
ln 2

2π

∫ π−κ(r)

κ(r)

dϑ

r sin2 ϑ
= I1 + I2 +

ln 2

2π

2

r
cotκ(r).

Let us estimate the integrals I1 and I2. To estimate I1 observe, that taking[
−π

2
,

3π

2

]
as an interval of integration instead of [0, 2π], and making the change of
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variable θ = 2τ − π
2 , we get

Φ1(ζ) =
s3r2

(s− r)2

1

π

∫ π

0

| ln |f(s sin τeiτ )||dτ

=
s3r2

(s− r)2
{ 1

π

∫ π−κ(s)

κ(s)

s sin2 τ | ln |f(s sin τeiτ )|| dτ

s sin2 τ

+
1

π

[∫ κ(s)

0

+

∫ π

π−κ(s)

]
| ln |f(s sin τeiτ )||dτ}

≤ s3r2

(s− r)2
{2s(m(s, 0) +m(s,∞)) +K}.

Since by Theorem 5.3 from Chapter 1 the inequality m(s, a) ≤ T(s, f)+O(1) holds,

and, by Theorem 5.4 from Chapter 1, T(s, f) =
◦
T (s, f) +O(1), we have

Φ1(ζ) ≤ K R6

(R− r)2
[
◦
T (R, f) + 1].

Therefore

I1 ≤ K
{

ln+ ◦
T (R, f) + ln+ 1

R− r + lnR+ 1

}
2

πr
cotκ(r),

and since 2
πr

cotκ(r) ≤ 1, we get

I1 ≤ K
{

ln+ ◦
T (R, f) + ln+ 1

R− r + lnR + 1

}
.(3.9)

We turn to an estimate of I2. We have

I2 ≤
1

2π

∫ π−κ(r)

κ(r)

ln+

 ∑
|cq− is2 |< s

2

1

|ζ − cq|

 dϑ

r sin2 ϑ

+K

(
ln+ 1

R− r + lnR

)
= Ĩ2 +K

(
ln+ 1

R− r + lnR

)
.

(3.10)

Also we have

Ĩ2 =
2

π

∫ π−κ(r)

κ(r)

ln+

 ∑
|cq−i s2 |< s

2

1

|ζ − cq|


1/4

dϑ

r sin2 ϑ

≤ 2

π

∫ π−κ(r)

κ(r)

ln+

 ∑
|cq− is2 |< s

2

1

|ζ − cq|1/4

 dϑ

r sin2 ϑ
.
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Applying Lemma 1.1 we get

Ĩ2 ≤
2

π

2

r
cotκ(r)

×

ln+

 r

2 cotκ(r)

∫ π−κ(r)

κ(r)

 ∑
|cq− is2 |< s

2

1

|ζ − cq|1/4

 dϑ

r sin2 ϑ

+ ln 2


≤ K

ln+

 ∑
|cq− is2 |< s

2

∫ π−κ(r)

κ(r)

1

|ζ − cq|1/4
dϑ

r sin2 ϑ

+ 1


≤ K

ln+

r ∑
|cq− is2 |< s

2

∫ π−κ(r)

κ(r)

dϑ

|ζ − cq|1/4

+ 1

 .

Denoting βq = arg cq we have∫ π−κ(r)

κ(r)

dϑ

|ζ − cq|1/4
=

∫ π−κ(r)

κ(r)

dϑ

|r sinϑei(ϑ−βq) − |cq||1/4

≤
∫ π

0

dϑ

|r sinϑ sin(ϑ− βq)|1/4

≤
(∫ π

0

dϑ

(sinϑ)1/2

∫ π

0

dϑ

| sin(ϑ− βq)|1/2

)1/2

=

∫ π

0

dϑ

(sinϑ)1/2
.

Therefore4

Ĩ2 ≤ K{ln r + ln+
n(s; 0,∞) + 1}.

Since

n(s; 0,∞) ≤ R2

R − s

∫ R

s

n(t; 0,∞)

t2
dt ≤ R2

R− sN(R; 0,∞)

≤ R2

R − s(2
◦
T (R, f) +O(1)) ≤ KR2

R− r (
◦
T (R, f) +O(1)),

we get

Ĩ2 ≤ K
{

ln+ ◦
T (R, f) + ln+ 1

R− r + lnR + 1

}
.(3.11)

Using (3.9), (3.10), and (3.11) we get (3.5).

To prove Theorem 3.2 it is enough to let R = r + {
◦
T (r, f)}−2 in (3.5). �

We turn to analogues of the second fundamental theorem. We say that the
characteristics Cαβ(r, a) and N(r, a) correspond to the characteristic N(r, a), the
characteristics Aαβ(r, a) + Bαβ(r, a) and m(r, a) correspond to the characteristic

m(r, a), and the characteristics Sαβ(r, f) and
◦
T (r, f) correspond to the character-

istic T (r, f). The characteristics corresponding to N̄(r, a) are the characteristics

4We set n(r; a, b) = n(r, a) + n(r, b); N(r; a, b) = N(r, a) +N(r, b).
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C̄αβ(r, a) and N̄(r, a) defined in the following way:

C̄αβ(r, a) = 2
∑

1<rm<r
α<ϕm<β

(
1

rkm
− rkm
r2k

)
sin k(ϕm − α),

N̄(r, a) =
∑

1<rm<r sinϕm

(
sinϕm
rm

− 1

r

)
,

where rme
iϕm are the a-points of the function f(z) counted without multiplicity. We

also define in a natural way the characteristics C1αβ(r) and N1(r) corresponding to
the characteristic N1(r), and the characteristics C1β(r, a) and N1(r, a) correspond-
ing to the characteristic N1(r, a).

Analyzing the proofs of Theorems 2.1, 2.4, 2.5, and 2.6, we see that they use
only those properties of the Nevanlinna characteristic which were described in The-
orems 4.1 and 6.1 from Chapter 1, relations (6.1), (6.2), (6.3), (6.4), (4.1) from
Chapter 1, and in Theorem 1.3 from Chapter 3. On the other hand, similar theo-
rems and relations are valid also for angular Nevanlinna characteristics (Theorems
5.1 and 6.3 from Chapter 1, relations (6.9), (6.10), (6.12), (6.13) from Chapter 1,
Theorem 3.1 from Chapter 3), and for Tsuji characteristics (Theorem 5.3 and 6.3
from Chapter 1, relations (6.9), (6.10), (6.12), (6.13) from Chapter 1, Theorem 3.2
from Chapter 3).

Therefore we have the following theorem.

Theorem 3.3. Theorems 2.1, 2.3, 2.4, 2.5, 2.6 and Lemma 2.1 remain true, if
the Nevanlinna characteristics are replaced by the corresponding angular Nevanlinna
characteristics, and Q(r, f) is replaced by Qαβ(r, f).

Theorems 2.1, 2.3, 2.4, 2.5, 2.6 and Lemma 2.1 remain true, if the Nevanlinna
characteristics are replaced by the corresponding Tsuji characteristics, and Q(r, f)
is replaced by Q(r, f).



CHAPTER 4

Deficient values

1. Exceptional values

By the first fundamental theorem the relationm(r, a)+N(r, a) = T (r, f)+O(1)
holds for each a, so the dependence of the sum m(r, a) +N(r, a) on a is inessential.
On the other hand, the contribution to this sum of each of the summands can
depend heavily on a, although, as we shall see later, for “majority” of values of a
the summand N(r, a) is dominant. We introduce the following notation:

δ(a, f) = δ(a) = lim inf
r→∞

m(r, a)

T (r, f)
= 1− lim sup

r→∞

N(r, a)

T (r, f)
,

∆(a, f) = ∆(a) = lim sup
r→∞

m(r, a)

T (r, f)
= 1− lim inf

r→∞

N(r, a)

T (r, f)

The quantity δ(a) is called the Nevanlinna deficiency (or simply deficiency) of the
function f(z) at the point a, the quantity ∆(a) is called the Valiron deficiency. It
is clear that

0 ≤ δ(a) ≤ ∆(a) ≤ 1(1.1)

If ∆(a) > 0, then a is called a Valiron exceptional value, if δ(a) > 0, then a is
called a Nevanlinna exceptional value, or deficient value. Denote by EP (f), EB(f),
EN (f), and EV (f) the sets of Picard, Borel, Nevanlinna, and Valiron exceptional
values, respectively.

Let f(z) be a transcendental meromorphic function. We already observed in
Section 1 of Chapter 2 that EP (f) ⊂ EB(f). The inequality (1.1) immediately
implies that EN (f) ⊂ EV (f). Since for a ∈ EP (f) we have N(r, a) = O(ln r), it is
easy to see that a ∈ EP (f) implies δ(a) = ∆(a) = 1.

Thus

EP (f) ⊂ EN (f) ⊂ EV (f).(1.2)

Let us show that EB(f) ⊂ EV (f). In fact, if a /∈ EV (f), then ∆(a) = 0 and
N(r, a) ∼ T (r, f). If n(r, a) → ∞ as r → ∞, then, by Theorem 1.1 from Chapter
2 the growth category of n(r, a) coincides with the growth category of N(r, a), and
thus a /∈ EB(f). On the other hand, if n(r, a) = O(1), then a ∈ EP (f) and, hence,
a belongs both to EB(f) and EV (f). Thus we obtain also

EP (f) ⊂ EB(f) ⊂ EV (f).(1.3)

The question arises: is it possible to find an inclusion between the sets EB(f) and
EN (f), and thus to write (1.2) and (1.3) as one inclusion? Examples given below
(see Remark 3 at the end of Section 4) and Examples 3 and 4 in Section 2 of Chapter
5 show that there is no general set-theoretical dependence between the sets EB(f)

113
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and EN (f), namely, for some a and f we can have 1) a ∈ EB(f) ∩ EN (f); 2)
a ∈ EB(f)\EN (f); 3) a ∈ EN (f)\EB(f).

The problem of the structure of the sets EP (f) and EB(f) is relatively simple.
In Theorem 2.2 from Chapter 3 and its Corollary it was shown that for transcen-
dental meromorphic functions f(z) the sets EP (f) and EB(f) consist of at most
two points. For meromorphic functions of non-integer order ρ and for meromorphic
functions of zero order this statement can be made more precise.

Theorem 1.1. Transcendent meromorphic function of non-integer or zero or-
der cannot have more than one Borel and hence Picard exceptional value.

Proof. Assume the contrary, that is, the function f(z) has two Borel ex-
ceptional values. Without loss of generality we may assume that 0 and ∞ are
the Borel exceptional values, otherwise we can get into such a situation by using
a linear-fractional transformation. First we consider the case ρ = 0. Then, if
n(r, 0) and n(r,∞) have lower category than T (r, f), we have n(r, 0) = O(1) and
n(r,∞) = O(1). By the Hadamard Theorem (Theorem 4.1 from Chapter 2), the
function f(z) is rational, contrary to the assumption. Now we consider the case
when ρ (the order of f(z)) is non-integer. If both N(r, 0) and N(r,∞) have lower
category than T (r, f), then the same property is shared by N(r; 0,∞). By Theorem
4.2 (Chapter 2) it follows that the orders and types of the functions T (r, f) and
N(r; 0,∞) coincide.

Let us prove that if N(r; 0,∞) has convergence class, then T (r, f) also has
convergence class. We assume, without loss of generality, that f(0) 6= 0,∞. Let∫ ∞

0

N(r; 0,∞)

rρ+1
dr = M <∞.

Using the inequality (4.3) from Chapter 2, we get∫ ∞
1

T (r, f)

rρ+1
dr ≤ O(1)

∫ ∞
1

rp−ρ−1dr

+ C(p)(p+ 1)

∫ ∞
1

dr

rρ+1

∫ ∞
0

N(rτ ; 0,∞)

τp+1

dτ

1 + τ

= O(1) + C(p)(p + 1)

∫ ∞
0

dτ

τp+1(1 + τ)

∫ ∞
1

N(rτ ; 0,∞)

rρ+1
dr

≤ O(1) + C(p)(p + 1)

∫ ∞
0

τρ−p−1dτ

1 + τ

∫ ∞
0

N(t; 0,∞)

tρ+1
dt

= O(1) + C(p)(p + 1)M
π

sinπ(ρ− p) <∞.

Legitimacy of the change of order of integration follows from the standard tests.
We get a contradiction with the assumption that the category of N(r; 0,∞) is lower
than the category of T (r, f). �

Now we give examples showing that the statements about EP (f) and EB(f)
cannot be made more precise. Detailed analysis of these examples is left as an
exercise for interested readers.

A. Order ρ = 0. Each transcendental meromorphic function of zero order with
infinitely many zeros and poles and such that n(r,∞) = o(n(r, 0)), does not have
Picard and Borel exceptional values. Each transcendental entire function of zero
order has ∞ as its only Picard and Borel exceptional value.
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B. Order ρ = n = 1, 2, . . . . The function exp(zn) has two Picard exceptional
values: 0 and ∞. For f(z) = sin zn the sets EP (f) = EB(f) consist of one point
∞. The function (sin zn)/ sinh zn does not have Borel exceptional values.

C. The order ρ is non-integer. Let

f(z) =
∞∏
n=1

E
( z

n1/ρ
, p
)
, p = [ρ].

∞ is the only Borel and Picard exceptional value of f(z). The function
f(z)/f(−z) does not have Borel (and Picard) exceptional values.

D. The order ρ =∞. The function exp(ez) has two Picard exceptional values:
0 and ∞; the function sin ez has ∞ as its only Borel and Picard exceptional value;
the function (sin ez)/ sinh ez does not have Borel exceptional values.

In all of the examples Picard exceptional values were 0 and ∞. Using linear-
fractional transformations they can be replaced by arbitrary numbers a and b.

The problem of the characterization of the structure of EV (f) and EN (f) is
much more complicated. We shall study this problem in the forthcoming sections.

Note that by Theorems 6.6 and 6.7 from Chapter 1 the sets of exceptional
values in all senses under consideration (Picard, Borel, Nevanlinna, and Valiron) of
the functions f(z), f(zn), and f(Az), n = 1, 2, . . . , A 6= 0, coincide, they also have
the same Valiron and Nevanlinna deficiencies. This observation will be repeatedly
used later on.

Exercise 1. Let f(z) be a canonical product of genus p ≥ 0 with positive
zeros, such that n(r, 0) ∼ Arρ(r), where 0 < A < ∞, ρ(r) is a proximate order,
ρ(r)→ ρ. Using results of Section 5 from Chapter 2 show that

(1) If ρ = 0, then ∆(a) = 0 for all a 6=∞;
(2) If ρ > 0 and ρ = p or ρ = p+ 1, then δ(∞) = δ(0) = 1 and ∆(a) = 0 for

all a 6= 0,∞;
(3) If p < ρ < p+ 1, then ∆(a) = 0 for all a 6= 0,∞, and

δ(0, f) = ∆(0, f) = ω(ρ) =


p

p+ | sin ρπ| , p < ρ ≤ p+ 1
2 ,

p+ 1− | sin ρπ|
p+ 1

, p+ 1
2 ≤ ρ < p+ 1.

(1.4)

Exercise 2. Let f(z) be a canonical product of genus p ≥ 0 with positive
zeros, such that n(r, 0) ∼ Arl(r), where 0 < A <∞, l(r) is a function differentiable
on [r0,∞), rl′(r) ln r → 0 as r →∞,

lim sup
r→∞

l(r) = l2 < p+ 1,

lim inf
r→∞

l(r) = l1 > p.

Prove that ∆(a, f) = 0 for all a 6= 0,∞, and

δ(0, f) = min
l1≤t≤l2

ω(t),

∆(0, f) = max
l1≤t≤l2

ω(t),

where ω(t) is defined by (1.4).
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Exercise 3. Prove that for the Mittag-Leffler function Eρ(z), where 0 < ρ <
∞, ρ 6= 1, the deficiency ∆(a) = 0 for all a 6=∞.

Exercise 4. Let f(z) be a meromorphic function of normal type of order ρ,
0 < ρ <∞. Prove that if δ(a) = 1, then a is a Borel exceptional value.

2. The set of Valiron exceptional values

We start with the following Valiron theorem.

Theorem 2.1. For each meromorphic non-identically-constant function f(z)
the two-dimensional Lebesgue measure of EV (f) is zero.

Proof. This theorem explains why the values a for which ∆(a) > 0 are called
exceptional. More precise estimates of “smallness” of the set EV (f) are known,
they are due to Valiron and Ahlfors. We are not going to present them, because
their statements and proofs require additional background in Potential Theory.1

We shall use the notation from Section 4 of Chapter 1. The measure of a
measurable set D in an a-plane will be denoted by |D|, and the two-dimensional

measure of the corresponding set D̃ = p(D) ⊂ S0 will be denoted by |D|s.
We shall use the following equality:∫∫

|a|≤∞
ln

1

[ω, a]
dω(a) =

π

2
,(2.1)

which was proved in Section 4 of Chapter 1 (see the equality (4.19)).
The equality (4.20) from Chapter 1 implies the equality

N(r, a) ≤
◦
T (r, f) + ln

1

[f(0), a]
.(2.2)

LetD be a measurable subset of an extended a-plane. Integrating the inequality
(2.2) over D and using (2.1), we get∫∫

D

N(r, a)dω(a) ≤
◦
T (r, f)|D|s +

∫∫
D

ln
1

[f(0), a]
dω(a)

≤
◦
T (r, f)|D|s +

∫∫
|a|≤∞

ln
1

[f(0), a]
dω(a) =

◦
T (r, f)|D|s +

π

2
.

(2.3)

Let 0 < η < 1/2. Denote by B(r) the set of those values of a for which the inequality

N(r, a) ≤
◦
T (r, f)−

◦
T

1
2 +η

(r, f)(2.4)

holds.
Since N(r, a) is measurable as a function of a, the set B(r) is measurable. Let

us show that the inequality

|B(r)|s <
π

{
◦
T (r, f)} 1

2 +η
(2.5)

holds. Assume the contrary, that is, assume that

|B(r)|s ≥
π

{
◦
T (r, f)} 1

2 +η
.(2.6)

1Nevanlinna proved that EV (f) always has zero logarithmic capacity.
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Denote by B1(r) some subset of B(r) satisfying

|B1(r)|s =
π

{
◦
T (r, f)} 1

2 +η
,(2.7)

and let C(r) = {|a| ≤ ∞}\B1(r). Then, combining (4.18) from Chapter 1 with
(2.3), (2.4), and (2.7), we get

◦
T (r, f) =

1

π

∫∫
B1(r)

N(r, a)dω(a) +
1

π

∫∫
C(r)

N(r, a)dω(a)

≤ 1

π

{
◦
T (r, f)−

◦
T

1
2 +η

(r, f)

}
|B1(r)|s +

1

π

◦
T (r, f)|C(r)|s +

1

2

=
◦
T (r, f)

|S0|s
π
−
◦
T

1
2 +η

(r, f)
|B1(r)|s

π
+

1

2
=
◦
T (r, f)− 1

2
,

a contradiction.
Note that for x > 1 the function x − x 1

2 +η is strictly increasing. Choose r1

in such a way that
◦
T (r1, f) > 1, and define a sequence {rn} using the following

recurrence: rn is the (uniquely determined) solution of the equation

◦
T (r, f)−

◦
T

1
2 +η

(r, f) =
◦
T (rn−1, f), n = 2, 3, . . . .

Since

◦
T (rn, f)−

◦
T (rn−1, f) =

◦
T

1
2 +η

(rn, f) > 1,(2.8)

we have
◦
T (rn, f)→ ∞ as n→ ∞. It is clear that the sequence {rn} is increasing

and limn→∞ rn =∞. If a /∈ B(rn), then the inequality

N(r, a) ≥
◦
T (r, f)− 2

◦
T

1
2 +η

(r, f)(2.9)

holds for rn ≤ r ≤ rn+1. In fact,

N(r, a) ≥ N(rn, a) >
◦
T (rn, f)−

◦
T

1
2 +η

(rn, f)

≥
◦
T (rn, f)−

◦
T

1
2 +η

(rn, f) +

{
◦
T (r, f)−

◦
T

1
2 +η

(r, f)

}
−
{
◦
T (rn+1, f)−

◦
T

1
2 +η

(rn+1, f)

}
=
◦
T (r, f)−

◦
T

1
2 +η

(r, f)−
◦
T

1
2 +η

(rn, f) ≥
◦
T (r, f)− 2

◦
T

1
2 +η

(r, f).

Hence, if a /∈
⋃∞
k=nB(rk), then the inequality (2.9) holds for all r ≥ rn, thus

∆(a) = 0. Therefore

EV (f) ⊂
∞⋃
k=n

B(rk)
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for each n. On the other hand, by (2.5) and (2.8), we get∣∣∣∣∣
∞⋃
k=n

B(rk)

∣∣∣∣∣
s

≤
∞∑
k=n

|B(rk)|s ≤ π
∞∑
k=n

◦
T
− 1

2−η
(rk, f)

= π

∞∑
k=n

◦
T (rk, f)−

◦
T (rk−1, f)

{
◦
T (rk, f)}1+2η

= π

∞∑
k=n

∫ rk

rk−1

d
◦
T (r, f)

{
◦
T (rk, f)}1+2η

≤ π
∞∑
k=n

∫ rk

rk−1

d
◦
T (r, f)

{
◦
T (r, f)}1+2η

= π

∫ ∞
rn−1

d
◦
T (r, f)

{
◦
T (r, f)}1+2η

=
π

2η

1

{
◦
T (rn−1, f)}2η

.

Hence

lim
n→∞

∣∣∣∣∣
∞⋃
k=n

B(rk)

∣∣∣∣∣
s

= 0

and

|EV (f)|s = 0.

Denote by EnV (f) the intersection EV (f) ∩ {|a| < n}, n = 1, 2, . . . . Since

0 = |EnV (f)|s =

∫∫
EnV (f)

dσ(a)

(1 + |a|2)2
≥ 1

(1 + n2)2

∫∫
EnV (f)

dσ(a) =
|EnV (f)|

(1 + n2)2
,

we get |EnV (f)| = 0. The set EV (f) can differ from
⋃∞
n=1E

n
V (f) by one point a =∞

only and has zero two-dimensional measure. �

Exercise. Using Cartan’s identity (4.13) from Chapter 1, prove that the
intersection of EV (f) with the unit circle has one-dimensional measure zero. Use
this result to show that the intersection of EV (f) with an arbitrary circle or line
has one-dimensional measure zero.

Example. The set EV (f) can have the cardinality of a continuum.2

Denote Np = 23p , p = 0, 1, 2, . . . , q(p) = [log2 p] + 1, p ≥ 1 (log2 p denotes the
logarithm with base 2). We select {θ(n)}, n = 1, 2, . . . , to be an integer-valued
sequence, so rapidly increasing that θ(n+ 1) > θ(n) + 1 and

2−θ(q(p)) <
Np!

(2Np)!
.(2.10)

It is clear that for n ≤ Np the inequality

2−θ(q(p)) <
n!

(2n)!
(2.11)

holds.
Denote by M the set of those real numbers x ∈

(
1
2 , 1
)

which can be represented
in the form

x =
1

2
+

1

2

{ α1

2θ(1)
+

α2

2θ(2)
+ · · ·+ αn

2θ(n)
+ . . .

}
,(2.12)

where α1, α2, . . . , αn, . . . is an arbitrary sequence of 0 and 1 with infinitely many
1. The cardinality of the set of such sequences coincides with the cardinality of the

2Hayman [A72] constructed an example of an entire function such that EV (f) contains an
arbitrary given Fσ set of zero capacity.
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interval (0, 1) of real numbers. Since the representation of a real number x in the
form (2.12) is unique, the set M has cardinality of the continuum.

If p = γ1 + γ22 + · · ·+ γq2
q−1, q = q(p), γj = 0, 1, we let

ap =
1

2
+

1

2

{ γ1

2θ(1)
+

γ2

2θ(2)
+ · · ·+ γq

2θ(q)

}
.(2.13)

Now we let b0 = b1 = b2 = 3/4,

bn = ap for Np−1 < n ≤ Np, p = 1, 2, . . . .(2.14)

It is clear that 1/2 < bj < 1, j ≥ 0. Denote by ϕ(z) the entire function

ϕ(z) =

∞∑
j=0

bj

j!
zj.

It is clear that M(r, ϕ) = ϕ(r),
1

2
er < ϕ(r) < er. Consider the entire function

ψ(z) = 2ez − ϕ(z). It is easy to see that M(r, ψ) = ψ(r) and er < ψ(r) < 2er.
Using the inequality (7.1) from Section 7 of Chapter 1, we get

T (r, ψ) ≥ 1

3
lnψ

( r
2

)
>

1

6
r.

Let a0 be a complex number satisfying ∆(a0, ψ) = 0, that is, N(r, a0, ψ) =

(1 + o(1))T (r, ψ) >
1

6
r(1 + o(1)). The existence of such a number a0 follows from

Theorem 2.1. The function

f(z) = (ϕ(z) + a0)e−z

has the desired properties.
First of all, we have

T (r, f) ≤ lnM(r, f) ≤ lnM(r, e−z) + lnM(r, ϕ) +O(1) ≤ 2r +O(1).

Let us estimate N(r, 2, f) from below. Solutions of the equation f(z) = 2
coincide with solutions of the equation 2ez − ϕ(z) = a0, therefore N(r, 2, f) ≡
N(r, a0, ψ) >

1

6
(1 + o(1)). Hence we get

T (r, f) ≥ N(r, 2, f) +O(1) ≥ 1

6
r(1 + o(1)).(2.15)

Now we show that each x ∈M satisfies ∆(x, f) = 1. Choose x ∈M ,

x =
1

2
+

1

2

{ γ1

2θ(1)
+

γ2

2θ(2)
+ · · ·+ γn

2θ(n)
+ . . .

}
, γj = 0, 1.(2.16)

Let {γnk}∞k=1 be a subsequence of the sequence {γn} consisting of those members
which are equal to 1. We introduce a correspondence which assigns to x the sequence

pk = γ1 + γ22 + · · ·+ γnk2nk−1, k = 1, 2, . . .

of positive integers. It is clear that nk = q(pk) and that pk → ∞ as k → ∞.

Let rk =
1

3
Npk . We estimate N(rk, x, f) from above. Since the solutions of the

equation

(ϕ(z) + a0)e−z = x

coincide with the solutions of

xez − ϕ(z)− a0 = 0,
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we have N(rk, x, f) ≡ N(rk, 0,Φ(z)), where

Φ(z) = xez − ϕ(z)− a0 = −a0 +
∞∑
j=0

x− bj
j!

zj.

Since x ∈
(

1
2 , 1
)

and bj ∈
(

1
2 , 1
)
, then |x − bj | < 1

2 for all j ≥ 0. By (2.13),
(2.16), and (2.11), for Npk−1

< j ≤ Npk we have

x− bj = x− apk =
1

2

∞∑
n=nk+1

γn

2θ(n)
≤ 1

2

∞∑
n=nk+1

2−θ(n)

<
1

2

∞∑
n=θ(nk)

2−n = 2−θ(nk) = 2−θ(q(pk)) <
j!

(2j)!
.

Then for |z| = rk the inequality

|Φ(z)| ≤ |a0|+
∞∑
j=0

|x− bj |
j!

rjk

≤ |a0|+
1

2

Npk−1∑
j=0

rjk
j!

+

Npk∑
j=Npk−1+1

j!

(2j)!

1

j!
rjk +

1

2

∞∑
j=Npk+1

rjk
j!

(2.17)

holds. Now we estimate each of the sums from the right-hand side of (2.17). We
get

Npk−1∑
j=0

rjk
j!
≤ rNpk−1

k

∞∑
j=0

1

j!
= e exp {Npk−1 ln rk}

= e exp{(3rk)1/3 ln rk} = o
(
e
√
rk
)
,

since Np−1 = N
1/3
p . We also have

∞∑
j=Npk+1

rjk
j!
≤

∞∑
j=Npk+1

(
erk

j

)j
<

∞∑
j=Npk+1

(
erk

Npk

)j
<

∞∑
j=1

(e
3

)j
=

e

3− e ,

Npk∑
j=Npk−1+1

rjk
(2j)!

<

∞∑
j=0

rjk
(2j)!

= cosh
√
rk =

{
1

2
+ o(1)

}
e
√
rk .

Combining these estimates, we get

M(rk,Φ) ≤
(

1

2
+ o(1)

)
e
√
rk ,

T (rk,Φ) ≤ lnM(rk,Φ) =
√
rk +O(1).

Now,

N(rk, x, f) = N(rk, 0,Φ) ≤ T (rk,Φ) +O(1) ≤ √rk +O(1).(2.18)

From (2.15) and (2.18) we get

lim inf
r→∞

N(r, x, f)

T (r, f)
≤ lim inf

k→∞

N(rk, x, f)

T (rk, f)
≤ lim

k→∞

√
rk +O(1)

1

6
rk

= 0,

that is, ∆(x, f) = 1.
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Thus the function f(z) has all desired properties.

3. Deficiency relation

In Section 2 of Chapter 3 (see (2.9)) we proved the inequality
q∑

ν=1

{m(r, aν) +N1(r, aν)} ≤ 2T (r, f) +Q(r, f),(3.1)

where a1, . . . , aq are arbitrary pairwise distinct complex numbers. Denote by ε(a)
the quantity

ε(a) = lim inf
r→∞

N1(r, a)

T (r, f)
,

and call it the index of ramification (or simply the index) of the function f(z) at
the point a. If ε(a) > 0, then a is called an index value. We choose a sequence
rk →∞ such that Q(rk, f) = o(T (rk, f)). Such a sequence exists by the definition
of Q(r, f) (for rational functions f(z) we use Remark 2 on page ???). Let r = rk in
(3.1), divide the obtained inequality by T (rk, f), and pass to the lower limit. We
get

q∑
ν=1

{
lim inf
k→∞

m(rk, aν)

T (rk, f)
+ lim inf

k→∞

N1(rk, aν)

T (rk, f)

}
≤ 2,

from where we get
q∑

ν=1

{δ(aν) + ε(aν)} ≤ 2.(3.2)

Since m(r, a) +N1(r, a) ≤ m(r, a) +N(r, a) = T (r, f) +O(1), we get

0 ≤ δ(a) + ε(a) ≤ 1.(3.3)

We show that the set of those points a for which δ(a) + ε(a) > 0 is at most
countable. In fact, let E be the set of those numbers a for which δ(a) + ε(a) > 0,
and Ek be the set of those numbers a for which δ(a) + ε(a) > 1

k . It is clear that
E =

⋃∞
k=1Ek, therefore it is enough to show that the sets Ek are finite. To do this,

suppose that for some k the set Ek contains more than 2k points aν , ν = 1, . . . , nk,
nk > 2k. Choosing q = nk in (3.2) we get a contradiction.

If the set of points a for which δ(a) + ε(a) > 0 is finite, then we may let
{aν} in (3.2) be the set of all these points. If this set can be listed as a sequence
{a1, a2, a3, . . . }, then, taking limit in (3.2) as q →∞, we get

∞∑
ν=1

{δ(aν) + ε(aν)} ≤ 2.

We combine these cases (of a finite and of a countable set of values a) writing∑
a

{δ(a) + ε(a)} ≤ 2.(3.4)

Despite the fact that the sum is taken over all complex numbers a, the summands
in this sum are positive for a finite or countable set of values of a only, and the sum
is to be understood as a sum of finitely many numbers or a sum of a series with
positive terms. The inequality (3.4) is called the deficiency relation, it is one of the
main results of the Nevanlinna theory. Since for Picard exceptional values δ(a) = 1,
Picard theorem follows from (3.4): the set EP (f) contains at most 2 points. Before
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(see Theorem 2.2 from Chapter 3) this theorem was derived as a corollary of the
Borel theorem. Note, that we have also proved the following result, which we state
as a separate theorem.

Theorem 3.1. The set EN (f) is at most countable.

Exercise. Prove that for f(z) = sin z we have ∆(a) = 0 for all a 6= ∞,
δ(∞) = 1, ε(1) = ε(−1) = 1/2.

4. The structure of the set of deficient values

For meromorphic functions of zero order the statement of Theorem 3.1 can be
made more precise. In fact, Valiron’s theorem (Theorem 4.6, Chapter 2) can be
restated in the following way: a meromorphic function of zero order cannot have
more than one deficient value.

For meromorphic functions of order ρ, 0 < ρ ≤ ∞, Theorem 3.1 cannot be im-
proved (if we do not impose any restrictions onto meromorphic function in addition
to prescribing the magnitude of order).

Theorem 4.1. Let 0 < ρ ≤ ∞ and let M be an arbitrary at most countable
subset of the extended complex plane (M can be empty). Then there exists a mero-
morphic function of order ρ whose set of deficient values coincides with M .

Proof. First we prove that for each ρ, 0 ≤ ρ ≤ ∞, there exists a meromorphic
function of order ρ which does not have deficient values. Let {pn} be an arbitrary
sequence of non-negative integers.

Consider the function

f(z) =
1

z
+

∞∑
n=1

1

2n

(
1

z − 2n

)pn+2

=
1

z
+ ψ(z).(4.1)

It is clear that the series in (4.1) converges absolutely and uniformly on bounded
sets in the complex plane. We show that for an arbitrary choice of the sequence

{pn} the set EN (f) is empty. Let rν = 2ν−23 = 2ν
3

4
. For |z| = rν , ν ≥ 3, we have

|ψ(z)| ≤
∞∑
n=1

1

2n

(
1

|z − 2n|

)pn+2

≤
∞∑
n=1

1

2n

(
1

|rν − 2n|

)pn+2

≤
∞∑
n=1

1

2n
1

|rν − 2n|2 =

ν−1∑
n=1

1

r2
ν2n

1(
1− 2n

rν

)2 +

∞∑
n=ν

1

23n

1

(1 − rν2−n)2

<
1

r2
ν

ν−1∑
n=1

1

2n
1(

1− 2ν−1

rν

)2 +

∞∑
n=ν

1

23n

1

(1− rν2−ν)2

=
9

r2
ν

ν−1∑
n=1

1

2n
+ 16

∞∑
n=ν

1

23n
<

9

r2
ν

+
128

7

1

23ν
=

9

r2
ν

+
54

7

1

r3
ν

.

The equality (4.1) implies that

|f(z)| = 1

rν
+ O

(
1

r2
ν

)
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holds for |z| = rν . Hence for 0 < |a| ≤ ∞ we have m(rν , a, f) = O(1), rν → ∞,
and m(rν , 0, f) = ln rν + o(1). Therefore δ(a) = 0 for each a and EN (f) = ∅.

Now we show that choosing a suitable sequence {pn} we get a function f(z)
with prescribed order ρ. Note that if |z| = r, where |r − 2n| ≥ 1, n = 1, 2, . . . ,
r ≥ 3, then

|f(z)| ≤ 1

r
+
∞∑
n=1

1

2n

(
1

|z − 2n|

)pn+2

≤ 1

r
+
∞∑
n=1

1

2n
≤ 4

3

and

m(r, f) = O(1).(4.2)

Now, for 2n−1 ≤ r < 2n we have

n(r, f) = 2n− 1 + p1 + p2 + · · ·+ pn−1.(4.3)

If all pn ≡ 0, then n(r, f) ∼ 2
ln 2 ln r, N(r, f) ∼ ln2 r

ln 2 . Denote by I the set [3,∞) with

the intervals |r−2n| < 1, n = 2, 3, . . . removed. By (4.2) we have T (r, f) ∼ ln2 r
ln 2 on

I, and by monotonicity of T (r, f) this relation remains true for all r. For pn ≡ 0
the function f(z) has zero order.

Now let 0 < ρ <∞. Set pn = [2nρ]. Then (4.3) implies (2n−1 ≤ r < 2n):

n(r, f) ∼ 2nρ

2ρ − 1
,

(1 + o(1))
rρ

2ρ − 1
≤ n(r, f) ≤ (1 + o(1))

2ρrρ

2ρ − 1
,

(1 + o(1))
rρ

ρ(2ρ − 1)
≤ N(r, f) ≤ (1 + o(1))

2ρrρ

ρ(2ρ − 1)
.

Using (4.2) as before, we show that

lnT (r, f) ∼ ρ ln r,

that is, the function f(z) has order ρ.

If we set pn = 2(n+1)2

, we get (2n−1 ≤ r < 2n)

n(r, f) ≥ pn−1 = 2n
2 ≥ 2( ln r

ln 2 )
2

,

lnT (r, f) ≥ lnN(r, f) ≥ lnn
(r
e
, f
)
≥ (ln r − 1)2

ln 2
,

that is, the function f(z) has order ρ =∞.
It is easy to give an example of a meromorphic function f(z) of order zero, such

that EN (f) consists of one point a. If a = ∞, we let f(z) be an arbitrary entire
function g(z) of zero order; if a 6=∞, we set f(z) = a+ 1/g(z).

Now let 0 < ρ ≤ ∞, M be an arbitrary nonempty at most countable set. We
show that there exists a meromorphic function f(z) of order ρ, for which EN (f) =
M . It is clear that without loss of generality we may assume that ∞ /∈M .

We start with the case ρ = 1. Let θj, j = 0,±1,±2,±3, . . . , be a sequence of
numbers from the interval (−π, π), π > θj+1−θj > 0, θj → π as j → +∞, θj → −π
as j → −∞. Let aj , j = 0,±1,±2, . . . , be a sequence of complex numbers whose
set of terms coincides with M .
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Let {cj} be a sequence of positive numbers such that

∞∑
j=−∞

cj |aj | = S1 <∞,
∞∑

j=−∞
cj = S2 <∞.

Set

f1(z) =

∞∑
j=−∞

cjaj exp(ze−iθj),(4.4)

f2(z) =

∞∑
j=−∞

cj exp(ze−iθj).(4.5)

It is clear that these series converge absolutely and uniformly on bounded sets,
and represent entire functions. Let

f(z) =
f1(z)

f2(z)
.

We show that the meromorphic function f(z) has the desired properties.
For |z| = r we have | exp(ze−iθj)| ≤ er, hence

|f1(z)| ≤
∞∑

j=−∞
cj |aj |er = S1e

r,

|f2(z)| ≤
∞∑

j=−∞
cje

r = S2e
r.

Therefore

T (r, f) ≤ T (r, f1) + T (r, f2) +O(1)

≤ lnM(r, f1) + lnM(r, f2) +O(1) ≤ 2r +O(1).
(4.6)

We fix an integer ν. Let θ′j ≡ θj( mod 2π), θν − π < θ′j ≤ θν + π. It is clear
that θ′ν±1 = θν±1. Let η = η(ν) > 0. We consider the function f(z) in the angle

θν + θν−1

2
+ η < ϕ = arg z <

θν+1 + θν

2
− η, 0 < η <

θν+1 − θν−1

4
.(4.7)

We have

f(z)− aν =
f1(z)− aνf2(z)

f2(z)
=

∑
j 6=ν cj(aj − aν) exp(ze−iθ

′
j)∑

j cj exp(ze−iθ
′
j )

=

∑
j 6=ν cj(aj − aν) exp{z(e−iθ

′
j − e−iθν )}

cν +
∑

j 6=ν cj exp{z(e−iθ
′
j − e−iθν )}

.

(4.8)

Observe that

| exp{z(e−iθ
′
j − e−iθν )}| = exp{r(cos(ϕ− θ′j)− cos(ϕ− θν))}

= exp

{
2r sin

(
ϕ−

θ′j + θν

2

)
sin

θ′j − θν
2

}
.

(4.9)

Let θν+1 ≤ θ′j ≤ θν + π. Then

η ≤
θ′j − θν+1

2
+ η <

θ′j + θν

2
− ϕ <

θ′j − θν−1

2
− η < π − η
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and

sin

(
ϕ−

θ′j + θν

2

)
sin

θ′j − θν
2

≤ − sin η sin
θν+1 − θν

2
= −A′ν sin η.

If θν − π < θ′j ≤ θν−1, then

η ≤
θν−1 − θ′j

2
+ η < ϕ−

θ′j + θν

2
<
θν+1 − θ′j

2
− η < π − η

and

sin

(
ϕ−

θ′j + θν

2

)
sin

θ′j − θν
2

≤ − sin η sin
θν − θν−1

2
= −A′′ν sin η.

If we denote Aν = min(A′ν , A
′′
ν), then by (4.9) we get the inequality

| exp{z(e−iθ
′
j − e−iθν )}| ≤ exp{−2rAν sin η},

valid for all j 6= ν. Now,∣∣∣∣∣∣
∑
j 6=ν

cj exp{z(e−iθ
′
j − e−iθν )}

∣∣∣∣∣∣ ≤ S2 exp{−2rAν sin η},(4.10)

∣∣∣∣∣∣
∑
j 6=ν

cj(aj − aν) exp{z(e−iθ
′
j − e−iθν )}

∣∣∣∣∣∣ ≤ (S1 + |aν |S2) exp{−2rAν sin η}.(4.11)

If r ≥ rν(η), the right-hand side of (4.10) is less than cν/2, and by (4.8) and (4.11)
we get

|f(z)− aν | ≤
S1 + |aν |S2

cν − cν
2

exp{−2rAν sin η},(4.12)

(4.121) ln+ 1

|f(z)− aν |
≥ 2rAν sin η +O(1)

uniformly in the angle (4.7). Now

m(r, aν) ≥ 1

2π

∫ θν+1+θν
2 −η

θν+θν−1
2 +η

ln+ 1

|f(reiϕ)− aν |
dϕ

≥ 1

π

(
θν+1 − θν−1

2
− 2η

)
rAν sin η + O(1) = Bν(η)r +O(1),

(4.13)

where Bν(η) > 0. From (4.6) and (4.13) we get

δ(aν) = lim inf
r→∞

m(r, aν)

T (r, f)
≥ Bν(η)

2
> 0.

Thus we have shown that M ⊂ EN (f). The inequalities (4.6) and (4.13) imply also

B0(η0)r +O(1) ≤ T (r, f) ≤ 2r +O(1),

where

0 < η0 <
θ1 − θ−1

4
.

Hence f(z) is of order 1.
Let δ be an arbitrary positive number. The segment [−π + δ, π − δ] contains

finitely many points of the form (θj + θj+1)/2. We cover these points by intervals
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of length 2η centered at them, where η > 0 is so small that the total length of the
intervals is less than δ. Denote by I the union of the intervals. If ϕ ∈ [−π + δ, π −
δ]\I, then by (4.12) the functions |f(reiϕ)| and |f(reiϕ) − a|−1, a /∈ M , a 6= ∞
converge uniformly to some bounded functions as r→∞.

By Theorem 7.4 from Chapter 1 we conclude that

m(r, a) = o(T (r, f)) and δ(a) = 0

for a /∈M . Thus we have proved that M = EN (f).
Now we show how to change the construction above in order to get similar

example in the case 0 < ρ < 1/2. As before, we choose the sequences θj , aj , cj.
Now the role of ez will be played by the function

V (z) =

∞∏
n=1

(
1 +

z

n1/ρ

)
.

Results of Section 5 from Chapter 2 imply that

ln |V (reiϕ)| = π cos ρϕ

sinπρ
rρ + o(rρ), r →∞(4.14)

uniformly in ϕ ∈ [−π + δ, π − δ], furthermore, if we replace = by ≤ in (4.14), the
obtained inequality is satisfied uniformly in ϕ ∈ [−π, π]. In addition,

lnM(r, V ) =
π

sinπρ
rρ + o(rρ).(4.15)

Now we set

f1(z) =

∞∑
j=−∞

cjajV (ze−iθj),

f2(z) =

∞∑
j=−∞

cjV (ze−iθj),

and, as before, f(z) = f1(z)/f2(z). Instead of (4.6) we get

T (r, f) ≤ lnM(r, f1) + lnM(r, f2) +O(1) ≤ 2π

sinπρ
rρ + o(rρ).(4.16)

Fixing θν and defining θ′j as before, we get that the equality

f(z)− aν =

∑
j 6=ν cj(aj − aν) V (ze

−iθ′j )
V (ze−iθν )

cν +
∑

j 6=ν cj
V (ze

−iθ′
j )

V (ze−iθν )

.(4.17)

holds in the angle (4.7). Denote by cρ(ϕ) the periodic with period 2π extension of
the function cos ρϕ from [−π, π] to the whole real line. Then the role of the equality
(4.9) will be played by the inequality

ln

∣∣∣∣∣∣
V
(
rei(ϕ−θ

′
j)
)

V
(
rei(ϕ−θν)

)
∣∣∣∣∣∣ ≤ rρ π

sinπρ
{cρ(ϕ− θ′j)− cρ(ϕ − θν)}+ o(rρ).(4.18)

To derive (4.18) we use (4.14) with the equality sign for ln |V
(
rei(ϕ−θν)

)
| and with

the inequality sign for ln
∣∣∣V (rei(ϕ−θ′j))∣∣∣. In order to continue the proof on the same
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lines as before we need to show that there exists a positive constant Kν(η) such
that for ϕ satisfying the inequality (4.7) and for all j 6= ν the inequality

cρ(ϕ− θ′j)− cρ(ϕ− θν) < −Kν(η).(4.19)

holds.
The proof of (4.19) is based on simple trigonometric transformations, although

often requires tedious computations. We leave the detailed proof of (4.19) to inter-
ested readers, we provide only a short sketch of one of the possible proofs.

a) Let 0 < θ ≤ π, then cρ(ψ) > cρ(ψ − θ) for θ/2 > ψ > θ/2− π.
b) Let −π ≤ θ < 0, then cρ(ψ) > cρ(ψ − θ) for θ/2 < ψ < θ/2 + π.
c) Let 0 < θ′′ ≤ θ ≤ π, −π ≤ ψ ≤ θ′′/2. Then

max{cρ(ψ − π), cρ(ψ − θ′′)}cρ} ≥ cρ(ψ − θ).
d) Let −π ≤ θ ≤ θ′ < 0, θ′/2 ≤ ψ ≤ π. Then

max{cρ(ψ − π), cρ(ψ − θ′)} ≥ cρ(ψ − θ).
e) If −π ≤ θ′ < 0 < θ′′ ≤ π, θ′/2 < ψ < θ′′/2, θ ∈ [−π, π]\[θ′, θ′′], then

cρ(ψ) > max{cρ(ψ − θ′), cρ(ψ − θ′′)} ≥ cρ(ψ − θ).
f) If −π ≤ θ′ < θ′/2+η < 0 < θ′′/2−η < θ′′ ≤ π and θ′/2+η ≤ ψ ≤ θ′′/2−η,

then, by the Weierstrass theorem,

cρ(ψ)−max{cρ(ψ − θ′), cρ(ψ − θ′′)} ≥ Aρ(η, θ′, θ′′) > 0

and
cρ(ψ)− cρ(ψ − θ) ≥ Aρ(η, θ′, θ′′).

for θ ∈ [−π, π]\[θ′, θ′′].
Now it is easy to see that in (4.19) we can set

Kν(η) = Aρ(η, θν−1 − θν , θν+1 − θν).

In order to see this, it is enough to let ψ = ϕ− θν , θ′ = θν−1 − θν , θ′′ = θν+1 − θν
in (4.19).

Now, after proving the inequality (4.19), by (4.17), (4.18), and (4.19) we get

|f(z)− aν | ≤
S1 + |aν |S2

cν − cν
2

exp

{
−rρπKν(η)

sinπρ
+ o(rρ)

}
(4.20)

for sufficiently large r and for ϕ satisfying (4.7).
Using the inequalities (4.16) and (4.20) as we used the inequalities (4.6) and

(4.12) before, we get that EN (f) = M and that f(z) has order ρ, 0 < ρ < 1/2.
Considering the functions f(zn), n = 1, 2, . . . , we get examples of meromorphic

functions with EN (f) = M and an arbitrary order ρ, 0 < ρ < n/2. Since n can be
chosen to be arbitrarily large, then the order ρ can be an arbitrary positive finite
number. Of course, there is no need to consider the case ρ = 1 separately. We
started with the case ρ = 1 because in this case the function f(z) is particularly
simple, and it will be convenient to use it in our construction of an example for
ρ =∞.

Let f1(z) and f2(z) be given by (4.4) and (4.5), respectively. Set

F1(z) = f1(ez), F2(z) = f2(ez), F (z) = F1(z)/F2(z).

Let
ψ(y) = sup

−∞<j<∞
cos(y − θj), −∞ < y <∞.
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It is easy to see that ψ(y) = cos(y − θj) for (θj−1 + θj)/2 ≤ y ≤ (θj + θj+1)/2,
ψ(±π) = 1. The function ψ(y) is continuous for −∞ < y < ∞, periodic with
period 2π, and satisfying the inequality 0 < ψ(y) ≤ 1. We easily get

|F2(x+ iy)| ≤
∞∑

j=−∞
cj exp{ex cos(y − θj)}

≤
∞∑

j=−∞
cj exp{exψ(y)} = S2 exp{exψ(y)}

(4.21)

and

|F1(x+ iy)| ≤ S1 exp{exψ(y)}.(4.22)

Later on we shall need the following

Lemma 4.1 (Fuchs, Hayman). Let ϕ(t) be a bounded, non-negative function,
integrable on each segment 0 ≤ t ≤ r, such that there exists a finite limit

lim
r→∞

1

r

∫ r

0

ϕ(t)dt = l.

Then

I(r) =
1

2π

∫ π/2

0

er cos θϕ(r sin θ)dθ =
{l+ o(1)}er

2
√

2πr
, r →∞.

Proof. First we observe that

1

2π

∫ π/2

0

er cos θdθ = (1 + o(1))
er

2
√

2πr
, r →∞.(4.23)

This follows from the equalities

1

2π

∫ π/2

0

er cos θdθ =
1

4π

∫ π/2

−π/2
er cos θdθ =

1

4π

∫ π

−π
er cos θdθ +O(1),

1

2π

∫ π

−π
er cos θdθ = I0(r) = (1 + o(1))

er√
2πr

.(4.24)

where I0(r) = J0(ir) is a cylindric function of imaginary parameter.

For convenience of readers who are not acquainted with the formula (4.24), we include
an independent proof of formula (4.23).

We start with∫ π/2

0

er cos θdθ = er
∫ π/2

0

er(cos θ−1)dθ = er
∫ π/2

0

e−2r sin2 θ
2 dθ.(4.25)

On the other hand,∫ π/2

0

e−2r sin2 θ
2 dθ =

∫ r−1/4

0

e−2r sin2 θ
2 dθ +

∫ π/2

r−1/4

e−2r sin2 θ
2 dθ

=

∫ r−1/4

0

e−2r sin2 θ
2 dθ +O

(
e−

1
3

√
r
)
, r →∞.

(4.26)

But for 0 ≤ θ ≤ r−1/4 we have

h(r)

(
θ

2

)2

≤ sin2 θ

2
≤
(
θ

2

)2

,
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where h(r)→ 1 as r →∞. Therefore

∫ r−1/4

0

e−2r sin2 θ
2 dθ ≤

∫ r−1/4

0

e−
r
2
h(r)θ2dθ <

∫ ∞
0

e−
r
2
h(r)θ2dθ

=

√
π

2

1√
rh(r)

= (1 + o(1))

√
π

2r
,

∫ r−1/4

0

e−2r sin2 θ
2 dθ ≥

∫ r−1/4

0

e−
r
2
θ2dθ =

∫ ∞
0

e−
r
2
θ2dθ −

∫ ∞
r−1/4

e−
r
2
θ2dθ

≥
√

π

2r
−
∫ 1

r−1/4

e−
r
2
θ2dθ −

∫ ∞
1

e−
r
2
θdθ

>

√
π

2r
− e−

√
r

2 − 2

r
e−

r
2 = (1 + o(1))

√
π

2r
.

Hence ∫ r−1/4

0

e−2r sin2 θ
2 dθ = (1 + o(1))

√
π

2r
.

Using (4.26) and (4.25), we get (4.23).

To complete the proof of the lemma, it is enough to show that

I(r) − l

2π

∫ π/2

0

er cos θdθ = o

(
er√
r

)
, r →∞.(4.27)

Since ϕ(r sin θ) = O(1),

∫ r−2/3

0

er cos θdθ = O
(
err−

2
3

)
= o

(
er√
r

)
,

∫ π/2

π/3

er cos θdθ = O
(
e
r
2

)
= o

(
er√
r

)
,

in order to prove (4.27), it is enough to check that∫ π/3

r−2/3

er cos θϕ(r sin θ)dθ − l
∫ π/3

r−2/3

er cos θdθ

=

∫ π/3

r−2/3

er cos θ{ϕ(r sin θ)− l}dθ = o

(
er√
r

)
.

(4.28)

Introduce

χ(θ) =
er cos θ

r cos θ
, Φ(θ) =

∫ r sin θ

0

ϕ(t)dt− lr sin θ.

It is easy to see that for r−2/3 ≤ θ ≤ r−1/4 and for sufficiently large r we have
χ′(θ) < 0, and also that Φ(θ) = o(r sin θ) by the condition of the lemma and the
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fact that r sin θ ≥ (1 + o(1))r1/3 uniformly in θ as r →∞. Now,∫ π/3

r−2/3

er cos θ{ϕ(r sin θ)− l}dθ =

∫ π/3

r−2/3

χ(θ)dΦ(θ)

= χ(θ)Φ(θ)|π/3
r−2/3 −

∫ π/3

r−2/3

χ′(θ)Φ(θ)dθ

= o(χ(θ)r sin θ)|π/3
r−2/3 − o(1)

∫ π/3

r−2/3

χ′(θ)r sin θdθ

= o(χ(θ)r sin θ)|π/3
r−2/3 + o(1)

∫ π/3

r−2/3

χ(θ)r cos θdθ

= o
(
e
r
2

)
+ o

(
err−

2
3

)
+ o(1)

∫ π/3

r−2/3

er cos θdθ = o

(
er√
r

)
.

Here we used (4.23). Hence the relation (4.28) and thus also the lemma have been
proved. �

We continue our construction of the example. By (4.21) and (4.22) we have

T (r, F ) ≤ T (r, F1) + T (r, F2) +O(1) = m(r, F1) +m(r, F2) +O(1)

≤ 2 · 1

2π

∫ π

−π
er cos θψ(r sin θ)dθ +O(1)

=
1

π

∫ π/2

−π/2
er cos θψ(r sin θ)dθ + O(1)

=
1

π

∫ π/2

0

er cos θ{ψ(r sin θ) + ψ(−r sin θ)}dθ +O(1).

(4.29)

Now we apply Lemma 4.1 with ϕ(t) = ψ(t) + ψ(−t). Since the function ψ(y)
is periodic with period 2π, we have

lim
r→∞

1

r

∫ r

0

ϕ(t)dt = lim
r→∞

1

r

∫ r

−r
ψ(t)dt =

1

π

∫ π

−π
ψ(t)dt = A, 0 < A <∞.

The inequality (4.29) and Lemma 4.1 imply that

T (r, F ) ≤ (1 + o(1))
Aer√
2πr

, r →∞.(4.30)

Now we fix ν. Define the function ψν(y) by the equation ψν(y) = 2Aν sin η for

θν + θν−1

2
+ η < y <

θν+1 + θν

2
− η,

where η and Aν are defined in the same way as in the construction of the example
for ρ = 1. If

−π ≤ y ≤ θν + θν−1

2
+ η and

θν+1 + θν

2
− η ≤ y ≤ π,

we set ψν(y) = 0. We extend the function ψν(y) as periodic with the period 2π
from the segment [−π, π] to the whole real line {−∞ < y < ∞}. By (4.121) we
have

ln+ 1

|F (x+ iy)− aν |
= ln+ 1

|f(ex+iy)− aν |
≥ exψν(y) +O(1).
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Hence

m(r, aν , F ) ≥ 1

2π

∫ π

−π
er cos θψν(r sin θ)dθ +O(1).(4.31)

As in the argument above we show that

1

2π

∫ π

−π
er cos θψν(r sin θ)dθ

=
1

π

∫ π/2

0

er cos θ{ψν(r sin θ) + ψν(−r sin θ)}dθ +O(1)

= (1 + o(1))
Bνe

r

√
2πr

, r→∞,

(4.32)

where

Bν = lim
r→∞

1

r

∫ r

−r
ψν(t)dt =

1

π

∫ π

−π
ψν(t)dt =

1

π

(
θν+1 − θν

2
− 2η

)
2Aν sin η.

The relations (4.31) and (4.32) imply that

m(r, aν , F ) ≥ (1 + o(1))
Bνe

r

√
2πr

,

which, together with (4.30), implies

δ(aν , F ) ≥ Bν

A
> 0,

that is, M ⊂ EN (F ). The proof of the fact that a /∈M implies a /∈ EN (F ) requires
much more complicated estimates and tedious computations. We do not include
it. �

Remark 1. In the case when the set M is finite, the construction of a mero-
morphic function f(z) for which EN (f) = M becomes much simpler. Constructing
the functions f1(z) and f2(z) it is enough to consider finite sums.

Remark 2. Investigation of the constructed examples would be much simpler
and more complete if we use some deep theorems from the theory of entire functions
(B. Ya. Levin [Lev80, Chapters II and VI]). Readers acquainted with the material
of the mentioned chapters are invited to prove as an exercise, that a /∈ M implies
a /∈ EN (F ), where F (z) is a function of infinite order, constructed at the end of
the proof.

Remark 3. It is easy to see that there exists a meromorphic function of an
arbitrary order having a deficient value which is not a Borel exceptional value. If
ρ > 0, it is enough to consider a meromorphic function with three deficient values.
At least one of them is not a Borel exceptional value by the Borel theorem. If ρ = 0
the example can be constructed in the following way. Let g1(z) and g2(z) be two
Weierstrass canonical products of genus zero with positive zeros such that

n(r, 0, g1) ∼ ln r, n(r, 0, g2) ∼ ln2 r.

Then ∞ is a deficient value with δ(∞) = 1 for the function f(z) = g2(z)/g1(−z),
but ∞ /∈ EB(f). We leave verification of this statement to interested readers.
(Hint: use the asymptotic formulas from Section 5 of Chapter 2.)



132 4. DEFICIENT VALUES

5. Entire functions having infinitely many deficient values

Since δ(∞, f) = 1 for each entire function f(z), speaking of deficient values of
entire functions we will mean finite deficient values. The problem of the description
of the structure of this set for entire functions of finite order was elusive until
recently. Although the complete solution is not known yet,3 the following result is
available.

Theorem 5.1 (N. U. Arakelyan). Let M = {ak}∞k=1 be an arbitrary countable
set, ρ be an arbitrary number satisfying the condition 1/2 < ρ < ∞. Then there
exists an entire function of order ρ whose set of deficient values contains the set
M .

The restriction ρ > 1/2 in this theorem is necessary. We shall show in Chapter
5, page ???, that entire functions of order ρ ≤ 1/2 cannot have deficient values.
We note that in proving Theorem 5.1 N. U. Arakelyan disproved R. Nevanlinna’s
conjecture ([NevR74, Ch. 10, sect. 222]) that an entire function of order ρ > 1/2
cannot have more than [2ρ] deficient values.

The idea of the proof of Theorem 5.1 can be described in the following way.
Let M = {ak}∞k=1, and let {Ωk}∞k=1 be a sequence of pairwise disjoint sets, such
that for r ≥ r(k) the circle {|z| = r} intersects the set Ωk along an arc of length
≥ skr, where sk > 0, k = 1, 2, . . . . Define on the set

⋃∞
k=1 Ωk a piece-wise constant

function ϕ(z) by the equalities

ϕ(z) = ak, z ∈ Ωk.

By the theorems from approximation theory, which we prove below, it turns out
that for a special choice of the sets Ωk it is possible to construct an entire function
G(z) of normal type and of order ρ, such that

|ϕ(z)−G(z)| < e−qk|z|
ρ

, z ∈ Ωk, |z| ≥ r(k),

where qk > 0 (k = 1, 2, . . . ). Since the set of values θ for which |G(reiθ) − ak| <
e−qkr

ρ

for r ≥ r(k) has measure ≥ sk, we have m(r, ak, G) ≥ 1
2π skqkr

ρ (r ≥ r(k)),
and hence δ(ak, G) > 0, k = 1, 2, . . . .

Now we present the necessary results from the approximation theory.

Theorem 5.2 (M. V. Keldysh). Let L be a rectifiable curve joining points a
and b. For each ε and d, 0 < ε < 1, 0 < d < 1, there exists a polynomial P (z) such
that

a) For all z which are not in the d-neighborhood of L the inequality∣∣∣∣ 1

z − a − P
(

1

z − b

)∣∣∣∣ < ε

holds;
b) For all z satisfying {|z − b| ≥ d}, the inequality∣∣∣∣P ( 1

z − b

)∣∣∣∣ < exp

{
C

(
1 + ln

1

εd

)
e
C·length(L)

d

}
holds, where C > 1 is an absolute constant.

3Now this question is completely solved by Eremenko [A43]: for every at most countable set
E in the plane and every ρ > 1/2, there exists an entire function f of order ρ for which EN (f) = E.



5. ENTIRE FUNCTIONS HAVING INFINITELY MANY DEFICIENT VALUES 133

Proof. Let l be the length of the curve L, m =
[

4l
d

]
+1. We choose on the curve

L points z0 = a, z1, z2, . . . , zm−1, zm = b in such a way, that max0≤k≤m−1 |zk+1 −
zk| ≤ 1

4d. Now we shall perform a construction using which to each point zk, k =
0, 1, . . . ,m we assign a polynomial Pk(z). The polynomial P (z) whose existence is
claimed in the theorem will be equal to Pm(z).

Polynomials Pk(z) are defined inductively. Let P0(z) ≡ z. Suppose that we
have already constructed the polynomial Pk(z) of degree nk > k. We construct the
polynomial Pk+1(z) in the following way.

The function Pk

(
1

z−zk

)
is holomorphic in the region {|z− zk+1| > |zk− zk+1|}

and is bounded as z →∞. Therefore in the described region it is represented by a
Laurent series

Pk

(
1

z − zk

)
=
∞∑
q=0

A
(k)
q

(z − zk+1)q
.

The polynomial Pk+1(z) will be of the form
∑nk+1

q=0 A
(k)
q zq, where the number

nk+1 > k + 1 is suitably chosen.
At the moment we use the notation nk+1 for an arbitrary positive integer. Let

us estimate the quantity

U(nk+1) = max
|z−zk+1|≥d

∣∣∣∣∣Pk
(

1

z − zk

)
−
nk+1∑
q=0

A
(k)
q

(z − zk+1)q

∣∣∣∣∣ .
For |z − zk+1| > r > |zk − zk+1| we have

Pk

(
1

z − zk

)
−
nk+1∑
q=0

A
(k)
q

(z − zk+1)q
=

∞∑
q=nk+1+1

A
(k)
q

(z − zk+1)q

=

∞∑
q=nk+1+1

1

(z − zk+1)q
1

2πi

∫
|t−zk+1|=r

Pk

(
1

t− zk

)
(t− zk+1)q−1dt

=
1

2πi

∫
|t−zk+1|=r

Pk

(
1

t− zk

)
∞∑

q=nk+1+1

(t− zk+1)q−1

(z − zk+1)q

 dt

=
1

2πi

∫
|t−zk+1|=r

Pk

(
1

t− zk

)(
t− zk+1

z − zk+1

)nk+1 dt

z − t .

(5.1)

Set

Mk = max
|z−zk|≥d

∣∣∣∣Pk ( 1

z − zk

)∣∣∣∣ .
Note that the function (t−zk)nkPk

(
1

t−zk

)
is holomorphic in the disc {|t−zk| < d},

and on the circle its modulus does not exceed dnkMk. By the maximum modulus
principle, its modulus does not exceed dnkMk inside the circle also. Hence we have
the estimate ∣∣∣∣Pk ( 1

t− zk

)∣∣∣∣ ≤ dnkMk

|t− zk|nk
, |t− zk| < d.(5.2)
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For |t− zk+1| =
1

2
d we have |t − zk| ≥ |t − zk+1| − |zk+1 − zk| ≥

1

2
d− 1

4
d =

1

4
d,

therefore ∣∣∣∣Pk ( 1

t− zk

)∣∣∣∣ ≤ 4nkMk, |t− zk+1| =
1

2
d.

Letting r =
1

2
d, |z − zk+1| ≥ d in (5.1) and estimating the integral, we get the

inequality

U(nk+1) ≤ 4nkMk

( 1
2d

d

)nk+1

= Mk22nk−nk+1 .

If we set

nk+1 = 2nk + k + 2 +

[
ln+(Mk/ε)

ln 2

]
,(5.3)

then, as is easy to see, we have

U(nn+1) <
ε

2k+1
.(5.4)

Defining nk+1 by the formula (5.3), we get the desired polynomial Pk+1(z).
Now we check that the polynomial P (z) = Pm(z) satisfies the conditions a)

and b).
Outside the d-neighborhood of the curve L we have∣∣∣∣ 1

z − a − P
(

1

z − b

)∣∣∣∣ =

∣∣∣∣P0

(
1

z − z0

)
− Pm

(
1

z − zm

)∣∣∣∣
≤
m−1∑
k=0

∣∣∣∣Pk ( 1

z − zk

)
− Pk+1

(
1

z − zk+1

)∣∣∣∣ ≤ m−1∑
k=0

U(nk+1) <

m−1∑
k=0

ε

2k+1
< ε.

Hence the condition a) is satisfied.
To show that the condition b) is satisfied, we have to estimate Mm. To do this

we need to consider the behavior of the quantities Mk and nk.

Since the region {|z − zk+1| > d} is contained in the region

{
|z − zk| ≥

3

4
d

}
,

we have

Mk+1 = max
|z−zk+1|≥d

∣∣∣∣Pk+1

(
1

z − zk+1

)∣∣∣∣
≤ max
|z−zk+1|≥d

∣∣∣∣Pk+1

(
1

z − zk+1

)
− Pk

(
1

z − zk

)∣∣∣∣+ max
|z−zk|≥ 3

4 d

∣∣∣∣Pk ( 1

z − zk

)∣∣∣∣ .
Using the inequalities (5.4) and (5.2), we get the relation

Mk+1 <
ε

2k+1
+

(
4

3

)nk
Mk.

Letting M̃k = max(Mk, ε) we have

M̃k+1 < 2nkM̃k.(5.5)

Observe that by (5.3) the inequality nk <
1

2
nk+1 holds, therefore we get from (5.5)

that

M̃k+1 < M̃02nk+nk−1+···+n0 < M̃02nk(1+ 1
2 + 1

22 +···+ 1

2k
) < M̃022nk .(5.6)
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Further, by (5.3) we have

nk+1 < 2

(
nk + k + 1 + ln

M̃022nk

ε

)
.

Taking into account that nk > k, n0 = 1, nk−1 <
1
2nk, we have

nk+1 < 2

(
4nk + ln

M̃0

ε

)
,

nk+1 + ln
M̃0

ε
< 8

(
nk + ln

M̃0

ε

)
,

from where we get

nk+1 + ln
M̃0

ε
< 8k+1

(
1 + ln

M̃0

ε

)
,

nk+1 < 23(k+1)

(
1 + ln+ M0

ε

)
.

Since M0 =
1

d
and hence, ln+ M0

ε
= ln 1

εd
, and m < 4l

d
+ 1, we have

nm−1 < 2
12l
d

(
1 + ln

1

εd

)
< e

9l
d

(
1 + ln

1

εd

)
.

This inequality together with (5.6) imply

Mm < M̃022nm−1 < exp

{
2nm−1 + ln

1

εd

}
< exp

{
2e

9l
d

(
1 + ln

1

εd

)
+ ln

1

εd

}
< exp

{
3e

9l
d

(
1 + ln

1

εd

)}
.

The proof of the theorem is complete. �
We shall need the following lemma, which is a corollary of Theorem 5.2.

Lemma 5.1. Let γ be a closed rectifiable curve, l be a rectifiable curve joining
a point of the curve γ with a point b which does not belong to γ. Let 0 < ε < 1,
0 < d < 1 be given. Then there exists a function Q(ζ, z), rational in z and having
its only pole at b, which is defined for {ζ ∈ γ}× {|z| <∞}, piece-wise constant4 in
ζ and is such that the following conditions are satisfied:

a′) For all z outside the d-neighborhood of the curve γ ∪ l and all ζ ∈ γ the
inequality ∣∣∣∣Q(ζ, z)− 1

ζ − z

∣∣∣∣ < ε

holds;

b′) For all z from {|z − b| ≥ d} and all ζ ∈ γ the inequality

|Q(ζ, z)| < exp

{
C

(
1 + ln

1

εd

)
e
C
d {length(γ)+length(l)}

}
holds, where C > 1 is an absolute constant.

4Piece-wise constant means that the curve γ can be cut into finitely many pieces γj in such

a way that the restriction of Q(ζ, z) to the set {ζ ∈ γj} × {|z| <∞} does not depend on ζ.
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Proof. Let ζ be an arbitrary point on the curve γ. Letting a = ζ and choosing
as L the curve joining a and b, and consisting of the curve l and a part of the curve

γ, we apply Theorem 5.2. We denote the obtained function P
(

1
z−b

)
by R(ζ, z). It

is clear that the conditions a′) and b′) will be satisfied for the function R(ζ, z), but
possibly, it will not be piece-wise constant in ζ.

Denote by U the complement to the d-neighborhood of the curve γ ∪ l. Since
U is a closed set and R(ζ, z) → 0 as z → ∞, the condition a′) for R(ζ, z) implies
that

max
z∈U

∣∣∣∣R(ζ, z)− 1

ζ − z

∣∣∣∣ < ε.

Choose ε1(ζ), 0 < ε1(ζ) < ε, in such a way that the last inequality remains
true if we replace ε by ε1(ζ). Then for ζ′ ∈ γ, |ζ − ζ′| < ε2(ζ) = d2(ε− ε1(ζ)) the
inequality

max
z∈U

∣∣∣∣R(ζ, z)− 1

ζ′ − z

∣∣∣∣
≤max

z∈U

(∣∣∣∣R(ζ, z)− 1

ζ − z

∣∣∣∣+

∣∣∣∣ 1

ζ − z −
1

ζ′ − z

∣∣∣∣) ≤ ε1(ζ) +
|ζ − ζ′|
d2

< ε

holds. By the Heine–Borel lemma there is a finite subset {aj} of γ such that for
each ζ ∈ γ there is aj ∈ {aj} satisfying the condition

|aj − ζ| < ε2(aj).

Denoting by aj(ζ) one of the points satisfying this condition we can easily check
that the function Q(ζ, z) = R(aj(ζ), z) satisfies the conditions of the lemma. �

Theorem 5.3 (M.V. Keldysh). Let the function f(z) be analytic inside the
angle {| arg z| < β}, 0 < β < π, and satisfy inside this angle the condition

ln |f(z)| < K(1 + |z|ρ),(5.7)

where K > 0, ρ > 1/2, are constants. For each α, 0 < α < min
(
β, π − π

2ρ

)
,

there exists an entire function G(z) whose growth does not exceed the normal type
of order ρ, such that

G(z) = f(z) + g(z), | arg z| ≤ α,
where g(z) is bounded for | arg z| ≤ α.

Proof. Let α < γ < min
(
β, π − π

2ρ

)
, κ = π

2π−2γ . Note that κ < ρ. We

construct an auxiliary function G(z, ζ, A), which is entire in variable z, jointly
continuous with respect to the variables z, ζ, A on the set {|z| < ∞} × {| arg ζ| ≥
β} × {A > 0}, and such that the following conditions are satisfied:

a)

∣∣∣∣ 1

ζ − z −G(z, ζ, A)

∣∣∣∣ < e−AC1|ζ|κ for z ∈ {| arg z| ≤ α} ∪ {1 < |z| < C2|ζ|},
C2 < 1;

b) |G(z, ζ, A)| < eAC3|z|κ for 1 < |ζ| < C−1
2 |z|+1, |z| > 1, where C1, C2, C3, . . .

here and below denote positive constants depending on α, β, and γ only.
Denote by L(R, θ) the boundary of the region D(R, θ) = {|π− arg z| < θ, |z| >

R} parameterized in the negative direction. We consider the branch of the function
(−z)κ in D(R, θ) taking positive values on the ray {arg z = π}. Observe that the
values of the function (−z)κ on the rays {arg z = π ± (π − γ)} are pure imaginary.
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If z is outside the closed region D̄(R, π − γ) and ζ ∈ {| arg ζ − π| ≤ π − β},
then by the Cauchy theorem,

1

2πi

∫
L(R′,π−γ)

eA(−t)κdt

(t− ζ)(t− z)
− 1

2πi

∫
L(R,π−γ)

eA(−t)κdt

(t− ζ)(t− z)

=

{
0 if |ζ| < R < R′,
eA(−ζ)κ

ζ−z if R < |ζ| < R′.

(5.8)

For R > |ζ| and z /∈ D̄(R, π − γ) set

G(z, ζ, A) =
e−A(−ζ)κ

2πi

∫
L(R,π−γ)

eA(−t)κdt

(t− ζ)(t − z)
.(5.9)

It is clear that the integral in (5.9) is an analytic function of z outside the
region D(R, π − γ). By (5.8) the right-hand side of (5.9) does not change if we
replace the integration over L(R < π− γ) by the integration over L(R′, π− γ) with
R′ > R. We infer that the function G(z, ζ, A) has an analytic continuation into
the whole plane {|z| < ∞} and thus determines an entire function. We keep the
notation G(z, ζ, A) for this entire function and show that it satisfies the conditions
a) and b).

First we verify that a) is satisfied. If z is not in the region D
(

1
2R, π − α

)
(⊃

D(R, π − γ)), and ζ ∈ D(R, π − β) then, by (5.8), we have

G(z, ζ, A) =
1

ζ − z +
e−A(−ζ)κ

2πi

∫
L(R,π−γ)

eA(−t)κdt

(t− ζ)(t− z)
.

Since for | arg ζ −π| ≤ π−β the condition Re(−ζ)κ ≥ cos{κ(π−β)}|ζ|κ > 0 holds,
whereas for | arg t− π| = π − γ we have Re(−t)κ = 0, we get the estimate∣∣∣∣G(z, ζ, A)− 1

ζ − z

∣∣∣∣ ≤ e−AC5|ζ|κ

2π

×

 eAR
κ

|ζ| −R

∫
|t|=R

|π−arg t|≤π−γ

|dt|
|t− z| +

∫
R<|t|<∞

|π−arg t|=π−γ

|dt|
|t− ζ||t− z|


=
e−AC5|ζ|κ

2π

{
eAR

κ

|ζ| −RI1 + I2

}
, 0 < C5 < 1.

(5.10)

Since the distance between the arc {|t| = R, | arg t−π| ≤ π−γ} and the exterior
of the region D

(
1
2R, π − α

)
is not less than C6R, we have I1 ≤ C7. Let us estimate

I2. Observe that for | arg t − π| = π − γ and | arg ζ − π| ≤ π − β, the inequality

|t− ζ| ≥ |t| sin(β − γ) holds. Therefore for |z| ≤ 1

2
R we have

I2 ≤ 2

∫ ∞
R

du

u sin(β − γ)
(
u− 1

2R
) ≤ 4

R sin(β − γ)
.

If |π − arg z| ≥ π − α, taking into account |t− z| ≥ |t| sin(γ − α), we have

I2 ≤ 2

∫ ∞
R

du

(u sin(β − γ))(u sin(γ − α))
≤ 2

R sin(β − γ) sin(γ − α)
.

Hence, if z is outside the region D
(

1
2R, π − α

)
, then I2 ≤ C8R

−1.
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Now we set R = C9|ζ| in (5.10), where C9 =
(

1
2C5

)1/κ
< 1, and assume that

|z| > 1. Then R > 2|z| > 2, and we get the estimate∣∣∣∣G(z, ζ, A)− 1

ζ − z

∣∣∣∣ ≤ e−AC5|ζ|κ

2π

{
e

1
2AC5|ζ|κ

(C−1
9 − 1)R

C7 + C8R
−1

}
≤ C10e

− 1
2AC5|ζ|κ , 1 < |z| < 1

2
C9|ζ|,

QED.
To verify that the condition b) is satisfied, we set R = 2C−1

2 |z|+ 2 in (5.9).

We get

(
1 < |ζ| < C−1

2 |z|+ 1 =
1

2
R

)
|G(z,ζ, A)|

≤ e−AC5|ζ|κ

2π

eC
−κ
2 A4κ|z|κ

R− |ζ| 4(π − γ) +

∫
R<|t|<∞

|π−arg t|=π−γ

|dt|
(|t| − |ζ|)(|t| − |z|)


≤ 1

2π

{
eAC11|z|κ4π + 2

∫ ∞
R

du

(u − |z|)2

}
≤ 1

2π
{eAC11|z|κ4π + 2} ≤ 3eAC11|z|κ .

Thus, we have constructed the auxiliary function. Set

G(z, ζ) = G(z, ζ, 2KC−1
1 |ζ|ρ−κ),

where K is the same constant as in (5.7). The function G(z, ζ) is entire in the
variable z, jointly continuous on the set {|z| < ∞} × {| arg ζ| ≥ β}, and satisfies
the conditions

c) ∣∣∣∣ 1

ζ − z −G(z, ζ)

∣∣∣∣ < e−2K|ζ|ρ(5.11)

for | arg z| ≤ α and for 1 < |z| < C2|ζ|, (C2 < 1);
d)

|G(z, ζ)| < eKC12|z|ρ(5.12)

for 1 < |ζ| < |z| (to derive this condition from b) we take into account that κ < ρ).
Now we turn to the construction of the desired entire function G(z). Set

Gn(z) =
1

2πi

∫
C−1

2 <|ζ|<n
arg ζ=±β

f(ζ)G(z, ζ)dζ +
1

2πi

∫
|ζ|=n
| arg ζ|≤β

f(ζ)
dζ

ζ − z(5.13)

(the paths here and below are traversed in the following way: the ray {arg ζ = β}
is traversed from ∞ to 0, the ray {arg ζ = −β} is traversed from 0 to ∞, the circle
{|ζ| = const} is traversed counterclockwise).

The function Gn(z) is analytic if |z| < n. It is clear that for m > n > C−1
2 we

have

Gm(z)−Gn(z)

=
1

2πi

∫
n<|ζ|<m
arg ζ=±β

f(ζ)G(z, ζ)dζ +
1

2πi


∫
|ζ|=m
| arg ζ|≤β

−
∫
|ζ|=n
| arg ζ|≤β

 f(ζ)
dζ

ζ − z .
(5.14)
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By the Cauchy theorem the equality

0 =
1

2πi


∫
n<|ζ|<m
arg ζ=±β

+

∫
|ζ|=m
| arg ζ|≤β

−
∫
|ζ|=n
| arg ζ|≤β

 f(ζ)
dζ

ζ − z .(5.15)

holds for |z| < n. Subtracting the equality (5.15) from (5.14), we get

Gm(z)−Gn(z) =
1

2πi

∫
n<|ζ|<m
arg ζ=±β

f(ζ)

{
G(z, ζ)− 1

ζ − z

}
dζ, |z| < n.

From here, using (5.11), we have for 1 < |z| < C2n

|Gm(z)−Gn(z)| ≤ 1

2π

∫
n<|ζ|<m
arg ζ=±β

exp{K(1 + |ζ|ρ)− 2K|ζ|ρ}|dζ|.(5.16)

Since the right-hand side goes to 0 as n,m → ∞, the sequence {Gn(z)} converges
to some entire function G(z) uniformly in each disc of finite radius. Let us show
that this function has the desired properties.

By the Cauchy theorem for z ∈ {C−1
2 < |z| < n, | arg z| < β} we have

f(z) =
1

2πi

−
∫
|ζ|=C−1

2

| arg ζ|≤β

+

∫
C−1

2 <|ζ|<n
arg ζ=±β

+

∫
|ζ|=n
| arg ζ|=β

 f(ζ)
dζ

ζ − z .(5.17)

Subtracting (5.17) from (5.13) we get

Gn(z)− f(z) =
1

2πi

∫
C−1

2 <|ζ|<n
arg ζ=±β

f(ζ)

{
G(z, ζ)− 1

ζ − z

}
dζ

− 1

2πi

∫
|ζ|=C−1

2

| arg ζ|≤β

f(ζ)
dζ

ζ − z .

For | arg z| ≤ α, 2C−1
2 < |z| < n, by (5.11), we get the estimate

|Gn(z)− f(z)| ≤ 1

2π

∫
C−1

2 <|ζ|<n
arg ζ=±β

exp{K(1 + |ζ|ρ)− 2K|ζ|ρ}|dζ|+ eKC13 ,

from where, letting n→∞, we infer the relation (| arg z| ≤ α, |z| > C−1
2 )

|G(z)− f(z)| ≤ 1

2π

∫
C−1

2 <|ζ|<∞
arg ζ=±β

exp{K(1 + |ζ|ρ)− 2K|ζ|ρ}|dζ|+ eKC13 .

Thus we have proved that the difference G(z)− f(z) is bounded as | arg z| ≤ α.
Now we estimate the growth of the function G(z). Letting m → ∞ in (5.16)

we get (1 < |z| < C2n)

|G(z)−Gn(z)| ≤ 1

2π

∫
n<|ζ|<∞
arg ζ=±β

exp{K(1 + |ζ|ρ)− 2K|ζ|ρ}|dζ|.

Hence, for sufficiently large n and for 1 < |z| < C2n, the inequality

|G(z)−Gn(z)| < 1

holds, therefore ∣∣∣G(z)−G[C−1
2 |z|]+1(z)

∣∣∣ < 1(5.18)
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for sufficiently large |z|. Furthermore, by (5.7), (5.12), and (5.13) for n = [C−1
2 |z|]+

1 the inequality

|Gn(z)| < 1

2π

∫
C−1

2 <|ζ|<n
arg ζ=±β

exp{K(1 + |ζ|ρ) +KC12|z|ρ}|dζ|

+
1

2π
exp{K(1 + nρ)}2βn ≤ eKC15n

ρ ≤ eKC16|z|ρ
(5.19)

holds.
By (5.18) and (5.19) for sufficiently large |z| we have |G(z)| < exp{KC17|z|ρ}.

The proof of the theorem is complete. �

We shall need the following lemma, which can be derived from Theorem 5.3.

Lemma 5.2. Let f(z) be a function satisfying the conditions of Theorem 5.3

for 1
2 < ρ ≤ 1. Then, for each α, 0 < α < min

(
β, 1

2

(
π − π

2ρ

))
, there exists an

entire function G(z) whose growth does not exceed the normal type of order ρ, such
that

G(z) = f(z) + g(z)

for | arg z| ≤ α, where g(z) is a function satisfying the estimate

|g(z)| < e−|z|
ρ

(5.20)

in the angle {| arg z| ≤ α} for sufficiently large |z|.

Proof. For each δ, 0 < δ < 1
2

(
π − π

2ρ

)
, we can find an entire function ωρ(z; δ)

not exceeding the normal type of order ρ satisfying the estimate

e−K(δ)|z|ρ ≤ |ωρ(z; δ)| ≤ e−2|z|ρ , 2 < K(δ) <∞.

in the angle
{
| arg z| ≤ 1

2

(
π − π

2ρ

)
− δ
}

for sufficiently large |z|. If 1/2 < ρ < 1,

this can be done in the following way. Let

ω(z) =

∞∏
k=1

(
1− z

k1/ρ

)
.

The asymptotic formula (5.32) from Chapter 2 implies that for 0 < δ ≤ arg z ≤
π − π

2ρ − δ and for sufficiently large |z| the estimate

e−K1(δ)|z|ρ ≤ |ω(z)| ≤ e−K2(δ)|z|ρ

holds, where 0 < K2(δ) < K1(δ) <∞. Therefore we can let

ωρ(z; δ) = ω
(
λδze

i
2 (π− π

2ρ )
)
, λδ =

(
2

K2(δ)

)1/ρ

.

If ρ = 1, set

ω1(z; δ) = e−4z.

Choose δ in such a way that {| arg z| ≤ α} ⊂
{
| arg z| < 1

2

(
π − π

2ρ

)
− δ
}
⊂

{| arg z| ≤ β}. Consider the function

f1(z) = f(z)/ωρ(z; δ).
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It is clear that this function is analytic in the angle
{
| arg z| ≤ 1

2

(
π − π

2ρ

)
− δ
}

and

can be estimated there as

|f1(z)| ≤ eK(1+|z|ρ)

(0 < K < ∞ does not depend on z). We apply Theorem 5.3 to f1(z) (the role of

the angle {| arg z| < β} is played by the angle
{
| arg z| < 1

2

(
π − π

2ρ

)
− δ
}

). We

get an entire function G1(z) not exceeding the normal type of order ρ, such that

G1(z) = f1(z) + g1(z),

where g1(z) is bounded for | arg z| < α. Letting G(z) = G1(z)ωρ(z; δ), we see that
we get an entire function with the desired properties. �

Now we turn to proof of Theorem 5.1.

Proof. Observe that it suffices to consider the case 1/2 < ρ ≤ 1. In fact, if
ρ > 1, we choose a positive integer N such that N < ρ ≤ 2N . We construct an
entire function G(z) of order ρ

2N whose set of deficient values contains {ak}∞k=1.

The function G(z2N) has order ρ and, by the remark from Section 1 (p.???) its set
of deficient values also contains {ak}∞k=1.

Some notation which we are going to use:

α: a number satisfying 0 < α < 1
2

(
π − π

2ρ

)
.

{θk}∞k=1: a sequence of positive numbers satisfying the condition θk ↑ α as
k ↑ +∞.

θ−k = −θk, k = 1, 2, . . . , θ0 = 0.

ηk =
1

2
min(|θk+1 − θk|, |θk − θk−1|).

εk = exp(−210Cη−1
k ), where C is the constant from Lemma 5.1.

δkn = exp(−εk2nρ).
∆k(κ) = {| arg z − θk| ≤ κηk}, 0 < κ < 1.
σn(λ) =

{
(1− λ)2n ≤ |z| ≤ (1 + λ)2n+1

}
, 0 < λ < 1.

Eikn = ∆k

(
i+ 1

4

)
∩ σn(2i−4), i = 0, 1, 2 (for k > 0 see Figure 1).

γikn is the boundary of the set Eikn.

likn = {|z| = (1 + 2i−4)2n+1, (−1)nθk ≤ (−1)n arg z ≤ π}.

Let {nk}∞k=1 be a sequence consisting of even positive integers, nk ↑ ∞ as
k ↑ ∞; define the sequence {n−k}∞k=1 by the equality n−k = nk + 1, k = 1, 2, . . . .
Set (see Figure 2)

Ei =

∞⋃
|k|=1

∞⋃
m=0

Eik,nk+2m.

Denote by Γi the boundary of the set Ei. It is easy to see that

Γi =

∞⋃
|k|=1

∞⋃
m=0

γik,nk+2m.
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We choose the sequence {nk}∞k=1 to be so rapidly increasing that the conditions
(5.21)-(5.24) hold.

∞∏
|k|=1

∞∏
n=nk

1 + δkn

1− δkn
<

16

15
,(5.21)

ε−1
k < 2nkρ,(5.22)

max(2n+8, |a|k||) < exp(εk2nρ−1) for n ≥ nk,(5.23)

∫
Γ1

|ζ−2||dζ| < 1.(5.24)

Note that E0
kn ⊂ E1

kn ⊂ E2
kn, and hence E0 ⊂ E1 ⊂ E2. Later on we shall

use the following convention: we consider the sets Eikn, γikn, likn only for those
pairs (k, n) of indices which participate in forming the sets Ei (that is, k 6= 0,
n = nk + 2m, m = 0, 1, 2, . . . ).

Our proof is organized in the following way. We would like to approximate the
function ϕ(z) defined by the equalities

ϕ(z) = a|k|, z ∈ E1
kn,

by an entire function G(z) having normal type of order ρ in such a way that the
inequality

|ϕ(z)−G(z)| ≤ exp

{
−1

2
εk|z|ρ

}
, z ∈ E0

kn,

holds. To do this, first we construct (Lemma 5.3) a function ω(z), analytic in the
half-plane {Rez > −1} and such that

|e−εkz
ρ

| ≤ |ω(z)| ≤ 2|e−εkz
ρ

| for z ∈ E1
kn,

|ω(z)| ≤ exp{(|z|+ 1)ρ} for Rez > −1.

Next, with the help of the function ω(z) we construct (Lemma 5.4) a function F (z),
analytic in the half-plane {Rez > 0}, and such that

|ϕ(z)− F (z)| < 1

2

∣∣∣∣exp

{
−1

2
εkz

ρ

}∣∣∣∣ , z ∈ E0
kn,

ln |F (z)| ≤ O ((|z|+ 1)ρ) , Rez > 0.

Finally, approximating, by Lemma 5.2, the function F (z) in the angle {| arg z| ≤ α}
by an entire function G(z), we get the desired function.

In our proofs of Lemmas 5.3 and 5.4 we use an auxiliary function Qi(ζ, z),
defined on the set {ζ ∈ Γi} × {|z| < ∞}, i = 0, 1, 2. We construct this function
first. It is easy to check that the curves γikn and likn (i = 1, 2) do not intersect the
set Ei−1, and their distance from this set is not less than dkn = ηk2n−4. Denote by
Di
kn the dkn-neighborhood of the curve γikn ∪ likn (see Figure 3). We apply Lemma

5.1 with γ = γikn, l = likn, b = −(1 + 2i−4)2n+1, ε = 4−n−2 exp{−5εk2
nρ}, d = dkn.

We get a function Qikn(ζ, z), defined on the set {ζ ∈ γikn}×{|z| <∞}, holomorphic
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with respect to z in the half-plane {Rez > −1}, piecewise-constant with respect to
ζ and satisfying the conditions5:∣∣∣∣Qikn(ζ, z)− 1

ζ − z

∣∣∣∣ < 4−n−2 exp(−5εk2nρ), ζ ∈ γikn, z ∈ CDi
kn,(5.25)

|Qikn(ζ, z)| < exp(ε
1/2
k 2nρ−1), ζ ∈ γikn, Rez > −1.(5.26)

We derive the inequality (5.26) from the statement b′) of Lemma 5.1. We have

1

εd
=

1

4−n−2 exp(−5εk2nρ)ηk2n−4
=

1

ηk
2n+8 exp(5εk2nρ),

but by (5.22), for n ≥ nk we have

1

ηk
=

1

210C
ln

1

εk
≤ 1

εk
≤ 2nkρ ≤ 2n < 2n+8,

and by (5.23) the inequality

2n+8 < exp(εk2nρ−1) < exp(εk2nρ)

holds. Therefore
1

εd
< exp(7εk2nρ), ln

1

εd
< 7εk2nρ,

and, taking into account (5.22) again, we get

1 + ln
1

εd
< 1 + 7εk2nρ < 8εk2nρ = εk2nρ+3.

Further, it is easy to check that length(γikn) < 2n+3, length(likn) < 2n+3, therefore

1

d
(length(γ) + length(l)) ≤ 2n+4

ηk2n−4
=

28

ηk
.

Thus

exp

{
C

(
1 + ln

1

εd

)
e
C
d (length(γ)+length(l))

}
< exp

{
Cεk2nρ+3e

28C
ηk

}
= exp

{
Cε

3/4
k 2nρ+3

}
.

Observing that6 Cε
1/4
k = C exp

{
−28C

ηk

}
≤ ηk

28
e−1 <

π

210e
< 2−9, we get the in-

equality (5.26).
The function Qikn(ζ, z) is defined on the set {ζ ∈ γikn} × {|z| < ∞}. Since

for fixed i the sets γikn are pairwise disjoint and their union is equal to Γi, we can
define on the set {ζ ∈ Γi} × {|z| <∞} a function Qi(ζ, z) by letting

Qi(ζ, z) = Qikn(ζ, z) for ζ ∈ γikn, |z| <∞.
As is easy to see, the inequalities (5.25) and (5.26) will remain valid if we replace
Qikn(ζ, z) by Qi(ζ, z).

We define a function ψ(z) on the set E2 by

ψ(z) = e−εkz
ρ

, z ∈ E2
kn.

5In this section by CD we denote the complement of the set D in the complex plane.
6It is easy to see that the function ex/x takes its minimum value on (0,∞) at x = 1, hence

e−x ≤ (ex)−1 for x > 0.
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Observe that for z ∈ Eikn the inequality

exp

{
−5

2
εk2nρ

}
≤ |ψ(z)| ≤ exp

{
−εk2nρ−1

}
(5.27)

holds.

Lemma 5.3. There exists a function ω(z) analytic in the half-plane {Rez >
−1}, such that

1 < |ω(z)/ψ(z)| < 2, z ∈ E1,(5.28)

|ω(z)| < exp{(|z|+ 1)ρ}, Rez > −1.(5.29)

Proof. Set

ωkn(z) = 1 +
1

2πi

∫
γ2
kn

{ψ(ζ)− 1}Q2(ζ, z)dζ.(5.30)

Since Qi(ζ, z) is a piecewise-constant function of ζ, and it is analytic with respect
to z in the half-plane {Rez > −1}, the integral in (5.30) makes sense, and the
function ωkn(z) is analytic in the half-plane {Rez > −1}. Let us show that the
following inequalities hold:

|ωkn(z)| < exp(ε
1/2
k 2nρ+1), Rez > −1,(5.31)

3/4 < |ωkn(z)/ψ(z)| < 5/4, z ∈ E1
kn,(5.32)

|ωkn(z)− 1| < δkn, z ∈ CD2
kn\E2

kn.(5.33)

Since length(γ2
kn) < 2n+3 and |ψ(ζ)| < 1, using (5.26) we get

|ωkn(z)| ≤ 1 +
1

2π
· 2 · 2n+3 exp(ε

1/2
k 2nρ) < 2n+3 exp(ε

1/2
k 2nρ).

On the other hand, by (5.23), we have 2n+3 < exp(εk2nρ−1) < exp(ε
1/2
k 2nρ), and

the inequality (5.31) is proved.
Further we set

ψkn(z) = 1 +
1

2πi

∫
γ2
kn

{ψ(ζ)− 1} dζ

ζ − z .

By the Cauchy formula,

ψkn(z) =

{
ψ(z), z ∈ E1

kn,

1, z ∈ CE2
kn.

(5.34)

Since

ωkn(z)− ψkn(z) =
1

2πi

∫
γ2
kn

{ψ(ζ)− 1}
{
Q2(ζ, z)− 1

ζ − z

}
dζ,

by application of (5.25), we get that for z ∈ CD2
kn the inequality

|ωkn(z)− ψkn(z)| ≤ 1

2π
· 2 · 2n+3 · 4−n−2 exp(−5εk2nρ)

<
1

4
exp(−5εk2nρ)

(5.35)

holds, from where, by (5.34) and (5.27), we get

|ωkn(z)− ψ(z)| < 1

4
|ψ(z)|, z ∈ E1

kn ∩CD2
kn = E1

kn,
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thus (5.32) is proved. The relation (5.33) follows immediately from (5.35) and
(5.34).

We define the desired function ω(z) as

ω(z) =
3

2

∞∏
|k|=1

∞∏
m=0

ωk,nk+2m(z).

The infinite product converges absolutely and uniformly in each bounded region
Ω from {Rez > −1}, and, hence, the function ω(z) is analytic in this half-plane.
In fact, for sufficiently large n we have Ω ⊂ CD2

kn\E2
kn, hence, all ωk,nk+2m(z)

except possibly finitely many satisfy the inequality (5.33). Since (5.21) implies the
convergence of the series

∞∑
|k|=1

∞∑
m=0

δk,nk+2m,

we can apply Theorem 3.1 from Chapter 2.
Now let z ∈ E1. Since the sets E1

kn are pairwise disjoint, z belongs to only one
of them; for the corresponding multiplier ωkn(z) the inequality (5.32) holds. The
other sets E1

kn not only do not contain z, but even z ∈ CD2
kn\E2

kn holds, and the
corresponding multipliers satisfy (5.33). Taking into account (5.21) we have (prime
near a product sign means that one of the terms is omitted)

|ω(z)| ≤ 3

2
· 5

4
|ψ(z)|

∞∏
|k|=1

∞∏
m=0

′

(1 + δk,nk+2m)

≤ 15

8
|ψ(z)|

∞∏
|k|=1

∞∏
n=nk

1 + δkn

1− δkn
≤ 2|ψ(z)|,

|ω(z)| ≥ 3

2
· 3

4
|ψ(z)|

∞∏
|k|=1

∞∏
m=0

′

(1− δk,nk+2m)

≥ 9

8
|ψ(z)|

∞∏
|k|=1

∞∏
n=nk

1− δkn
1 + δkn

≥ |ψ(z)|.

Let us prove the inequality (5.29). For each z ∈ {Rez > −1} ∩ {|z| ≥ 2} we
choose a positive integer N such that 2N ≤ |z| < 2N+1. Then z ∈ CD2

kn\E2
kn for

all sets of indices k and n, except possibly those for which n = N − 1, N,N + 1.
We divide the set of all pairs (k, n) of indices used in the construction of the

set E2 into two subsets: the set V1 of those pairs for which z ∈ CD2
kn\E2

kn, and the
set V2 of the remaining pairs. It is clear that by (5.33) and (5.21) we have

∏
(k,n)∈V1

|ωkn(z)| ≤
∏

(k,n)∈V1

(1 + δkn) ≤
∞∏
|k|=1

∞∏
n=nk

1 + δkn

1− δkn
≤ 16

15
.
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Now, if V2 is non-empty, by (5.31) we get∏
(k,n)∈V2

|ωkn(z)| ≤
∏

(k,n)∈V2

exp(ε
1/2
k 2nρ) ≤

∞∏
|k|=1

N+1∏
n=N−1

exp(ε
1/2
k 2nρ)

≤
∞∏
|k|=1

exp(3ε
1/2
k 2(N+1)ρ) = exp

3 · 2(N+1)ρ
∞∑
|k|=1

ε
1/2
k

 .

Since
∞∑
|k|=1

ε
1/2
k =

∞∑
|k|=1

exp

(
−29C

ηk

)
≤

∞∑
|k|=1

ηk

29C
<

π

210
<

1

28
,

we get the estimate

|ω(z)| ≤ 3

2
· 16

15
exp(2Nρ−5) < exp(2Nρ−5 + 1)

< exp{(2N + 1)ρ} < exp{(|z|+ 1)ρ}.
The lemma is proved. �

Define a function ϕ(z) on E1 by the equality

ϕ(z) = a|k|, z ∈ E1
kn.

Lemma 5.4. There exists a function F (z) analytic in the half-plane {Rez > 0},
such that

|ϕ(z)− F (z)| < 1

2
|ψ(z)|, z ∈ E0,(5.36)

|F (z)| ≤ exp{D1(|z|+ 1)ρ}, Rez > 0,(5.37)

where D1 > 0 is a constant.

Proof. By (5.27) the inequality (5.25) implies∣∣∣∣Q1(ζ, z)− 1

ζ − z

∣∣∣∣ < ∣∣∣∣ψ(ζ)

ζ

∣∣∣∣2 , ζ ∈ γ1
kn, z ∈ CD1

kn.(5.38)

Observe that this inequality is valid, in particular, for ζ ∈ Γ1, z ∈ E0, and also for

ζ ∈ Γ1, |z| ≤ 1

4
|ζ|. Since for ζ ∈ γ1

kn the inequality |ζ|ρ ≥ 2nρ−1 ≥ ε1/2
k 2nρ−1 holds,

the inequality (5.26) implies

|Q1(ζ, z)| ≤ exp(|ζ|ρ), ζ ∈ Γ1, z ∈ {Rez > −1}.(5.39)

Set

Γ1n =
⋃

nk+2m≤n
γ1
k,nk+2m, n ≥ n1.

Observe that Γ1n is contained in the disc

{
|z| ≤ 9

4
2n
}

, Γ1 =
⋃∞
n=n1

Γ1n, and

Γ1\Γ1n is contained in the complement of the disc

{
|z| < 7

8
2n
}

.

Consider a sequence of functions analytic in the half-plane {Rez > −1}:

Hn(z) =
1

2πi

∫
Γ1n

ϕ(ζ)

ω(ζ)
Q1(ζ, z)dζ.
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Let us show that this sequence converges uniformly in each bounded region
contained in {Rez > 0}, and that the function H(z) = limn→∞Hn(z) satisfies the
conditions ∣∣∣∣H(z)− ϕ(z)

ω(z)

∣∣∣∣ < 1

4
, z ∈ E0;(5.40)

|H(z)| ≤ exp{D2(|z|+ 1)ρ}, Rez > 0,(5.41)

where D2 > 0 is a constant.
Let N be such that |z| ≤ 2N and m > n > N + 2. Since, by the Cauchy

theorem,

0 =
1

2πi

∫
Γ1m\Γ1n

ϕ(ζ)

ω(ζ)

dζ

ζ − z ,

we have

Hm(z)−Hn(z) =
1

2πi

∫
Γ1m\Γ1n

ϕ(ζ)

ω(ζ)

{
Q1(ζ, z)− 1

ζ − z

}
dζ.

Using (5.28), (5.23), and (5.27) in succession, we get∣∣∣∣ϕ(ζ)

ω(ζ)

∣∣∣∣ ≤ |a|k|||ψ(ζ)| ≤
exp(εk2nρ−1)

|ψ(ζ)| ≤ 1

|ψ(ζ)|2 , ζ ∈ γ
1
kn,(5.42)

therefore using (5.38) we get

|Hm(z)−Hn(z)| ≤ 1

2π

∫
Γ1m\Γ1n

|ζ−2dζ| ≤ 1

2π

∫
Γ1\Γ1n

|ζ−2dζ|.(5.43)

By (5.24), this implies that the sequence {Hn(z)} converges uniformly in each
bounded region contained in {Rez > 0}.

Now, by the Cauchy formula we have

ϕ(z)

ω(z)
=

1

2πi

∫
Γ1n

ϕ(ζ)

ω(ζ)

dζ

ζ − z , z ∈ E0, |z| ≤ 2n,

therefore

Hn(z)− ϕ(z)

ω(z)
=

1

2πi

∫
Γ1n

ϕ(ζ)

ω(ζ)

{
Q1(ζ, z)− 1

ζ − z

}
dζ,

z ∈ E0, |z| ≤ 2n.

Using (5.42), (5.38), and (5.24), we get∣∣∣∣Hn(z)− ϕ(z)

ω(z)

∣∣∣∣ ≤ 1

2π

∫
Γ1n

|ζ−2dζ| < 1

4
, z ∈ E0, |z| ≤ 2n,

whence the inequality (5.40) follows.
Let us prove (5.41). Letting m→ +∞ in (5.43), we see that

|H(z)−Hn(z)| < 1

4
, |z| ≤ 2N , n > N + 2,

and, in particular,

|H(z)−HN+3(z)| < 1

4
, |z| ≤ 2N .(5.44)
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Suppose that N is chosen in such a way that 2N−1 ≤ |z| < 2N . Using (5.42) and
(5.39) we have

|HN+3(z)| =
∣∣∣∣∣ 1

2πi

∫
Γ1,N+3

ϕ(ζ)

ω(ζ)
Q1(ζ, z)dζ

∣∣∣∣∣
≤ 1

2π

∫
Γ1,N+3

∣∣∣∣ 1

ψ(ζ)

∣∣∣∣2 exp(|ζ|ρ)|dζ|

≤ 1

2π
max

ζ∈Γ1,N+3

{∣∣∣∣ ζ

ψ(ζ)

∣∣∣∣2 exp(|ζ|ρ)
}∫

Γ1,N+3

|ζ−2dζ|

≤ 1

2π
max

ζ∈Γ1,N+3

{|ζ|2 exp(3|ζ|ρ)}.

Since for ζ ∈ Γ1,N+3, 2N−1 ≤ |z| < 2N the inequality

|ζ| < 9

4
2N+3 < 36 · 2N−1 ≤ 36|z|

holds, we have

|HN+3(z)| ≤ exp{D3(|z|+ 1)ρ},
where D3 > 0 is an absolute constant. Using this and (5.44) we get (5.41).

The function F (z) = H(z)ω(z) satisfies the conditions (5.36) and (5.37). In
fact, (5.40) implies

|F (z)− ϕ(z)| < 1

4
|ω(z)|, z ∈ E0,

from where, using (5.28), we get (5.36). The estimate (5.37) follows from (5.41)
and (5.29). The lemma is proved. �

Theorem 5.1 follows from Lemmas 5.2 and 5.4. Let us show this. Let F (z) be
the function from Lemma 5.4. By Lemma 5.2 there exists an entire function G(z)
not exceeding normal type of order ρ, such that

G(z) = F (z) + g(z),(5.45)

where g(z) admits the estimate (5.20) in the angle {| arg z| ≤ α} for sufficiently
large |z|. Let us show that each of the numbers ak ∈ {ak}∞k=1 is a deficient value
for the function G(z).

It is clear that for sufficiently large |z| the inequality |g(z)| < 1
2 |ψ(z)| (| arg z| <

α) holds, therefore (5.45) and (5.36) imply

|G(z)− ϕ(z)| ≤ |ψ(z)|, z ∈ E0, |z| > r0.(5.46)

Fix a positive integer k. If r > 2nk , the circle {|z| = r} intersects the part of

E0 for which ϕ(z) = ak in one or two arcs of length
1

2
ηkr. For each of these arcs,

by (5.46) the inequality (|z| > max(2nk , r0))

|G(z)− ak| ≤ exp(−εkrρ cos ρϕ) ≤ exp

(
−1

2
εkr

ρ

)
, z = reiϕ

holds. Therefore

m(r, ak, G) =
1

2π

∫ 2π

0

ln+ 1

|G(reiϕ)−ak|
dϕ

>
1

2π

ηk

2

1

2
εkr

ρ >
1

8π
ηkεkr

ρ, r > max(2nk , r0).



6. STABILITY OF DEFICIENCIES 149

Since T (r,G) ≤ ln+M(r,G) = O(rρ), we have δ(ak, G) > 0. The theorem is
proved. �

6. Stability of deficiencies

Let f(z) be a meromorphic function in the complex plane. All functions of the
form f(az + b), a 6= 0 map the complex plane onto the same Riemann surface F .
Studying the asymptotic behavior of meromorphic functions given by the Riemann
surfaces onto which they map their domains, it makes sense to study only those
properties which are the same for all functions of the form f(az+b). From quantities
characterizing the asymptotic behavior of f(z) it is natural to require that they do
not change when we pass to f(az + b).

In Theorem 6.7 from Chapter 1 we described the changes which occur to the
main quantities of the Nevanlinna theory when we pass from f(z) to f(az), a 6= 0.
We saw (Theorem 1.6 from Chapter 2) that f(z) and f(az) have the same growth
category and, as it was noted at the end of Section 1, the sets EP , EB , EN , EV
of the functions f(z) and f(az) are the same, and the Nevanlinna and Valiron
deficiencies are the same. Therefore it suffices to compare the functions f(z) and
f(z + h).

We write f(z + h) = fh(z) and mark all quantities related to fh(z) with a
subscript h; the absence of this subscript means that the quantity is related to
f(z). In Section 1 of Chapter 2 (see the proof of Theorem 1.6) we obtained the
following inequalities

n(r − 2|h|, a) ≤ nh(r − |h|, a) ≤ n(r, a) (r > 2|h|),(6.1)

(1 + o(1))N(r − 2|h|, a) ≤ Nh(r − |h|, a) ≤ (1 + o(1))N(r, a),(6.2)

(1 + o(1))T (r − 2|h|, f) ≤ Th(r − |h|, f) ≤ (1 + o(1))T (r, f).(6.3)

These inequalities imply that n(r, a) and nh(r, a), N(r, a) and Nh(r, a), T (r, f)
and Th(r, f) have, respectively, the same growth categories (Theorem 1.6 from
Chapter 2). Therefore the sets of Borel exceptional values for f(z) and f(z+h) are
the same. For Picard exceptional values this is obvious. This makes the example
constructed by Dugué even more unexpected. Dugué constructed an example of
functions f(z) and f(z + h) with different deficiencies.

Example 1. (Dugué) Let ψ(z) = ee
z − 1. The entire function ψ(z) has simple

zeros at points zpq = ln(2πp) + i
(
π
2 + πq

)
, p = 1, 2, 3, . . . , q = 0,±1,±2,±3, . . . .

All these zeros are in the half-plane {Rez > 0}. Let us show that

T (r, ψ) = (1 + o(1))
er√
2π3r

, r →∞(6.4)
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We have

T (r, ψ) = T (r, ee
z

) +O(1) = m(r, ee
z

) +O(1)

=
1

2π

∫ 2π

0

{Reere
iϕ}+dϕ+O(1)

=
1

2π

∫ 2π

0

er cosϕ{cos(r sinϕ)}+dϕ+O(1)

=
1

π

∫ π/2

0

er cosϕ{cos(r sinϕ)}+dϕ+O(1).

Applying Lemma 4.1 with ϕ(t) = {cos t}+, and taking into account that

lim
r→∞

1

r

∫ r

0

{cos t}+dt =
1

π
,

we get (6.4).
Applying the second main Nevanlinna inequality (2.8) from Chapter 3 to ψ(z)

we get the inequality

(1 + o(1))T (r, ψ) < N(r, 0, ψ) +N(r,−1, ψ) +N(r,∞, ψ) = N(r, 0, ψ),

which is valid outside some set of intervals of finite total length. Since the function
N(r, 0, ψ) is increasing, the inequality is valid everywhere on the real line. In fact,
if r is in an exceptional interval, then the left end of the interval is r′ = r + o(1),
and

N(r, 0, ψ) ≥N(r′, 0, ψ) ≥ (1 + o(1))T (r′, ψ)

=(1 + o(1))
er
′

√
2π3r′

= (1 + o(1))
er√
2π3r

= (1 + o(1))T (r, ψ).

In addition, we have N(r, 0, ψ) ≤ T (r, ψ) +O(1), therefore

N(r, 0, ψ) = (1 + o(1))T (r, ψ).(6.5)

Now we consider the function

f(z) = ψ(z)/ψ(−z).

The function f(z) has simple zeros at points zpq and simple poles at points −zpq,
therefore N(r, 0, f) = N(r,∞, f) = N(r, 0, ψ).

Observe that for x > 0 the inequality

|ψ(−z)| ≤ 1 + |ee−z | = 1 + ee
−x cos y ≤ 1 + e, z = x+ iy,

holds, and that |ψ(z)| ≤ 1 + e for x ≤ 0. Therefore

m(r, f) ≥ 1

2π

∫ π/2

−π/2
ln+

∣∣∣∣ ψ(reiϕ)

ψ(−reiϕ)

∣∣∣∣ dϕ
≥ 1

2π

∫ π/2

−π/2
ln+ |ψ(reiϕ)|

1 + e
dϕ =

1

2π

∫ π/2

−π/2
ln+ |ψ(reiϕ)|dϕ+O(1)

= m(r, ψ) +O(1) = T (r, ψ) +O(1).

(6.6)

Now, by (6.5) and (6.6), we get

T (r, f) ≤ T (r, ψ(z)) + T (r, ψ(−z)) +O(1) = 2T (r, ψ) +O(1)

and

T (r, f) = m(r, f) +N(r, f) ≥ (1 + o(1))2T (r, ψ).
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Hence

T (r, f) = (2 + o(1))T (r, ψ),

∆(0, f) = δ(0, f) = 1− lim
r→∞

N(r, 0, f)

T (r, f)
= 1− lim

r→∞

N(r, 0, ψ)

2T (r, ψ)
=

1

2
,

∆(∞, f) = δ(∞, f) = 1− lim
r→∞

N(r,∞, ψ)

2T (r, ψ)
=

1

2
.

Let h be a non-zero real number. Consider the function fh(z) = f(z + h). It
can be investigated in the same way as above. First of all,

T (r, ψh(z)) = T (r, ee
z+h

) +O(1) =
1

2π

∫ π

−π
{Reeh+reiϕ}+dϕ+O(1)

= eh
1

2π

∫ π

−π
{Reere

iϕ}+dϕ+O(1) = ehT (r, ee
z

) +O(1).

In the same way as we got (6.5) we get

N(r, 0, ψh(z)) = (1 + o(1))T (r, ψh(z)), r →∞.

Thus

N(r, 0, fh) = N(r, 0, ψh(z)) = (1 + o(1))ehT (r, ee
z

),

N(r,∞, fh) = N(r, 0, ψ(−z − h)) = N(r, 0, ψ−h(−z))

= N(r, 0, ψ−h(z)) = (1 + o(1))e−hT (r, ee
z

).

Also,

T (r, fh) ≤ T (r, ψh(z)) + T (r, ψ−h(−z)) +O(1) = (eh + e−h)T (r, ee
z

) +O(1).

Since for Rez > 0 the inequality |ψ(−z − h)| ≤ 1 + ee
−h

holds, and for Rez ≤ 0 we

have |ψ(z + h)| ≤ 1 + ee
h

, in the same way as we proved (6.6) we get m(r, fh) ≥
T (r, ψh) +O(1) and T (r, fh) = m(r, fh) +N(r, fh) ≥ (1 + o(1))(eh + e−h)T (r, ee

z

).
Thus

T (r, fh) = (1 + o(1))(eh + e−h)T (r, ee
z

), r→∞.
Now we easily get

∆(0, fh) = δ(0, fh) =
e−h

eh + e−h
,

∆(∞, fh) = δ(∞, fh) =
eh

eh + e−h
.

If h = 0 we get the same formulas as before.
Thus, we see that the deficiencies of the function f(z + h) at 0 and ∞ are

different from the deficiencies of the function f(z). This could be shown in a more
elementary way, following Dugué, but for us it is important to note that in the
presented example the Nevanlinna and Valiron deficiencies coincide for 0 and for
∞.

In Dugué’s example the function f(z) is of infinite order. Besides, although
the deficiencies δh(0) and δh(∞) change as h varies, they remain positive. We shall
give an example of a meromorphic function f(z) having the maximal type of order
one, for which δ(∞) = 0 but δ−2(∞) = 1. We start by investigating some auxiliary
functions.
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Consider the entire function

g(z) = g(z; rk, nk) =

∞∏
k=1

{
1−

(
z

rk

)nk}
,(6.7)

where nk are arbitrary positive integers, rk are arbitrary positive numbers, satis-
fying the conditions rk+1 ≥ 2rk, r1 > 1. Let us show that m(r, 0, g) ≤ 4 for each
such function. In fact, g(0) = 1 implies T (r, g) = m(r, 0, g) + N(r, 0, g). On the
other hand,

T (r, g) ≤ lnM(r, g) ≤
∞∑
k=1

ln

{
1 +

(
r

rk

)nk}

=

∑
rk>r

+
∑
rk≤r

 ln

{
1 +

(
r

rk

)nk}
≤
∑
rk>r

(
r

rk

)nk
+
∑
rk≤r

nk ln
r

rk
+
∑
rk≤r

(rk
r

)nk
≤
∞∑
k=0

2−k +N(r, 0, g) +
∞∑
k=0

2−k = N(r, 0, g) + 4.

Hence, m(r, 0, g) ≤ 4.
Consider, now, the meromorphic function

Φ(z) = Φ(z; aj, bj,mj , σj , ε) =

∞∏
j=1

ϕj(z),

ϕj(z) =

(
z − bj
z − aj

)mj
,(6.8)

where 0 < ε <
1

2
; {aj} is an arbitrary sequence of distinct complex numbers ap-

proaching ∞; |aj | > 1; mj are arbitrary positive integers; σj is a sequence of
positive numbers, such that the discs {|z − aj| < σj} are pairwise disjoint, and

σj < 1,

∞∑
j=1

mjσj <∞(6.9)

holds; complex numbers bj are so close to aj , that for |z− aj| ≥ σj the inequalities
|ϕj(z)− 1| < ε2−j−1 and |1/ϕj(z)− 1| < ε2−j−1 hold. It is clear that under these
conditions the product (6.8) is absolutely and uniformly convergent in each disc in

the complex plane, moreover, for z /∈
⋃
j

{|z − aj| < σj} the inequality

|Φ(z)− 1| =

∣∣∣∣∣∣
∞∏
j=1

{1 + (ϕj(z)− 1)} − 1

∣∣∣∣∣∣
≤ max


∞∏
j=1

(
1 +

ε

2j+1

)
− 1

 ,

1−
∞∏
j=1

(
1− ε

2j+1

)


≤ max
[
e
ε
2 − 1, 1− e− 8

7
ε
2

]
< ε

(6.10)
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holds. We have used the inequality ln(1−x) ≥ − x

1− x ≥ −
8

7
x valid for 0 < x <

1

8
.

The inequality (6.10) implies, in particular, that |Φ(z)| ≤ 2 for z /∈
⋃
j

{|z − aj | < σj}.

By the maximum modulus principle

|Φ(z)| ≤ 2

(
σj

|z − aj |

)mj
.

for each z in the disc {|z − aj | < σj}. Therefore (aj = |aj |eiαj ),

m(r,Φ) ≤ O(1) +

∞∑
j=1

1

2π

∫
|z−aj |<σj
|z|=r

ln

{
2

(
σj

|z − aj |

)mj}
dϕ

≤ O(1) +

∞∑
j=1

mj

2π

∫ ∞
−π

ln+ σj

|reiϕ − |aj |eiαj |
dϕ.

On the other hand,∫ π

−π
ln+ σj

|reiϕ − |aj |eiαj |
dϕ =

∫ αj+
π
2

αj−π2
ln+ σj

|r − |aj |ei(αj−ϕ)|
dϕ

≤
∫ αj+

π
2

αj−π2
ln+ σj

|aj || sin(αj − ϕ)|dϕ ≤
∫ π/2

−π/2
ln+ σj

| sin θ|dθ

≤ 2

∫ π/2

0

ln+ 2σj
πθ

dθ = 2

∫ 2σj/π

0

ln
2σj
πθ

dθ =
4σj
π
.

Therefore, by (6.9),

m(r,Φ) ≤ O(1) +
2

π2

∞∑
j=1

mjσj = O(1).(6.11)

In the same way we show

m(r, 1/Φ) = O(1).(6.12)

The relations (6.11) and (6.12) imply

N(r,∞,Φ) = N(r, 0,Φ) +O(1).(6.13)

We shall assume that zeros of g(z) and poles of Φ(z) are distinct. Then, by
(6.11), (6.12), (6.13), we easily get for f(z) = g(z)Φ(z) that

m(r, 0, f) ≤ m(r, 0, g) +m(r, 0,Φ) = O(1),(6.14)

N(r,∞, f) = N(r,∞,Φ) =

∞∑
j=1

mj ln+ r

|aj |
,(6.15)

T (r, f) = N(r, 0, f) +m(r, 0, f) + O(1)

= N(r, 0, g) + N(r, 0,Φ) +O(1) = N(r, 0, g) +N(r,∞,Φ) +O(1)

=

∞∑
k=1

nk ln+ r

rk
+

∞∑
j=1

mj ln+ r

|aj |
+O(1).

(6.16)

Since there is much freedom in the choice of nk, rk, mj , aj from the definition
of f(z), this class of functions is suitable for construction of various examples.
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Example 2. Choose the sequence {rk} to be so rapidly increasing, that

κ−1∑
k=1

rk(ln rk)4 < ln rκ.

Let ak = rk − 1, nk = [rk(ln rk)4], mk = [rk(ln rk)3]. Then, by (6.16),

T (rκ, f) =
κ−1∑
k=1

rk(ln rk)4 ln
rκ

rk
+

κ∑
k=1

rk(ln rk)3 ln
rκ

rk − 1
+O(ln rκ)

= O(ln2 rκ) + rκ(ln rκ)3 ln
rκ

rκ − 1
= (1 + o(1)) ln3 rκ.

By (6.15),

N(rκ,∞, f) =

κ∑
k=1

rk(ln rk)3 ln
rκ

rk − 1
+O(ln rκ) = (1 + o(1)) ln3 rκ.

Hence, N(rκ,∞, f) ∼ T (rκ, f) and δ(∞, f) = 0.
Now we consider the function f−2(z) = f(z − 2). Let rκ + 1 ≤ r < rκ+1 + 1.

Then

N(r,∞, f−2) =

κ∑
k=1

[rk(ln rk)3] ln
r

rk + 1
≤

κ∑
k=1

rk(ln rk)3 ln
r

rk − 1
.(6.17)

Observe that for sufficiently large rk, k ≥ κ0, the measure (in radians) of the arc
{|z| = rk} contained in the disc {|z − 2| < rk − 1} exceeds π/2 (the measure
approaches 2π/3 as k → ∞). Estimating N(r, 0, g−2) from below we shall count
only those zeros of g(z) which are in the angle {| arg z − π| < π/4}. Then

(6.17′)

T (r, f−2) ≥ N(r, 0, f−2) +O(1) ≥ N(r, 0, g−2) +O(1)

≥
κ∑

k=κ0

1

4
rk(ln rk)4 ln

r

rk − 1
+O(ln r).

Fix some κ1 > κ0. Then from (6.17) and (6.17′) we get, for rκ + 1 ≤ r < rκ+1 + 1,

N(r,∞, f−2) ≤
κ∑

k=κ1

rk(ln rk)3 ln
r

rk − 1
+O(ln r),

T (r, f−2) ≥ 1

4

κ∑
k=κ1

rk(ln rk)4 ln
r

rk − 1
+O(ln r)

≥ 1

4
ln rκ1

κ∑
k=κ1

rk(ln rk)3 ln
r

rk − 1
+O(ln r)

≥ 1

4
(ln rκ1)N(r,∞, f−2) +O(ln r).

Hence

lim sup
r→∞

N(r,∞, f−2)

T (r, f−2)
≤ 4

ln rκ1

.

Letting κ1 →∞ in this inequality, we get

lim sup
r→∞

N(r,∞, f−2)

T (r, f−2)
= 0,
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that is, δ(∞, f−2) = 1.
It is easy to show that the functions n(r, 0, g) and n(r,∞,Φ) have the maximal

type of order one, and, by (6.16), the function f(z) also has the maximal type of
order one.

Example 3. If we let nk = [rk(ln rk)3], mk = [rk(ln rk)4] in the previous
example, leaving all other parameters unchanged, we get an example with varying
Valiron deficiency: ∆(∞, f(z)) = 0, ∆(∞, f(z − 2)) = 1. We leave details of this
example to interested readers.

Observe that in Example 2 we have ∆(∞, f) = 1 > δ(∞, f) = 0, but if, before
passing to the limit, we exclude from consideration values of r from the segments
[rk − 1, rk + 1], we would have δ(∞, f) = 1. The situation is similar for f(z − 2)
in Example 3. This is a fundamental difference between Examples 2 and 3, and
Dugué’s Example 1. Examples 2 and 3 show how we should “correct” the definition
of deficiency to get its shift invariance for meromorphic functions of finite order.

Let E be a measurable set, E ⊂ (1,∞), χ(r, E) be the indicator function of
this set, CE = (1,∞)\E. We write E ∈ L if

lim sup
r→∞

1

ln r

∫ r

1

χ(t, E)dt <∞.(6.18)

It is easy to show that for E ∈ L∫ ∞
1

χ(t, E)t−σdt <∞

for each σ > 0. In fact, if (6.18) is satisfied, then
∫ r

1 χ(t, E)dt = O(ln r), and
therefore ∫ r

1

χ(t, E)t−σdt = r−σ
∫ r

1

χ(t, E)dt+ σ

∫ r

1

dt

t1+σ

∫ t

1

χ(τ, E)dτ

= r−σO(ln r) + σ

∫ r

1

O(ln t)dt

t1+σ
= O(1).

In particular (σ = 1) all sets of the class L have finite logarithmic measure (see the
definition in Exercise 2 from Chapter 3, Section 1). Observe also that, if E′ ∈ L
and E′′ ∈ L, then E′ ∪ E′′ ∈ L, E′ ∩ E′′ ∈ L.

Now we introduce the following definitions (all limits are taken as r →∞):

δ∗(a) = sup
CE∈L

lim inf
r∈E

m(r, a)

T (r, f)
= 1− inf

CE∈L
lim sup
r∈E

N(r, a)

T (r, f)
(6.19)

∆∗(a) = inf
CE∈L

lim sup
r∈E

m(r, a)

T (r, f)
= 1− sup

CE∈L
lim inf
r∈E

N(r, a)

T (r, f)
.

It is easy to check that in Example 2 the following relations hold: δ(∞) = 0,
∆(∞) = 1, δ−2(∞) = ∆−2(∞) = 1, δ∗(∞) = ∆∗(∞) = 1, δ∗−2(∞) = ∆∗−2(∞) = 1.

Theorem 6.1. For meromorphic functions of finite order the equalities

δ∗h(a) = δ∗(a), ∆∗h(a) = ∆∗(a)

are satisfied for each h.
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Proof. We give proof for δ∗(a), the proof for ∆∗(a) is similar. In this section
we shall use the spherical characteristic T (r, f), without reflecting this in our no-
tation. Denote by Mε the set of intervals on which d

dr lnT (r) < ε, ε > 0. Let us
show that CMε ∈ L. In fact, let ∆r = CMε ∩ (1, r). Then

lnT (r)− lnT (1) ≥
∫

∆r

d lnT (r) ≥ ε
∫

∆r

dr = ε

∫ r

1

χ(t, CMε)dt.

Since the function f(z) has finite order ρ, we have

lim sup
r→∞

1

ln r

∫ r

1

χ(t, CMε)dt ≤
ρ

ε
<∞,

that is, CMε ∈ L. By (6.2) and (6.3) we get

Nh(r − |h|, a)

Th(r − |h|) ≤ (1 + o(1))
N(r, a)

T (r − 2|h|) .(6.20)

Since T (r) is a convex function of ln r, for r > 4|h|, 0 < θ = θ(r) < 1, we have

T (r) = T (r − 2|h|) +
dT (r − θ2|h|)

d ln r
ln

r

r − 2|h| ≤ T (r − 2|h|)

+
dT (r)

d ln r

2|h|
r − 2|h| = T (r − 2|h|) + T ′(r)

2|h|r
r − 2|h| .

(6.21)

If r ∈Mε, ε < (8|h|)−1, then (6.21) implies

T (r)

T (r − 2|h|) ≤ 1 +
2|h|r
r − 2|h|

T ′(r)

T (r)

T (r)

T (r − 2|h|)

≤ 1 + 4|h|ε T (r)

T (r − 2|h|) ,
T (r)

T (r − 2|h|) ≤
1

1− 4|h|ε < 1 + 8|h|ε.
(6.22)

By (6.20) and (6.22) we get, for r ∈Mε,

Nh(r − |h|, a)

Th(r − |h|) ≤ (1 + o(1))(1 + 8|h|ε)N(r, a)

T (r)
.

Let Eε be an arbitrary set satisfying Eε ⊂Mε and CEε ∈ L. Then

lim sup
r∈Eε

Nh(r − |h|, a)

Th(r − |h|) ≤ (1 + 8|h|ε) lim sup
r∈Eε

N(r, a)

T (r)
,

inf
ε,Eε

lim sup
r∈Eε

Nh(r − |h|, a)

Th(r − |h|) ≤ inf
ε,Eε

lim sup
r∈Eε

N(r, a)

T (r)
(6.23)

(the infimum is taken over all Eε for all 0 < ε < (8|h|)−1).
But

inf
ε,Eε

lim sup
r∈Eε

N

T
= inf

CE∈L
lim sup
r∈E

N

T
.(6.24)

In fact, on one hand

inf
CE∈L

lim sup
r∈E

N

T
≤ inf

E⊂Mε
CE∈L

lim sup
r∈E

N

T
= inf

ε,Eε
lim sup
r∈Eε

N

T
.

On the other hand, if CE ∈ L, then C(E ∩Mε) = CE ∪CMε ∈ L, therefore

inf
CE∈L

lim sup
r∈E

N

T
≥ inf

CE∈L
lim sup
r∈E∩Mε

N

T
= inf

ε,Eε
lim sup
r∈Eε

N

T
.
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By (6.23) and (6.24) we get

inf
CE∈L

lim sup
r∈E

Nh(r − |h|, a)

Th(r − |h|) ≤ inf
CE∈L

lim sup
r∈E

N(r, a)

T (r)
,

that is, δ∗(a, f(z + h)) ≥ δ∗(a, f(z)).
Applying this relation to f(z + h) and f((z + h)− h), we have

δ∗(a, f(z)) ≥ δ∗(a, f(z + h))

and

δ∗(a, f(z)) = δ∗(a, f(z + h)).

�

Remark. We could define the deficiency in such a way that it would be shift
invariant for functions (not necessarily of finite order) satisfying

lim
r→∞

r−1 lnT (r, f) = 0.(6.25)

It suffices to define the deficiency in the same way as δ∗(a), but with L consisting
of sets E with zero relative measure, that is, satisfying

lim
r→∞

1

r

∫ r

1

χ(t, E)dt = 0.

The Dugué example shows that if we drop the restriction (6.25), the shift invariance
of deficiency cannot be achieved no matter what sets (even the whole interval (1,∞)
without a sequence rn →∞) we would exclude from consideration.

We preferred to define δ∗(a) and ∆∗(a) as above, since in the value distribu-
tion theory there are many results which are valid for r outside intervals of finite
logarithmic measure, whereas consideration of larger exceptional sets would require
significant extensions of the Nevanlinna theory.

Theorem 6.2. The deficiencies of meromorphic functions satisfy the relation∑
a

δ∗(a) ≤ 2.

Proof. Consider arbitrary distinct points aj , j = 1, 2, . . . , q. By the definition
of δ∗(a) for each ε > 0 there exists a set Ej such that CEj has finite logarithmic
measure and m(r, aj)/T (r, f) ≥ δ∗(aj) − ε for r ∈ Ej , j = 1, . . . , q. The set
E =

⋂q
j=1Ej is non-empty because the set CE has finite logarithmic measure. By

Theorem 2.1 from Chapter 3 the inequalities

q∑
j=1

m(r, aj)

T (r, f)
≤ 2 +

O(ln r) +O(ln T (r, f))

T (r, f)
,

q∑
j=1

δ∗(aj) ≤ 2 + εq +
O(ln r) +O(ln T (r, f))

T (r, f)

hold on E, since the intervals on which the inequalities are not satisfied have finite
measure, and without loss of generality we may assume that they are contained in
CE.
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Letting r → ∞ and taking into account that ε can be chosen arbitrarily, we
get the inequality

q∑
j=1

δ∗(aj) ≤ 2,

hence ∑
a

δ∗(a) ≤ 2.

�
Theorem 6.3. The following relation holds:

δ(a) ≤ δ∗(a) ≤ ∆∗(a) ≤ ∆(a).(6.26)

Proof. Only the middle inequality has to be verified, the other two follow
from the definitions of δ∗(a) and ∆∗(a). Consider a set E1 such that CE1 ∈ L and

δ∗(a) ≥ lim inf
r∈E1

m(r, a)

T (r, f)
> δ∗(a)− ε,

and E2 such that CE2 ∈ L and

∆∗(a) ≤ lim sup
r∈E2

m(r, a)

T (r, f)
< ∆∗(a) + ε.

Then

δ∗(a)− ε < lim inf
r∈E1

m(r, a)

T (r, f)
≤ lim inf
r∈E1∩E2

m(r, a)

T (r, f)

≤ lim sup
r∈E1∩E2

m(r, a)

T (r, f)
≤ lim sup

r∈E2

m(r, a)

T (r, f)
< ∆∗(a) + ε.

Since ε can be chosen to be arbitrarily small, we get δ∗(a) ≤ ∆∗(a). �
The inequality (6.26) implies that δ∗(a) is a more precise characteristic of the

distribution of exceptional a-points than the Nevanlinna deficiency δ(a). The fol-
lowing result is also a corollary of (6.26).

Theorem 6.4. If δ(a, f) = ∆(a, f), then δ(a, f) = δ∗(a, f) = ∆∗(a, f).

Together with Theorem 6.1 this result implies that for functions of finite order
the equality δ(a, f) = ∆(a, f) implies δ∗h(a, f) = ∆∗h(a, f) = δ(a, f). For functions
of infinite order this implication does not hold, as is shown in Example 1.

Observe also, that it can happen that δ∗(a) > δh(a) for each h satisfying
0 ≤ |h| <∞. To show this it is enough to modify Example 2 in the following way.
In addition to ak = rk − 1 we introduce

a′k = −rk + 1, a′′k = i(rk − 1), a′′′k = −i(rk − 1), m′k = m′′k = m′′′k = mk.

The modified function Φ(z) is

Φ(z) =
∞∏
k=1

{
(z − bk)(z − b′k)(z − b′′k)(z − b′′′k )

(z − ak)(z − a′k)(z − a′′k)(z − a′′′k )

}mk
,

where bk, b
′
k, b
′′
k, b
′′′
k are sufficiently close to ak, a

′
k, a
′′
k, a
′′′
k , the rest of the construc-

tion remains unchanged. Repeating the argument from the example with minor
modifications, we get that δh(∞) = 0 for each h whereas δ∗(∞) = 1.

Our next result distinguishes a rather wide class of functions for which δ∗(a) =
δ(a).
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Theorem 6.5. If the difference between the order and the lower order for a
meromorphic function f(z) satisfies ρ− λ < 1, then

δ∗(a) = δ(a), ∆∗(a) = ∆(a)(6.27)

for all a. The equality (6.27) takes place also for all meromorphic functions whose
growth does not exceed the normal type of order one.

Corollary. If the conditions of Theorem 6.5 are satisfied, then δh(a) = δ(a)
for each h, that is, the deficiencies are shift invariant.

Proof. To prove δ∗(a) = δ(a) and ∆∗(a) = ∆(a), it suffices to show that for
each 0 < K <∞ and each R, r < R < r +K ln r the inequality

(1 + o(1))
N(r, a)

T (r, f)
≤ N(R, a)

T (R, f)
≤ (1 + o(1))

N(r +K ln r, a)

T (r +K ln r, f)
(6.28)

holds, since this inequality shows that exclusion from consideration of sets of class
L does not affect the value of lim sup N

T
and lim inf N

T
. On the other hand,

T (r, f)

T (r +K ln r, f)

N(r, a)

T (r, f)
≤ N(R, a)

T (R, f)
≤ N(r +K ln r, a)

T (r +K ln r, f)

T (r + K ln r, f)

T (r, f)
.

Therefore in order to prove (6.28) it is enough to show that

lim
r→∞

T (r +K ln r)

T (r)
= 1.(6.29)

We have
T (r +K ln r)

T (r)
= 1 +

T ′(r + θ(r)K ln r)

T (r)
K ln r,

where 0 ≤ θ(r) ≤ 1. Assume that (6.29) does not hold. Then there exists a sequence
rn →∞ such that

T ′(r′n)

T (rn)
>

η

ln rn
, η > 0, r′n = rn + θ(rn)K ln rn.

Since
d

dr
rT ′(r) =

◦
A
′
(r) > 0,

the function rT ′(r) is an increasing function and therefore

T ′(r) ≥ r′nT
′(r′n)

r
, r ≥ r′n,

whence ∫ er′n

r′n

T ′(r)dr ≥
∫ er′n

r′n

r′nT
′(r′n)

r
dr,

T (er′n) ≥ r′nT ′(r′n) + T (r′n) >
r′nη

ln rn
T (rn).(6.30)

For all n ≥ n0(ε) we have rn ≤ r′n < 2rn and T (rn) > rλ−εn , ε > 0.
From (6.30) we get

T (6rn) >
r1+λ−ε
n

ln rn
.



160 4. DEFICIENT VALUES

Hence, ρ ≥ 1 + λ − ε and, letting ε → 0, we get ρ ≥ 1 + λ. Hence, if (6.27) does
not hold, then ρ − λ ≥ 1. Since for each transcendental meromorphic function

limr→∞
T (r)
ln r =∞, the inequality (6.30) implies

lim
n→∞

T (6rn)

6rn
=∞,

that is, if (6.27) does not hold, then f(z) has growth of at least maximal type of
order one. �

Examples 2, 3, and other examples based on the same ideas (we leave the
constructions of such examples to interested readers) show that the assumptions of
Theorem 6.5 cannot be significantly weakened. Nevertheless some additions to it
can be made. For example, (6.30) immediately implies

Theorem 6.6. Let f(z) be a meromorphic function satisfying ρ = 1 + λ. If
one of the following conditions is satisfied:

(a) limr→∞ T (r)/rλ ln r =∞ and lim supr→∞ T (r)/rρ <∞,
(b) lim infr→∞ T (r)/rλ > 0 and T (r) = o(rρ(ln r)−1),

then (6.27) holds.

Shift invariance of deficiencies takes place under weaker assumptions.

Theorem 6.7. Let f(z) be a meromorphic function satisfying ρ = 1 + λ. If
one of the following conditions is satisfied:

(a) limr→∞ T (r)/rλ =∞ and lim supr→∞ T (r)/rρ <∞,
(b) lim infr→∞ T (r)/rλ > 0 and T (r) = o(rρ),

then

δh(a) = δ(a), ∆h(a) = ∆(a).(6.31)

for all h.

The proof is similar to the proof of Theorem 6.5. For (6.31) to be satisfied it
is enough that for each K, 0 < K <∞ the equality

lim
r→∞

T (r +K)

T (r)
= 1(6.32)

holds. It is clear that it is enough to show that

lim sup
r→∞

T (r + 1)

T (r)
= 1.(6.33)

But T (r + 1) = T (r) + T ′(r + θ(r)), 0 ≤ θ(r) ≤ 1. If (6.33) does not take place,
then there exists a sequence rn →∞ such that

T ′(r′n)

T (rn)
> η, η > 0,

where r′n = rn+θ(rn). As before we get, that T (er′n) ≥ r′nT ′(r′n)+T (r′n), therefore

T (er′n) > ηr′nT (rn).(6.34)

Theorem 6.7 follows immediately from the inequality (6.34).
Note that the conditions of Theorem 6.7 may be satisfied even when δ∗(a) >

δ(a) or ∆∗(a) < ∆(a). We only give an example for which the condition (a) of
Theorem 6.7 is satisfied and δ∗(∞) > δ(∞).
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Example 4. Let λ > 0, ρ = λ+ 1. Consider the equation

bρ ln
r

b
= rλ(ln r)1/8, b > 22λ+8.(6.35)

Taking into account the fact that the left-hand side of the equation is a linear
function of ln r and the right-hand side is convex with respect to ln r, it is easy to
see that the equation (6.35) has two solutions in [b,∞), and these solutions, denotes
by R1(b) and R2(b), R1(b) < R2(b), satisfy b < R1(b) < 2b, lnR2(b) ∼ ρ

λ
ln b as

b → ∞. If R1(b) < r < R2(b), the left-hand side of (6.35) is greater than the
right-hand side.

We take the function g(z; rk, nk) (see (6.7)), where the parameters rk and nk are
chosen in the following way. Let r1 > 1 be so large that R2(b) ≥ 2b for each b ≥ r1.
Set rk+1 = R2(rk), k = 1, 2, . . . , and nk = [rρk]. Consider the meromorphic function

Φ(z; aj, bj,mj , σj , ε) (see (6.8)), where ak = rk −
√

ln rk, mk =
[
rρk(ln rk)−

1
4

]
. Let

f(z) = g(z)Φ(z). By (6.16) we have T (r, f) = N(r, 0, g) + N(r,∞,Φ) + O(1). It
is easy to see that n(r, 0, g) ≤ (1 − 2−ρ)−1rρ and hence N(r, 0, g) = O(rρ) and
N(r,∞,Φ) = o(rρ). Hence T (r, f) = O(rρ). If r ∈ [rk, rk+1), taking into account
(6.35) we get

T (r, f) ≥ N(r, 0, g) +O(1) ≥ rρk−1 ln
r

rk−1
+ rρk ln

r

rk
+O(ln r)

≥ rρk−1 ln
rk

rk−1
+ rρk ln

r

rk
+O(ln r)

= rλk (ln rk)1/8 + rρk ln
r

rk
+O(ln r).

For rk ≤ r < 2rk the inequality

T (r, f) ≥ rλk (ln rk)1/8 +O(ln r)

holds, and for 2rk ≤ r < rk+1 the inequality

T (r, f) ≥ rρk ln
r

rk
+O(ln r) ≥ rλ(ln r)1/8 + O(ln r)

holds. Hence

lim inf
r→∞

T (r, f)

rλ(ln r)1/8
> 0,

and the function f(z) satisfies the condition (a) of Theorem 6.7. Using (6.15) we
get

N(rk,∞, f) = N(rk,∞,Φ) ∼
k∑
j=1

rρj (ln rj)
− 1

4 ln
rk

rj −
√

ln rj

≥ rρk(ln rk)−
1
4 ln

rk

rk −
√

ln rk
∼ rλk (ln rk)

1
4 ,

N(rk, 0, g) ≤
k∑
j=1

rρj ln
rk

rj
=

k−1∑
j=1

rρj ln
rk

rj

= O

(
rρk−1 ln

rk

rk−1

)
= O(rλk (ln rk)1/8),

T (rk, f) = N(rk, 0, g) +N(rk,∞,Φ) +O(1) ∼ N(rk,∞,Φ) = N(rk,∞, f).
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Hence δ(∞, f) = 0 and, by Theorem 6.7, δh(∞, f) = 0 for all h.

Now let rk +
√

ln rk ≤ r ≤ rk+1 −
√

ln rk+1. Then

N(r,∞, f) ≤
k∑
j=1

rρj (ln rj)
− 1

4 ln
r

rj −
√

ln rj
= O

(
rρk(ln rk)−

1
4 ln

r

rk −
√

ln rk

)
,

N(r, 0, g) ≥ rρk ln
r

rk
.

Since for rk +
√

ln rk ≤ r ≤ rk+1 −
√

ln rk+1 the inequality

ln
r

rk −
√

ln rk

ln
r

rk

≤
ln
rk +

√
ln rk

rk −
√

ln rk

ln
rk +

√
ln rk

rk

→ 2, k→∞,

holds, we have N(r,∞, f) = o(N(r, 0, g)) as r → ∞, if we exclude from [0,∞) the
set E =

⋃∞
k=1{|r−rk| <

√
ln rk}. It is easy to see that E ∈ L. Since for r ∈ CE the

relation N(r,∞, f) = o(N(r, 0, g)) = o(T (r, f)) holds, we get δ∗(∞, f) = 1, that is,
δ∗(∞, f) > δ(∞, f).

Remark 1. In many situations the easiest way to verify that δ∗(a) = δ(a) is
to check that the condition (6.33) is satisfied.

Remark 2. It is clear that for fixed a the statements of Theorems 6.5, 6.6, and
6.7 remain true if the conditions of the theorems are imposed onto N(r, a) instead
of T (r, f), for example, if in Theorem 6.5 we require

ρ[N(r, a)]− λ[N(r, a)] < 1.

In fact, N(r, a) is also an increasing function convex with respect to the logarithm,
and our proof is based on these properties of T (r, f) only.

Passage from f(z) to f(z + h) can be considered as a passage from exhaustion
of the plane by circles {|z| = r} to exhaustion of the plane by circles {|z + h| = r}.
We can generalize this problem and consider the exhaustion of the complex z-plane
by a family γr of curves which are images of the family of circles {|z| = r} under a
homeomorphic mapping of the complex plane onto itself. We assume, for simplicity,
that for r ≤ r0 we have γr = {|z| = r}. Let Dr be the closed region bounded by the
curve γr. Denote by nγ(r, a) the number of a-points of the function f(z) in Dr, by

π
◦
Aγ (r, f) the (measured in the spherical metric) area of the piece of the Riemann

surface onto which the function w = f(z) maps Dr. After this the quantities
Nγ(r, a), Tγ(r, f), δγ(a, f), ∆γ(a, f), δ∗γ(a, f), and ∆∗γ(a, f) are introduced in the
usual manner. Let r1(r) = minz∈γr |z|, r2(r) = maxz∈γr |z|.

Theorem 6.8. If

Ar −B < r1(r) ≤ r2(r) < Ar +B, 0 < A,B <∞,

then ρ[Tγ(r)] = ρ, λ[Tγ(r)] = λ and

(1) If ρ <∞, then δ∗γ(a) = δ∗(a), ∆∗γ(a) = ∆∗(a),
(2) If ρ− λ < 1, then δ∗γ(a) = δγ(a), ∆∗γ(a) = ∆γ(a).
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We may without loss of generality assume that A = 1. Analysis of proofs of
Theorems 6.1 and 6.5, and also of Theorem 1.6 from Chapter 2 shows that we did
not use the fact that the exhaustion is done by concentric circles, but only the fact
that {|z + h| = r} lies between {|z| = r + |h|} and {|z| = r − |h|}. Therefore the
same argument works in the present situation.

Theorem 6.9. Let

lim
r→∞

r2(r)

r1(r)
= 1.(6.36)

If there exist constants K1 and K2 such that (0 < ρ <∞)

0 < K1 ≤ r−ρT (r, f) ≤ K2 <∞, r ≥ r0,(6.37)

then δγ(a) = δ(a) and ∆γ(a) = ∆(a) for all a.

Proof. It is easy to see (compare the proof of Theorem 6.5), that in order to
establish δγ(a) = δ(a) and ∆γ(a) = ∆(a) it suffices to show that for each function
ε(r) > 0 satisfying limr→∞ ε(r) = 0 the equality

lim
r→∞

T (r(1 + ε(r)))

T (r)
= 1(6.38)

holds.
We have

T (r(1 + ε(r)))

T (r)
= 1 +

T ′(r(1 + θ(r)ε(r)))

T (r)
rε(r),

where 0 ≤ θ(r) ≤ 1.
If (6.38) is not satisfied, then there exist a function ε1(r) > 0, ε1(r) → 0 as

r→∞, and a sequence rn ↑ ∞, rn ≥ r0, such that

T ′(r′n)

T (rn)
>

η

rnε1(rn)
, η > 0; r′n = rn(1 + θ(rn)ε1(rn)) < 2rn.

Therefore, arguing in the same way as in the proof of (6.30), we get

T (er′n) > r′nT
′(r′n) + T (r′n) >

r′nη

rnε(rn)
T (rn) ≥ η

ε(rn)
T (rn) >

η

ε(rn)
K1r

ρ
n.(6.39)

Since r′n < 2rn, we get T (er′n) < K2(2e)ρrρn, a contradiction with (6.39).

Remark. If the condition (6.36) is satisfied and, furthermore, r1(r) ∼ Kr,
0 < K <∞, then we may use Tγ(r, f) instead of T (r, f) in the definition of the order
and the type of a function f(z), and also replace T (r, f) by Tγ(r, f) in the condition

(6.37) of Theorem 6.9. In fact, the inequality
◦
A (r1(r)) ≤

◦
Aγ (r) ≤

◦
A (r2(r)) implies

that for r > r0(ε) the inequality

◦
A ((K − ε)r) ≤

◦
Aγ (r) ≤

◦
A ((K + ε)r), K − ε > 0,

holds, from where we get∫ r(K−ε)

r0(K−ε)

◦
A (t)

t
dt ≤

∫ r

r0

◦
Aγ (t)

t
dt ≤

∫ r(K+ε)

r0(K+ε)

◦
A (t)

t
dt,

T ((K − ε)r) +O(1) ≤ Tγ(r) ≤ T ((K + ε)r) +O(1).(6.40)
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The inequality (6.40) immediately implies that T (r) and Tγ(r) have the same or-
der and the same type, and also, that the following inequality is a necessary and
sufficient condition for (6.37)

0 < K ′1 ≤ r−ρTγ(r) ≤ K ′2 <∞, r ≥ r′0.(6.41)

The proof of the theorem is completed. �

The condition (6.37) of Theorem 6.9, generally speaking, cannot be weakened.
We give only one example of this type, showing that if K2 is a function of r,
K2 = K2(r), arbitrarily slowly approaching ∞ as r →∞, then it can happen that
δγ(a) 6= δ(a). An analogous example with K1 = K1(r) → 0 can be constructed in
a similar way.

Example 5. Without loss of generality we may assume that K2(r) > 1 is an
increasing slowly varying function. Take the function

w = F (ζ) = g(ζ; rk, nk)Φ(ζ; ak, bk,mk, σk, ε)

(see (6.7), (6.8)) with ε < 1/2, rk = 2k, ak = rk − 2,

nk = mk =

{
[2ρk], k 6= ki, i = 1, 2, . . . ,

[2kρ(2k)K2], k = ki,

}
where the choice of ki(≥ 4) will be specified later, now we require only that
K2(rki ) > 64.

Independently of the choice of the sequence {ki} the inequalities

n(r, 0, g) ≥ (2ρ − 1)−1rρ,

n(r,∞,Φ) ≥ (2ρ − 1)−1rρ

hold. Therefore, taking into account (6.16) we get T (r, f) ≥ {ρ(2ρ−1)}−1rρ+O(1).
On the other hand

n(r, 0, g) = O(rρK2(r)),

n(r,∞,Φ) = O(rρK2(r)),

T (r, f) = O(rρK2(r)).

It is clear now that the sequence {ki} can be chosen to be so rapidly increasing
that the inequality

N(rki , 0, g) ≤ Crρki(6.42)

holds, where C is a constant greater than 2ρ{ρ(2ρ− 1)}−1, because, if nk = [rρk] for
all k, then we would have

lim sup
r→∞

n(r, 0, g)

rρ
≤ 2ρ

2ρ − 1
.

It is easy to check that N(r, 0, g) ∼ N(r,∞,Φ), and to get, using the formu-
las (6.14), (6.15), (6.16), that δ(∞, F (ζ)) = ∆(∞, F (ζ)) = 1/2, δ(0, F (ζ)) =
∆(0, F (ζ)) = 0.

Consider the strips

Si =
{
rki − 1 > Reζ > rki

(
1−K−

1
2

2 (rki)
)
− 1, |Imζ| < ηi

}
,

where the sequence {ηi} is chosen to be so rapidly converging to 0, that the measure
in the spherical metric area of the regions on the Riemann surface corresponding
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to
⋃∞
i=1 Si under the mapping w = F (ζ) is finite. Now we consider a homeomor-

phic mapping z = z(ζ) of the complex plane onto itself satisfying the following
conditions: z(ζ) = ζ outside

⋃∞
i=1 Si, and on Si the mapping z(ζ) leaves fixed the

boundary of Si and maps the point rki − 2 onto the point rki

(
1−K−

1
2

2 (rki )
)

. We

denote the inverse of the mapping z(ζ) by ζ(z). Let γr be the image of {|z| = r}
under the mapping ζ(z). It is easy to compute that

Nγ(rki ,∞, F ) ∼ rρkiK2(rki ) ln
(

1−K−
1
2

2 (rki )
)−1

∼ rρki
√
K2(rki ),

Tγ(rki , F ) ∼ N(rki , 0, F )

∼ O(rρki ) + rρkiK2(rki) ln
(

1−K−
1
2

2 (rki)
)−1

∼ rρki
√
K2(rki).

Hence δγ(∞, F ) = δγ(0, F ) = 0 and δγ(∞, F ) < δ(∞, F ).

Note that it is still unknown whether the deficiencies can be non-shift-invariant
for entire functions of finite order. For entire functions of infinite order such an
example was constructed by Hayman [Hay53]. We reproduce this example.

Example 6. Consider the entire function

f(z) =

∞∏
n=1

{
1 +

( z
n

)3n
}2n

.(6.43)

Since for |z| ≤ r we have
∞∑
n=1

2n
(
|z|
n

)3n

≤
∞∑
n=1

(
2r3

n3

)n
<∞,

the infinite product in (6.43) is absolutely and uniformly convergent in each disc
{|z| ≤ r}, and hence represents an entire function.

Since for n→∞ we haven+
1

2
n+ 1


3(n+1)

→ e−
3
2 ,

 n

n+
1

2


3n

→ e−
3
2 ,

and

ln
(

1− e− 3
2

)
> −0.3, e−

3
2 < 0.3,

there exists N0 > 1 such that for n ≥ N0 the inequalities∣∣∣∣∣ln
{

1−
(

n

n+ 1
2

)3n
}∣∣∣∣∣ < 0.3;(6.44)

(
n+ 1

2

n+ 1

)3(n+1)

< 0.3;(6.45)

(
1

n+ 1
2

)3

<

(
n

n+ 1
2

)3n

;(6.46)

ln

(
n+ 1

2

k

)
>

8

9

n+ 1
2 − k
k

, k = n− 2, n− 1, n(6.47)
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hold. Now we estimate |f(z)| on the circle {|z| = n+
1

2
}, n ≥ N0. We have

ln|f(z)| =
∞∑
k=1

2k ln

∣∣∣∣1 +
( z
k

)3k
∣∣∣∣

=

n∑
k=1

2k3k ln
|z|
k

+

n∑
k=1

2k ln

∣∣∣∣∣1 +

(
k

z

)3k
∣∣∣∣∣+

∞∑
k=n+1

2k ln

∣∣∣∣1 +
( z
k

)3k
∣∣∣∣

=

n∑
k=1

2k3k ln
n+ 1

2

k
+ Φ1(z) + Φ2(z)

= N

(
n+

1

2
, 0, f

)
+ Φ1(z) + Φ2(z).

(6.48)

Taking into account the equality
∑∞
k=0 kx

k = x(1 − x)−2, |x| < 1, we get

N

(
n+

1

2
, 0, f

)
=

n∑
k=1

2k3k ln

(
1 +

n+ 1
2 − k
k

)

<

n∑
k=1

2k3k
n+ 1

2 − k
k

= 3 · 2n
n−1∑
ν=0

(
ν +

1

2

)
2−ν

< 3 · 2n
∞∑
ν=0

(
ν +

1

2

)
2−ν = 9 · 2n.

(6.49)

On the other hand, taking into account (6.47) we get

N

(
n+

1

2
, 0, f

)
>

n∑
k=n−2

2k3k ln
n+ 1

2

k

>
8

3

n∑
k=n−2

2k
(
n+

1

2
− k
)

=
8

3

(
1

2
+

1

2
· 3

2
+

1

4
· 5

2

)
2n = 5 · 2n.

(6.50)

An elementary investigation of the function

 x

n+
1

2


3x

shows that it decreases

on the interval
[
1,
(
n+ 1

2

)
e−1
]

and increases on the interval
[(
n+ 1

2

)
e−1,∞

)
. Tak-

ing into account the inequality (6.46) we see that this function attains its maximum
on the interval [1, n] at the point x = n, and its minimal value on the interval
[n+ 1,∞) at the point x = n+ 1. Therefore(

k

n+ 1
2

)3k

≤
(

n

n+ 1
2

)3n

, 1 ≤ k ≤ n,

(
n+ 1

2

k

)3k

≤
(
n+ 1

2

n+ 1

)3(n+1)

< 0.3, k ≥ n+ 1,(6.51)

and (6.44) implies the following inequality∣∣∣∣∣ln
{

1−
(

k

n+ 1
2

)3k
}∣∣∣∣∣ < 0.3, 1 ≤ k ≤ n.(6.52)
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Now we estimate |Φ1(z)| for |z| = n+
1

2
. Using (6.52) and the fact that for 0 <

r < 1, 0 ≤ ϕ < 2π the inequality

| ln |1 + reiϕ|| ≤ | ln(1 − r)| ≤ r

1− r(6.53)

holds, we get

|Φ1(z)| ≤
n∑
k=1

2k

∣∣∣∣∣ln
∣∣∣∣∣1 +

(
k

z

)3k
∣∣∣∣∣
∣∣∣∣∣

≤
n∑
k=1

2k

∣∣∣∣∣ln
{

1−
(

k

n+ 1
2

)3k
}∣∣∣∣∣ < 0.3

n∑
k=1

2k < 2n · 0.6.
(6.54)

Now we turn to an estimate of |Φ2(z)| for |z| = n + 1/2. Using (6.51) and (6.53)
we get

|Φ2(z)| ≤
∞∑

k=n+1

2k
∣∣∣∣ln ∣∣∣∣1 +

( z
k

)3k
∣∣∣∣∣∣∣∣

≤
∞∑

k=n+1

2k

(
n+ 1

2

k

)3k

1−
(
n+ 1

2

k

)3k
<

1

0.7

∞∑
k=n+1

2k
(
n+ 1

2

k

)3k

=
1

0.7

∞∑
k=n+1

uk.

For k ≥ n+ 1 we have

uk+1

uk
= 2k+1

(
n+ 1

2

k + 1

)3(k+1)
1

2k

(
k

n+ 1
2

)3k

= 2

(
n+ 1

2

k + 1

)3
{(

1 +
1

k

)k}−3

< 2

{(
1 +

1

k

)k}−3

<
1

4
,

hence

uk ≤
1

4k−n−1
un+1.

Therefore, by (6.45),

|Φ2(z)| ≤ 1

0.7

∞∑
k=n+1

1

4k−n−1
un+1 =

1

0.7
· 4

3
un+1

=
1

0.7
· 4

3
2n+1

(
n+ 1

2

n+ 1

)3(n+1)

<
1

0.7
· 4

3
2n+1 · 0.3 =

8

7
· 2n < 1.2 · 2n.

(6.55)

The relations (6.48), (6.49), (6.50), (6.54), and (6.55) imply that on the circle{
|z| = n+

1

2

}
, n ≥ N0, the inequality

3 · 2n < 3.2 · 2n < ln |f(z)| < 10.8 · 2n < 11 · 2n(6.56)

holds. The inequality (6.56) implies that the inequality |f(z)| > 1 holds on the

circles

{
|z| = n+

1

2

}
, hence m

(
n+

1

2
, 0, f

)
= 0 and δ(0, f) = 0.

Now we prove that δ1(0, f) > 0. Let 0 < η < 1
4e
−22, z0 = neiθ be a zero of the

function f(z) of order 2n, n ≥ N0. Then the inequality

ln |f(z)| < 2n−1 ln η(6.57)
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holds in the disc {|z − z0| < η}.

In fact, since

{
|z − z0| ≤

1

2

}
⊂
{
|z| ≤ n+

1

2

}
, using (6.56) we conclude that

the inequality ln |f(z)| ≤ 11 · 2n holds in the disc

{
|z − z0| ≤

1

2

}
. On the circle{

|z − z0| =
1

2

}
we have

∣∣∣∣ f(z)

(z − z0)2n

∣∣∣∣ ≤ e11·2n

2−2n
= e11·2n22n ,

therefore, applying the maximum modulus principle for the disc {|z − z0| < η}, we
get

|f(z)| ≤ e11·2n22n |z − z0|2
n

< (e112η)2n ≤
(

1
√
η
η

)2n

= η2n−1

,

which is equivalent to (6.57).
Now let r be an arbitrary number exceeding N0+1, and let p = pr be an integer

satisfying r − 1 < p < r + 1. The circles {|z| = p} and {|z − 1| = r} intersect,

therefore there exists ϕ0 such that |peiϕ0 − 1| = r. We show that for |ϕ− ϕ0| ≤
1

4
η

the inequality

||peiϕ − 1| − r| < 1

2
η(6.58)

holds. In fact, by the Lagrange theorem, we get

||peiϕ − 1| − r| =
∣∣∣∣ ddϕ |peiϕ − 1|

∣∣∣∣
ϕ=ϕ′

|ϕ− ϕ0|,

where ϕ′ is a number between ϕ and ϕ0. But∣∣∣∣ ddϕ |peiϕ − 1|
∣∣∣∣ =

∣∣∣∣ ddϕ√p2 − 2p sinϕ+ 1

∣∣∣∣ =

∣∣∣∣ −p cosϕ

|peiϕ − 1|

∣∣∣∣ ≤ p

p− 1
< 2,

therefore

||peiϕ − 1| − r| < 2|ϕ− ϕ0| ≤
1

2
η.

Since the circle {|z| = p} contains 3p zeros of the function f(z) (of order 2p each),
and these zeros divide the circle into arcs of 2π/3p radians each, then the arc{
|z| = p, | arg z − ϕ0| ≤

1

4
η

}
contains at least

ν =

[
η

2

3p

2π
− 1

]
=

[
3η

4π
p− 1

]
, p ≥ 8π

3η
,

zeros zj = peiϕj , ϕ1 < ϕ2 < · · · < ϕν , |ϕj − ϕ0| ≤ 1
4η. Since each zero zj satisfies

(6.58), we can find a point z′j = 1 + reiθj such that |z′j − zj | < 1
2η. Denote the set

of arcs Cjr = {z − 1 = reiθ , |θ − θj | < η/(2r)}, 1 ≤ j ≤ ν, by Cr. The inequality
|z − z′j| = |(z − 1) − (z′j − 1)| = |reiθ − reiθj | = r|eiθ − eiθj | < r|θ − θj | < 1

2η

holds on Cjr , therefore |z − zj | ≤ |z − z′j |+ |z′j − zj | < η. The arcs Cjr are pairwise
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disjoint. In fact, if there is a point z in the intersection of Cjr and Cj+1
r , then

|zj − zj+1| < |zj − z|+ |z − zj+1| < 2η. On the other hand,

|zj − zj+1| = |peiϕj − peiϕj+1 | = p|1− ei(ϕj+1−ϕj)|

= p|1− e2πi/3p| ≥ p sin
2π

3p
≥ p 2

π
· 2π

3p
=

4

3
,

and we get a contradiction. Thus the total measure of Cr =
⋃ν
j=1 C

j
r in radians is

η

r
ν =

η

r

[
3η

4π
p− 1

]
.

Since p/r → 1 as r → ∞, the measure approaches 3η2/(4π) as r → ∞, and is
greater than η2/(2π) when r > r0(η) = r0.

Now we consider the function f(z + 1) on the circle {|z| = r}, r > r0. Let
n = [r + 3/2]. Then for |z| = r the inequality |z + 1| ≤ n + 1/2 holds. By (6.56),
for {|z| = r} we have

ln |f(z + 1)| < 11 · 2n

and

T (r, f(z + 1)) ≤ ln+M(r, f(z + 1)) < 11 · 2n.(6.59)

On the other hand, the circle {|z + 1| = n − 1} intersects the circle {|z| = r}. It
is clear that r − 1 < n− 1 < r + 1, and we can use the estimates presented above.
For each arc Cjr there exists a zero zj = (n− 1)eiϕj of the function f(z) such that
|z − zj | < η if z ∈ Cjr . Therefore by (6.57), for z ∈ Cr, the inequality

ln |f(1 + reiθ)| = ln |f(z)| < 2n−2 ln η(6.60)

holds. Since the measure of the set Kr of those θ for which (6.60) holds exceeds
η2/(2π) for r > r0, we have

m(r, 0, f(z + 1)) ≥ 1

2π

∫
Kr

ln+ 1

|f(1 + reiθ)|dθ

≥ 1

2π

∫
Kr

2n−2 ln
1

η
dθ >

1

2π
2n−2

(
ln

1

η

)
η2

2π
= 2n

η2

16π2
ln

1

η
.

Taking into account (6.59) we get

δ1(0, f) = δ(0, f(z + 1))

= lim inf
r→∞

m(r, 0, f(z + 1))

T (r, f(z + 1))
≥

2n η2

16π2 ln 1
η

2n11
=

η2

176π2
ln

1

η
> 0.

Thus, zero is a deficient value for f(z + 1), but is not a deficient value for f(z).
Observe also, that for f1(z) = f(z + 1) we have

lim
r→∞

lnµ(r, f1)

lnM(r, f1)
= −∞, where µ(r, f1) = min

|z|=r
|f1(z)|.(6.61)

In fact, (6.60) implies that lnµ(r, f1) ≤ 2n−2 ln η, and (6.59) implies that
lnM(r, f1) < 11 · 2n. Therefore for r > r0(η) the inequality

lnµ(r, f1)

lnM(r, f1)
<
−2n−2 ln 1

η

11 · 2n = − 1

44
ln

1

η

holds. Since η can be chosen arbitrarily small, we get (6.61).



170 4. DEFICIENT VALUES

In conclusion we mention that it is possible to do the work similar to that done
in this section for the index ε(a) instead of the defect δ(a) considered here (see
(6.19)). That is, we can introduce the values ε∗(a), εγ(a), ε∗γ(a), and prove for
them analogues of all theorems of this section except Theorem 6.3. The analogue
of Theorem 6.4 is stated in the following way: if the limit

lim
r→∞

N1(r, a)

T (r, f)
= ε(a)

exists, then ε(a) = ε∗(a).



CHAPTER 5

Asymptotic properties of meromorphic functions

and deficiencies

1. Asymptotic values

Let f(z) be a meromorphic function, C a continuous curve in {|z| <∞} given
by an equation z = z(t), 0 ≤ t <∞, |z(t)| <∞, and z(t)→∞ as t→∞. If there
exists a finite or infinite a such that

lim
z→∞
z∈C

f(z) = lim
t→∞

f(z(t)) = a,

then a is called an asymptotic value of the function f(z), and C is called an as-
ymptotic curve. The pair {a, C} is also called an asymptotic spot (sometimes such
pair is called an asymptotic value). Two asymptotic spots {a1, C1} and {a2, C2}
are considered as equal if:

(1) a1 = a2 = a.
(2) There exist a sequence of continuous curves γk such that one end of γk

belongs to C1, the other end belongs to C2, and

lim
k→∞

min
z∈γk
|z| =∞, lim

z→∞
z∈∪kγk

f(z) = a.

It is clear that asymptotic spots {a1, C1} and {a2, C2} are equal if the curves
C1 and C2 have points of intersection in each neighborhood of infinity.

Significant amount of research is devoted to relations between exceptional and
asymptotic values of a meromorphic functions, however, many problems are still
open. We present some of the known results.

First of all, it is clear that an asymptotic value does not have to be exceptional
in any sense. Indeed the value w = 0 is an asymptotic value for f(z) = sin z/z (it
corresponds to two different asymptotic spots with asymptotic curves C1 : z(t) =
t and C2 : z(t) = −t) without being a Valiron exceptional value, and hence
without being an exceptional value in any other sense. The following theorem due
to F. Iversen is a result in the opposite direction.

Theorem 1.1. Each Picard exceptional value is an asymptotic value.

To prove this theorem we need the following lemma.

Lemma 1.1. Let G be an unbounded region, let Γ be the part of the boundary
of G in the complex plane (that is, ∞ is not considered as a point in Γ). Let f(z)
be analytic in G and continuous in G∪Γ. If |f(z)| is bounded in G and |f(z)| ≤M
for z ∈ Γ, then |f(z)| ≤M in G.

Proof. If f(z) is constant, the result is obvious. So suppose that f(z) is
nonconstant and |f(z)| ≤ K for z ∈ G. We may assume that K > M because

171
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otherwise there is nothing to prove. We suppose that z0 ∈ G is such that |f(z0)| >
M and prove that in such a case for an arbitrary z′ ∈ G, z′ 6= z0 we have |f(z′)| ≤
|f(z0)|. It leads in contradiction with the maximum modulus principle. Let ε be
an arbitrarily small positive number. Consider a disc D = {|z − z0| ≤ η} with
so small radius that it is contained in G, does not contain z′, and the inequality
|f(z)| ≤ |f(z0)| + ε holds for z in γ = {|z − z0| = η}. Let 1 > δ > 0. We consider
the function ϕδ(z) = f(z)(η/(z − z0))δ in the region G\D = Gη. This function
is multivalent, but it has a univalent modulus. It is analytic in Gη, continuous in
the closure of Gη, including z = ∞, and ϕδ(∞) = 0. We have |η/(z − z0)| = 1 for
z ∈ γ and |η/(z − z0)| < 1 for z ∈ Γ. Therefore |ϕδ(z)| ≤ |f(z0)|+ ε for z ∈ γ and
|ϕδ(z)| ≤M < |f(z0)|+ ε for z ∈ Γ. Applying the maximum modulus principle to
ϕδ(z) we get |ϕδ(z′)| ≤ |f(z0)|+ ε. Letting ε→ 0 and δ → 0 in this inequality, we
get |f(z′)| ≤ |f(z0)|. �

Proof. Now we turn to the proof of Theorem 1.1. Without loss of generality
we assume that a =∞ is a Picard exceptional value. Otherwise we would consider
the function F (z) = 1/{f(z) − a}. Thus the transcendental function f(z) has
at most finitely many poles. First we assume that there are no poles, that is,
the function is entire. We need to show the existence of a continuous curve C
approaching infinity, such that f(z) approaches infinity along this curve as z →∞.

Denote by Gn, n = 1, 2, . . . , the open set of those z for which |f(z)| > n. The
equality |f(z)| = n holds for each point of the boundary of Gn in the complex
plane. Each connected component of Gn is an unbounded region, since otherwise,
by the maximum modulus principle, we would have |f(z)| ≤ n for each z ∈ Gn. By
Lemma 1.1 each connected component of Gn contains at least one point of Gn+1.
Therefore we can find a sequence {G′n}∞n=1 of connected components of sets Gn
such that G′1 ⊃ G′2 ⊃ G′3 ⊃ . . . . Since the function f(z) is bounded in each disc
{|z| ≤ R}, then, starting with some n = n(R) the regions G′n do not intersect this
set. Consider in each region G′n a point zn and join it by a Jordan arc Cn ⊂ G′n
with zn+1. Then C = C1 ∪ C2 ∪ . . . is the desired curve. In fact, if z successively
traverses C1, C2, . . . ,, then z → ∞ since

⋃∞
j=n(R) Cj does not intersect the disc

{|z| ≤ R}. Besides,
⋃∞
j=n Cj ⊂ G′n and hence |f(z)| > n for z ∈

⋃∞
j=n Cj , that is,

f(z)→∞ as z →∞, z ∈ C.
If f(z) has poles at finitely many points ζ1, . . . , ζp, we denote by Hj(z) the

principal part of the Laurent expansion of f(z) in the neighborhood of ζj . The
function Hj(z) is rational, has zero at ∞ and the only pole at ζj . The function

g(z) = f(z)−
p∑
j=1

Hj(z)

is an entire transcendental function, hence, as we have proved above, there exists
an asymptotic curve C such that g(z) → ∞ along C. The function

∑p
j=1 Hj(z)

approaches zero along C, hence f(z) approaches ∞. �

Remark. The argument used in the proof of Theorem 1.1 can be used to
prove the following statement. Let G be an unbounded region, Γ be the part of its
boundary in the complex plane. Let f(z) be analytic in G and continuous in G∪Γ.
If the function f(z) is bounded on Γ but is unbounded on G, then there exists an
asymptotic curve in G approaching ∞ and such that f(z) approaches ∞ along C.
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Exercise. Prove that for each transcendental entire function f(z) and each
positive integer n there exists an asymptotic curve Cn such that f(z)z−n →∞ as
z →∞, z ∈ Cn.

Hint. Apply Theorem 1.1 to ϕ(z) = z−nf(z).

Later we shall see that, in general, Borel or Nevanlinna exceptional values, and
hence, Valiron exceptional values are not necessarily asymptotic values.

Now we prove the following important theorem due to Ahlfors.

Theorem 1.2. If an entire function f(z) has p ≥ 2 different asymptotic spots
{∞, Cj}, 1 ≤ j ≤ p, then

lim inf
r→∞

r−
p
2 T (r, f) > 0(1.1)

The statement remains valid for p = 1 if we assume, in addition, that

µ(r, f) = min
|z|=r

|f(z)| = O(1), r →∞.(1.2)

Proof. We may assume, without loss of generality, that the curves Cj do not
intersect each other. Consider the open set Gn of those points for which |f(z)| > n.

Denote by G
(j)
n the connected component of the set Gj containing Cj ∩ {|z| > R}

for sufficiently large R. It is clear that the region G
(j)
n is uniquely determined by

this condition. The regions G
(j)
n , 1 ≤ j ≤ p, are pairwise disjoint for sufficiently

large n. In fact, if we assume that the regions G
(j1)
n and G

(j2)
n intersect for all

n ≥ 1, they would coincide: G
(j1)
n = G

(j2)
n , and joining the curves Cj1 and Cj2 by

continuous curves γk lying in G
(j1)
k = G

(j2)
k , we can easily show that the asymptotic

spots {∞, Cj1} and {∞, Cj2} coincide, a contradiction. Increasing n, if necessary,

we get into the situation in which none of the regions G
(j)
n completely contains any

of the circles {|z| = r}. If p = 1 the possibility to choose such n is guaranteed
by the condition (1.2): it suffices to choose n > sup0<r<∞ µ(r, f). For p ≥ 2 such

n can be chosen because the complement of G
(j)
n contains at least one unbounded

region. Thus, we have found p unbounded pairwise disjoint regions G
(j)
n0 , 1 ≤ j ≤ p,

in the complex plane having the following properties:

(a) The region G
(j)
n0 does not completely contain any of the circles {|z| = r}.

(b) The function f(z) is unbounded inG
(j)
n0 and satisfies the inequality |f(z)| >

n0 in G
(j)
n0 .

(c) |f(z)| = n0 on the part of the boundary of G
(j)
n0 in the complex plane.

We may assume, without loss of generality, that n0 = 1, we would consider the
function f(z)/n0 otherwise. In what follows we assume that n0 = 1 and drop the

lower index n0 for G
(j)
n0 .

We need the following Wirtinger inequality. Let y(x) be a continuously differ-
entiable function on [a, b], y(a) = y(b) = 0. Then∫ b

a

[y′(x)]2dx ≥
(

π

b − a

)2 ∫ b

a

[y(x)]2dx.(1.3)

We may assume, without loss of generality, that a = 0, b = π, since the general

case can be reduced to this case using the substitution x = a+
b− a
π

t. So, we need
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to prove

(1.3′)

∫ π

0

[y′(x)]2dx ≥
∫ π

0

[y(x)]2dx.

Since y(0) = y(π) = 0, we have y(x) = O(x) as x → 0 and y(x) = O(π − x) as
x → π. Therefore the function y2(x) cotx is continuous on the segment [0, π] and
vanishes at the ends of the segment, and the function y(x) cotx is continuous on
[0, π].

From here we get

0 =

∫ π

0

d(y2 cotx) =

∫ π

0

{2yy′ cotx− y2(1 + cot2 x)}dx

=

∫ π

0

{(y′)2 − y2 − (y′ − y cotx)2}dx ≤
∫ π

0

((y′)2 − y2)dx,

that is, the inequality (1.3′).
Let r0 be a so large number that the circle {|z| = r0} intersects all of the

regions G(j), 1 ≤ j ≤ p. We fix a region G(j). Denote by r
(j)
0 the minimal value

of |z| for z ∈ Ḡ(j), and by S(j)(r) the intersection G(j) ∩ {|z| = r} for r > r
(j)
0 .

The set S(j)(r) consists of finitely many arcs since the part of the boundary of G(j)

contained in an arbitrary disc {|z| ≤ r} consists of finitely many analytic curves.
The last statement can be easily verified using the fact that |f(z)| = 1 on the
boundary of G(j). Denote by rlj(r) the length of the longest arc among the arcs

forming S(j)(r). It is clear that
p∑
j=1

lj(r) ≤ 2π.(1.4)

Consider the function ln |f(reiϕ)| = ln |f(et+iϕ)| = u(t, ϕ), t = ln r in the re-
gion G(j). It is clear that u(ln r, ϕ) > 0 in the region G(j), and that u(t, ϕ) =
Re ln f(et+iϕ) is a harmonic function. Therefore

∂2u

∂t2
+
∂2u

∂ϕ2
= 0.(1.5)

We introduce the notation

mj(r) =

∫
S(j)(r)

(ln |f(reiϕ)|)2dϕ,

µj(t) = mj(e
t) =

∫
S(j)(r)

u2(t, ϕ)dϕ.

Taking into account the fact that u(t, ϕ) = 0 on the ends of the intervals of
integration, we get

µ′j(t) = 2

∫
S(j)(r)

u
∂u

∂t
dϕ,

µ′′j (t) = 2

∫
S(j)(r)

{
u
∂2u

∂t2
+

(
∂u

∂t

)2
}
dϕ.(1.6)

Integrating by parts and using (1.5), we get∫
S(j)(r)

u
∂2u

∂t2
dϕ = −

∫
S(j)(r)

u
∂2u

∂ϕ2
dϕ =

∫
S(j)(r)

(
∂u

∂ϕ

)2

dϕ.
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Substituting into the equality (1.6) we have

µ′′j (t) = 2

∫
S(j)(r)

{(
∂u

∂t

)2

+

(
∂u

∂ϕ

)2
}
dϕ.(1.7)

Obviously, for t > ln r
(j)
0 we have µ′′j (t) ≥ 0, hence µ′j(t) is nondecreasing.

Since µj(t) > 0 for t > ln r
(j)
0 , and µj(t) → 0 as t → ln r

(j)
0 , we have, as is easy to

see, µ′j(t) > 0 for t > ln r
(j)
0 . When reiϕ ∈ S(j)(r), the variable ϕ ranges over the

finite system of intervals (ϕ1, ϕ
′
1), (ϕ2, ϕ

′
2), . . . , (ϕs, ϕ

′
s), where s, ϕ1, ϕ

′
1, . . . , ϕs, ϕ

′
s

depend on j and r. We use for each of the intervals (ϕσ , ϕ
′
σ) the Wirtinger inequality

(1.3) and get∫ ϕ′σ

ϕσ

(
∂u

∂ϕ

)2

dϕ ≥
(

π

ϕ′σ − ϕσ

)2 ∫ ϕ′σ

ϕσ

u2dϕ ≥
(

π

lj(r)

)2 ∫ ϕ′σ

ϕσ

u2dϕ.

Adding these inequalities for all σ from 1 to s, we get∫
S(j)(r)

(
∂u

∂ϕ

)2

dϕ ≥
(

π

lj(r)

)2 ∫
S(j)(r)

u2dϕ =

(
π

lj(r)

)2

µj(t).(1.8)

Using the Cauchy–Buniakowsky inequality we get

(µ′j(t))
2 = 4

{∫
S(j)(r)

u
∂u

∂t
dϕ

}2

≤ 4

∫
S(j)(r)

u2dϕ

∫
S(j)(r)

(
∂u

∂t

)2

dϕ

= 4µj(t)

∫
S(j)(r)

(
∂u

∂t

)2

dϕ.

(1.9)

From (1.7), (1.8), and (1.9) we derive

µ′′j (t) ≥ 1

2

{µ′j(t)}2

µj(t)
+ 2

(
π

lj(r)

)2

µj(t),

from where, taking into account(
µ′j
µj

)′
=
µ′′j
µj
−
(
µ′j
µj

)2

,

we get

2ω′′j (t) + ω′j
2
(t) ≥

(
2π

lj(r)

)2

, ωj(t) = lnµj(t).

This implies {
ω′j(t) +

ω′′j (t)

ω′j(t)

}2

≥ ω′j
2
(t) + 2ω′′j (t) ≥

(
2π

lj(r)

)2

.

Since ω′j(t) > 0 for t > ln r
(j)
0 , the last inequality implies that

ω′j(t) +
ω′′j (t)

ω′j(t)
≥ 2π

lj(r)
.(1.10)

It is easy to check that the left-hand side of the of (1.10) is equal to

d

dt

{
ln

(
d

dt
eωj(t)

)}
=

d

d ln r

{
ln

(
dmj(r)

d ln r

)}
,
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therefore (r ≥ r0)

d

d ln r

{
ln

(
dmj(r)

d ln r

)}
≥ 2π

lj(r)
.

Integrating this inequality we get

dmj(r)

d ln r
≥ Aj exp

{∫ r

r0

2π

tlj(t)
dt

}
,

where

Aj =
dmj(r)

d ln r

∣∣∣∣
r=r0

> 0,

and

mj(r) ≥ mj(r0) +Aj

∫ r

r0

dτ

τ
exp

{∫ τ

r0

2π

lj(t)t
dt

}
.(1.11)

From (1.11) we get (A = min1≤j≤p Aj)

mj(er) ≥ A
∫ er

r

dτ

τ
exp

{∫ τ

r0

2π

lj(t)t
dt

}
≥ A exp

{∫ r

r0

2π

lj(t)t
dt

}∫ er

r

dτ

τ
= A exp

{∫ r

r0

2π

lj(t)t
dt

}
,

from where

lnmj(er) ≥ 2π

∫ r

r0

dt

lj(t)t
+ lnA.

Since mj(er) ≤ 2π ln2M(er, f), we get

ln lnM(er, f) ≥ π
∫ r

r0

dt

lj(t)t
+

1

2
ln
A

2π
.(1.12)

Adding these inequalities we get

(1.12′) ln lnM(er, f) ≥ π

p

∫ r

r0

dt

t

p∑
j=1

1

lj(t)
+

1

2
ln
A

2π
.

Using the the Cauchy–Buniakowsky inequality and (1.4) we obtain

p2 =

 p∑
j=1

√
lj(t)

1√
lj(t)

2

≤
p∑
j=1

lj(t)

p∑
j=1

1

lj(t)
≤ 2π

p∑
j=1

1

lj(t)
.

Therefore (1.12′) implies

ln lnM(er, f) ≥ p

2

∫ r

r0

dt

t
+

1

2
ln
A

2π
= ln(Krp/2),

where K = r
−p/2
0

√
A/(2π). If r/2 > r0, we get

lnM
(r

2
, f
)
≥ K1r

p/2, K1 = K(2e)−p/2.

Hence

T (r, f) ≥ 1

3
lnM

(r
2
, f
)
≥ 1

3
K1r

p/2,

that is, (1.1) is satisfied. �
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Our next example shows that the estimate given by Theorem 1.2 is sharp.

Let f(z) = cos(zp/2), p = 1, 2, . . . . It is clear that f(z) is an entire function.
Using Theorem 6.1 from Chapter 1 or the following asymptotic equality directly
(z = reiϕ, |ϕ| < π)

| cos(zp/2)| = 1

2
exp

(
rp/2

∣∣∣cos
pϕ

2

∣∣∣)+O(1),

we get

T (r, f) ∼ 2

π
rp/2.

If p is an even number, p = 2m, the function f(z) has p asymptotic spots {∞, Ck},
where Ck is the ray

{
arg z = ϕk =

π

2m
+ k

π

m

}
, k = −m,−m + 1, . . . , 0, . . . ,m −

1. In fact, if z = reiϕk , then cos(zp/2) = cos zm = cos{rmi(−1)k} = cosh rm.
Asymptotic spots {∞, Ck} are different since the inequality | cos zm| ≤ 1 holds on

the rays
{

arg z = ϕ′k = k
π

m

}
, k = −m,−m + 1, . . . ,m. If p is odd, p = 2m −

1, then the function f(z) has p asymptotic spots {∞, Ck}, where Ck is the ray{
arg z = θk =

π

2m− 1
+ k

2π

2m− 1

}
, k = −m+ 1, . . . ,m− 1. In fact, for z = reiθk ,

the equality cos(zp/2) = cos{rp/2i(−1)k} = cosh rp/2 holds.

Since | cos(zp/2)| ≤ 1 on the rays

{
arg z = θ′k = k

2π

2m− 1

}
, k = −m+1,−m+

2, . . . ,m− 1, then the asymptotic spots {∞, Ck} are distinct in this case, too.

The following classical theorem is an immediate corollary of Theorem 1.2.

Theorem 1.3 (Wiman, Heins). If the lower order λ of an entire function f(z)
is less than 1/2, then

lim sup
r→∞

µ(r, f) =∞.(1.13)

The conclusion remains true if

lim inf
r→∞

r−1/2T (r, f) = 0.(1.14)

The relation (1.13) means that there exists a sequence of circles {|z| = rk},
rk →∞ on which |f(z)| uniformly with respect to arg z approaches ∞.

To prove Theorem 1.3 note, that by Theorem 1.1 the function f(z) has at least
one asymptotic spot at ∞. If the condition (1.13) were not satisfied, then the
relation (1.2) would take place, and, by (1.1), we would have

lim inf
r→∞

r−1/2T (r, f) > 0,

a contradiction.

Corollary 1. If the lower order λ of an entire function f(z) is less than 1/2,
then δ(a, f) = 0 for all a 6=∞.

In fact, suppose that µ(rk, f)→∞ as rk →∞. Then |f(rke
iϕ)−a| ≥ µ(rk, f)−

|a| → ∞ and m(rk, a, f) = 0 for all k ≥ k0.
In Section 3 we show that for λ = 1/2 an entire function f(z) also cannot have

finite deficient values. If λ > 1/2, then, as we have seen in Section 5 of Chapter 4,
the set EN (f) can contain an arbitrary preassigned countable set.
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Corollary 2. Deficiencies of an entire function of order ρ < 3/2 are shift
invariant.

In fact, if λ < 1/2, then, by Corollary 1, there are no finite deficient values,
and if λ ≥ 1/2, ρ < 3/2, then ρ−λ < 1, and we can apply the corollary of Theorem
6.5 from Chapter 4.

Corollary 3. Let f(z) be an entire function of finite lower order λ. Then

lim sup
r→∞

lnµ(r, f)

lnM(r, f)
≥ −[2λ].(1.15)

If λ < 1/2, the inequality (1.15) follows from (1.13). Therefore we may assume
that λ ≥ 1/2 and, hence, n = [2λ] + 1 ≥ 2. We form the function

F (z) = f(z)f(ωz) . . . f(ωn−1z), ω = e2πi/n.

It is clear that F (z) = Φ(zn), where Φ(z) is an entire function. Since M(r,Φ) =
M(rn, F ), M(r, F ) ≤ {M(r, f)}n, it is easy to see that the lower order of the
function F (z) does not exceed λ, and the lower order of the function Φ(z) does not
exceed λ/n < 1/2. The equality (1.13) implies that there exists a sequence rj →∞
such that µ(rj ,Φ) > 1. Then µ(Rj , F ) > 1, where Rj = rnj . But

1 < µ(Rj , F ) ≤ µ(Rj , f){M(Rj, f)}n−1,

from where lnµ(Rj , f) > −(n − 1) lnM(Rj , f) = −[2λ] lnM(Rj , f), and we get
(1.15).

Note also, that as is shown by Example 6 from Section 6 of Chapter 4 (see
(6.61)), without the assumption λ < ∞ we cannot claim that the upper limit in
(1.15) is finite.

The estimate (1.15) is not sharp for λ 6= 1/2. A sharp estimate in the case
λ ≤ 1 is obtained in Theorem 3.4 and Corollary 2 from it. No sharp estimate is
known1 for λ > 1.

Theorem 1.3 can be generalized in the following way.

Theorem 1.3
′
. Let f(z) be an entire function of finite lower order λ, and let

l be a number satisfying the conditions

(1.14′) 0 < l ≤ 2π, l <
π

λ
.

Then there exists a sequence of arcs {|z| = rk, θk ≤ arg z ≤ θk + l}, rk → ∞,
0 ≤ θk < 2π on which |f(z)| approaches ∞ uniformly with respect to arg z.

Proof. If lim supr→∞ µ(r, f) = ∞, we can let l = 2π, therefore it suffices to
consider the case when µ(r, f) = O(1). In such a case we are under conditions of
Theorem 1.2. Using the same notation as in the proof of Theorem 1.2, we can write
the inequality (1.12). If the inequality lim supr→∞ lj(r) <

π
λ

were satisfied, then,
taking γ satisfying lim supr→∞ lj(r) < γ < π

λ , by (1.12) we would get

ln lnM(er, f) ≥ π

γ
ln r +O(1).

1Sharp estimate is still unknown. See the editor’s Appendix in the end of the book for a
survey of known results.
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Since π
γ
> λ, we would get a contradiction with the assumption that the lower order

of f(z) is equal to λ. Thus lim supr→∞ lj(r) ≥ π
λ .

We see from here that if the number l satisfies the conditions (1.14′), then there

exists a sequence r
(1)
k → ∞ such that lj(r

(1)
k ) > l, k = 1, 2, . . . . By the definition

of lj(r), this indicates that there exists a sequence of arcs S
(1)
k = {|z| = r

(1)
k , θ

(1)
k ≤

arg z ≤ θ
(1)
k + l}, such that |f(z)| ≥ 1 for z ∈ S

(1)
k , k = 1, 2, . . . . Considering

instead of f(z) the function f(z)/n, where n is an arbitrary positive integer, we

get a sequence of arcs S
(n)
k = {|z| = r

(n)
k , θ

(n)
k ≤ arg z ≤ θ

(n)
k + l}, 0 ≤ θ

(n)
k < 2π,

limk→∞ r
(n)
k = ∞, such that |f(z)| ≥ n for z ∈ S(n)

k , k = 1, 2, . . . . The sequence

S
(n)
n , n = 1, 2, . . . , has the desired property. �

Theorem 1.4 (Denjoy, Carleman, Ahlfors). If an entire function f(z) has p
asymptotic spots {aj , Cj}, 1 ≤ j ≤ p, aj 6=∞, then it satisfies (1.1).

Proof. Let r0 be so large that the circle {|z| = r0} intersects each curve Cj ,
1 ≤ j ≤ p, and the curves are pairwise disjoint for |z| ≥ r0. We may assume without
loss of generality that the initial points zj of curves Cj lie on the circle {|z| = r0},
and the rest of the curve is situated in {|z| > r0} (if necessary, we delete the part
of Cj between the initial point and the last point of intersection with {|z| = r0}).
We may assume that the curves Cj are numbered in such a way that indexes of the
points z1, . . . , zp are growing as we follow circle {|z| = r0} in the positive direction.
The curves C1, . . . , Cp separate the region {r0 < |z| < ∞} into simply connected
regions D1, . . . , Dp; the region Dj lies between the curves Cj and Cj+1, Cp+1 = C1.
Obviously the function f(z) is bounded on the boundary of Dj in the complex
plane. Let us show that f(z) is unbounded in the region Dj .

Lemma 1.2 (Lindelöf). Let Φ(z) be analytic and bounded in {Rez > 0}, and
continuous in {Rez ≥ 0}. Let Φ(iy)→ a1 as y → +∞ and Φ(iy)→ a2 as y → −∞.
Then a1 = a2 = a, and the function Φ(z) approaches a as z →∞, Rez ≥ 0.

Proof. First we suppose that a1 = a2 = a. For each ε > 0 there exists
r1 = r1(ε) such that |Φ(iy) − a| < ε for |y| ≥ r1(ε). Let the number q > r1 be so
large that ∣∣∣∣ z

z + q
{Φ(z)− a}

∣∣∣∣ ≤ r1

q − r1
max
z∈γ
|Φ(z)− a| < ε

on the arc γ = {|z| = r1, Rez ≥ 0}. Since∣∣∣∣ z

z + q

∣∣∣∣ < 1 for Rez ≥ 0,

on the boundary of the region G = {|z| > r1} ∩ {Rez > 0} in the complex plane
we have ∣∣∣∣ z

z + q
{Φ(z)− a}

∣∣∣∣ ≤ ε,(1.16)

and the left-hand side of (1.16) is bounded in the region G. Lemma 1.1 implies
that the inequality (1.16) holds everywhere in G. Now let |z| > q, Rez ≥ 0. The
inequality (1.16) implies

|Φ(z)− a| ≤ ε
∣∣∣∣z + q

z

∣∣∣∣ ≤ ε(1 +
q

|z|

)
< 2ε,
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that is, Φ(z) approaches a as z →∞, Rez ≥ 0.
Now we assume that a1 6= a2. Then the function

F (z) =

{
Φ(z)− a1 + a2

2

}2

(1.17)

satisfies the condition of the lemma and F (iy) →
(
a1 − a2

2

)2

as y → +∞ and

y → −∞. As was proved above the function F (z) approaches

(
a1 − a2

2

)2

as

z →∞, Rez ≥ 0.
From (1.17) we see that there is a single-valued of

√
F (z) in {Rez ≥ 0} such

that

Φ(z)− a1 + a2

2
=
√
F (z).

But
√
F (iy) approaches either (a1 − a2)/2 or (a2 − a1)/2 as |y| → ∞, that is,

Φ(iy) approaches a1 or a2 as |y| → ∞, it contradicts the assumption that Φ(iy)
has different limits as y → +∞ and y → −∞. �

We continue the proof of the theorem. Assume that the function f(z) is
bounded in the region Dj. Let function z = ω(ζ) be a conformal univalent mapping
of the half-plane {Reζ > 0} onto Dj, ω(∞) =∞. Then the function Φ(ζ) = f(ω(ζ))
satisfies the conditions of Lemma 1.2 with the roles of a1 and a2 played by aj+1

and aj, respectively. The lemma implies that aj+1 = aj = a and Φ(ζ) approaches
a as ζ → ∞, Reζ ≥ 0 and, hence, as ζ → ∞, Reζ ≥ 0, |ζ| = k, k = 1, 2, . . . .
Denote by γk the image of the semi-circle {Reζ ≥ 0, |ζ| = k} under the mapping
z = ω(ζ). It is clear that the distance between γk and z = 0 approaches ∞ as
k → ∞. Then f(z) → a as z → ∞, z ∈

⋃
k γk. According to the definition the

asymptotic spots {aj, Cj} and {aj+1, Cj+1} coincide, we get a contradiction. Thus
the function f(z) is unbounded in the region Dj, 1 ≤ j ≤ p. By the remark to
Theorem 1.1 there exists an asymptotic curve C′j in Dj such that f(z) approaches

∞ along it. Obviously {∞, C′j}, 1 ≤ j ≤ p, are different asymptotic spots, because
the function f(z) is bounded on Cj . Hence we are under the conditions of Theorem
1.2, therefore (1.1) is satisfied. �

Corollary. An entire function of finite lower order λ cannot have more than
[2λ] different finite asymptotic values and even [2λ] different asymptotic spots with
finite asymptotic values (the second statement is stronger).

Exercise. Use the example

f(z) = z−p/2 sin(zp/2), p = 1, 2, . . . ,

to show that the estimate from the corollary is attained.

2. Non-asymptotic deficient values

For a long time the following conjecture of R. Nevanlinna was considered as
plausible: an entire function of a finite order ρ can have at most [2ρ] finite defi-
cient values. The point is that it seemed likely that each deficient value of an entire
function is asymptotic. Theorem 5.1 from Chapter 4 not only disproves this conjec-
ture, but also shows that an entire function of an arbitrary order ρ, 1/2 < ρ <∞,
can have an infinite set of deficient nonasymptotic values, because the number of
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asymptotic values does not exceed [2ρ]. The restriction ρ > 1/2 is natural for
entire functions, since for ρ ≤ 1/2 an entire function, as will be shown in Section
3 (for ρ < 1/2 this was shown in Corollary 1 from Theorem 1.3), does not have
finite deficient values, and a Picard exceptional value at∞ is necessarily an asymp-
totic value. Now we show that for meromorphic functions a deficient value can be
nonasymptotic even for 0 < ρ ≤ 1/2. It is still unknown2 whether this is true for
ρ = 0.

Since the construction of the example is rather simple we will not restrict
ourselves to the case 0 < ρ ≤ 1/2, but will consider the general case 0 < ρ <∞.

Example 1. Let a = 4ρ, 0 < ρ <∞. Consider the function

f(z) =

∞∑
k=1

(
3 · 4k

z − 5 · 4k

)[ak]

+

∞∑
k=1

(
6 · 4k

z + 10 · 4k

)[ak]

=

∞∑
k=1

Hk(z) +

∞∑
k=1

H−k(z).

(2.1)

It is easy to check, using the convergence of the series

∞∑
k=1

(
3

5

)[ak]

, that both series

from (2.1) are absolutely and uniformly convergent in each disc of finite radius, and
therefore, the function f(z) determined by (2.1) is meromorphic.

We introduce the following notation (k = 1, 2, . . . ):

C+k = {|z − 5 · 4k| < 3 · 4k},
C̃+k = {|z − 5 · 4k| < 4 · 4k},
C−k = {|z + 10 · 4k| < 6 · 4k},
C̃−k = {|z + 10 · 4k| < 8 · 4k}

It is easy to check that the discs Cj , j = ±1,±2, . . . , are pairwise disjoint and that

none of the point in the plane is covered by more than two discs C̃j . Note that for

z /∈ C̃k (k ≥ 1) the inequality∣∣∣∣ 3 · 4k
z − 5 · 4k

∣∣∣∣ ≤ 3 · 4k
4 · 4k =

3

4

holds, and for z /∈ C̃k (k ≤ −1) the inequality∣∣∣∣ 6 · 4|k|
z + 10 · 4|k|

∣∣∣∣ ≤ 6 · 4|k|
8 · 4|k| =

3

4

holds. Therefore, if z /∈
⋃
j∈A C̃j , where A is an arbitrary subset of the set B of

nonzero integers, then∣∣∣∣∣∣
∑
j∈A

Hj(z)

∣∣∣∣∣∣ ≤
∑
j∈A

(
3

4

)[a|j|]

≤ 2

∞∑
j=1

(
3

4

)aj
= M <∞.(2.2)

It is easy to see that outside
⋃
j∈B Cj the function f(z) is bounded. In fact, if

z /∈
⋃
j∈B C̃j , then, by (2.2), we have |f(z)| ≤M . If z is covered by discs C̃j , then

2Ter-Israelian [A150] constructed a meromorphic function of order 0 with a deficient non-
asymptotic value.
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it is covered by at most two such discs, so it is either covered by C̃j0 only, or by C̃j0
and C̃j0+1. Consider, for example, the second case. Let z /∈ C̃j , j 6= 0, j0, j0 + 1;

z ∈ C̃j ,j = j0, j0 + 1. By (2.2) we have

|f(z)| ≤ |Hj0(z)|+ |Hj0+1(z)|+

∣∣∣∣∣∣
∑

j 6=0,j0,j0+1

Hj(z)

∣∣∣∣∣∣ ≤ |Hj0(z)|+ |Hj0+1(z)|+M.

But if z /∈ Cj , then |Hj(z)| ≤ 1. Therefore |f(z)| ≤ 2 + M . If z belongs to only

one of the sets C̃j0 , using a similar argument we get |f(z)| ≤ 1 + M . In any case
we have

|f(z)| ≤ 2 +M = M1, z /∈
⋃
j∈B

Cj .(2.3)

Since the discs Cj are pairwise disjoint, it is obvious that for each continuous curve
γ tending to ∞ we have

lim inf
z→∞
z∈γ

|f(z)| ≤M1

and hence, ∞ cannot be an asymptotic value for f(z).
If z ∈ Cj then, using (2.2) and using the same argument as in the proof of

(2.3), we get

|Hj(z)| −M1 ≤ |f(z)| ≤ |Hj(z)|+M1, z ∈ Cj .(2.4)

By (2.3) and (2.4) everywhere in the complex plane the relations

ln+ |f(z)| =
∑
j∈B

ln+ |Hj(z)|+ Ω(z), |Ω(z)| ≤ ln(2M1)

hold, hence

m(r, f) =
∑
j∈B

m(r,Hj) +O(1).(2.5)

Let k ≥ 1. Then

m(r,Hk) = [ak]
1

2π

∫ 2π

0

ln+ 3 · 4k
|reiϕ − 5 · 4k|dϕ

= [ak]
1

2π

∫ 2π

0

ln+ 3

|4−kreiϕ − 5|dϕ = [ak]I1

( r
4k

)
,

(2.6)

where the function

I1(t) =
1

2π

∫ 2π

0

ln+ 3

|teiϕ − 5|dϕ

is continuous for t ≥ 0, positive for 2 < t < 8, and is equal to zero outside this
interval. Similarly

m(r,H−k) = [ak]I2

( r
4k

)
,(2.7)

where the function

I2(t) =
1

2π

∫ 2π

0

ln+ 6

|teiϕ + 10|dϕ

is continuous for t ≥ 0, positive for 4 < t < 16, and is equal to zero outside this
interval.
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Let 2 · 4k ≤ r ≤ 8 · 4k, k = 2, 3, . . . . Then

m(r, f) +O(1) =
∞∑
j=1

[aj ]I1

( r
4j

)
+
∞∑
j=1

[aj ]I2

( r
4j

)
= [ak]I1

( r
4k

)
+ [ak]I2

( r
4k

)
+ [ak−1]I2

( r

4k−1

)
= O(1) + ak

{
I1

( r
4k

)
+ I2

( r
4k

)
+

1

a
I2

( r

4k−1

)}
.

(2.8)

Let r4−k = t. The function

I(t) = I1(t) + I2(t) +
1

a
I2(4t)

is continuous and positive on the closed interval [2, 8] because Ij(t) ≥ 0, j = 1, 2,
I1(t) > 0 on the interval (2, 8), I2(t) > 0 on the interval (4, 16), and I2(4t) > 0 is
positive on the interval (1, 4). Therefore

0 < µ1 = min
[2,8]

I(t) ≤ max
[2,8]

I(t) = µ2 <∞.

Relation (2.8) implies that for 2 · 4k ≤ r ≤ 8 · 4k the inequality

µ1a
k +O(1) ≤ m(r, f) ≤ µ2a

k +O(1)

holds. But a = 4ρ, therefore( r
8

)ρ
= ak = (4k)ρ ≤

(r
2

)ρ
,

and

8−ρµ1r
ρ + O(1) ≤ m(r, f) ≤ 2−ρµ2r

ρ +O(1).(2.9)

It is easy to see that

n(r, f) =

p(r)∑
k=1

[ak] +

q(r)∑
k=1

[ak], p(r) =

[
ln r

5

ln 4

]
, q(r) =

[
ln r

10

ln 4

]
.

Therefore

n(r, f) ≤
p(r)∑
k=1

ak +

q(r)∑
k=1

ak =
ap(r)+1 − a
a− 1

+
aq(r)+1 − a
a− 1

≤ a

a− 1
{ap(r) + aq(r)} ≤ 2a

a− 1
ap(r) ≤ 2a

a− 1
4ρ

ln r
5

ln 4 =
2a

a− 1

(r
5

)ρ
= K1r

ρ.

Hence (r > 20)

N(r, f) ≤ K1

ρ
rρ = K2r

ρ.(2.10)

The formulas (2.9) and (2.10) imply that

T (r, f) ≤ (2−ρµ2 +K2)rρ +O(1) = Krρ +O(1).(2.11)

From (2.9) and (2.11) we get

δ(∞, f) = lim inf
r→∞

m(r, f)

T (r, f)
≥ 8−ρµ1

K
> 0,

that is, ∞ is a deficient value. Formulas (2.9) and (2.11) imply that the order of
f(z) is equal to ρ. Thus the function f(z) has the desired properties.
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We see that in Iversen’s Theorem 1.1 the condition a ∈ EP (f) cannot be re-
placed by a weaker condition a ∈ EN (f). Now we show that even the condition
δ(a, f) = 1, and also the condition a ∈ EB(f), does not imply that a is an asymp-
totic value. Here is an example.

Example 2. Let 1 < ρ <∞. Let lj(r), j = 1, 2, be two continuously differen-
tiable functions on [0,∞) satisfying the conditions:

A. α ≤ lj(r) ≤ ρ, where α is a number satisfying

ρ

2ρ− 1
< α < 1.

B. |l′j(r)| = O{(r ln r ln2 r ln3 r)
−1} as r → ∞, where lnj r = ln lnj−1 r,

ln1 r = ln r.

C. There exist sequences of [a
(j)
n , b

(j)
n ] of closed intervals n = 1, 2, . . . ; j = 1, 2,

such that a
(j)
n →∞, b

(j)
n − a(j)

n ≥ n2, and lj(r) ≡ α for a
(j)
n ≤ r ≤ b(j)n .

D. l(r) = max{l1(r), l2(r)} ≡ ρ for 0 ≤ r <∞.

It is easy to see that such functions lj(r) can be constructed.
In what follows z = reiϕ, |ϕ| ≤ π. We consider the finctions analytic in the

plane with a cut along the negative ray

λj(z) = z

∫ ∞
0

lj(t)dt

(t+ z)2
, j = 1, 2.

We show that in each angle {|ϕ| ≤ π − δ}, δ > 0, the relation

λj(z) = lj(r) + o

(
1

ln r

)
(2.12)

holds uniformly with respect to ϕ. As we already observed in Section 5 of Chapter
2, for |ϕ| ≤ π − δ, 0 ≤ t <∞, the inequality

|t+ z| ≥ (t+ r) sin
δ

2

holds. Since

z

∫ ∞
0

dt

(t+ z)2
= 1 for |ϕ| < π,

we have

|λj(z)− lj(r)| =
∣∣∣∣z ∫ ∞

0

lj(t)− lj(r)
(t+ z)2

dt

∣∣∣∣ ≤ r

sin2 δ
2

∫ ∞
0

|lj(t)− lj(r)|
(t+ r)2

dt

=
r

sin2 δ
2

(∫ r

(ln r)2

0

+

∫ r(ln r)2

r

(ln r)2

+

∫ ∞
r(ln r)2

)
|lj(t)− lj(r)|

(t+ r)2
dt.

(2.13)

In the first and the third integrals we use the estimate |lj(t) − lj(r)| ≤ ρ. If
r(ln r)−2 ≤ t ≤ r(ln r)2, then | ln(t/r)| ≤ 2 ln2 r. Using the mean value theorem,
we get

lj(t)− lj(r) =
dlj(t)

d ln t

∣∣∣∣
t=ξ

ln
t

r
, r(ln r)−2 ≤ ξ ≤ r(ln r)2,

from where, using the condition B we obtain

|lj(t)− lj(r)| = O{(ln ξ ln2 ξ ln3 ξ)
−1}2 ln2 r = O{(ln r ln3 r)

−1}, r →∞.
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Substituting these estimates into (2.13) we get

|λj(z)− lj(r)|

≤ r

sin2 δ
2

(
ρ

∫ r(ln r)−2

0

dt

(t+ r)2
+O{(ln r ln3 r)

−1}
∫ r(ln r)2

r(ln r)−2

dt

(t+ r)2

+ ρ

∫ ∞
r(ln r)2

dt

(t+ r)2

)
≤ r

sin2 δ
2

(
ρ

r2

∫ r(ln r)−2

0

dt

+ O{(ln r ln3 r)
−1}

∫ r(ln r)2

r(ln r)−2

dt

(t+ r)2
+ ρ

∫ ∞
r(ln r)2

dt

t2

)
= O{(ln r)−2}+O{(ln r ln3 r)

−1} = o{(ln r)−1},
that is, (2.12) has been proved. Note that (2.12) remains true, if the condition A
is replaced by lj(r) = o(ln r). The condition (2.12) implies that the relation

zλj(z) = (1 + o(1))zlj(r), r →∞.(2.14)

in the angle {|ϕ| ≤ π − δ}.
Let number θ be such that

1 < θ <
2ρα

ρ+ α
< 2.

Denote by Γj(t) the boundary of the region Dj(t) = {r > t, |ϕ| < πθ/2lj(r)}, t ≥ 1,
oriented in such a way that the region Dj(t) is on the right-hand side of Γj(t). By
(2.14) it is clear that for z ∈ Γj(1) we have

Rezλj(z) = rlj(r)
(

cos
π

2
θ + o(1)

)
.

In the complement to D̄(1) we define an analytic function Fj(z) by a Cauchy-type
integral

Fj(z) =
1

2πi

∫
Γj(1)

exp(ζλj(ζ))

ζ − z dζ, z /∈ D̄j(1),

and the consider an analytic continuation of Fj(z) to the complex z-plane, setting

Fj(z) =
1

2πi

∫
Γj(t)

exp(ζλj(ζ))

ζ − z dζ, t > |z|.

Thus, Fj(z) is an entire function.
Let θ′ and θ′′ be arbitrary numbers satisfying 1 < θ′ < θ < θ′′ < 2. We denote

the functions which we get if in the definition of Γj(t) and Dj(t) we replace θ by θ′

(or θ′′) by Γ′j(t) and D′j(t) (or by Γ′′j (t) and D′′j (t), respectively). Using (2.14) it is
easy to check that the inequality

Rezλj(z) ≤ rlj(r)
(

cos
π

2
θ′ + o(1)

)
holds on arcs {|z| = r, πθ′/2lj(r) < |ϕ| < πθ′′/2lj(r)}, therefore, applying the
integral Cauchy theorem (compare with Example 3 from Section 5, Chapter 2), we
get:

1) If z /∈ Dj(1), then

Fj(z) =
1

2πi

∫
Γ′j(1)

exp(ζλj(ζ))

ζ − z dζ,



186 5. ASYMPTOTIC PROPERTIES

2) If z ∈ Dj(1), then

Fj(z) =
1

2πi

∫
Γ′′j (t)

exp(ζλj(ζ))

ζ − z dζ, t > |z|.

If |z| > R, where R > 1 is sufficiently large, then z /∈ Dj(1) implies that the
distance from z to Γ′j(1) is greater than 1, and z ∈ Dj(1) implies that the distance
for z to Γ′′j (1) is greater than 1. Assume that |z| > R. If z /∈ Dj(1), then

|Fj(z)| ≤ 1

2π

∫
Γ′j(1)

exp(Reζλj(ζ))|dζ| <∞.

If z ∈ Dj(1), then

Fj(z) =
1

2πi

∫
Γ′′j (1)

exp(ζλj(ζ))

ζ − z dζ +
1

2πi

∫
Γ′′j (t)−Γ′′j (1)

exp(ζλj (ζ))

ζ − z dζ,

where Γ′′j (t) − Γ′′j (1) is the boundary of the region {1 < r < t, |ϕ| < πθ′′/2lj(r)}.
Since ∣∣∣∣∣ 1

2πi

∫
Γ′′j (1)

exp(ζλj(ζ))

ζ − z dζ

∣∣∣∣∣ ≤ 1

2π

∫
Γ′′j (1)

exp(Reζλj(ζ))|dζ| <∞

and

1

2πi

∫
Γ′′j (t)−Γ′′j (1)

exp(ζλj(ζ))

ζ − z dζ = exp(zλj(z)),

we have

Fj(z) = exp(zλj(z)) +O(1).

As a result we get for the entire function Fj(z) the following relations:

Fj(z) =

{
O(1), z /∈ Dj(1),

exp(zλj(z)) +O(1), z ∈ Dj(1).

Denote by ∆1 the region D1(1), and by ∆2 the region symmetric to D2(1)
about the imaginary axis. By the condition D,

1

l1(r)
+

1

l2(r)
≤ 1

ρ
+

1

α
<

2

θ
, r ≥ 0,

therefore

π − πθ

2l2(r)
>

πθ

2l1(r)
,

and the closed regions ∆̄1 and ∆̄2 do not intersect. Denote by ∆3 the complement
of ∆1∪∆2 in the complex plane. Then the function Ψ(z) = F1(z)+F2(−z) satisfies
the condition:

Ψ(z) =


exp{zλ1(z)}+O(1), z ∈ ∆1,

exp{(−z)λ2(−z)}+O(1), z ∈ ∆2,

O(1), z ∈ ∆3.

(2.15)
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Let α < β < 1,

V (z) =

∞∏
n=1

(
1− z

n1/β

)
, Φ(z) = V (z)V (−z).

Since all zeros of V (z) are positive and n(r, 0, V ) = [rβ ], we can use for V (z) the
asymptotic formulas (5.32) from Chapter 2. Let η be an arbitrarily small number
satisfying 0 < η < πθ/2ρ. Then

ln |V (reiϕ)| = rβ
π

sinπβ
cosβ(ϕ − π) + o(rβ)(2.16)

uniformly in ϕ satisfying η ≤ ϕ ≤ 2π − η. If we replace the equality sign in (2.16)
by ≤, we get a relation valid for all ϕ, 0 ≤ ϕ < 2π. We need also the following
lemma.

Lemma 2.1. Let µ(r, V ) = min|z|=r |V (z)|, rn =
(
n+ 1

2

)1/β
, n = 1, 2, 3, . . . .

Then

lnµ(rn, V ) = ln |V (rn)| = rβnπ cotπβ + o(rβn).(2.17)

Joining (2.16) and (2.17), it is easy to see that (2.16) holds for all ϕ, 0 ≤ ϕ < 2π
as r = rn → ∞. We do not want to interrupt our presentation of Example 2, for
this reason we shall prove Lemma 2.1 later.

Since

Φ(z) =

∞∏
n=1

{
1−

( z

n1/β

)2
}
,

then obviously, µ(r,Φ) = |Φ(r)| = |V (r)||V (−r)| = µ(r, V )M(r, V ). Therefore

lnµ(rn,Φ) = lnµ(rn, V ) + lnM(rn, V )

= rβn

{
π cotπβ +

π

sinπβ

}
+ o(rβn) = rβnπ cot

πβ

2
+ o(rβn).

(2.18)

Hence µ(rn,Φ)→∞ as n→∞. The relation (2.16) implies that for η ≤ |ϕ| ≤ π−η

ln |Φ(reiϕ)| = (1 + o(1))A(β) cos β
(
|ϕ| − π

2

)
rβ ,

A(β) = π csc
πβ

2

(2.19)

holds uniformly in ϕ, furthermore, for r = rn → ∞ the relation (2.19) holds
uniformly in ϕ, |ϕ| ≤ π.

We show that the function f(z) = Ψ(z)/Φ(z) has the desired properties. The
relation (2.19) implies that for η ≤ |ϕ| ≤ π − η the function |Φ(reiϕ)| uniformly
approaches ∞ as r → ∞. By (2.15) the function f(z) approaches 0 uniformly as
z →∞, z ∈ ∆3. For r = rn and |ϕ| ≤ π we get from (2.15) and (2.19) that

|f(reiϕ)| = exp{(1 + o(1))[rlj (r) cos(lj(r)ϕ)

−A(β) cosβ
(
|ϕ| − π

2

)
rβ ]}+ o(1) for reiϕ ∈ ∆j , j = 1, 2.

(2.20)

Taking into account the condition D, we get

(1 + o(1))
1

πρ
rρn ≤ m(rn, f) ≤ (1 + o(1))

2

πρ
rρn.(2.21)
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It is easy to see that n(r, f) = n(r, 0,Φ) +O(1) ∼ 2rβ ,

N(r, f) ∼ 2

β
rβ .(2.22)

From (2.21) and (2.22) we get

(1 + o(1))
1

πρ
rρn ≤ T (rn, f) ≤ (1 + o(1))

2

πρ
rρn.

Since the function T (r, f) is increasing and rn+1/rn → 1, for all r > 0 we have

(1 + o(1))
1

πρ
rρ ≤ T (r, f) ≤ (1 + o(1))

2

πρ
rρ.(2.23)

The formulas (2.22) and (2.23) imply that δ(∞, f) = 1 and that ∞ is a Borel
exceptional value.

Now we show that ∞ is not an asymptotic value. Since β > 1/2, we have
rn+1 − rn = O(n) = o(n2). Taking into account the condition C we see that for

all sufficiently large k the segment [a
(j)
k , b

(j)
k ] contains a point r

(j)
nk . On the arcs

{|z| = r
(j)
nk , z ∈ ∆j}, j = 1, 2, by the condition C and the relation (2.20) we have

(r = r
(j)
nk )

|f(reiϕ)| = exp
{

(1 + o(1)
[
O(rα)−A(β) cos β

(
|ϕ| − π

2

)
rβ
]}

+o(1) ≤ exp

{
−(1 + o(1))π cot

πβ

2
rβ
}

+ o(1) = o(1).

Since, as we already observed, |f(z)| = o(1) when z → ∞, z ∈ ∆3, it is clear that
∞ cannot be an asymptotic value.

A slight modification of the example is necessary in the case ρ = ∞. Let
1/2 < α < β < 1, 1 < θ < 2α. We choose the functions lj(r) in such a way that
they satisfy the conditions B and C, and also the following conditions:

A′. α ≤ lj(r) <∞.
D′. l(r)→∞, l(r) = o(ln r) as r →∞.
E′. If l1(r) < 2θα/(2α−θ), then l2(r) > θα, and if l2(r) < 2θα/(2α−θ), then

l1(r) > θα.

With these modifications the previous argument can be used. We leave veri-
fication of this as an exercise for interested readers. Later in this section we shall
construct an example of an entire function of infinite order for which δ(0, f) = 1,
but 0 is not an asymptotic value. However, in this example 0 /∈ EB(f).

Now we prove Lemma 2.1.

Proof. It is clear that µ(r, V ) = |V (r)|. Since (2.16) with = replaced by ≤
holds also for ϕ = 0, it remains to show that

ln |V (rn)| ≥ rβnπ cotπβ + o(rβn).(2.24)

We have

ln |V (rn)| =
n∑
k=1

ln
( rn

k1/β
− 1
)

+

∞∑
k=n+1

ln
(

1− rn

k1/β

)

=
n∑
k=1

ln
rn

k1/β
+

n∑
k=1

ln

[
1−

(
k

n+ 1
2

)1/β
]

+
∞∑

k=n+1

ln

[
1−

(
n+ 1

2

k

)1/β
]
.

(2.25)
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Since n(r, 0, V ) = (1 + o(1))rβ , we get

n∑
k=1

ln
rn

k1/β
= N(rn, 0, V ) = (1 + o(1))

rβn
β
.(2.26)

It is easy to check that the functions ln(1 − xβ) and ln(1 − x−β) are concave on
intervals (0, 1) and (1,∞), respectively. Therefore for |t| ≤ 1/2 we have

ln

[
1−

(
k

n+ 1
2

)1/β
]
≥ 1

2

{
ln

[
1−

(
k + t

n+ 1
2

)1/β
]

+ ln

[
1−

(
k − t
n+ 1

2

)1/β
]}

if k ≤ n, and

ln

[
1−

(
n+ 1

2

k

)1/β
]
≥ 1

2

{
ln

[
1−

(
n+ 1

2

k + t

)1/β
]

+ ln

[
1−

(
n+ 1

2

k − t

)1/β
]}

if k ≥ n+ 1. Integrating the first of these inequalities with respect to t from 0 to
1/2, we get:

ln

[
1−

(
k

n+ 1
2

)1/β
]
≥
∫ 1/2

0

{
ln

[
1−

(
k + t

n+ 1
2

)1/β
]

+ ln

[
1−

(
k − t
n+ 1

2

)1/β
]}

dt

=

∫ 1/2

−1/2

ln

[
1−

(
k + t

n+ 1
2

)1/β
]
dt =

∫ k+1/2

k−1/2

ln

[
1−

(
x

n+ 1
2

)1/β
]
dx, k ≤ n,

similarly,

ln

[
1−

(
n+ 1

2

k

)1/β
]
≥
∫ k+1/2

k−1/2

ln

[
1−

(
n+ 1

2

x

)1/β
]
dx, k ≥ n+ 1.

Hence

n∑
k=1

ln

[
1−

(
k

n+ 1
2

)1/β
]

+

∞∑
k=n+1

ln

[
1−

(
n+ 1

2

k

)1/β
]

≥
∫ n+1/2

1/2

ln

[
1−

(
x

n+ 1
2

)1/β
]
dx+

∫ ∞
n+1/2

ln

[
1−

(
n+ 1

2

x

)1/β
]
dx

≥
∫ n+1/2

0

ln

[
1−

(
x

n+ 1
2

)1/β
]
dx+

∫ ∞
n+1/2

ln

[
1−

(
n+ 1

2

x

)1/β
]
dx

= βrβn

{∫ 1

0

uβ−1 ln(1− u)du+

∫ ∞
1

uβ−1 ln
u− 1

u
du

}
= βrβnI(β).

(2.27)

Here we made the change of variable x =
(
n+ 1

2

)
uβ = rβnu

β. Now we compute
I(β), 0 < β < 1. Note that the function

I(z) =

∫ 1

0

uz−1 ln(1− u)du+

∫ ∞
1

uz−1 ln
u− 1

u
du(2.28)

is analytic in the strip {|Rez| < 1}. Let us compute I(z) for z = −σ, 0 < σ < 1.
We can rewrite

I(−σ) =

∫ ∞
0

u−σ−1 ln |1− u|du−
∫ ∞

1

u−σ−1 lnudu.
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The first of these integrals can be easily computed using the residue calculus:∫ ∞
0

u−σ−1 ln |1− u|du

= lim
ε→+0

{∫ ∞
1+ε

u−σ−1 ln(u − 1)du+

∫ 1−ε

0

u−σ−1 ln(1− u)du

}
= lim

ε→+0

{
− 1

σ
u−σ ln(u− 1)|∞1+ε +

1

σ

∫ ∞
1+ε

u−σ

u− 1
du

− 1

σ
u−σ ln(1 − u)|1−ε0 +

1

σ

∫ 1−ε

0

u−σ

u− 1
du

}
= lim

ε→+0

1

σ
ln ε{(1 + ε)−σ − (1 − ε)−σ}+

1

σ
v.p.

∫ ∞
0

u−σ

u− 1
du

=
π

σ
cotπσ,

(2.29)

the second integral can be easily computed using integration by parts:∫ ∞
1

u−σ−1 lnudu =
1

σ2
.(2.30)

Thus

I(−σ) =
π

σ
cotπσ − 1

σ2
.(2.31)

The function
π

z
cotπz − 1

z2

is analytic in the strip {|Rez| < 1} and coincides with I(z) on the interval {Imz =
0,−1 < Rez < 0}. Hence

I(z) =
π

z
cotπz − 1

z2
(2.32)

everywhere in the strip {|Rez| < 1}, in particular,

I(β) =
π

β
cotπβ − 1

β2
.(2.33)

Joining (2.25), (2.26), (2.27), and (2.33), we get (2.24). �

Remark. If we use the representation

π cotπz =
1

z
+
∞∑
n=1

2z

z2 − n2
,

we can get the equality (2.32) in an easier way. Replacing u by u−1 in the second
integral in (2.28), we get

I(z) =

∫ 1

0

uz−1 ln(1− u)du+

∫ 1

0

u−z−1 ln(1− u)du

= −
∫ 1

0

{ ∞∑
n=1

un+z−1 + un−z−1

n

}
du = 2

∞∑
n=1

1

z2 − n2
=
π

z
cotπz − 1

z2
.

It is worth mentioning that we will use the equalities (2.29) and (2.30) in Section
3 (Lemma 3.3).
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Now we construct an example showing that a meromorphic function of order
ρ, 0 < ρ < ∞, can have a Borel exceptional value which is not asymptotic. In the
same example a Borel exceptional value is not deficient.

Example 3. Let 0 < ρ < ∞, 0 < α < β < min(ρ, 1/2), n is an odd in-
teger exceeding 2ρ. Let V (z) be a function from Lemma 2.1. Take a continu-
ously differentiable for r ≥ 0 function l(r) such that l′(r)r ln r → 0 as r → ∞,
α/n ≤ l(r) ≤ ρ/n < 1/2, where l(rnk ) = ρ/n for some sequence rk → ∞ and for
some increasing sequence {nj} of positive integers we have

l

((
nj +

1

2

)n/β)
=
α

n
.(2.34)

It is easy to see that such function l(r) exists. Let Φ(z) be a canonical product of
genus zero with positive zeros aj such that n(r, 0,Φ) ∼ rl(r) as r →∞.

Using the relations (5.2′2) and (5.4) from Chapter 2 we get

lnM(r,Φ) ∼ π csc(πl(r))rl(r),

T (r,Φ) ∼ 1

l(r)
rl(r).

Let Ψ(z) = Φ(zn), l1(r) = l(rn). By Theorem 6.6 from Chapter 1 we have

lnM(r,Ψ) ∼ π csc(πl1(r))rnl1(r),(2.35)

T (r,Ψ) ∼ 1

l1(r)
rnl1(r).(2.36)

Since n is odd, then Ψ(z) does not have negative integers. The function f(z) =
Ψ(z)/V (−z) has the desired properties. It is obvious thatN(r,∞, f) = N(r, 0, V ) ∼
1
β
rβ . The function Ψ(z) has order ρ and the function V (−z) has order β < ρ, there-

fore the order of the function f(z) is equal to ρ and ∞ ∈ EB(f). We show that ∞

is not an asymptotic value. Let qj =

(
nj +

1

2

)1/β

. By (2.34) we have nl1(qj) = α.

Taking into account (2.17) and (2.35) we get

lnM(qj , f) ≤ lnM(qj ,Ψ)− lnµ(qj , V )

= qαj π csc
πα

n
+ o(qαj )− qβj π cotπβ + o(qβj )

= −qβj π cotπβ + o(qβj )→ −∞.

Hence M(qj , f) = o(1) and ∞ cannot be an asymptotic value.
By (2.36) we have

T (qj , f) ≥ T (qj , V )− T (qj ,Ψ) +O(1)

=
1

β
qβj + o(qβj )− 1

l1(qj)
qαj + o(qαj ) =

1

β
qβj + o(qβj ),

N(qj ,∞, f) =
1

β
qβj + o(qβj ),

hence δ(∞, f) = 0.
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Remark 1. Using the same idea it is possible to construct similar example
with ρ =∞. It will be necessary to replace the function Ψ(z) by the entire function
which was constructed in Section 6 of Chapter 4 (see (6.7) in Chapter 4).

Remark 2. In Example 2 the value ∞ was not only nonasymptotic Borel
exceptional value, but also the order of N(r,∞, f) was less than the lower order
of T (r, f). We do not know3 whether it is possible to construct such example with
ρ ≤ 1. In Example 3 we can take ρ ≤ 1, but in this example the order of N(r,∞, f)
exceeds the order of T (r, f).

We saw that if for a meromorphic function f(z) the order of N(r, a, f) is less
than the order of T (r, f), the value a does not have to be asymptotic. However the
following is true:

Theorem 2.1. Let f(z) be a meromorphic function of order ρ <∞, and orders
of N(r, a) and N(r, b), a 6= b, be less than ρ. Then a and b are asymptotic values.

Proof. It is clear that without loss of generality we may assume that a = 0,
b = ∞. The values 0 and ∞ are Borel exceptional values, hence, as it was shown
in Section 1 of Chapter 4, the order ρ is a positive integer. Let π1(z) and π2(z) be
canonical products built using zeros and poles of f(z), respectively. The order of
πj(z) is equal to ρj < ρ, and genus is equal to pj ≤ ρ − 1, here ρ1 is the order of
N(r, 0), and ρ2 is the order of N(r,∞).

The function f(z) can be represented in the form (see Theorem 4.1 from Chap-
ter 2):

f(z) = zmeαz
ρ

eQ(z)π1(z)

π2(z)
,(2.37)

where m is an integer, α 6= 0, Q(z) is a polynomial of degree at most ρ− 1. Let

1 > ε > 0; ρj + ε < ρ, j = 1, 2; h = max(ρ− 1 + ε, ρ1 + ε, ρ2 + ε) < ρ.

Since for r ≤ r0 the inequalities lnM(r, e−Q) ≤ rh, lnM(r, πj) ≤ rh hold, then

ln |f(z)| ≥ Re{αzρ}+ ln |π1(z)|+m ln |z| − lnM(r, e−Q)− lnM(r, π2)

= Re{αzρ}+ ln |π1(z)|+O(|z|h).
(2.38)

Let aj 6= 0 be a sequence of zeros of the function f(z). Then for r ≥ r1 we have
n(r, 0, f) ≤ rρ1+ ε

2 and ∑
j

|aj|−h <∞.

Let |z| = r > 1, R = 2r. Denote by gR(z) the function

gR(z) = π1(z)
∏
|aj|≤R

R2 − ājz
R(z − aj)

= π1(z)ωR(z).

Since |ωR(z)| = 1 for |z| = R, the equality

T (R, gR) = m(R, gR) = m(R, π1) = T (R, π1)(2.39)

holds. We have

ln |π1(z)| ≥ lnµ(|z|, gR)− ln |ωR(z)|.(2.40)

3This seems to be still unknown.
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But

lnµ(r, gR) = − lnM

(
r,

1

gR

)
≥ −R+ r

R− rT
(
R,

1

gR

)
= −3T

(
R,

1

gR

)
= −3{T (R, gR)− ln |gR(0)|}

= −3{T (R, π1)− ln |ωR(0)|} ≥ −3T (R, π1)

≥ −3Rh = −3 · 2hrh.

(2.41)

We exclude from the complex plane the set M =
⋃
j{|z−aj| ≤ |aj |−h}. Outside

this set for |z| = r ≥ r1 the inequality

ln |ωR(z)| =
∑
|aj |≤R

ln

∣∣∣∣ R2 − ājz
R(z − aj)

∣∣∣∣ ≤ ∑
|aj |≤R

ln
2R

|z − aj|

≤
∑
|aj |≤R

ln(2R|aj|h) ≤ n(R, 0, f) ln(2Rh+1)

≤ Rρ1+ ε
2 ln(2Rh+1) < Rh = 2hrh

(2.42)

holds.
Joining the inequalities (2.38), (2.40), (2.41), (2.42) we get that outside the set

M the inequality

ln |f(z)| ≥ Re{αzρ}+O(|z|h)(2.43)

holds. Let 0 < η < π
2 . In the angle W =

{
| argα+ ρ arg z| < π

2 − η
}

the inequality
Re{αzρ} ≥ |z|ρ|α| sin η holds. On the other hand, the sum of radiuses of the discs
forming M is finite. Therefore the open set W\M has one unbounded connected
component, in which we can draw a continuous curve C approaching ∞. On the
curve C

ln |f(z) ≥ |z|ρ|α| sin η +O(|z|h) = (1 + o(1))|z|ρ|α| sin η →∞

as z → ∞, that is, the curve C is an asymptotic curve with ∞ as an asymptotic
value. Applying this statement to 1/f(z) we get that 0 is also an asymptotic
value. �

It is still unknown whether Theorem 2.1 remains true4 without the assumption
ρ <∞.

The assumption that the orders of N(r, a) and N(r, b) are less than the order
of T (r, f) in Theorem 2.1 cannot be replaced by the assumption that a and b are
Borel exceptional values. It is shown in our next example.

Example 4. We construct an entire function f(z) of the first order such that
0 ∈ EB(f), but 0 is not an asymptotic value. Let f(z) be a following canonical
product of genus 1,

f(z) =

∞∏
m=1

(
1− z

am

)
e

z
am ,

4No. Hayman [A76] constructed an entire function f of infinite lower order, such that
N(r, 0, f) has order 1/2, but zero is not an asymptotic value.
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such that its roots are real,

n(r, 0) = O(r)(2.44)

and there exists a sequence 4 < r1 < r2 < r3 < . . . , such that the following
conditions are satisfied:

(a)

r3k+3 > 2er3k+2 , k = 0, 1, . . . .(2.45)

(b) The function f(z) does not have zeros in the annuluses Qk = {2r3k+2 ≤
|z| ≤ r3k+3}, k = 0, 1, . . . .

(c)

∑
|am|≤r3k+1

1

am
> k + 2, k = 0, 1, . . . .(2.46)

(d)

∑
|am|<r

1

am
= 0, r3k+2 < r < r3k+3, k = 0, 1, . . .(2.47)

Let us assume for a moment that sequences {am} and {rk} having the desired
properties exist and show that f(z) is the desired function.

The order of n(r, 0) cannot be less than one because otherwise the series∑
m

1
|am| would converge in contradiction with (2.46). Since f(z) is a canonical

product of genus one, its order is also equal to one. To determine the type of
T (r, f) we use the Lindelöf theorem (Theorem 4.4 from Chapter 2). For r = r3k+1

we have, using (2.46),

K(r) =
∑
|am|≤r

1

am
> k →∞,

therefore T (r, f) has maximal type and, by (2.44), 0 ∈ EB(f).
Let us show that zero is not an asymptotic value. For this it is enough to

establish that the function f(z) uniformly with respect to arg z approaches ∞ on
the sequence

{
|z| = Rk = exp

(
1
2r3k+2

)}
of circles. It is clear that 2r3k+2 < Rk <

1
2r3k+3. Since f(z) does not have zeros in the annuluses Qk, by (2.47), we can write

f(z) = gk(z)hk(z), k = 0, 1, 2, . . . ,(2.48)

where

gk(z) =
∏

|am|<2r3k+2

(
1− z

am

)
, hk(z) =

∏
|am|>r3k+3

E

(
z

am
, 1

)
.
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Since for |u| < 1/2 the inequality | lnE(u, 1)| ≤ |u|2
2 (1 + |u| + |u|2 + . . . ) ≤ |u|2

holds, then, taking into account (2.44), we have

| lnhk(z)| ≤
∑

|am|>r3k+3

∣∣∣∣lnE( z

am
, 1

)∣∣∣∣ ≤ ∑
|am|>r3k+3

∣∣∣∣ zam
∣∣∣∣2

= R2
k

∫ ∞
r3k+3

dn(t, 0)

t2
≤ 2R2

k

∫ ∞
r3k+3

n(t, 0)

t3
dt

= O

(
R2
k

∫ ∞
r3k+3

t−2dt

)
= O(R2

kr
−1
3k+3) = O(1)

(2.49)

for |z| = Rk as k →∞. On the other hand, for |z| = Rk we have

ln |gk(z)| ≥
∑

|am|<2r3k+2

ln

(
Rk

|am|
− 1

)
≥ ln

(
Rk

r3k+2
− 1

)
→∞.

Therefore ln |f(z)| ≥ ln |gk(z)|− | ln |hk(z)|| = ln |gk(z)|+O(1) on the circles {|z| =
Rk}, and the function f(z) uniformly approaches ∞. From here it follows, among
other things, that δ(0, f) = 0.

Now we describe the construction of sequences {am} and {rk}. This construc-
tion is based on the divergence of the series

∑∞
n=1

1
n

.
Consider an interval (0, r1), where r1 > 4 is not an integer. Assume that the

interval is so long that ∑
n∈(0,r1)

1

n
> 2.

Now we consider an interval (r1, r2), r1 < r2, where r2 is not an integer and is such
that ∑

n∈(0,r1)

1

n
−

∑
n∈(r1,r2)

1

n
≥ 0,

∑
n∈(0,r1)

1

n
−

∑
n∈(r1,r2+1)

1

n
< 0.(2.50)

We include into the sequence {am} all integers from (0, r1) and all integers from
(−r2,−r1).

Further, we include into {am} a number b1 from the interval (−[r2]− 1,−[r2]),
chosen in such a way that ∑

n∈(0,r1)

1

n
−

∑
n∈(r1,r2)

1

n
+

1

b1
= 0.

The inequality (2.50) implies that such choice is possible.
Let r3 be an arbitrary non-integer satisfying r3 > 2er2 .
Now we choose an interval (r3, r4), r3 < r4, where r4 is non-integer, in such a

way that ∑
n∈(r3,r4)

1

n
> 3,

and interval (r4, r5), r4 < r5, r5 is non-integer, in such a way that∑
n∈(r3,r4)

1

n
−

∑
n∈(r4,r5)

1

n
≥ 0,

∑
n∈(r3,r4)

1

n
−

∑
n∈(r4,r5+1)

1

n
< 0.
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Include into {am} all integers from (r3, r4) and all integers from (−r5,−r4), and
also a number b2 satisfying −[r5]− 1 < b2 < −[r5] and such that∑

n∈(r3,r4)

1

n
−

∑
n∈(r4,r5)

1

n
+

1

b2
= 0.

Further, we choose a non-integer r6 > 2er5 and continue in an obvious way. It
is clear that the sequences {am} and {rk} chosen using this procedure satisfy have
the desired properties.

Remark 1. The constructed function f(z) satisfies m(Rk, 0, f) → 0, hence
δ(0, f) = 0. Thus 0 ∈ EB(f)\EN (f).

Remark 2. The lower order of the constructed function f(z) is equal to zero.
In fact, by (2.48), (2.49), and (2.44), we get

lnM(Rk, f) = lnM(Rk, gk) +O(1)

≤
∑

|am|<2r3k+2

ln

(
1 +

Rk

|am|

)
+O(1) ≤ n(2r3k+2, 0) ln(1 +Rk) +O(1)

= O(r3k+2 lnRk) = O(ln2Rk).

The order ρ of the function f(z) in our example is equal to 1. If we take
F (z) = f(zn), n = 2, 3, . . . , we get an analogous example with ρ = n. It is not
known whether such example exist for functions of infinite order.5

We see that in Theorem 2.1 the condition that the orders of N(r, a) and N(r, b)
are lower than the order of T (r, f) cannot be replaced by the condition that the
categories of N(r, a) and N(r, b) are lower than the category of T (r, f). However,
Edrei and Fuchs [EF59a] proved the following theorem: Let f(z) be a meromorphic
function of a finite order and δ(a) = δ(b) = 1, a 6= b (that is, N(r, a) = o(T (r, f))
and N(r, b) = o(T (r, f))). Then a and b are asymptotic values.6 We cannot present
here a proof of this theorem, we only give an example showing that this theorem is
not valid for functions of infinite order.

Example 5. We construct an entire function f(z) of infinite order such that
δ(0, f) = 1, but 0 is not an asymptotic value (since now we are dealing with
functions of infinite order, this example is stronger than Example 2).

First of all, we need a function E(z) defined in the following way. Let a be
a real number, A(a) be a half-strip {x > a, |y| < π}, z = x + iy, L(a) be the
boundary of A(a) oriented in such a way that A(a) is on the right. We define the

function E(z) in the complement of A(0) by the Cauchy-type integral:

E(z) =
1

2πi

∫
L(0)

ee
t

t− z dt.(2.51)

Obviously, the integral

1

2πi

∫
L(a)

ee
t

t− z dt

5Now it exists: Hayman [A76].
6For meromorphic functions of finite lower order with sum of deficiencies two all deficient

values are asymptotic. See the Appendix at the end of the book.
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for a > 0 is an analytic continuation of E(z) onto the complement of A(a). Hence
the function (2.51) has an analytic continuation to the whole complex plane, that
is, is an entire function.

Since by the integral Cauchy theorem the integral of the function ee
t

over the
boundary of the rectangle {a1 < x < a2, |y| < π} is equal to zero, we have

1

2πi

∫
L(a1)

ee
t

dt =
1

2πi

∫
L(a2)

ee
t

dt,

and the integral

I =
1

2πi

∫
L(a)

ee
t

dt

does not depend on a. Since the function ee
t

is periodic with period 2πi, the
integrals over the rays {y = ±π, x ≥ a} cancel each other, and we get

I =
1

2π

∫ π

−π
ee
a+iy

dy.

Letting a→ −∞ in the right-hand side of this equality, we get I = 1. Let z ∈ A(0).
Then

E(z) +
1

z
=

1

2πi

∫
L(2)

ee
t

t− z dt+
1

2πi

∫
L(2)

ee
t

z
dt =

1

2πi

∫
L(2)

t

z(t− z)
ee
t

dt

=
1

z2

1

2πi

∫
L(2)

(
−t+

t2

t− z

)
ee
t

dt =
1

z2
Ω(z).

(2.52)

If the distance from z to L(2) is not less than π/3, then we have |−t+t2(t−z)−1| ≤
|t| + |t|2 ≤ 2|t|2. Since on the rays {x > 1, y = ±π} the equality | exp(ex+iy)| =
exp(−ex) holds, the function Ω(z) is bounded by a constant which does no depend
on z. If the distance from z to L(2) is less than π/3, we replace the part of L(2)
which is inside the disc {|t − z| < π/3} by an arc of the circle {|t − z| = π/3}
lying in A(2). By the integral Cauchy theorem the value of the last integral in
(2.52) is not affected by this change of the path of integration. As before we have
| − t+ t2(t− z)−1| ≤ 2|t|2, and for points z on the arc {|t− z| = π/3} we have the

inequality | exp(et)| ≤ exp

(
−1

2
eRet

)
. Thus in this case the function Ω(z) is also

bounded. If z ∈ L(0) we can use similar reasoning. We get that

E(z) = −1

z
+ O

(
1

|z|2

)
, z /∈ A(0).(2.53)

Now let z ∈ A(0). Than, taking a > Rez > 0, we have

E(z) =
1

2πi

∫
L(a)

ee
t

t− z dt =
1

2πi

∫
L(−2)

ee
t

t− z dt

+
1

2πi

∫
L(a)−L(−2)

ee
t

t− z dt =
1

2πi

∫
L(−2)

ee
t

t− z dt+ ee
z

.

As before, we get that

E(z)− ee
z

+
1

z
=

1

z2

1

2πi

∫
L(−2)

(
−t+

t2

t− z

)
ee
t

dt.
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The boundedness of the last integral is proved as before; only in this case, when
the distance from z to L(−2) is less than π/3 we replace the part of L(−2) by an
arc of the circle {|t− z| = π/3} lying outside A(−2). Thus

E(z) = ee
z − 1

z
+O

(
1

|z|2

)
, z ∈ A(0).(2.54)

We shall write A instead of A(0). The relations (2.53) and (2.54) imply that

E(z) =


ee
z

+
Ψ1(z)

z
, z ∈ A,

Ψ2(z)

z
, z /∈ A,

(2.55)

where |Ψj(z)| < 2 for |z| > r0 ≥ 1, j = 1, 2.
Let K > 8 be a real number such that the open set G ⊂ A defined as the set of

all solutions of the inequality |eez +K| < 7 lies in the half-plane {x > 4r0} and the
diameters of all connected components of G are less than π. Obviously, sufficiently
large numbers K have this property. Let

qn =
√

(2π2n)2 − 1, θn = arcsin(2π2n)−1,

Φ(z) = K +
∞∑
n=1

E{eiθn(z − iqn)}.(2.56)

The uniform convergence of the series (2.56) in each finite disc can be easily checked,
hence Φ(z) is an entire function.

Denote by A0 the half-strip {x > 0, |y| < π/2}, and by An, A
0
n, Gn the images

of A,A0, G, respectively, under the mapping λn(z) = e−iθnz+ iqn. It is easy to see
that half-strips An are pairwise disjoint, Gn ⊂ An and

⋃∞
n=1Gn ⊂ H = {x > 2r0}.

Denote by Cn the disc {|z − iqn| < r0}. Let us show that

Ω(z) =

∞∑
n=1

|z − iqn|−1 < 3(2.57)

for z /∈ C =
⋃∞
n=1 Cn. In fact, if qm ≤ y ≤ qm+1, m = 1, 2, . . . , then

Ω(z) ≤ 2 +

m−1∑
n=1

|z − iqn|−1 +

∞∑
n=m+2

|z − iqn|−1

≤ 2 +

m−1∑
n=1

|y − qn|−1 +

∞∑
n=m+2

|y − qn|−1

≤ 2 +

m−1∑
n=1

(qm − qn)−1 +

∞∑
n=m+2

(qn − qm+1)−1

≤ 2 +

m−1∑
n=1

3

2π2m
+

∞∑
n=m+2

3

2π2n

≤ 2 +
3

2π

m− 1

2m
+

3

8π
≤ 2 +

3

8π
+

3

8π
< 3.
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If y ≤ q1, the same estimate works. The relations (2.55), (2.56), (2.57) imply that
the relation

Φ(z) =

{
Q(z), z /∈ {

⋃∞
n=1An} ∪ C

exp exp{eiθn(z − iqn)}+Q(z), z ∈ An\C
(2.58)

holds, where |Q(z) − K| < 6. Denote by D the set of those z /∈ C for which

|Φ(z)| < 1. It is easy to see that D ⊂
∞⋃
n=1

Gn. In fact, |Q(z)| ≥ K − 6 ≥ 2,

therefore D ⊂
∞⋃
n=1

An. Let z ∈ D ∩An. Then

| exp exp{eiθn(z − iqn)} +K| ≤ |Φ(z)|+ |K −Q(z)| < 1 + 6 = 7,

that is, z ∈ Gn. Hence D ⊂ H and the diameters of all connected components of
D are less than π.

Consider the function g(z) = Φ(z) exp exp z. Let us show that zero is not an
asymptotic value for this function. In the half-plane H1 = {x ≤ 2r0} the inequality
| exp exp z| ≥ exp(−e2r0) = µ, 0 < µ < 1, holds, and for z /∈ C we have |Φ(z)| ≥ 1
since H1 does not intersect D. Hence, in H1\C we have |g(z)| ≥ µ. The sets
Bk = {x ≥ 2r0, |y − 2πk| ≤ π/2}\D, k = 0,±1,±2, . . . , are unbounded continua,
since the diameters of all connected components of D are less than π. On the other
hand, on Bk we have |Φ(z)| ≥ 1 and | exp exp z| = exp{ex cos y} ≥ 1, |g(z)| ≥ 1.
On the rays Sn = {arg(z − iqn) = −θn, x ≥ 2r0}, n ≥ 1, the inequalities

|Φ(z)| = | exp exp |z − iqn|+Q(z)|
≥ exp exp |z − iqn|+ ReQ(z) > exp exp |z − iqn|
= exp exp{x sec θn},

|g(z)| = exp{ex sec θn + ex cos y} ≥ 1

hold. Obviously, the open set H\(B ∪ S), where B =

∞⋃
k=−∞

Bk, S =

∞⋃
n=1

Sn, does

not have unbounded connected components.
As the final result we get that the open set of those z for which |g(z)| < µ does

not have unbounded connected components. Hence zero is not an asymptotic value
for g(z).

Let us estimate T (r,Φ(z)). It is convenient for us to estimate T (r,Φ(z − 1))
first. Observe that by the maximum modulus principle |Φ(z)| = O(1) for z ∈ C.
Let z = reiθ . Then, by (2.58), we get

T (r,Φ(z − 1)) =
1

2π

∫
|z|=r

ln+ |Φ(z − 1)|dθ

≤ O(1) +
∑
n

1

2π

∫
|z|=r

z−1∈A0
n

ln+ |Φ(z − 1)|dθ

= O(1) +
∑
n

1

2π

∫
|z|=r

z−1∈A0
n

Re exp{eiθn(z − 1− iqn)}dθ.

(2.59)

But

−1− iqn = −2π2nei(
π
2−θn) = −i2π2ne−iθn ,
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therefore exp{eiθn(z− 1− iqn)} = exp{rei(θ+θn)}. Suppose that the intersection of
the set of those z, for which z− 1 ∈ A0

n with the circle {|z| = r} is non-empty, that
is, 2π2n − π

2 ≤ r. Then∫
|z|=r

z−1∈A0
n

Re exp{rei(θ+θn)}dθ =

∫ βn−θn

αn−θn
er cos(θ+θn) cos{r sin(θ + θn)}dθ

=

∫ βn

αn

er cos θ cos{r sin θ}dθ,

(2.60)

where

αn = arcsin
2π2n − π/2

r
,

βn = arcsin min

(
1,

2π2n + π/2

r

)
.

Substituting (2.60) into (2.59) we get

T (r,Φ(z − 1)) ≤ O(1) +

ν(r)∑
n=1

1

2π

∫ βn

αn

er cos θ cos{r sin θ}dθ,(2.61)

where ν(r) =
[
(ln 2)−1 ln r+π/2

2π

]
. We define a continuous function ϕ(y) on [0,∞)

in the following way. We let ϕ(y) = cos y for |y − 2π2n| ≤ π
2 , n = 1, 2, . . . , and let

ϕ(y) = 0 for all other y ≥ 0. Then the inequality (2.61) can be rewritten in the
following way:

T (r,Φ(z − 1)) ≤ O(1) +
1

2π

∫ π/2

0

er cos θϕ(r sin θ)dθ.(2.62)

It is clear that

1

r

∫ r

0

ϕ(y)dy → 0 as r →∞.

Applying to the integral in the right-hand side of (2.62) Lemma 4.1 from Chapter
4, we get T (r,Φ(z−1)) = o(er/

√
r). Since T (r,Φ(z)) ≤ (1+o(1))T (r+1,Φ(z−1))

(see (1.4) in Chapter 2), we have

T (r,Φ(z)) = o(er/
√
r).(2.63)

On the other hand, as it was shown in the construction of Example 1 in Section 6
Chapter 4, we have

T (r, ee
z

) = (1 + o(1))
er√
2π3r

, r→∞.(2.64)

Since T (r, ee
z

)− T (r,Φ−1) ≤ T (r, g) ≤ T (r, ee
z

) + T (r,Φ), the relations (2.63)
and (2.64) imply that

T (r, g) = (1 + o(1))
er√
2π3r

, r→∞.

But N(r, 0, g) = N(r, 0,Φ) ≤ T (r,Φ) + O(1) = o(T (r, g)). Hence δ(0, g) = 1 and
the function g(z) has the desired properties.
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3. Meromorphic functions of order less than 1/2

By the Wiman–Heins Theorem 1.3 for an entire function of order λ < 1/2
there exists a sequence of circles {|z| = rk}, rk → ∞, on which f(z) approaches
∞ uniformly in arg z. The following theorem is a generalization of this result for
meromorphic functions.

Theorem 3.1. Let f(z) be a meromorphic function of lower order λ < 1/2. If

δ(∞, f) > 1− cosπλ,(3.1)

then there exists a sequence of circles {|z| = rk}, rk →∞, on which f(z) approaches
∞ uniformly in arg z.

Observe, that if we replace the condition (3.1) by the condition δ(a, f) > 1 −
cosπλ, a 6= ∞, we can claim that there exists a sequence of circles {|z| = rk},
rk → ∞, on which f(z) approaches a uniformly in arg z. In fact, for the function
f1(z) = 1

f(z)−a we have λ[f1] = λ[f ] = λ, δ(∞, f1) = δ(a, f), so it suffices to

apply Theorem 3.1 to f1(z). By virtue of this remark, Theorem 3.1 immediately
implies the following corollary, containing the corollary of Theorem 1.3 and Valiron’s
Theorem 4.6 from Chapter 2.

Corollary. Let f(z) be a meromorphic function of lower order λ < 1/2. If
δ(a, f) > 1 − cosπλ, then a is the only deficient value of the function f(z). In
particular, a meromorphic function of lower order λ = 0 cannot have more than
one deficient value.

In fact, since the function f(z) approaches a on the sequence of circles {|z| =
rk}, rk → ∞, uniformly in arg z, for b 6= a we have m(rk, b) = O(1) and hence
δ(b, f) = 0.

Theorem 3.1 is a corollary of a more subtle theorem giving a quantitative
estimate of the degree of convergence of f(z) to ∞.

Theorem 3.2. Let f(z) be a meromorphic function of lower order λ < 1/2.
Then the inequality

lim sup
r→∞

ln+ µ(r, f)

T (r, f)
≥ πλ

sinπλ
(δ(∞, f)− 1 + cosπλ)(3.2)

holds.

The proof of Theorem 3.2 relies on several lemmas. The first of them will be
also used in Section 4, for this reason we prove it in a more general formulation
than is needed for the proof of Theorem 3.2.

Lemma 3.1. Let f(z), f(0) = 1, be a meromorphic function with zeros aµ and
poles bν , and q ≥ 0 be an integer. The following representation holds for each
R > 0:

f(z) = αR,q(z)ωR,q(z),(3.3)

where

αR,q(z) =
∏
|aµ|<R

E

(
z

aµ
, q

) ∏
|bν |<R

E

(
z

bν
, q

)
−1

,(3.4)
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and lnωR,q(z) (the branch of ln is chosen in such a way that lnωR,q(0) = 0) satisfies
the estimate

| lnωR,q(z)| ≤ K1

( r
R

)q+1

T (2R, f) +K2q(r
q + 1),(3.5)

|z| = r ≤ 1

2
R,

where K1 and K2, 0 < K1,K2 < ∞ are constants which do not depend on r and
R.

Proof. By formula (2.5) from Chapter 1 we have

{ln f(ζ)}(q+1) = (−1)qq!
∑
|aµ|<R

1

(ζ − aµ)q+1
− (−1)qq!

∑
|bν |<R

1

(ζ − bν)q+1

+ IR,q(ζ) + JR,q(ζ),

(3.6)

where

IR,q(ζ) =
(q + 1)!

2π

∫ 2π

0

ln |f(Reiθ)| 2Reiθ

(Reiθ − ζ)q+2
dθ,

JR,q(ζ) = q!
∑
|aµ|<R

(
aµ

R2 − āµζ

)q+1

− q!
∑
|bν |<R

(
bν

R2 − bνζ

)q+1

.

Straightforward calculation shows that

{lnαR,q(ζ)}(q+1) = (−1)qq!
∑
|aµ|<R

1

(ζ − aµ)q+1
− (−1)qq!

∑
|bν |<R

1

(ζ − bν)q+1
.

Subtracting this equality from (3.6) we get

{lnωR,q(ζ)}(q+1) = IR,q(ζ) + JR,q(ζ).

Let us estimate IR,q(ζ) and JR,q(ζ) for |ζ| ≤ 1
2R. We have

|IR,q(ζ)| ≤
(q + 1)!2R

(R − |ζ|)q+2

1

2π

∫ 2π

0

| ln |f(Reiθ)||dθ

≤ (q + 1)!2q+3

Rq+1

(
m(R, f) +m

(
R,

1

f

))
≤ (q + 1)!2q+4

Rq+1
T (R, f);

|JR,q(ζ)| ≤ q!
(

R

R2 −R|ζ|

)q+1 (
n(R, f) + n

(
R,

1

f

))
≤ q!2q+1

Rq+1
n(R; 0,∞) ≤ q!2q+2

Rq+1
N(2R; 0,∞) ≤ q!2q+3

Rq+1
T (2R, f)

(passing from n(R; 0,∞) to N(2R; 0,∞) we used Lemma 7.1 from Chapter 1).
Thus

|{lnωR,q(ζ)}(q+1) ≤ (q + 1)!2q+5

Rq+1
T (2R, f), |ζ| ≤ 1

2
R.(3.7)

Later on we shall need the following relation (|z| < R)
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lnωR,q(z) =
1

q!

∫ z

0

(z − ζ)q{lnωR,q(ζ)}(q+1)dζ +

q∑
k=0

zk

k!
{lnωR,q(ζ)}(k)

ζ=0(3.8)

(the integral is taken over a line segment joining 0 and z). This relation follows
from the observation that the derivatives of order q + 1 of the different sides are
the same, and the derivatives of orders k = 0, 1, . . . , q coincide at z = 0.

Using (3.7) and (3.8) we get the estimate (z = |z| ≤ R/2)

| lnωR,q(z)| ≤ (q + 1)2q+5
( r
R

)q+1

T (2R, f) +

∣∣∣∣∣
q∑

k=0

zk

k!
{lnωR,q(ζ)}(k)

ζ=0

∣∣∣∣∣ .
The values of {lnωR,q(ζ)}(k)

ζ=0, k = 0, 1, . . . , q, do not depend on R since lnωR,q(ζ) =

ln f(ζ)−lnαR,q(ζ) and {lnαR,q(ζ)}(k)
ζ=0 = 0, k = 0, 1, . . . , q. Besides, lnωR,q(0) = 0,

therefore the estimate∣∣∣∣∣
q∑

k=0

zk

k!
{lnωR,q(ζ)}(k)

ζ=0

∣∣∣∣∣ ≤ K2q(r
q + 1)

holds, where 0 < K2 <∞ does not depend on R and r. The proof of the lemma is
completed. �

Lemma 3.2. Let f(z), f(0) = 1, be a meromorphic function with zeros aµ and
poles bν . Set

HR(r) =
∑
|aµ|<R

ln

(
1 +

r

|aµ|

)
+
∑
|bν |<R

ln

(
1 +

r

|bν |

)
.(3.9)

The estimate

HR(r) ≤ 4T (2R, f), 0 ≤ r ≤ R,(3.10)

holds.

Proof. By the inequality ln(1 + x) ≤ ln+ x+ ln 2, 0 ≤ x <∞, we have

HR(r) ≤
∑
|aµ|<R

(
ln+ r

|aµ|
+ ln 2

)
+
∑
|bν |<R

(
ln+ r

|bν |
+ ln 2

)
≤ N(r, 0) + n(R, 0) ln 2 +N(r,∞) + n(R,∞) ln 2

= N(r; 0,∞) + n(R; 0,∞) ln 2.

Using Lemma 7.1 from Chapter 1 we get

HR(r) ≤ N(r; 0,∞) +N(2R; 0,∞) ≤ 2T (r, f) + 2T (2R, f) ≤ 4T (2R, f),

�

Lemma 3.3. For each a and b, 0 < a < b, and each σ, 0 < σ < 1, the
inequalities ∫ b

a

{ln |1− x| − πσ cotπσ ln+ x}x−1−σdx

≥ C1a
−σ ln(1 + a)− C2b

−σ ln(1 + b);

(3.11)
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a

{πσ cscπσ ln+ x− ln(1 + x)}x−1−σdx

≥ C3a
−σ ln(1 + a)− C4b

−σ ln(1 + b)

(3.12)

hold, where Ck, 0 < Ck < ∞, k = 1, 2, 3, 4, are constants which do not depend on
a and b.

Proof. We shall use the equalities

(a)

∫ ∞
0

ln+ x

x1+σ
dx =

1

σ2
; (b)

∫ ∞
0

ln(1 + x)

x1+σ
dx =

π

σ sinπσ
;

(c)

∫ ∞
0

ln |1− x|
x1+σ

dx =
π

σ tanπσ
.(3.13)

To get (b) we need to integrate by parts and to use the Residue Calculus:∫ ∞
0

ln(1 + x)

x1+σ
dx =

1

σ

∫ ∞
0

dx

xσ(1 + x)
=

π

σ sinπσ
.

The equalities (a) and (c) were proved in Section 2 (see (2.29) and (2.30)).
Consider the function

ϕ(a) =

∫ ∞
a

{ln |1− x| − πσ cotπσ ln+ x}x−1−σdx, 0 ≤ a <∞.

By the equalities (a) and (c) we have ϕ(0) = 0; it is clear that lima→∞ ϕ(a) = 0.
Since the derivative

ϕ′(a) = −{ln |1− a| − πσ cotπσ ln+ a}a−1−σ,

as is easy to check, changes sign only once on the half-axis {0 < a <∞}, from plus
to minus, we have ϕ(a) > 0 for 0 < a <∞.

Set

ψ(a) =
ϕ(a)

a−σ ln(1 + a)
.

This function is continuous and positive for 0 < a < ∞. Using the l’Hôpital rule
we find its limits as a→ +0 and a→ +∞ and see that both are finite and positive.
Therefore there exist constants C1 and C2, 0 < C1 < C2 <∞, such that

C1 ≤ ψ(a) ≤ C2, 0 < a <∞.
The last inequality can be rewritten in the form

C1a
−σ ln(1 + a) ≤ ϕ(a) ≤ C2a

−σ ln(1 + a), 0 < a <∞,
from where we get

ϕ(a) − ϕ(b) ≥ C1a
−σ ln(1 + a)− C2b

−σ ln(1 + b), 0 < a < b <∞,
the last inequality is equivalent to (3.11).

To prove the inequality (3.12) we use similar argument for

ϕ(a) =

∫ ∞
a

{πσ csc πσ ln+ x− ln(1 + x)}x−1−σdx.

�
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Lemma 3.4. Let f(z), f(0) = 1, be a meromorphic function with lower order
λ < 1. Then for each σ, λ < σ < 1, the inequality

lim sup
r→∞

{
lnµ(r, f) +

πσ

sinπσ
[N(r,∞)− cosπσN(r, 0)]

}
≥ 0(3.14)

holds.

Proof. We may assume without loss of generality that f(z) is not identically
constant. Let aµ be zeros of the function f(z), bν be its poles. Using the change of
variable in the integrals from the inequalities (3.11) and (3.12) we get the inequal-
ities ∫ η

ξ

{
ln

∣∣∣∣1− r

|aµ|

∣∣∣∣− πσ cotπσ ln+ r

|aµ|

}
dr

r1+σ

≥ C1ξ
−σ ln

(
1 +

ξ

|aµ|

)
− C2η

−σ ln

(
1 +

η

|aµ|

)
;

(3.15)

∫ η

ξ

{
πσ

sinπσ
ln+ r

|bν |
− ln

(
1 +

r

|bν |

)}
dr

r1+σ

≥ C3ξ
−σ ln

(
1 +

ξ

|bν |

)
− C4η

−σ ln

(
1 +

η

|bν |

)
,

(3.16)

where 0 < σ < 1, and ξ and η are arbitrary numbers satisfying the condition
o < ξ < η < ∞. We add inequalities of the form (3.15) over all aµ satisfying
|aµ| < R, and add all inequalities of the form (3.16) over all bν satisfying |bν | < R.
We get two inequalities. Adding them together, we get∫ η

ξ

{
ln |α̌R,0(r)| − πσ

tanπσ
N(r, 0) +

πσ

sinπσ
N(r,∞)

} dr

r1+σ

≥ C5ξ
−σHR(ξ) − C6η

−σHR(η), 0 < ξ < η < R,

(3.17)

where C5 = C1 + C3, C6 = C2 + C4, HR(r) is determined by (3.9), and

α̌R,0(z) =
∏
|aµ|<R

(
1− z

|aµ|

) ∏
|bν |<R

(
1 +

z

|bν |

)
−1

.(3.18)

By Lemma 3.1 with q = 0, we have a representation

f(z) = αR,0(z)ωR,0(z),(3.19)

where

αR,0(z) =
∏
|aµ|<R

(
1− z

aµ

) ∏
|bν |<R

(
1− z

bν

)
−1

,

and lnωR,0(z) admits the estimate

| lnωR,0(z)| ≤ K1
r

R
T (2R, f), |z| = r ≤ 1

2
R

(K1 does not depend on r and R). Obviously,

µ(r, αR,0) ≥ |α̌R,0)(r)|,
therefore

(3.19′) µ(r, f) ≥ µ(r, αR,0)µ(r, ωR,0) ≥ |α̌R,0(r)|µ(r, ωR,0),
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from where, using the estimate (3.5) we get

ln |α̌R,0(r)| ≤ lnµ(r, f) + | lnµ(r, ωR,0))| ≤ lnµ(r, f) +K1
r

R
T (2R, f), 0 ≤ r ≤ 1

2
R,

whence ∫ η

ξ

ln |α̌R,0(r)| dr
r1+σ

≤
∫ η

ξ

lnµ(r, f)
dr

r1+σ
+

K1

1− σ
η1−σ

R
T (2R, f),(3.20)

0 < σ < 1, 0 < ξ < η ≤ 1
2R. The next inequality follows from (3.17) and (3.20):∫ η

ξ

{
lnµ(r, f)− πσ

tanπσ
N(r, 0) +

πσ

sinπσ
N(r,∞)

} dr

r1+σ

≥ C5ξ
−σHR(ξ)− C6η

−σHR(η)− K1

1− σ
η1−σ

R
T (2R, f).

Let η = 1
2R in this inequality. Since, by Lemma 3.2, the inequality HR(η) ≤

4T (2R, f) holds, we get the inequality∫ 1
2R

ξ

{
lnµ(r, f)− πσ

tanπσ
N(r, 0) +

πσ

sinπσ
N(r,∞)

} dr

r1+σ

≥ C5ξ
−σHR(ξ)− C7R

−σT (2R, f), 0 < ξ <
1

2
R,

(3.21)

where the constant C7, 0 < C7 <∞, does not depend on ξ and R.
Let ξ0 > 0 be an arbitrarily large number. Choose ξ > ξ0, such that HR(ξ) > 0

for R > 2ξ. Such choice is possible because otherwise the function f(z) would
be an entire function without zeros, and Lemma 6.2 from Chapter 1 would imply
f(z) ≡ f(0) = 1.

Assume that σ in the inequality (3.21) satisfies the condition λ < σ < 1. Then
lim infR→∞R

−σT (2R, f) = 0, therefore the number R > 2ξ can be chosen in such
a way that the right-hand side of (3.21) is positive. From here it follows that for
some r > ξ0 the integrand in the left-hand side of (3.21) is also positive. Since ξ0
is arbitrarily large, we get the statement of the lemma. �

Proof. Now we proof Theorem 3.2. We may assume that the function is
transcendent, because for rational functions the theorem is trivial.

By Theorem 2.1 from Chapter 4 we can find a number a 6= ∞, such that
N(r, a, f) ∼ T (r, f). Let

f1(z) =
f(z)− a
ckzk

,

where ck is the first non-zero coefficient of the Laurent series of the function f(z)−a
at z = 0. Observe that f1(0) = 1,

N(r,∞, f1) = N(r,∞, f) +O(ln r),

N(r, 0, f1) = N(r, a, f) +O(ln r) ∼ T (r, f),

ln+ µ(r, f1) ≤ ln+ µ(r, f) +O(ln r).

(3.22)

By Lemma 3.4, for each σ, λ < σ < 1, and each ε > 0 there exists a sequence
rn →∞, such that

ln+ µ(rn, f1) ≥ πσ

sinπσ
{cosπσN(rn, 0, f1} −N(rn,∞, f1)} − ε.
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Dividing both parts of this relation by T (rn, f) and using the relations (3.22)
we get

lim sup
r→∞

ln+ µ(r, f)

T (r, f)
≥ πσ

sinπσ
{cosπσ − 1 + δ(∞, f)}.

Letting σ tend to λ, we get the statement of the theorem. Note that we have not
used the condition λ < 1/2, however, for 1/2 ≤ λ < 1 the right-hand side of (3.2)
cannot be positive and the theorem becomes trivial. �

The following corollary of Lemma 3.4, complementing Corollary 1 of Theorem
1.3, is of interest.

Corollary. An entire function f(z) of lower order λ ≤ 1/2 cannot have finite
deficient values.

Obviously, it suffices to prove that δ(0, f) = 0. We may assume without loss of
generality that f(0) = 1. By Lemma 3.4, for each ε > 0 and each σ, 1/2 < σ < 1,
there exists a sequence rk →∞, such that

lnµ(rk, f) ≥ πσ cotπσN(rk, 0)− ε,
whence

ln
1

µ(rk, f)
≤ −πσ cotπσN(rk, 0) + ε.

Since the right-hand side of this inequality is positive (1/2 < σ < 1), we can
replace ln by ln+ in the left-hand side. Taking this into account, we get

δ(0, f) = lim inf
r→∞

m(r, 0)

T (r, f)
≤ lim inf

r→∞

ln+ 1
µ(r,f)

T (r, f)

≤ lim inf
k→∞

ln+ 1
µ(rk,f)

T (rk, f)
≤ −πσ cotπσ lim sup

k→∞

N(rk, 0)

T (rk, f)
≤ πσ cotπσ(1 − δ(0, f)),

whence

δ(0, f) ≤ −πσ cotπσ

1− πσ cotπσ
.

Letting σ tend to 1/2, we get δ(0, f) = 0.

The method used in the proof of Theorem 3.2 can be used to get many different
relations connecting the asymptotic behavior of a meromorphic function with the
distribution of its zeros and poles. We restrict our attention by the following result.

Theorem 3.3. Let f(z) be a meromorphic function of lower order λ < 1/2
such that

lim
r→∞

lnM(r, f)

ln r
= +∞.

If 0 < λ < 1/2, the inequality

lim sup
r→∞

lnµ(r, f)

lnM(r, f)
+ πλ sinπλ lim sup

r→∞

N(r, f)

lnM(r, f)
≥ cosπλ(3.23)

holds. This inequality remains true for λ = 0 provided

lim sup
r→∞

N(r, f)

lnM(r, f)
<∞.
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To prove Theorem 3.3 we need the following lemma, analogous to Lemma 3.3.

Lemma 3.5. For all a and b, 0 < a < b <∞, and σ, 0 < σ < 1
2 , the inequalities∫ b

a

{ln |1− x| − cosπσ ln(1 + x)}x−1−σdx

≥ C8a
−σ ln(1 + a)− C9b

−σ ln(1 + b),

(3.24)

∫ b

a

{cosπσ ln |1− x| − ln(1 + x) + πσ sinπσ ln+ x}x−1−σdx

≥ C10a
−σ ln(1 + a)− C11b

−σ ln(1 + b)

(3.25)

hold, where Ck, 0 < Ck < ∞, k = 8, 9, 10, 11, are constants which do not depend
on a and b.

This lemma is a corollary of Lemma 3.3. In fact, if we multiply (3.12) by cosπσ
and add the result to (3.11), we get (3.24). If we multiply (3.11) by cosπσ and
add the result to (3.12), we get (3.25) (we take into account that 0 < σ < 1/2 and
hence cosπσ > 0).

Next we prove a lemma analogous to Lemma 3.4.

Lemma 3.6. Let f(z), f(0) = 1, be a meromorphic function of lower order
λ < 1/2. Then for each σ, λ < σ < 1/2, the inequality

lim sup
r→∞

{lnµ(r, f) + πσ sinπσN(r,∞)− cosπσ lnM(r, f)} ≥ 0(3.26)

holds.

Proof. Using the change of variable in (3.24) and (3.25) we get the inequalities

(3.24′)

∫ η

ξ

{
ln

∣∣∣∣1− r

|aµ|

∣∣∣∣− cosπσ ln

(
1 +

r

|aµ|

)}
r−1−σdr

≥ C8ξ
−σ ln

(
1 +

ξ

|aµ|

)
− C9η

−σ ln

(
1 +

η

|aµ|

)
,

∫ η

ξ

{
cosπσ ln

∣∣∣∣1− r

|bν |

∣∣∣∣− ln

(
1 +

r

|bν |

)
+ πσ sinπσ ln+ r

|bν |

}
dr

r1+σ

≥ C10ξ
−σ ln

(
1 +

ξ

|bν |

)
− C11η

−σ ln

(
1 +

η

|bν |

)
,

where ξ and η are arbitrary numbers satisfying the condition 0 < ξ < η < ∞, aµ
are zeros of the function f(z), bν are its poles. Using these inequalities and the
argument similar to the used in Lemma 3.4, we get

(3.17′)

∫ η

ξ

{ln |α̌R,0(r)| − cosπσ ln |α̌R,0(−r)|

+πσ sinπσN(r,∞)} dr

r1+σ
≥ C12ξ

−σHR(ξ)− C13η
−σHR(η),

where 0 < ξ < η < R, C12 = C8 + C11, C13 = C9 + C11, and α̌R,0(z) is defined by
the formula (3.18).

As in the proof of Lemma 3.4 we represent the function f(z) in the form (3.19).
Obviously

M(r, αR,0) ≤ |α̌R,0(−r)|,(3.27)
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therefore

M(r, f) ≤M(r, αR,0)M(r, ωR,0) ≤ |α̌R,0(−r)|M(r, ωR,0),

from where, using the estimate (3.5), we get

− ln |α̌R,0(−r)| ≤ − lnM(r, f) + lnM(r, ωR,0)

≤ − lnM(r, f) +K1
r

R
T (2R, f), 0 ≤ r ≤ 1

2
R,

whence∫ η

ξ

(− ln |α̌R,0(−r)|) dr

r1+σ
≤
∫ η

ξ

(− lnM(r, f))
dr

r1+σ
+

K1

1− σ
η1−σ

R
T (2R, f),(3.28)

0 < σ <
1

2
, 0 < ξ < η ≤ 1

2
R.

Using (3.17′), (3.20) and (3.28) we get the inequality∫ η

ξ

{lnµ(r, f)− cosπσ lnM(r, f) + πσ sinπσN(r,∞)} dr

r1+σ

≤ C12ξ
−σHR(ξ)− C13η

−σHR(η)− 2K1

1− σ
η1−σ

R
T (2R, f).

Repeating the argument used in the proof of Lemma 3.3 to derive (3.14) from (3.21),
we get the relation (3.26). �

Proof of Theorem 3.3. We apply Lemma 3.6 to the function f1(z) =
f(z)

ckzk
,

where ck is the first non-zero Laurent coefficient of f(z) at z = 0. We get that for
each σ, λ < σ < 1/2, and each ε > 0 there exists a sequence rn →∞ such that

lnµ(rn, f1) + πσ sinπσN(rn,∞, f1) ≥ cosπσ lnM(rn, f1)− ε.(3.29)

Taking into account

N(r,∞, f1) = N(r,∞, f) +O(ln r),

lnM(r, f1) = lnM(r, f) +O(ln r), lnµ(r, f1) = lnµ(r, f) +O(ln r),

and dividing both parts of (3.29) by lnM(rn, f), we get

lim sup
r→∞

lnµ(r, f)

lnM(r, f)
+ πσ sinπσ lim sup

r→∞

N(r,∞, f)

lnM(r, f)
≥ cosπσ.

Letting σ tend to λ, we get the relation (3.23). �

Exercise. Prove that

lim sup
r→∞

T (r, f)

lnM(r, f)
≥ sinπλ

πλ
(3.30)

for each entire function f(z) of lower order 0 ≤ λ < 1, with the help of the method
used in the proofs of Theorems 3.2 and 3.3.

Hint. It suffices to prove that

lim sup
r→∞

N(r, 0)

lnM(r, f)
≥ sinπλ

πλ
.(3.31)
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We may assume without loss of generality that f(0) = 1. Let aµ be zeros of the
function f(z). Using the inequality (3.12) we get∫ η

ξ

{
πσ

sinπσ
ln+ r

|aµ|
− ln

(
1 +

r

|aµ|

)}
dr

r1+σ

≥ C3ξ
−σ ln

(
1 +

ξ

|aµ|

)
− C4η

−σ ln

(
1 +

η

|aµ|

)
, 0 < σ < 1, 0 < ξ < η <∞.

Adding over all aµ, |aµ| < R, we have∫ η

ξ

{ πσ

sinπσ
N(r, 0)− ln |α̌R,0(−r)|

} dr

r1+σ

≥ C3ξ
−σHR(ξ)− C4η

−σHR(η), 0 < σ < 1, 0 < ξ < η < R,

where α̌R,0(z) are defined by the relation (3.18) (poles bν in this case are absent).
Next, using the representation (3.19) and the estimate (3.28) we arrive at the
inequality

(
0 < σ < 1, 0 < ξ < η ≤ 1

2R
)∫ η

ξ

{ πσ

sinπσ
N(r, 0)− lnM(r, f)

} dr

r1+σ

≥ C3ξ
−σHR(ξ)− C4η

−σHR(η)− K1

1− σ
η1−σ

R
T (2R, f),

from where we get (3.31) using the same argument as at the end of the proof of
Lemma 3.3.

The relation between lnµ(r, f) and lnM(r, f) is of interest for entire functions.

Theorem 3.4. Let f(z) be an entire function of lower order λ < 1. Then

lim sup
r→∞

lnµ(r, f)

lnM(r, f)
≥ cosπλ.(3.32)

Proof. In the case 0 ≤ λ < 1/2 this theorem is an immediate corollary of
Theorem 3.3. Consider the case 1/2 ≤ λ < 1.

Observe that the inequality (3.24) takes place also for 0 < σ < 1. To show this,
it is enough to set

ϕ(a) =

∫ ∞
a

{ln |1− x| − cosπσ ln(1 + x)} dx

x1+σ
,

and, using (3.13) (b) and (c), to argue in the same way as in the proof of (3.11) in
Lemma 3.3. Therefore (3.24) holds for 0 < σ < 1 also. From here, adding over aµ,
|aµ| < R, we get∫ η

ξ

{ln |α̌R,0(r)| − cosπσ ln |α̌R,0(−r)|} dr

r1+σ

≥ C8ξ
−σHR(ξ)− C9η

−σHR(η), λ < σ < 1, 0 < ξ < η ≤ 1

2
R,

(3.33)

where α̌R,0(z) is defined by the inequality (3.18) (poles bµ in this case are absent).
Next we use the representation of f(z) in the form (3.19).

Since cosπσ < 0, we cannot, using (3.20) and (3.28), get from (3.33) and
inequality with the left-hand side equal to∫ η

ξ

{lnµ(r, f)− cosπσ lnM(r, f)} dr

r1+σ
.
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To prove the theorem we argue in the following way.
By (3.5) we have

(
0 < ξ < η ≤ 1

2R
)

∫ η

ξ

lnµ(r, ωR,0)

r1+σ
dr ≥ − K1

1− σ
η−σ

R
T (2R, f).

Multiplying this inequality by 1− cosπσ, and adding the resulting inequality
to (3.33), we get∫ η

ξ

{ln |α̌R,0(r)µ(r, ωR,0)| − cosπσ ln |α̌R,0(−r)µ(r, ωR,0)|} dr

r1+σ

≥ C8ξ
−σHR(ξ)− C9η

−σHR(η) − 2K1

1− σ
η−σ

R
T (2R, f),

0 < σ < 1, 0 < ξ < η ≤ 1

2
R.

From here, arguing in the same way as at the end of the proof of Lemma 3.4,
we conclude that for each fixed σ, λ < σ < 1, there exist sequences {Rk}∞k=1 and
{rk}∞k=1, limk→∞Rk = limk→∞ rk = ∞, rk ≤ 1

2Rk, such that for R = Rk, r = rk,
the inequality

ln |α̌R,0(r)µ(r, ωR,0)| − cosπσ ln |α̌R,0(−r)µ(r, ωR,0)| ≥ 0

holds. Adding ln |α̌R,0(−r)µ(r, ωR,0)| to both sides and exponentiating, we get

|α̌R,0(r)α̌R,0(−r)|µ2(r, ωR,0) ≥ |α̌R,0(−r)µ(r, ωR,0)|1+cosπσ.(3.34)

If z0 is a point on the circle {|z| = r} for which |αR,0(z)| = µ(r, αR,0), then we have

M(r, αR,0)µ(r, αR,0) ≥ |αR,0(−z)αR,0(z0)|

=
∏
|aµ|<R

∣∣∣∣1− z2
0

a2
µ

∣∣∣∣ ≥ ∏
|aµ|<R

∣∣∣∣1− r2

|aµ|2

∣∣∣∣ = |α̌R,0(r)α̌R,0(−r)|.

Therefore, by (3.34) and (3.27) we get

M(r, αR,0)µ(r, αR,0)µ2(r, ωR,0) ≥ {M(r, αR,0)µ(r, ωR,0)}1+cosπσ,

whence

µ(r, αR,0)µ(r, ωR,0) ≥ {M(r, αR,0)µ(r, ωR,0)}cosπσ.

Observing that

M(r, f) ≥M(r, αR,0)µ(r, ωR,0),

and using (3.19′), we get

µ(r, f) ≥ {M(r, f)}cosπσ, r = rk,

and thus

lim sup
r→∞

lnµ(r, f)

lnM(r, f)
≥ cosπσ.

Letting σ tend to λ we conclude the proof of the theorem. �
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Theorems 3.2 and 3.4 imply the following result

Corollary 1. Each entire function f(z) of lower order 0 satisfies:

lim sup
r→∞

lnµ(r, f)

T (r, f)
= lim sup

r→∞

lnµ(r, f)

lnM(r, f)
= lim sup

r→∞

T (r, f)

lnM(r, f)
= 1.

In fact, Theorems 3.2 and 3.4 imply the inequalities

lim sup
r→∞

lnµ(r, f)

T (r, f)
≥ 1, lim sup

r→∞

lnµ(r, f)

lnM(r, f)
≥ 1.

Since lnµ(r, f) ≤ m(r, f) = T (r, f) ≤ ln+M(r, f), then the inequalities in the
opposite direction are trivial. If the inequality

lim sup
r→∞

T (r, f)

lnM(r, f)
< 1,

were true7, we would have

lim sup
r→∞

lnµ(r, f)

T (r, f)
> lim sup

r→∞

lnµ(r, f)

lnM(r, f)
.

Theorem 3.4 implies also
Corollary 2. Each entire function f(z) of lower order λ ≤ 1 satisfies

lim sup
r→∞

lnµ(r, f)

lnM(r, f)
≥ −1.

In fact, let F (z) = f(z)f(−z). Then λ[F (
√
z)] = λ1 ≤ 1/2. The inequality

(3.32) implies, that

lim sup
r→∞

lnµ(r, F (z))

lnM(r, F (z))
= lim sup

r→∞

lnµ(r, F (
√
z))

lnM(r, F (
√
z))
≥ cosπλ1 ≥ 0.

Hence for each ε > 0 there exists a sequence rk →∞ such that

lnµ(rk, F (z)) ≥ −ε lnM(rk, F (z)).

But it is clear that µ(r, F (z)) ≤ µ(r, f(z))M(r, f(z)), M(r, F (z)) ≤ {M(r, f(z))}2.
Therefore

lnµ(rk, f) ≥ −(1 + 2ε) lnM(rk, f),

from where the statement of Corollary 2 follows. The exactness of the obtained
estimate is shown by the example f(z) = ez.

Now we consider examples showing the exactness of Theorems 3.1–3.4.
To verify the exactness of Theorems 3.2 and 3.3 it suffices to show that for

each λ, 0 ≤ λ < 1/2, there exists a meromorphic function f(z) for which (3.2)
and (3.23) are equalities. We can ask the following more general question. Let the
numbers 0 ≤ λ < 1/2, λ ≤ ρ ≤ ∞, 1 − cosπλ ≤ δ0 ≤ 1 be given. Does there
exist a meromorphic function f(z) of order ρ, lower order λ, with δ(∞, f) = δ0,
and such that (3.2) and (3.23) are equalities for f(z)? An answer to this question
in the full generality is unknown. Now we shall get the affirmative answer under
the additional conditions λ > 0 and ρ < 1.

7Note that for entire functions of lower order 0 the inequality
lim supr→∞ T (r, f)/lnM(r, f) ≥ 1 follows also from (3.30).



3. MEROMORPHIC FUNCTIONS OF ORDER LESS THAN 1/2 213

Example 1. Let 0 < λ ≤ ρ < 1, f(z, u) be a canonical product of genus 0 with
positive zeros, such that n(r, 0) ∼ url(r), where 0 < u ≤ 1, l(r) is a differentiable
on [r0,∞) function, limr→∞ rl

′(r) = 0,

lim sup
r→∞

l(r) = ρ, lim inf
r→∞

l(r) = λ.(3.35)

By the asymptotic formula (5.22) from Chapter 2, for each η > 0 the relation

ln |f(reiϕ, u)| = πu
cos l(r)(ϕ − π)

sinπl(r)
rl(r) + o(rl(r))(3.36)

holds uniformly in ϕ, η ≤ ϕ ≤ 2π − η. Defining f(z, 0) ≡ 1, consider the function

fuv(z) =
f(z, u)

f(−z, v)
, u ≥ v ≥ 0, u > 0.(3.37)

By (3.36), for each η > 0 the relation

ln |fuv(reiϕ)| = π

sinπl(r)
{u cos l(r)(ϕ − π)− v cos l(r)ϕ}rl(r) + o(rl(r))

holds uniformly in ϕ, η ≤ ϕ ≤ π − η. Since fuv(z) = fuv(z̄), we have

m(r, fuv) =
1

π

∫ π

0

ln+ |fuv(reiϕ)|dϕ,

and using Theorem 7.4 from Chapter 1, we get

m(r, fuv) =
1

l(r)
I(u, v, l(r))rl(r) + o(rl(r)),

where

I(u, v, γ) =
γ

sinπγ

∫ π

0

{u cosγ(ϕ− π)− v cos γϕ}+dϕ, 0 < γ < 1.

By formula (5.6) from Chapter 2 we have

N(r, fuv) = N(r, 0, f(z, v)) =
v

l(r)
rl(r) + o(rl(r)),(3.38)

and hence

T (r, fuv) =
1

l(r)
{I(u, v, l(r)) + v}rl(r) + o(l(r)),(3.39)

δ(∞, fuv) = lim inf
r→∞

I(u, v, l(r))

I(u, v, l(r)) + v
.

By virtue of (3.35) and (3.39) the function fuv(z) has order ρ and lower order λ.
Straightforward computation gives:
I(u, v, γ) = u− v, if u cosγπ ≥ v,

I(u, v, γ) =

{
u2 +

(
v − u cos γπ

sin γπ

)2
}1/2

− v, if u ≥ v ≥ u cosγπ.

It is not difficult to determine that I(u, v, γ) is a non-decreasing function of γ.
Therefore

δ(∞, fuv) =
I(u, v, λ)

I(u, v, λ) + v
.(3.40)
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Imposing the conditions 0 < λ < 1/2 and u cosλπ ≥ v on the parameters λ, u, and
v, we get

(3.40′) δ(∞, fuv) =
u− v
u

.

It is easy to see that selecting v, 0 ≤ v ≤ u cosλπ, in a suitable way, we can
give δ(∞, fuv) an arbitrary preassigned value δ0, 1− cosλπ ≤ δ0 ≤ 1.

Now we estimate from above

lim sup
r→∞

lnµ(r, fuv)

T (r, fuv)
.

Obviously,

lnµ(r, fuv) = ln |fuv(r)| = ln |f(r, u)| − ln |f(−r, v)|.
The formula (3.36) does not allow to find an asymptotic formula for ln |f(r, u)|.
However, since |f(reiη, u)| ≥ |f(r, u)| for each η > 0, we have the following estimate
from above:

lnµ(r, fuv) ≤ ln |f(reiη , u)| − ln |f(−r, v)|

=
π

sinπl(r)
{u cos l(r)(π − η)− v}rl(r) + o(rl(r)).

(3.41)

Using (3.39) we get

lim sup
r→∞

lnµ(r, fuv)

T (r, fuv)
≤ lim sup

r→∞

ϑ(µ, v, l(r), η)

I(u, v, l(r)) + v
,

where

ϑ(u, v, γ, η) =
πγ

sinπγ
(u cos γ(π − η)− v), 0 < γ < 1.

It is easy to see that

1

π

∂

∂γ
ϑ(u, v, γ, 0) = u

sin 2πγ − 2πγ

2 sin2 πγ
+ v

πγ cosπγ − sinπγ

sin2 πγ
.

Since for 0 < γ < 1 the inequalities 2πγ > sin 2πγ and sinπγ > πγ cosπγ hold,
then

∂

∂γ
ϑ(u, v, γ, 0) < 0, 0 < γ < 1,

therefore the number η > 0 can be chosen to be so small that the conditions

∂

∂γ
ϑ(u, v, γ, η) < 0,

λ

2
≤ γ < 1

are satisfied. Then the function ϑ(u, v, γ, η) is non-increasing for λ
2 < γ < 1. Taking

into account that I(u, v, γ) is a non-decreasing function of γ, we get

lim sup
r→∞

lnµ(r, fuv)

T (r, fuv)
≤ ϑ(u, v, λ, η)

I(u, v, λ) + v
.

Since this inequality holds for each sufficiently small η > 0, we have

lim sup
r→∞

lnµ(r, fuv)

T (r, fuv)
≤ ϑ(u, v, λ, 0)

I(u, v, λ) + v
=

πλ

sinπλ

u cosπλ− v
u

.

Together with (3.40′) this gives

lim sup
r→∞

lnµ(r, fuv)

T (r, fuv)
≤ πλ

sinπλ
{cosπλ − 1 + δ(∞, fuv)},
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moreover, since the right-hand side of this inequality is non-negative, we may replace
lnµ(r, fuv) by ln+ µ(r, fuv) in the left-hand side.

Comparing with (3.2) we see that for the function fuv(z) it becomes an equality.
Let us show that for the function fuv(z) the inequality (3.23) also becomes an

equality.
Since for each η > 0 the inequality |f(reiη, v)| ≥ |f(r, v)| holds, we have

lnM(r, fuv) = ln |f(−r, u)| − ln |f(r, v)| ≥ ln |f(−r, u)| − ln |f(reiη , v)|

=
π

sinπl(r)
{u− v cos l(r)(π − η)}rl(r) + o(rl(r)),

from where, by (3.41) and (3.38) we get

lim sup
r→∞

lnµ(r, fuv)

lnM(r, fuv)
≤ lim sup

r→∞
ϑ1(u, v, l(r), η),(3.42)

lim sup
r→∞

N(r, fuv)

lnM(r, fuv)
≤ lim sup

r→∞
ϑ2(u, v, l(r), η),(3.43)

where

ϑ1(u, v, γ, η) =
u cos γ(π − η)− v
u− v cos γ(π − η)

,

ϑ2(u, v, γ, η) =
sinπγ

πγ

v

u− v cos γ(π − η)
.

Since ϑj(u, v, γ, η), j = 1, 2, are non-increasing functions of γ for sufficiently small
η, we may replace l(r) by λ in the right-hand sides of (3.42) and (3.43). Letting,
after that, η tend to zero, we get

lim sup
r→∞

lnµ(r, fuv)

lnM(r, fuv)
≤ u cosλπ − v
u− v cosλπ

,(3.44)

lim sup
r→∞

N(r, fuv)

lnM(r, fuv)
≤ sinπλ

πλ

v

u− v cosλπ
.

Thus

lim sup
r→∞

lnµ(r, fuv)

lnM(r, fuv)
+ πλ sin πλ lim sup

r→∞

N(r, fuv)

lnM(r, fuv)

≤ u cosλπ − v
u− v cosλπ

+ sin2 πλ
v

u− v cosλπ
= cosλπ.

Hence, if 0 < λ < 1/2, then the sides of (3.23) are equal for function fuv(z).
Observe, that in our proof of the inequality (3.44) we did not use the conditions

λ < 1/2, u cosπλ ≥ v, hence, the inequality (3.44) holds for 0 < λ < 1 and u ≥ v.
For v = 0 we get

lim sup
r→∞

lnµ(r, fu0)

lnM(r, fu0)
≤ cosλπ.

But the function fu0(z) ≡ f(z, u) is entire and, thus, for each λ, 0 < λ < 1 and
each ρ, λ ≤ ρ < 1, we have an example of an entire function of order ρ, lower order
λ, for which (3.32) is an equality.
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Exercise. Prove that the function fu0(z) satisfies:

lim sup
r→∞

T (r, fu0)

lnM(r, fu0)
=


sinπλ

πλ
, 0 < λ < 1

2 ,

1

πλ
, 1

2 ≤ λ < 1.

Thus, for each λ and ρ, 0 < λ ≤ 1/2, λ ≤ ρ < 1, there exists an entire function of
order ρ and lower order λ, for which (3.30) is an equality.8

Example 2. We show that for each δ0, 0 ≤ δ0 ≤ 1, there exists a meromorphic
function f(z) with λ = ρ = 0 such that δ(∞, f) = δ0 and

lim sup
r→∞

lnµ(r, f)

T (r, f)
= δ(∞, f),(3.45)

lim sup
r→∞

lnµ(r, f)

lnM(r, f)
= 1, lim sup

r→∞

N(r, f)

lnM(r, f)
<∞,(3.46)

that is, there is an equality in (3.2) and (3.23).
Let ρ(r) → 0 be a proximate order, such that rρ(r) ↑ ∞ as r ↑ ∞. Denote

by g(z, u) the canonical product of genus 0 with positive zeros, such that n(r, 0) ∼
urρ(r). By the asymptotic formula (5.282) from Chapter 2, for each η > 0 the
relation

ln |g(reiϕ, u)| = (1 + o(1))N(r, 0, g(z, u)) = (u+ o(1))

∫ r

1

tρ(t)−1dt(3.47)

holds uniformly in ϕ, η ≤ ϕ ≤ 2π − η. Defining g(z, 0) ≡ 1, consider the function

guv(z) =
g(z, u)

g(−z, v)
, 0 ≤ v ≤ u <∞, u > 0.

The relation (3.47) implies that for each η > 0 the relation

ln |guv(reiϕ)| = (u − v + o(1))

∫ r

1

tρ(t)−1dt

holds uniformly in ϕ, η ≤ ϕ ≤ 2π− η. Whence, with the help of Theorem 7.4 from
Chapter 1, we get

m(r, guv) =
1

π

∫ π

0

ln+ |guv(reiϕ)|dϕ = (u − v + o(1))

∫ r

1

tρ(t)−1dt.

Since

N(r, guv) = N(r, 0, g(z, v)) = (v + o(1))

∫ r

1

tρ(t)−1dt,

we have

T (r, guv) = m(r, guv) +N(r, guv) = (u+ o(1))

∫ r

1

tρ(t)−1dt

8There exists an entire function g(z) of order ρ and lower order λ, 0 ≤ λ ≤ ρ ≤ ∞, for which

lim sup
r→∞

T (r, g)

lnM(r, g)
=


sinπλ

πλ
, 0 ≤ λ ≤ 1

2
,

1

πλ
, 1

2
≤ λ ≤ ∞,

(see M.N. Sheremeta [She69]).



3. MEROMORPHIC FUNCTIONS OF ORDER LESS THAN 1/2 217

and, hence,

δ(∞, guv) = lim inf
r→∞

m(r, guv)

T (r, guv)
=
u− v
u

.

Obviously, fixing u > 0 and choosing v, 0 ≤ v ≤ u, we can give δ(∞, guv) an
arbitrary preassigned value δ0, 0 ≤ δ0 ≤ 1. Since lnµ(r, f) ≤ m(r, f), we have

lim sup
r→∞

lnµ(r, guv)

T (r, guv)
≤ lim sup

r→∞

m(r, guv)

T (r, guv)
=
u− v
u

= δ(∞, guv).

Comparing with (3.2) for λ = 0, we see, that (3.45) holds for f(z) = guv(z).
Since ln+M(r, f) ≥ m(r, f), for v < u we have

lim sup
r→∞

N(r, guv)

ln+M(r, guv)
≤ lim sup

r→∞

N(r, guv)

m(r, guv)
=

v

u− v <∞,

that is, the second relation from (3.46) holds. The first of the relations from (3.46)
follows from the trivial inequality µ(r, f) ≤ M(r, f) and the inequality (3.23) for
λ = 0.

Example 3. We show that Theorem 3.1 ceases to be true if we replace < by
≤ in (3.1) (it is clear that this does not follow from the previous examples).

For this, for arbitrary λ and ρ satisfying 0 < λ ≤ ρ < 1/2, we construct a
meromorphic function f(z) of order ρ and lower order λ, such that |f(−r)| ≤ 2,
0 ≤ r <∞ and δ(∞, f) = 1− cosπλ.

Let g(z, u) be a function defined in the same way as f(z, u) in Example 1, with
the only difference that the condition (3.35) is replaced by the condition

lim inf
r→∞

l(r) = 2λ, lim sup
r→∞

l(r) = 2ρ.

Let

g1(z) =
g(z, 1)

g(−z, 1)
.

As in Example 1, we get that for each η > 0 the relation

ln |g1(reiϕ)| = π

sinπl(r)
{cos l(r)(ϕ − π)− cos l(r)ϕ}rl(r) + o(rl(r))

=
π

cos πl(r)2

{
sin l(r)

(
ϕ− π

2

)}
rl(r) + o(rl(r))

(3.48)

holds uniformly in ϕ, η ≤ ϕ ≤ π − η.
Consider the function

g2(z) = g1(z) + g1(−z).

From (3.48) we see that

g1(reiϕ)→ 0, g1(−reiϕ)→∞ as r → +∞
uniformly in ϕ for η ≤ ϕ ≤ π

2 − η, and, hence

g2(reiϕ) = (1 + o(1))g1(−reiϕ),

and

g1(reiϕ)→∞, g1(−reiϕ)→ 0 as r → +∞
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uniformly in ϕ satisfying π
2 + η ≤ ϕ ≤ π − η, and hence

g2(reiϕ) = (1 + o(1))g1(reiϕ).

Therefore the relation

ln |g2(reiϕ)| = π

cos πl(r)2

{
sin
(
l(r)

∣∣∣ϕ− π

2

∣∣∣)} rl(r) + o(rl(r))

holds uniformly in ϕ satisfying η ≤ ϕ ≤ π
2 − η or π

2 + η ≤ ϕ ≤ π − η. Applying
Theorem 7.4 from Chapter 1 we have

m(r, g2) =
1

π

∫ π

0

ln+ |g2(reiϕ)|dϕ

= rl(r) sec
πl(r)

2

∫ π

0

sin
(
l(r)

∣∣∣ϕ− π

2

∣∣∣) dϕ+ o(rl(r))

= rl(r)
2

l(r)
sec

πl(r)

2

(
1− cos

πl(r)

2

)
+ o(rl(r)).

Since

N(r,∞, g2) = 2N(r,∞, g1) =
2

l(r)
rl(r) + o(rl(r)),

we get

T (r, g2) =
2

l(r)
sec

πl(r)

2
rl(r) + o(rl(r)).

Since the function g2(z) is even, the function f(z) = g2(
√
z) is univalent and,

hence, meromorphic. By the corollary of Theorem 6.6 from Chapter 1 we have

T (r, f) = T (
√
r, g2)

=
2

l(
√
r)

sec
πl(
√
r)

2
r

1
2 l(
√
r) + o

(
r

1
2 l(
√
r)
)
,

(3.49)

δ(∞, f) = lim inf
r→∞

m(r, f)

T (r, f)
= lim inf

r→∞

m(
√
r, g2)

T (
√
r, g2)

= lim inf
r→∞

(
1− cos

πl(
√
r)

2

)
= 1− cosπλ,

and also, it is clear from (3.49) that f(z) has order ρ and lower order λ.

Since g(z, 1) is a canonical product with positive zeros, we have g(z, 1) = g(z̄, 1).
Therefore |g(iy, 1)| = |g(−iy, 1)|, −∞ < y < ∞, and hence |g1(iy)| = 1 and
|g2(iy)| ≤ 2, −∞ < y <∞. Thus |f(−r)| ≤ 2, 0 ≤ r <∞, Q.E.D.

4. Bounds for the sum of two deficiencies and related problems

In Section 1 of Chapter 4 we saw that a meromorphic function of non-integer
order cannot have more than one Borel exceptional value. Examples given in Section
4 of Chapter 4 show that this result does not immediately carry over to deficient
values. However, it turns out that a meromorphic function f(z) of a non-integer
order ρ cannot have two deficient values, a and b, with the sum δ(a, f) + δ(b, f)
close to 2.
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More precisely, for each non-integer ρ > 0 we can find a positive number d(ρ),
such that for each meromorphic function of order ρ and for each a 6= b, the inequality

δ(a, f) + δ(b, f) ≤ 2− d(ρ)(4.1)

holds.
This result can be easily obtained using the corollary of Theorem 4.2 from

Chapter 2 (p. ???). First we observe, that it is enough to prove (4.1) for a = 0,

b = ∞. In fact, if a 6= ∞, b 6= ∞, for the function f1(z) =
f(z)− a
f(z)− b we have

ρ[f1] = ρ[f ] = ρ, δ(0, f1) = δ(a, f), δ(∞, f1) = δ(b, f), and the inequality δ(0, f1) +
δ(∞, f1) ≤ 2 − d(ρ) implies (4.1). If a 6= ∞, b = ∞, we let f1(z) = f(z) − a.
Further, since

δ(0, f) + δ(∞, f) ≤ 2− lim sup
r→∞

N(r; 0,∞)

T (r, f)
,(4.2)

and, by the corollary of Theorem 4.2 from Chapter 2

lim sup
r→∞

N(r; 0,∞)

T (r, f)
≥ sinπ(ρ− [ρ])

C1([ρ])
,

where 0 < C1([ρ]) < ∞ does not depend on f(z), we get (4.1) with d(ρ) =
| sinπρ|/C1([ρ]).

The problem about the best possible value of d(ρ) arises. By (4.2) this problem
is connected with the problem of the best estimate from below in terms of ρ of the
value

κ(f) = lim sup
r→∞

N(r; 0,∞)

T (r, f)

for meromorphic functions f(z) of order ρ. More general is a problem of the best
estimate from below of κ(f) for meromorphic functions f(z) of order ρ and lower
order λ.

At present none of these problems is completely solved.9 The existing results
are summarized in the following theorem.

Theorem 4.1. Let

ν(x) =


1, 0 ≤ x ≤ 1/2,

sinπx, 1/2 ≤ x ≤ 1,

| sinπx|{2, 2x+ 0, 5| sinπx|}−1, 1 ≤ x <∞,
0, x =∞.

For each meromorphic function f(z) of order ρ ≤ ∞ and lower order λ < ∞, the
estimates

κ(f) ≥ max
λ≤x≤ρ

ν(x),(4.3)

(4.3′) δ(a, f) + δ(b, f) ≤ 2− max
λ≤x≤ρ

ν(x), a 6= b

hold.
In particular, for each meromorphic function f(z) of order ρ the estimates

κ(f) ≥ ν(ρ)(4.4)

9If λ <∞ and the sum of deficiencies is 2, then ρ = λ = n/2 where n is an integer [A44].
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(4.4′) δ(a, f) + δ(b, f) ≤ 2− ν(ρ), a 6= b

hold.

To characterize the accuracy of the estimates (4.4) and (4.4′), define a function
ν1(x), x ≥ 0, as:

ν1(x) =

{
| sinπx|{[x] + | sinπx|}−1, [x] ≤ x ≤ [x] + 1

2 ,

| sinπx|{[x] + 1}−1, [x] + 1
2 ≤ x ≤ [x] + 1.

Obviously

ν1(x) = ν(x), 0 ≤ x ≤ 1,

0, 3ν1(x) ≤ ν(x) ≤ ν1(x), x ≥ 1

(where the equality in the last inequality takes place for integer x only).
Exercise 1 from Section 1 of Chapter 4 contains an example of a function of

order ρ, such that

1− δ(0, f) = κ(f) = ν1(ρ), δ(∞, f) = 1.

Thus, the estimates (4.4) and (4.4′) are the best possible for 0 < ρ ≤ 1, and,
in certain sense, are close to the best possible for ρ > 1.

As for the accuracy of the estimates (4.3) and (4.3′), note that Exercise 2 from
Section 1 of Chapter 4, for each integer p ≥ 0 and for numbers λ and ρ satisfying
p < λ ≤ ρ < p+ 1, contains an example of a function of order ρ and lower order λ,
such that

1− δ(0, f) = κ(f) = max
λ≤x≤ρ

ν1(x), δ(∞, f) = 1.

Thus the estimates (4.3) and (4.3′) are the best possible for 0 < λ ≤ ρ < 1 and,
in certain sense, are close to the best possible if [ρ] < λ ≤ ρ, [ρ] ≥ 1.

We can also add that the estimates (4.3) and (4.3′) are the best possible for
0 ≤ λ ≤ 1/2. In fact, in this case maxλ≤x≤ρ ν(x) = 1 for each ρ ≥ λ. On the other
hand, for each entire function f(z) of order ρ and lower order λ, the relations

1− δ(0, f) = κ(f) = lim sup
r→∞

N(r, 0)

T (r, f)
≤ 1, δ(∞, f) = 1

hold, and hence there is an equality in (4.3) and (4.3′).
Note that Theorem 4.1 immediately implies the following statement, which

was already proved as a corollary of Lemma 3.4: an entire function of lower or-
der λ ≤ 1/2 cannot have finite deficient values. In fact, since δ(∞, f) = 1 and
maxλ≤x≤ρ ν(x) = 1, letting b =∞ in (4.3′), we get δ(a, f) = 0 for each a 6=∞.

Theorem 4.1 is a corollary of the following two theorems.

Theorem 4.2. Let

ν2(x) = | sinπx|{2, 2x+ 0, 5| sinπx|}−1, x ≥ 0.

For each meromorphic function f(z) of order ρ ≤ ∞ and lower order ∞ > λ >
0 the estimate

κ(f) ≥ max
λ≤x≤ρ

ν2(x)(4.5)

holds.
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Theorem 4.3. For each meromorphic function of lower order 0 ≤ λ < 1 the
estimate

κ(f) ≥ ν(λ)(4.6)

holds.

In order to derive Theorem 4.1 from these theorems, it suffices to observe, that
for λ ≥ 1 the estimate (4.3) coincides with (4.5), and for λ < 1

max
λ≤x≤ρ

ν(x) = max

{
ν(λ), max

λ≤x≤ρ
ν2(x)

}
,

and the estimate (4.3) follows from (4.5) and (4.6). The estimate (4.3′) is a easy
corollary of (4.3) and (4.2).

Now we turn to lemmas used in the proof of Theorem 4.2.

Lemma 4.1. Let f(z), f(0) = 1, be a meromorphic function, and q ≥ 0 be an
integer. If 0 ≤ r ≤ 1

2R, the inequality

2T (r, f)−N(r; 0,∞) ≤ rq
∫ R

0

n(t; 0,∞)Φ

(
t

r

)
t−q−1dt

+ C1

( r
R

)q+1

T (2R, f) + C2q(r
q + 1),

holds, where 0 < C1, C2 <∞ are constants, which do not depend on r and R, and

Φ(t) =
1

2π

∫ 2π

0

dθ

|teiθ − 1| .

Proof. We have

2T (r, f)−N(r; 0,∞) = m(r, f) +m

(
r,

1

f

)
=

1

2π

∫ 2π

0

| ln |f(reiθ)||dθ.
(4.7)

Applying Lemma 3.1 we represent the function f(z) in the form (3.3). We get

1

2π

∫ 2π

0

| ln |f(reiθ)||dθ

≤ 1

2π

∫ 2π

0

| ln |αR,q(reiθ)||dθ +
1

2π

∫ 2π

0

| ln |ωR,q(reiθ)||dθ,
(4.8)

from where, by (3.4) and (3.5) we get the inequality

1

2π

∫ 2π

0

| ln |f(reiθ)||dθ ≤
∑
|aµ|<R

I(aµ) +
∑
|bν |<R

I(bν)

+K1

( r
R

)q+1

T (2R, f) +K2q(r
q + 1), 0 ≤ r ≤ 1

2
R,

(4.9)

where

I(a) =
1

2π

∫ 2π

0

∣∣∣∣ln ∣∣∣∣E (reiθa , q

)∣∣∣∣∣∣∣∣ dθ, 0 < |a| <∞.
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Let us estimate I(a). Since

∂

∂t
ln |E(teiθ, q)| = Re

∂

∂t
lnE(teiθ, q) = Re

tqei(q+1)θ

teiθ − 1
,

for 0 < θ < 2π, 0 < t <∞, we have

| ln |E(reiθ , q)|| ≤
∫ r

0

∣∣∣∣ ∂∂t ln |E(teiθ, q)|
∣∣∣∣ dt ≤ ∫ r

0

tqdt

|teiθ − 1| ,

and hence, we get

I(a) = I(|a|) =
1

2π

∫ 2π

0

∣∣∣∣ln ∣∣∣∣E ( r

|a|e
iθ, q

)∣∣∣∣∣∣∣∣ dθ
≤
∫ r/|a|

0

{
1

2π

∫ 2π

0

dθ

|teiθ − 1|

}
tqdt =

∫ r/|a|

0

tqΦ(t)dt.

It is easy to see that Φ(t) = 1
t
Φ
(

1
t

)
, therefore we have the estimate

I(a) ≤
∫ r/|a|

0

tq−1Φ

(
1

t

)
dt = rq

∫ ∞
|a|

u−q−1Φ
(u
r

)
du.

Using this estimate we get∑
|aµ|<R

I(aµ) +
∑
|bν |<R

I(bν)

≤ rq
∑
|aµ|<R

∫ ∞
|aµ|

u−q−1Φ
(u
r

)
du+ rq

∑
|bν |<R

∫ ∞
|bν |

u−q−1Φ
(u
r

)
du

≤ rq
∫ R

0

dn(s; 0,∞)

∫ ∞
s

u−q−1Φ
(u
r

)
du

= rq
{
n(R; 0,∞)

∫ ∞
R

u−q−1Φ
(u
r

)
du

+

∫ R

0

n(s; 0,∞)s−q−1Φ
(s
r

)
ds

}
.

For 0 ≤ r ≤ 1
2R, u ≥ R, the inequality

Φ
(u
r

)
=

1

2π

∫ 2π

0

dθ∣∣u
r e
iθ − 1

∣∣ ≤ r

u− r ≤ 2
r

u

holds, and therefore∫ ∞
R

u−q−1Φ
(u
r

)
du ≤ 2r

∫ ∞
R

u−q−2du =
2

q + 1

r

Rq+1
.

Taking into the account the inequality n(R; 0,∞) ≤ 4T (2R, f) (Lemma 7.1 from
Chapter 1), we get the estimate∑

|aµ|<R
I(aµ) +

∑
|bν |<R

I(bν)

≤ rq
{

8

q + 1

r

Rq+1
T (2R, f) +

∫ R

0

n(s; 0,∞)Φ
(s
r

)
s−q−1ds

}
.

(4.10)

The conclusion of the lemma follows from (4.7), (4.9), and (4.10). �
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Lemma 4.2. Let

J(β) =

∫ ∞
0

t−β−1Φ

(
1

t

)
dt, 0 < β < 1.

The estimate

J(β) ≤ 4.4 cscπβ

holds.

Proof. We have

J(β) =
1

π

∫ π

0

dθ

∫ ∞
0

t−βdt√
t2 − 2t cos θ + 1

.

Making the change of variable

t = cos θ + sin θ tanϕ =
cos(θ − ϕ)

cosϕ
,

we get

J(β) =
1

π

∫ π

0

dθ

∫ π/2

θ−π2
{cos(θ − ϕ)}−β{cosϕ}β−1dϕ.

Changing the order of integration, we have

J(β) =
1

π

∫ π/2

−π/2
{cosϕ}β−1dϕ

∫ ϕ+π
2

0

{cos(θ − ϕ)}−βdθ.

Since the second integral in the right-hand side of the equality∫ ϕ+π
2

0

{cos(θ − ϕ)}−βdθ =

∫ π/2

0

{cosω}−βdω +

∫ 0

−ϕ
{cosω}−βdω

is an odd function of ϕ, we get

J(β) =
1

π

∫ π/2

−π/2
{cosϕ}β−1dϕ

∫ π/2

0

{cosω}−βdω.

Using the well-known formula∫ π/2

0

{cosα}xdα =

√
πΓ
(
x+1

2

)
Γ
(
x
2 + 1

) , −1 < x <∞,

we get

J(β) =
Γ
(
β
2

)
Γ
(

1−β
2

)
2Γ
(
β+1

2

)
Γ
(

1− β
2

) ,
from where, by virtue of Γ(x)Γ(1 − x) = π cscπx, we obtain

J(β) =
π2

sinπβΓ2
(

1+β
2

)
Γ2
(

1− β
2

) .
Letting t = 1

4 −
β
2 , we see that − 1

4 < t < 1
4 , and

Γ

(
1 + β

2

)
Γ

(
1− β

2

)
= Γ

(
3

4
+ t

)
Γ

(
3

4
− t
)
.
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Let us find the minimum of the function g(t) = Γ
(

3
4 + t

)
Γ
(

3
4 − t

)
on the interval(

− 1
4 ,

1
4

)
. Using the well-known formula (see Whittaker, Watson [WW96, 12·16])

Γ′(z)

Γ(z)
= −γ − 1

z
−
∞∑
n=1

{
1

z + n
− 1

n

}
(γ is the Euler–Mascheroni constant), we get

g′(t)

g(t)
=

Γ′
(

3
4 + t

)
Γ
(

3
4 + t

) − Γ′
(

3
4 − t

)
Γ
(

3
4 − t

) =
∞∑
n=0

2t(
n+ 3

4

)2 − t2 .
Hence we see that

signg′(t) = signt

on the interval
(
− 1

4 ,
1
4

)
. It indicates that

min
− 1

4<t<
1
4

g(t) = g(0) = Γ2

(
3

4

)
.

Thus,

J(β) ≤ π2

sinπβΓ4
(

3
4

) < 4.4

sinπβ
.

Q.E.D. �

Lemma 4.3. Let f(z), f(0) = 1, be a meromorphic function, q ≥ 0 be an
integer, κ′ > κ(f), ε > 0. It is possible to find R0 ≥ 1 such that for R ≥ 2R0,
q + ε ≤ x ≤ q + 1− ε, the inequality

(ν2(x)− κ′)
∫ 1

2R

R0

T (r, f)r−x−1dr ≤ C3R
−xT (2R, f) + C4(4.11)

holds, where 0 < C3, C4 <∞ are constants which do not depend on R and x.

Proof. Let R0 ≥ 1 be such that N(r; 0,∞) ≤ κ′T (r, f) holds for r ≥ R0.
Lemma 4.1 implies the inequality

(2− κ′)T (r, f) ≤ rq
∫ R

0

n(t; 0,∞)Φ

(
t

r

)
t−q−1dt

+ C1

( r
R

)q+1

T (2R, f) + 2C2qr
q , R0 ≤ r ≤

1

2
R.

We multiply both parts of this inequality by r−x−1 and integrate with respect to r
from R0 to 1

2R. We have

(2− κ′)
∫ 1

2R

R0

T (r, f)r−x−1dr

≤
∫ 1

2R

R0

rq−x−1dr

∫ R

0

n(t; 0,∞)Φ

(
t

r

)
t−q−1dt

+
C1

q + 1− xR
−xT (2R, f) +

2C2q

x− q .

(4.12)
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Denote the iterated integral in the right-hand side of (4.12) by I. Changing the
order of integration, we get

I =

∫ R

0

n(t; 0,∞)t−q−1dt

∫ 1
2R

R0

rq−x−1Φ

(
t

r

)
dr

=

∫ R

0

n(t; 0,∞)t−x−1dt

∫ R/(2t)

R0/t

uq−x−1Φ

(
1

u

)
du

≤
∫ R

0

n(t; 0,∞)t−x−1dt

∫ ∞
0

uq−x−1Φ

(
1

u

)
du

= J(x− q)
∫ R

0

n(t; 0,∞)t−x−1dt

= J(x− q)
{
N(R; 0,∞)R−x + x

∫ R

0

N(t; 0,∞)t−x−1dt

}

= J(x− q)
{
N(R; 0,∞)R−x + x

∫ R

1
2R

N(t; 0,∞)t−x−1dt

+x

∫ 1
2R

R0

N(t; 0,∞)t−x−1dt+ x

∫ R0

0

N(t; 0,∞)t−x−1dt

}
Since

N(R; 0,∞) ≤ 2T (R, f) ≤ 2T (2R, f),

x

∫ R

1
2R

N(t; 0,∞)t−x−1dt ≤ N(R; 0,∞)

(
1

2
R

)−x
≤ 2q+2R−xT (2R, f),

x

∫ 1
2R

R0

N(t; 0,∞)t−x−1dt ≤ xκ′
∫ 1

2R

R0

T (t, f)t−x−1dt,

x

∫ R0

0

N(t; 0,∞)t−x−1dt ≤ (q + 1)

{∫ 1

0

N(t; 0,∞)t−q−2dt

+

∫ R0

1

N(t; 0,∞)t−q−1dt

}
,

and, by Lemma 4.2,

J(x− q) ≤ 4.4| cscπx|,
we get the estimate

I ≤ 4.4xκ′

| sinπx|

∫ 1
2R

R0

T (r, f)r−x−1dr + C5R
−xT (2R, f) + C6,

where 0 < C5, C6 < ∞ do not depend on R and x, q + ε < x < q + 1 − ε. Using
this estimate, from (4.12) we get(

2− κ′ − 4.4xκ′

| sinπx|

)∫ 1
2R

R0

T (r, f)r−x−1dr ≤ C7R
−xT (2R, f) + C8,(4.13)
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where 0 < C7, C8 < ∞ do not depend on R and x, q + ε < x < q + 1 − ε. Since

2−κ′− 4.4xκ′

| sinπx| = (ν2(x)−x′)
(

1 +
4.4x

| sinπx|

)
, multiplying both parts of the relation

(4.13) by

(
1 +

4.4x

| sinπx|

)−1

, we get the inequality (4.11). �

Proof. Now we prove Theorem 4.2. We consider separately the following two
cases: (a) 0 < λ < ρ ≤ ∞, (b) 1 ≤ [ρ] < ρ = λ. We do not need to consider the
case 1 ≤ [ρ] = ρ = λ, since in this case the right-hand side of the inequality (4.5)
vanishes, and the conclusion of Theorem 4.2 is trivial.

The case (a). By the continuity of the function ν2(x) it suffices to prove that
for each non-integer x, λ < x < ρ, the inequality

κ(f) ≥ ν2(x)(4.14)

holds. Letting q = [x], ε = min(x − q, q + 1 − x), we apply Lemma 4.3. Note that
the quantities C3 and C4 in the inequality (4.11) could depend on q and ε, therefore
now they can depend on x, but this does not interfere with our argument.

Since x < ρ, we get

lim
R→∞

∫ 1
2R

R0

T (r, f)r−x−1dr =∞.

Since x > λ, there exists a sequence Rk →∞, such that

lim
k→∞

R−xk T (2Rk, f) = 0.

Therefore, letting R tend to ∞ along the sequence Rk in (4.11), we get

ν2(x) − κ′ ≤ 0.

Since this inequality holds for each κ′ > κ(f), it holds also for κ′ = κ(f), that is
(4.14) holds.

Case (b). We prove that

κ(f) ≥ ν2(λ).

Let λ(r) be the lower proximate order of the function T (r, f), q = [λ], ε =
1

2
min(λ−

q, q + 1 − λ). We choose R′0 ≥ R0 so large, that for r ≥ R′0 the inequalities
q + ε < λ(r) < q + 1− ε and T (r, f) ≥ 1

2r
λ(r) hold. Letting x = λ(R) in (4.11), we

get the inequality

(ν2(λ(R)) − κ′)
∫ 1

2R

R0

T (r, f)r−λ(R)−1dr ≤ C3R
−λ(R)T (2R, f) + C4.(4.15)

By the result of Exercise 2 from Section 2 of Chapter 2 we have

lim
R→∞

∫ 1
2R

R0

T (r, f)r−λ(R)−1dr

≥ lim
R→∞

{∫ R′0

R0

T (r, f)r−λ(R)−1dr +
1

2

∫ 1
2R

R′0

rλ(r)−λ(R)−1dr

}
=∞.

The definition of a lower proximate order implies that there exists a sequence
Rk →∞, such that

lim
k→∞

R
−λ(Rk)
k T (2Rk, f) <∞.
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Letting R tend to∞ along the sequence Rk, we get the inequality ν2(λ)−κ′ ≤ 0,
which, in turn, implies (4.5). The proof of Theorem 4.2 is completed. �

Now we turn to lemmas used in the proof of Theorem 4.3.

Lemma 4.4. Let

α(z) =
∏
µ

(
1− z

aµ

){∏
ν

(
1− z

bν

)}−1

be a meromorphic function of genus zero. Let

α̌(z) =
∏
µ

(
1− z

|aµ|

){∏
ν

(
1 +

z

|bν |

)}−1

.

Then

m(r, α̌) ≥ m(r, α), T (r, α̌) ≥ T (r, α).

Proof. Let aµ = |aµ|eiαµ , bν = |bν |eiβν . We fix r > 0 and denote by D the
set of those values of θ, −π ≤ θ < π, for which |α(reiθ)| ≥ 1. Let D(aµ) be the set
of those values of θ, −π ≤ θ < π, for which θ + αµ + π ∈ D( mod 2π), and D(bν)
be the set of those values of θ, −π ≤ θ < π, for which θ + βν ∈ D( mod 2π). It is
clear that d = mesD = mesD(aµ) = mesD(bν). We have

m(r, α) =
1

2π

∫ π

−π
ln+ |α(reiθ)|dθ =

1

2π

∫
D

ln |α(reiθ)|dθ

=
∑
µ

1

2π

∫
D

ln

∣∣∣∣1− reiθ

aµ

∣∣∣∣ dθ +
∑
ν

1

2π

∫
D

− ln

∣∣∣∣1− reiθ

bν

∣∣∣∣ dθ
=
∑
µ

1

2π

∫
D(aµ)

ln

∣∣∣∣1 +
reiθ

|aµ|

∣∣∣∣ dθ +
∑
ν

1

2π

∫
D(bν)

− ln

∣∣∣∣1− reiθ

|bν |

∣∣∣∣ dθ.
Since the functions ln

∣∣∣1 + reiθ

|aµ|

∣∣∣ and − ln
∣∣∣1− reiθ

|bν |

∣∣∣ are decreasing on [0, π] and even,

by Lemma 7.2 from Chapter 1, we have∫
D(aµ)

ln

∣∣∣∣1 +
reiθ

|aµ|

∣∣∣∣ dθ ≤ ∫ 1
2 mesD(aµ)

− 1
2 mesD(aµ)

ln

∣∣∣∣1 +
reiθ

|aµ|

∣∣∣∣ dθ =

∫ 1
2d

− 1
2d

ln

∣∣∣∣1 +
reiθ

|aµ|

∣∣∣∣ dθ,
∫
D(bν)

− ln

∣∣∣∣1− reiθ

|bν |

∣∣∣∣ dθ ≤ ∫ 1
2 mesD(bν)

− 1
2 mesD(bν)

− ln

∣∣∣∣1− reiθ

|bν |

∣∣∣∣ dθ =

∫ 1
2d

− 1
2d

− ln

∣∣∣∣1− reiθ

|bν |

∣∣∣∣ dθ.
We get

m(r, α) ≤
∑
µ

1

2π

∫ 1
2d

− 1
2d

ln

∣∣∣∣1 +
reiθ

|aµ|

∣∣∣∣ dθ +
∑
ν

1

2π

∫ 1
2 d

− 1
2 d

− ln

∣∣∣∣1− reiθ

|bν |

∣∣∣∣ dθ
=

1

2π

∫ 1
2d

− 1
2d

ln |α̌(−reiθ)|dθ ≤ 1

2π

∫ π

−π
ln+ |α̌(−reiθ)|dθ = m(r, α̌).

Since N(r, α) = N(r, α̌), we conclude

T (r, α) = m(r, α) +N(r, α) ≤ m(r, α̌) +N(r, α̌) = T (r, α̌),

Q.E.D. �
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Lemma 4.5. Let f(z), f(0) = 1, be a meromorphic function of of genus zero
with positive zeros and negative poles. Denote by A the (possibly, empty) set of
those values of r, 0 < r < ∞, for which at least one of the following equalities is
true

T (r, f) = N(r, f), T (r, f) = N

(
r,

1

f

)
.

For each r /∈ A there exists β = β(r), 0 < β(r) < π, such that the equality

T (r, f) =

∫ ∞
0

N

(
t,

1

f

)
K(t, r, β)dt+

∫ ∞
0

N(t, f)K(t, r, π − β)dt(4.16)

takes place, where

K(t, r, ϕ) =
1

π

r sinϕ

t2 + r2 − 2rt cosϕ
=

1

π
Im

1

t− reiϕ , 0 < ϕ < π.

Proof. We choose a single-valued of ln f(z) satisfying ln f(0) = 0 in the region
{Imz > 0} ∪ {|z| < q}, where q is so small that f(z) 6= 0,∞ for |z| < q. We have
the representation

ln f(z) =

∫ ∞
0

ln
(

1− z

t

)
dn

(
t,

1

f

)
−
∫ ∞

0

ln
(

1 +
z

t

)
dn(t, f), Imz > 0,

from where, integrating by parts twice, we get

ln f(z) = −z
∫ ∞

0

N

(
t,

1

f

)
dt

(t− z)2
− z

∫ ∞
0

N(t, f)
dt

(t+ z)2
, Imz > 0.(4.17)

Fix r /∈ A, then m(r, f) > 0 and m

(
r,

1

f

)
> 0. Since the function ln |f(reiθ)|

is an increasing function of θ on [0, π], we get from here that ln |f(r)| < 0 and
ln |f(−r)| > 0. Denote by β = β(r), 0 < β(r) < π the number determined by the
condition ln |f(reiβ)| = 0. Observing that ln |f(reiθ)| is an even function of θ, we
get for r /∈ A

m(r, f) =
1

π

∫ π

0

ln+ |f(reiθ)|dθ =
1

π

∫ π

β

ln |f(reiθ)|dθ = lim
δ→π

1

π
Im

∫ reiδ

reiβ
ln f(z)

dz

z
.

By virtue of the representation (4.17) we get

m(r, f) = − 1

π
lim
δ→π

{
Im

∫ ∞
0

N

(
t,

1

f

)
dt

∫ reiδ

reiβ

dz

(z − t)2

+Im

∫ ∞
0

N(t, f)dt

∫ reiδ

reiβ

dz

(z + t)2

}

=
1

π
lim
δ→π

{∫ ∞
0

N

(
t,

1

f

)
Im

[
1

reiδ − t −
1

reiβ − t

]
dt

+

∫ ∞
0

N(t, f)Im

[
1

reiδ + t
− 1

reiβ + t

]
dt

}
=

∫ ∞
0

N

(
t,

1

f

)
K(t, r, β)dt+

∫ ∞
0

N(t, f)K(t, r, π − β)dt

− lim
δ→π

∫ ∞
0

N

(
t,

1

f

)
K(t, r, δ)dt− lim

δ→π

∫ ∞
0

N(t, f)K(t, r, π − δ)dt.
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From the estimate

K(t, r, δ) ≤ 1

π

r sin δ

r2 + t2
,
π

2
≤ δ < π,

and the convergence of the integral∫ ∞
0

N

(
t,

1

f

)
t−2dt,

it follows easily, that

lim
δ→π

∫ ∞
0

N

(
t,

1

f

)
K(t, r, δ)dt = 0.

We show that

lim
δ→π

∫ ∞
0

N(t, f)K(t, r, π − δ)dt = N(r, f).(4.18)

Choose an arbitrary ε > 0. By the continuity of the function N(t, f) we can
choose η > 0 such that for |t− r| < η the inequality |N(t, f)−N(r, f)| < ε holds.
We have

K(t, r, π − δ) ≤ 1

π

r sin δ

(r − t)2
.(4.19)

Since
∫∞
−∞K(t, r, ϕ)dt = 1, 0 < ϕ < π, it follows that∫ ∞

0

N(t, f)K(t, r, π − δ)dt−N(r, f)

=

∫ ∞
0

N(t, f)K(t, r, π − δ)dt−
∫ ∞
−∞

N(r, f)K(t, r, π − δ)dt

=

∫
|t−r|<η

{N(t, f)−N(r, f)}K(t, r, π − δ)dt

+

∫
|t−r|≥η
t>0

N(t, f)K(t, r, π − δ)dt−
∫
|t−r|≥η

N(r, f)K(t, r, π − δ)dt

= I1 + I2 − I3.
Noticing that K(t, r, ϕ) > 0, 0 < ϕ < π, we get

|I1| ≤ ε
∫
|t−r|<η

K(t, r, π − δ)dt < ε

∫ ∞
−∞

K(t, r, π − δ)dt = ε.

Next, by virtue of the estimate (4.19) we have

|I2| ≤
1

π
sin δ

∫
|t−r|≥η
t>0

N(t, f)
r

(r − t)2
dt,

|I3| ≤
1

π
sin δN(r, f)

∫
|t−r|≥η

r

(r − t)2
dt.

Therefore for all δ sufficiently close to π, the inequality |I2|+ |I3| < ε holds, hence,
|I1|+ |I2|+ |I3| < 2ε. Thus, we have proved the equality (4.18). So we have (r /∈ A)

m(r, f) =

∫ ∞
0

N

(
t,

1

f

)
K(t, r, β)dt+

∫ ∞
0

N(t, f)K(t, r, π − β)dt−N(r, f),

an equality, equivalent to (4.16). �
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Lemma 4.6. Let V (r) > 0 be a continuous non-decreasing function of r.

(A) If for some σ, 0 < σ <∞,

(α) lim inf
r→∞

r−σV (r) = 0, (β) lim sup
r→∞

r−σV (r) =∞,

then for each ε, 0 < ε < 1, there are two sequences, rk → ∞ and Rk → ∞, such
that

(a) V (t) ≤
(
t

rk

)σ
V (rk), 1 ≤ t ≤ Rk; (b) rkR

−1
k < ε.(4.20)

(B) If

lim sup
r→∞

lnV (r)

ln r
= ρ <∞,

then for each ε, 0 < ε < 1, there exists a sequence rk →∞, such that

V (t) ≤
(
t

rk

)ρ−ε
V (rk), 1 ≤ t ≤ rk,(4.21)

V (t) ≤
(
t

rk

)ρ+ε
V (rk), rk ≤ t <∞.(4.22)

Proof. We prove the statement (B) first. Since lim supr→∞ r
−ρ+εV (r) =∞,

the set of those values of r for which

r−ρ+εV (r) = max
1≤t≤r

{t−ρ+εV (t)},

is not bounded from above. We select in this set a sequence sk ↑ ∞. Since
limt→∞ t

−ρ−εV (t) = 0, for each sk we can find rk ≥ sk such that

r−ρ−εk V (rk) = max
sk≤t≤<∞

t−ρ−εV (t).(4.23)

The sequence {rk} has the desired properties. In fact, the validity of (4.22) follows
from (4.23) and the inequality rk ≥ sk.

Next, for 1 ≤ t ≤ sk we have

V (t)

tρ−ε
≤ V (sk)

sρ−εk

=
V (sk)

sρ+εk

s2ε
k ≤

V (rk)

rρ+εk

s2ε
k ≤

V (rk)

rρ+εk

r2ε
k =

V (rk)

rρ−εk

,

and for sk ≤ t ≤ rk we have

V (t)

tρ−ε
=
V (t)

tρ+ε
t2ε ≤ V (rk)

rρ+εk

t2ε ≤ V (rk)

rρ+εk

r2ε
k =

V (rk)

rρ−εk

.

Therefore the inequality (4.21) is also valid.
Now we prove the statement (A). By (α) there exists a sequence Rk ↑ ∞ such

that limk→∞R−σk V (Rk) = 0. Since V (r) is non-decreasing, we have

(4.23′) max
εRk≤r≤Rk

r−σV (r) ≤ ε−σR−σk V (Rk)→ 0 when k →∞.

Denote by F the closed set consisting of those r ≥ 1 for which

r−σV (r) = max
1≤t≤r

t−σV (t).

By (β) the set F is not bounded from above and lim
r→∞
r∈F

r−σV (r) =∞. Therefore

(4.23′) implies that for k ≥ k0 none of the segments [εRk, Rk] intersects the set F .
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Denote by rk the largest number in the set F ∩ [1, εRk], k ≥ k0. The sequences
{rk}∞k0

and {Rk}∞k0
have the desired properties. In fact, since rk ∈ F ∩ [1, εRk], the

inequality (b) from (4.20) holds. The validity of the part (a) of (4.20) for 1 ≤ t ≤ rk
follows from rk ∈ F . Since the half-open interval (rk, Rk] does not intersect the set
F , the part (a) of (4.20) holds, also, for rk < t ≤ Rk.

The proof of the lemma is completed. �
Proof. Now we prove Theorem 4.3. We may assume without loss of generality

that f(0) = 1. We consider separately two cases: (a) λ < ρ, (b) λ = ρ (by the
assumptions of the theorem we have 0 ≤ λ < 1 in both cases).

Case (a). Using Lemma 3.1 we represent the function f(z) in the form f(z) =

αR,0(z)ωR,0(z). By virtue of the estimate (3.5) and Lemma 4.4 we have

(
r ≤ 1

2
R

)
T (r, f) ≤ T (r, αR,0) + T (r, ωR,0) ≤ T (r, α̌R,0) +K1

r

R
T (2R, f),(4.24)

where K1 is a constant which does not depend on r and R.
Let σ be an arbitrary number satisfying the condition λ < σ < min(ρ, 1). Then

the function V (r) = T (r, f) satisfies the conditions (α) and (β) of Lemma 4.6(A),
and therefore, for each ε, 0 < ε < 1/4, we can find sequences {rk} and {Rk}
satisfying (4.20),(a),(b). In what follows we assume

r = rk, 2R = Rk.(4.25)

Note that then

T (t, f) ≤
(
t

r

)σ
T (r, f), 1 ≤ t ≤ 2R and

r

R
< 2ε,(4.26)

and the inequality (4.24) implies

T (r, f) ≤ T (r, α̌R,0) + 2K1ε
1−σT (r, f).(4.27)

To estimate T (r, α̌R,0) we use Lemma 4.5.
Suppose that there is an infinite sequence of pairs (r,R) satisfying the condi-

tions (4.25), and such that

T (r, α̌R,0) = N(r, α̌R,0).(4.28)

Since for r ≤ R we have

N(r, α̌R,0) = N(r, f),

by (4.27) we get

T (r, f) ≤ N(r, f) + 2K1ε
1−σT (r, f),

whence

(4.28′) lim sup
r→∞

N(r, f)

T (r, f)
≥ 1− 2K1ε

1−σ,

hence, a fortiori,

κ(f) ≥ 1− 2K1ε
1−σ.

Letting ε tend to 0, we get κ(f) ≥ 1, and the inequality (4.6) is proved in this
case. Similarly, the inequality (4.6) holds also in the case when there is an infinite
sequence of pairs (r,R), satisfying the conditions (4.25), such that

T (r, α̌R,0) = N(r, 1/α̌R,0).(4.29)
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If there is neither an infinite sequence of pairs (r,R) satisfying (4.25) and (4.28),
nor an infinite sequence of pairs satisfying (4.25) and (4.29), then by Lemma 4.5
for all pairs (r,R) satisfying (4.25) for k ≥ k0 there is β = β(r), 0 < β < π, such
that the equality

T (r, α̌R,0) =

∫ ∞
0

N(t, 1/α̌R,0)K(t, r, β)dt

+

∫ ∞
0

N(t, α̌R,0)K(t, r, π − β)dt = I1 + I2

(4.30)

holds. Since for t ≤ R the equality N(t, α̌R,0) = N(t, f) holds, and for t > R we
have

N(t, α̌R,0) = N(R, f) + n(R, f) ln
t

R

≤ T (R, f) + 2T (2R, f) ln
t

R
≤ 2T (2R, f) ln

et

R
,

we conclude

I2 ≤
∫ R

0

N(t, f)K(t, r, π − β)dt + 2T (2R, f)

∫ ∞
R

ln

(
et

R

)
K(t, r, π − β)dt

and, observing that for t ≥ R(≥ 2r) the inequality

K(t, r, β) ≤ 1

π

r sinβ

(r − t)2
≤ 2

r

t2

holds, and ∫ ∞
R

t−2 ln

(
et

R

)
dt =

2

R
,

we get

I2 ≤
∫ R

0

N(t, f)K(t, r, π − β)dt+ 8
r

R
T (2R, f).(4.31)

Similarly we get

I1 ≤
∫ R

0

N

(
t,

1

f

)
K(t, r, β)dt+ 8

r

R
T (2R, f).(4.32)

The combination of (4.27), (4.30), (4.31), (4.32), and (4.26) implies the inequal-
ity

T (r, f) ≤
∫ R

0

N

(
t,

1

f

)
K(t, r, β)dt

+

∫ R

0

N(t, f)K(t, r, π − β)dt+ (2K1 + 32)ε1−σT (r, f).

(4.33)

Let γ = min(β, π − β). Then, obviously, 0 < γ ≤ π
2 and

K(t, r, γ) = max(K(t, r, β),K(t, r, π − β)).(4.34)

Therefore (4.33) implies

T (r, f) ≤
∫ R

0

N(t; 0,∞)K(t, r, γ)dt+ (2K1 + 32)ε1−σT (r, f).(4.35)
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Let κ′ > κ(f). Then there is R0 ≥ 1, such that for t ≥ R0 the inequality
N(t; 0,∞) ≤ κ′T (t, f) holds. Taking into account (4.26), we derive from (4.35)
the inequality

T (r, f) ≤ κ′T (r, f)

∫ R

R0

(
t

r

)σ
K(t, r, γ)dt

+
N(R0; 0,∞)rR0

π(r −R0)2
+ (2K1 + 32)ε1−σT (r, f).

(4.36)

Next we observe that∫ R

R0

(
t

r

)σ
K(t, r, γ)dt ≤

∫ ∞
0

(
t

r

)σ
K(t, r, γ)dt =

∫ ∞
0

uσK(u, 1, γ)du,(4.37)

and that using the Residue Calculus, it is easy get

(4.37′)

∫ ∞
0

uσK(u, 1, ϕ)du =
sin(π − ϕ)σ

sinπσ
, 0 < ϕ < π, −1 < σ < 1.

Therefore (4.36) implies the inequality

1 ≤ κ′ sin(π − γ)σ

sinπσ
+ (2K1 + 32)ε1−σ +

N(R0; 0,∞)rR0

π(r −R0)2T (r, f)
.

Letting r tend to ∞ in this inequality, and then letting ε tend to 0, we get

1 ≤ κ′ max
0≤γ≤π2

sin(π − γ)σ

sinπσ
.(4.38)

But

max
0≤γ≤π2

sin(π − γ)σ

sinπσ
=

 1, 0 < σ ≤ 1
2

1

sinπσ
, 1

2 < σ < 1

 =
1

ν(σ)
,(4.39)

therefore (4.38) can be rewritten in the form

κ′ ≥ ν(σ).(4.40)

Here σ is an arbitrary number satisfying the inequality λ < σ < min(ρ, 1), and κ′

is an arbitrary number satisfying the inequality κ′ > κ(f). Therefore the validity
of (4.40) implies the validity of (4.6).

Case (b). We prove that for each function f(z), f(0) = 1, of order ρ < 1
the inequality κ(f) ≥ ν(ρ) holds (we shall not use the condition λ = ρ). First we
assume in addition that all zeros of the function f(z) are positive, and all of its
poles are negative. Then, since f(z) has genus zero, we can apply Lemma 4.5.

If there is an infinite sequence of values of r for which at least one of the
equalities

T (r, f) = N(r, f), T (r, f) = N

(
r,

1

f

)
is valid, then κ(f) ≥ 1, and hence (4.6) holds. Therefore, by Lemma 4.5, we may
assume that for all sufficiently large r there is β = β(r), 0 < β(r) < π, such that
the inequality (4.16) holds. Letting, as in the case (a), γ = min(β, π−β), and using
(4.34) we get

T (t, f) ≤
∫ ∞

0

N(t; 0,∞)K(t, r, γ)dt.(4.41)
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Let ε, 0 < ε < min

(
1

4
, 1− ρ

)
be an arbitrary prescribed number. Let V (r) =

T (r, f) in Lemma 4.6(B) and denote by {rk} the sequence whose existence is es-
tablished in the lemma. In what follows we assume that r takes values belonging
to the sequence {rk} only. Note that by Lemma 4.6(B) we have

T (t, f) ≤
(
t

r

)ρ−ε
T (r, f), 1 ≤ t ≤ r,(4.42)

(4.42′) T (t, f) ≤
(
t

r

)ρ+ε
T (r, f), r ≤ t <∞.

Let κ′ > κ(f) and letR0 ≥ 1 be such that for t ≥ R0 the inequalityN(t; 0,∞) ≤
κ′T (t, f) holds. Taking into account (4.42), (4.42′), we get from (4.41) the inequality

T (r, f) ≤ κ′T (r, f)

{∫ r

R0

(
t

r

)ρ−ε
K(t, r, γ)dt

+

∫ ∞
r

(
t

r

)ρ+ε
K(t, r, γ)dt

}
+
N(R0; 0,∞)rR0

π(r −R0)2
.

(4.43)

We estimate the expression in braces. We have∫ r

R0

(
t

r

)ρ−ε
K(t, r, γ)dt+

∫ ∞
r

(
t

r

)ρ+ε
K(t, r, γ)dt

=

∫ 1

R0/r

uρ−εK(u, 1, γ)du+

∫ ∞
1

uρ+εK(u, 1, γ)du

≤
∫ ∞

0

uρ+εK(u, 1, γ)du+

∫ 1

0

(uρ−ε − uρ+ε)K(u, 1, γ)du.

By virtue of (4.37′) we have∫ ∞
0

uρ+εK(u, 1, γ)du =
sin(π − γ)(ρ+ ε)

sinπ(ρ+ ε)
.

Next, since 1− u2ε < 8εu−
1
4 , uρ−ε < u−

1
4 for 0 < u < 1, we get∫ 1

0

(uρ−ε − uρ+ε)K(u, 1, γ)du ≤ 8ε

∫ 1

0

u−
1
2K(u, 1, γ)du

< 8ε

∫ ∞
0

u−
1
2K(u, 1, γ)du = 8ε sin

π − γ
2
≤ 8ε.

Therefore (4.43) implies

1 ≤ κ′
{

sin(π − γ)(ρ+ ε)

sinπ(ρ+ ε)
+ 8ε

}
+

N(R0; 0,∞)rR0

π(r −R0)2T (r, f)
.

Letting r tend to ∞, we get

1 ≤ κ′
{

max
0≤γ≤π2

sin(π − γ)(ρ+ ε)

sinπ(ρ+ ε)
+ 8ε

}
,

whence, by (4.39), it follows that

1 ≤ κ′
{

1

ν(ρ+ ε)
+ 8ε

}
.
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Letting ε tend to 0, and then letting κ′ tend to κ(f), we get κ(f) ≥ ν(ρ), Q.E.D.
Now we get rid of the assumption that all zeros of the function f(z) are positive

and all of its poles are negative. Let f(z), f(0) = 1, be a meromorphic function of

order ρ < 1. We form the function f̌(z). Obviously,

N(r, f) = N(r, f̌), N

(
r,

1

f

)
= N

(
r,

1

f̌

)
.(4.44)

Since the functions f(z) and f̌(z) are quotients of canonical products, using Theo-
rem 3.4 from Chapter 2 we get

ρ[f ] = max

{
ρ[N(r, f)], ρ

[
N

(
r,

1

f

)]}
,

ρ[f̌ ] = max

{
ρ[N(r, f̌ ], ρ

[
N

(
r,

1

f̌

)]}
,

and hence ρ[f ] = ρ[f̌ ] = ρ. All zeros of the function f̌(z) are positive and all of
its poles are negative, therefore, since the result has been already proven in this
case, κ(f̌) ≥ ν(ρ). But κ(f) ≥ κ(f̌), it follows from (4.44) and the inequality

T (r, f) ≤ T (r, f̌), which is a consequence of Lemma 4.4. The proof of Theorem 4.3
is completed. �

The method used in the proof of Theorem 4.3 can be used to prove the following
result about deficiencies.

Theorem 4.4. Let f(z) be a meromorphic function of lower order λ < 1, a 6= b
be two numbers from the extended plane. Let

u = 1− δ(a, f), v = 1− δ(b, f).

The inequality

u2 + v2 − 2uv cosπλ ≥ sin2 πλ(4.45)

holds, where v = 1 if u < cosπλ, and u = 1 if v < cosπλ.

Observe that the equation u2 +v2−2uv cosπλ = sin2 πλ represents an ellipse in
the (u, v)-plane, with {u = v} and {u = −v} being its axes of symmetry, inscribed
into the square {−1 ≤ u ≤ 1, −1 ≤ v ≤ 1}. This ellipse is tangent to the lines
{u = 1} and {v = 1} at the points (1, cosπλ) and (cosπλ, 1), respectively. For
1/2 < λ < 1 both points of tangency are outside the square Q = {0 ≤ u ≤ 1, 0 ≤
v ≤ 1}, and the statement of Theorem 4.4 means that the point (u, v) lies in the
square Q, but not in the interior of the ellipse. For 0 < λ ≤ 1/2 the statement of
Theorem 4.4 means that the point (u, v) either lies on one of the lines {u = 1} and
{v = 1}, or in the piece of the square Q near the vertex (1, 1), which is cut off the
square by the arc of the ellipse joining the points (1, cosπλ) and (cosπλ, 1) (Figure
4, (a) shows the case 0 ≤ λ < 1/2, Figure 4, (b) shows the case 1/2 ≤ λ < 1 In
both cases the set of possible values of (u, v) is shaded.)

For λ = 0 the ellipse degenerates into a line segment joining the points (−1,−1)
and (1, 1), and the statement of Theorem 4.4 means that the point (u, v) lies on
one of the lines {u = 1} and {v = 1}. This last result was obtained earlier (see the
corollary of Theorem 3.1).
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Proof. Proving Theorem 4.4 we may assume without loss of generality that
a = 0, b =∞, f(0) = 1. As in the proof of Theorem 4.3 we consider two cases: (a)
λ < ρ, (b) λ = ρ.

Case (a) Arguing in the same way as in the proof of Theorem 4.3 we arrive at
the inequality (4.27). If there is a sequence of pairs (r,R) satisfying the conditions
(4.25) and (4.28), then (4.28′) implies δ(∞, f) ≤ 2K1ε

1−σ, and, since ε can be
chosen arbitrarily small, δ(∞, f) = 0, v = 1 − δ(∞, f) = 1. Similarly, if there is a
sequence of pairs (r,R) satisfying the conditions (4.25) and (4.29), then δ(0, f) = 0,
u = 1. It is clear that points of the form (u, 1) and (1, v) satisfy the conditions of
Theorem 4.4.

If there is neither a sequence of pairs (r,R) satisfying the conditions (4.25) and
(4.28), nor a sequence of pairs satisfying the conditions (4.25) and (4.29), then,
arguing in the same way as in the proof of Theorem 4.3, we arrive at the inequality
(4.33).

Let X and Y be an arbitrary pair of numbers satisfying the conditions X > u,

Y > v. Then there is R0 ≥ 1 such that for t ≥ R0 the inequalities N

(
t,

1

f

)
≤

XT (t, f), N(t, f) ≤ Y T (t, f) hold. Taking into account (4.26) and (4.33) we get

T (r, f) ≤ XT (r, f)

∫ R

R0

(
t

r

)σ
K(t, r, β)dt

+ Y T (r, f)

∫ R

R0

(
t

r

)σ
K(t, r, π − β)dt+

N(R0; 0,∞)rR0

π(r −R0)2

+ (2K1 + 32)ε1−σT (r, f),

where r and R satisfy the condition (4.25).
Hence, using (4.37) and (4.37′), we have

1 ≤ X sin(π − β)σ

sinπσ
+ Y

sinβσ

sinπσ
+ (2K1 + 32)ε1−σ +

N(R0; 0,∞)rR0

π(r −R0)2T (r, f)
.(4.46)

Since

X sin(π − β)σ + Y sinβσ

= (Y −X cosπσ) sin βσ + (X sinπσ) cos βσ

≤ {(Y −X cosπσ)2 + (X sinπσ)2}1/2 = {X2 + Y 2 − 2XY cosπσ}1/2,

the inequality (4.46) implies

1 ≤ 1

sinπσ
{X2 + Y 2 − 2XY cosπσ}1/2 + (2K1 + 32)ε1−σ +

N(R0; 0,∞)rR0

π(r −R0)2T (r, f)
.

Letting r tend to ∞ in this inequality, and then ε tend to 0 and σ to λ, we get

sin2 πλ ≤ X2 + Y 2 − 2XY cosπλ.

Since X and Y are arbitrary numbers satisfying the inequalities X > u and Y > v,
the inequality (4.45) is proved.

The fact that v = 1 for u < cosπλ and that u = 1 for v < cosπλ follows
immediately from the corollary of Theorem 3.1

The case (b) can be treated in the same way as the case (b) in Theorem 4.3,
we leave the details to the reader. �
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It turns out that Theorem 4.4 cannot be made more precise, that is, for each pair
u, v of numbers, 0 ≤ u, v ≤ 1, satisfying the conditions described in the statement
of the theorem, there exists a meromorphic function f(z) of lower order λ such that
δ(a, f) = 1 − u, δ(b, f) = 1 − v. We do not prove this result in the general case,
referring to the paper [EF60]. We give only the following example.

Example. Let numbers ρ and λ, 0 < λ ≤ ρ < 1, and u and v, 0 ≤ u, v ≤ 1,
u2 + v2 − 2uv cosπλ = sin2 πλ be given. If λ < 1/2, we assume in addition that
u, v ≥ cosπλ. We shall find a meromorphic function f(z) of order ρ and lower order
λ, such that

δ(0, f) = 1− u, δ(∞, f) = 1− v.(4.47)

In the case u ≥ v, the function fuv(z) considered in Example 1 from Section 3
has these properties. In fact, by (3.40) we have

1− δ(∞, fuv) =
v

I(u, v, λ) + v
.

But for u and v satisfying the conditions described above the equality

I(u, v, λ) =
1

sinπλ
{u2 + v2 − 2uv cosπλ}1/2 − v = 1− v(4.48)

holds, therefore δ(∞, fuv) = 1− v. Next, since

N

(
r,

1

fuv

)
= N(r, 0, f(z, u)) =

u

l(r)
rl(r) + o(rl(r)),

using (3.38) and (4.48) we get

1− δ(0, fuv) = lim sup
r→∞

N
(
r, 1
fuv

)
T (r, fuv)

= lim sup
r→∞

u

I(u, v, l(r)) + v
=

u

I(u, v, λ) + v
= u

and, hence δ(0, fuv) = 1− u.
If v ≤ u, then 1/fuv(z) is a desired function.
If instead of the just considered restriction on u and v, we require u = 1,

0 ≤ v < cosπλ, then the function fuv(z) also satisfies (4.47). It follows from the
relation (3.40′) and the equality δ(0, fuv) = 0, which is true by the corollary of
Theorem 3.1. If 0 ≤ u < cosπλ, v = 1, then 1/fuv(z) is a desired function.

Theorem 4.4 also implies the following result containing both the corollary of
Theorem 3.1 and the corollary of Lemma 3.4.

Theorem 4.5. Let f(z) be a meromorphic function of lower order λ ≤ 1/2. If
δ(a, f) ≥ 1− cosπλ, 0 < λ ≤ 1/2, or δ(a, f) > 0, λ = 0, then a is the only deficient
value of the function f(z).

By the corollary of Theorem 3.1 it is enough to consider the case δ(a, f) =
1 − cosπλ, 0 < λ ≤ 1/2. Let b 6= a and u = 1 − δ(a, f), v = 1 − δ(b, f). Then
u = cosπλ, 0 ≤ v ≤ 1, and the inequality (4.45) implies v ≥ 1. Therefore v = 1,
δ(b, f) = 0, Q.E.D.
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5. The growth of a meromorphic function with exceptional values

The presence of one, even Picard, exceptional value does not impose any re-
strictions onto the order and lower order of a meromorphic function. Let us show
that for arbitrary λ and ρ satisfying 0 ≤ λ ≤ ρ ≤ ∞ there is an entire function of
order ρ and lower order λ.

Example 1. (The case 0 < λ ≤ ρ < 1.) Take a differentiable on [1,∞) function
l(r), such that

lim inf
r→∞

l(r) = λ, lim sup
r→∞

l(r) = ρ.

Let f(z) be a canonical product of genus 0 with positive zeros, such that
n(r, 0) ∼ rl(r). By the formula (5.4) from Chapter 2 the function f(z) has or-
der ρ and lower order λ.

Example 2. (The case 0 < λ ≤ ρ < ∞.) Let n ≥ 2ρ be a positive integer,
λ1 = λ/n, ρ1 = ρ/n. Then 0 < λ1 ≤ ρ1 ≤ 1/2. Let f(z) be an entire function of
order ρ1 and lower order λ1. The function f(zn) has order ρ and lower order λ.

Example 3. (The case λ = 0, 0 < ρ < ∞.) In Section 6 of Chapter 4 we
proved (p. ???) that the entire function

g(z) =

∞∏
k=1

{
1−

(
z

rk

)nk}
,(5.1)

where nk are arbitrary positive integers, and rk are arbitrary positive integers
satisfying the condition rk+1 ≥ 2rk, r1 > 1, satisfy the relation

T (r, g) = N(r, 0) +O(1).

Let r1 = e, rk+1 = erk , nk = [rρk]. Then

n(r, 0) =
∑
rk≤r

[rρk] = O(rρ), n(rn, 0) ∼ rρn.

Since ρ[N(r, 0)] = ρ[n(r, 0)], the function g(z) has order ρ. Next,

N(rn, 0) =

∫ rn

e

n(t, 0)

t
dt ≤ n(rn−1, 0) ln

rn

e

= O(rρn−1) ln
rn

e
= O

(
(ln rn)ρ+1

)
.

Hence the lower order of the function g(z) is equal to 0.

Example 4. (The case λ = 0, ρ =∞.) Consider somewhat more general case.
Let ϕ(r) and ψ(r) be two arbitrary non-decreasing functions, such that ψ(r) ≥
ϕ(r) ≥ 1 and

lim
r→∞

ϕ(r)

ln r
=∞.

We construct an entire function g(z) for which

lim inf
r→∞

T (r, g)

ϕ(r)
≤ 1, lim sup

r→∞

T (r, g)

ψ(r)
≥ 1.(5.2)
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Select a sequence {rk} of positive numbers, such that r1 > 1, rk+1 ≥ 2rk,

n−1∑
k=1

[ψ(rke)] ln
rn

rk
≤ ϕ(rn).(5.3)

This is possible since ln r = o(ϕ(r)). Letting nk = [ψ(rke)], consider the function
(5.1). The relation (5.3) is equivalent to

N(rn, 0) ≤ ϕ(rn).

Besides, it is clear that

N(ern, 0) ≥ n(rn, 0) ≥ [ψ(rne)].

Therefore the function (5.1) satisfies the conditions (5.2).

Example 5. (The case 0 < λ <∞, ρ =∞.) Let g(z) be an entire function of
order ∞ and lower order 0, hλ(z) be a canonical product with positive zeros, such
that n(r, 0, hλ) ∼ rλ. Then lnT (r, hλ) ∼ λ ln r, therefore the lower order of the
function f(z) = g(z)hλ(z) is equal to λ, but the order of f(z) is infinite.

In the cases λ = ρ = 0, λ = ρ =∞ the corresponding examples are trivial.
If a function f(z) has two Picard exceptional values, then necessarily ρ[f ] =

λ[f ], and it is either a positive integer or ∞. This result follows from the next
theorem.

Theorem 5.1. If a function f(z) is such that for some a and b, a 6= b, the
inequality ρ[N(r; a, b)] < ρ[f ] holds, then ρ[f ] = λ[f ], and it is either a positive
integer or ∞.

Proof. We may assume without loss of generality that a = 0, b =∞, f(0) 6=
0,∞. Let π1(z) be a canonical product, whose zeros and their multiplicities coincide
with such of the function f(z), and π2(z) be a canonical product, whose zeros and
their multiplicities coincide with poles and their multiplicities of f(z). Then we
have a representation

f(z) = g(z)
π1(z)

π2(z)
,

where g(z) is an entire function without zeros. Since

T (r, f) ≤ T (r, g) + T

(
r,
π1

π2

)
,

T (r, g) ≤ T (r, f) + T

(
r,
π1

π2

)
,

and

ρ

[
π1

π2

]
= ρ[N(r; 0,∞)],

we have the inequalities

ρ[f ] ≤ max{ρ[g], ρ[N(r; 0,∞]} = ρ[g],

λ[g] ≤ max{λ[f ], ρ[N(r; 0,∞)]}.(5.4)



240 5. ASYMPTOTIC PROPERTIES

But ρ[g] = λ[g], and is either an integer or ∞. In fact, if λ[g] < ∞, then by
Lemma 6.2 from Chapter 1 we have g(z) = eP (z), where P (z) is a polynomial,
hence λ[g] = ρ[g] and is equal to the degree of the polynomial P (z).

Therefore (5.4) implies that ρ[f ] ≤ max{λ[f ], ρ[N(r; 0,∞)]} = λ[f ], whence
ρ[f ] = λ[f ], and is either an integer or ∞. It remains to observe that ρ[f ] > 0,
because ρ[f ] > ρ[N(r; 0,∞)]. �

However, presence of two Borel exceptional values does not imply, in general,
the equality ρ[f ] = λ[f ], although, in this case, by Theorem 1.1 from Chapter 4,
the number ρ[f ] should be either a positive integer10 or ∞.

Example 6. We show that for each positive integer ρ and each λ, 0 ≤ λ ≤ ρ,
there exists an entire function gλρ(z) of order ρ and lower order λ, for which zero
is a Borel exceptional value.

As g01(z) we take the function f(z) from Example 4 of Section 2 (its lower
order is equal to zero by Remark 2 to that example). In the case 0 < λ < 1 we let

gλ1(z) = g01(z)ωλ(z),

where

ωλ(z) =

∞∏
n=1

(
1− z

n1/λ

)
.

Since g01(z) = f(z) is a function of maximal type of order 1, and the order of ωλ(z)
is equal to λ < 1, then gλ1(z) is also of maximal type of order 1. Taking into
account that n(r, 0, f) = O(r), we get n(r, 0, gλ1) = O(r), and hence 0 ∈ EB(gλ1).
Since lnT (r, ωλ) ∼ λ ln r, and the lower order of the function g01(z) = f(z) is equal
to zero, the lower order of the function gλ1(z) is equal to λ.

Let also g11(z) = ez. Thus, the function gλρ(z) is constructed for ρ = 1,
0 ≤ λ ≤ 1. Let now ρ be an arbitrary positive integer, 0 ≤ λ ≤ ρ. Then, letting

gλρ(z) = gµ1(zρ), where µ = λ/ρ,

we get, as is easy to see, a desired function.
If the function f(z) has two deficient values, then by the Corollary of Theorem

3.1 necessarily λ[f ] > 0. Let us show that for arbitrary λ and ρ, 0 < λ ≤ ρ < ∞,
there exists a meromorphic function f(z) such that λ[f ] = λ, ρ[f ] = ρ, δ(0, f) =
δ(∞, f) > 0.

Example 7. First let 0 < λ ≤ ρ ≤ 1/2. Letting u = v = cos πλ2 in Example
1 from Section 4, we get a function fλρ(z) of order ρ and lower order λ with

δ(0, fλρ) = δ(∞, fλρ) = 1 − cos
πλ

2
. If λ and ρ are arbitrary numbers satisfying

0 < λ ≤ ρ < ∞, a desired function can be obtained by selecting a positive integer
n ≥ 2ρ and letting

fλρ(z) = fλ1ρ1(zn), where λ1 = λ/n, ρ1 = ρ/n.

It turns out that existence of two deficient values a and b, a 6= b with deficiencies
δ(a, f) and δ(b, f) close to one, implies proximity of ρ[f ] and λ[f ] to some positive
integer.

10The possibility ρ[f ] = 0 is excluded, since in this case n(r; a, b) = O(1) implies that f(z) is
a rational function.



5. THE GROWTH OF A MEROMORPHIC FUNCTION WITH EXCEPTIONAL VALUES 241

We may assume without loss of generality that a = 0, b = ∞. By (4.2) the
inequality

{1− δ(0, f)}+ {1− δ(∞, f)} ≥ κ(f)

holds. We show that smallness of κ(f) implies the proximity of ρ[f ] and λ[f ] to
some positive integer.

Theorem 5.2. Let f(z) be a meromorphic function of order ρ ≤ ∞ and lower
order λ <∞, and p be an integer, defined by the condition

p− 1

2
≤ λ < p+

1

2
.

If

κ(f) ≤ ε

1.1(p+ 1)
, where 0 ≤ ε < 1

2
,

then p ≥ 1 and

p− ε ≤ λ ≤ ρ ≤ p+ ε.(5.5)

Proof. By Theorem 4.1 the inequality

κ(f) ≥ max
λ≤x≤ρ

ν(x)

holds, therefore we have

max
λ≤x≤ρ

ν(x) ≤ ε

1.1(p+ 1)
.(5.6)

Since p ≥ 0, the right-hand side of this inequality is less than one. But ν(x) = 1
for 0 ≤ x ≤ 1/2, therefore (5.6) implies that λ > 1/2 and p ≥ 1.

Next, since

ν(x) ≥ | sinπx|
2.2x+ 0.5| sinπx| ,

by (5.6) we get that the inequality

| sinπx|
2.2x+ 0.5| sinπx| ≤

ε

1.1(p+ 1)

should hold for all x, λ ≤ x ≤ ρ. But it does not hold for x = p + 1/2, therefore
ρ < p + 1/2. Since for |x − p| < 1/2 the inequality | sinπx| ≥ 2|x − p| holds, we
come to the conclusion that for all x, λ ≤ x ≤ ρ the inequality

2|x− p|
2.2x+ |x− p| ≤

ε

1.1(p+ 1)

should hold, a fortiori the inequality

2|x− p|
2.2
(
p+ 1

2

)
+ 1

2

≤ ε

1.1(p+ 1)

should hold. Therefore for all x, λ ≤ x ≤ ρ, the inequality |x− p| ≤ ε holds. From
here we get (5.5). �
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Theorem 5.2 and the corollary of Theorem 6.5 from Chapter 4 immediately
imply

Corollary. Let f(z) be a meromorphic function of finite lower order λ. If

κ(f) <
1

2.2

(
λ+

3

2

) ,
then the deficiencies of the function f(z) are shift-invariant, that is deficiencies of
f(z + h) are independent of h.

We mention also the following theorem which can be proved with the help of
Theorem 5.2.

Theorem 5.3. Let f(z) be a meromorphic function of order ρ <∞ and lower
order λ, and p is an integer defined by the condition

p− 1

2
≤ λ < p+

1

2
.

If ∑
a6=∞

δ(a, f) ≥ 1− γ, δ(∞, f) ≥ 1− γ,(5.7)

where

γ =
ε

5(p+ 1)
, 0 ≤ ε < 1

2
,(5.8)

then p ≥ 1 and

p− ε ≤ λ ≤ ρ ≤ p+ ε.

Corollary 1. Under the conditions of Theorem 5.3 all deficiencies are shift-
invariant.

Corollary 2. If f(z) is an entire function of finite order and∑
a6=∞

δ(a, f) = 1,

then ρ[f ] = λ[f ] is a positive integer and all deficiencies are shift-invariant.

To prove Theorem 5.3 we need the following lemma.

Lemma 5.1. Let f(z) be a meromorphic function of finite order and let the
conditions (5.7), where 0 ≤ γ < 1, be satisfied. Then

lim inf
r→∞

T (r, f ′)

T (r, f)
≥ 1− γ, lim sup

r→∞

T (r, f ′)

T (r, f)
≤ 1 + γ(5.9)

and

κ(f ′) ≤ 4γ

1− γ2
.(5.10)
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Proof. We have

T (r, f ′) = m(r, f ′) +N(r, f ′) ≤ m(r, f) +m

(
r,
f ′

f

)
+ 2N(r, f) = T (r, f) +N(r, f) +m

(
r,
f ′

f

)
≤ T (r, f) + (1− δ(∞, f) + o(1))T (r, f) +O(ln r)

(we used Theorem 1.3 from Chapter 3). The function f(z) is transcendental since
a rational function cannot have more that one deficient value. Therefore ln r =
o(T (r, f)), and we get

lim sup
r→∞

T (r, f ′)

T (r, f)
≤ 2− δ(∞, f) ≤ 1 + γ,

that is, the right-hand side inequality in (5.9) is proved.
To prove the left-hand side inequality in (5.9) we use the inequality (2.5) from

Chapter 3. Adding N

(
r,

1

f ′

)
to both sides of the latter, we get

T (r, f ′) ≥ N
(
r,

1

f ′

)
+

q∑
ν=1

m(r, aν , f) +O(ln r),(5.11)

where {a1, . . . , aq} is an arbitrary finite collection of (finite) complex numbers. We
shall take for a1, . . . , aq finite deficient values of the function f(z). From (5.11) we
get

lim inf
r→∞

T (r, f ′)

T (r, f)
≥ lim inf

r→∞

N
(
r, 1
f ′

)
T (r, f)

+

q∑
ν=1

lim inf
r→∞

m(r, aν , f)

T (r, f)
≥

q∑
ν=1

δ(aν , f).

Since q is an arbitrary positive integer, we get from here the left-hand side inequality
from (5.9).

Now we prove the inequality (5.10). We have

lim sup
r→∞

N(r, f ′)

T (r, f ′)
≤ lim sup

r→∞

2N(r, f)

T (r, f ′)

≤ lim sup
r→∞

2N(r, f)

T (r, f)
lim sup
r→∞

T (r, f)

T (r, f ′)
≤ 2(1− δ(∞, f))

1

1− γ ≤
2

1− γ .

Next, the inequality (5.11) implies

lim sup
r→∞

N

(
r,

1

f ′

)
T (r, f ′)

≤ 1− lim inf
r→∞

1

T (r, f ′)

q∑
ν=1

m(r, aν , f)

≤ 1−
{

lim inf
r→∞

T (r, f)

T (r, f ′)

}
lim inf
r→∞

q∑
ν=1

m(r, aν , f)

T (r, f)

≤ 1−
{

lim inf
r→∞

T (r, f)

T (r, f ′)

} q∑
ν=1

δ(aν , f).
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Since q can be chosen arbitrarily, we get

lim sup
r→∞

N
(
r, 1
f ′

)
T (r, f ′)

≤ 1−
{

lim inf
r→∞

T (r, f)

T (r, f ′)

} ∑
a6=∞

δ(a, f)

≤ 1− 1

1 + γ
(1 − γ) =

2γ

1 + γ
.

Thus

κ(f ′) = lim sup
r→∞

N
(
r, 1
f ′

)
+N(r, f ′)

T (r, f ′)
≤ 2γ

1 + γ
+

2γ

1− γ =
4γ

1− γ2
.

�
Proof. Now let f(z) be a function satisfying the conditions of Theorem 5.3.

Then by (5.9) we get lnT (r, f ′) ∼ lnT (r, f) and hence, λ[f ′] = λ[f ] = λ, ρ[f ′] =

ρ[f ] = ρ. By (5.10) and (5.8) we have κ(f ′) ≤ ε

1.1(p+ 1)
, therefore Theorem 5.2 is

applicable to f ′(z), and we conclude that p ≥ 1, p− ε ≤ λ ≤ ρ ≤ p+ ε. �
Remark 1. It is not known whether the condition ρ < ∞ in Theorem 5.3 is

essential.11

Remark 2. Performing a linear-fractional transformation on the function f(z),
we see that the condition (5.7) in Theorem 5.3 can be replaced by the condition∑

a6=b
δ(a, f) ≥ 1− γ, δ(b, f) ≥ 1− γ,

where b is an arbitrary number from the extended complex plane.

In connection with Theorem 5.3 the question arises: whether the proximity of
the sum of all deficiencies

∑
a δ(a, f) to 2 implies the proximity of ρ[f ] and λ[f ] to

a positive integer. It turns out that this question has a negative answer.

Example 8. For each integer q ≥ 3 there exists a meromorphic function f(z)
such that12 ∑

a

δ(a, f) = 2, ρ[f ] =
q

2
.

Let

In(z) =
∞∑
k=0

(
1
2z
)n+2k

k!Γ(n+ k + 1)
, | arg z| < π,

be the Bessel function with purely imaginary argument. We assume that the param-
eter n is real and |n| < 1/2. Then for each ε, 0 < ε < π/2, the following asymptotic
formulas hold uniformly with respect to arg z in the region

{
| arg z| < π

2 − ε
}

(see
[WW96, 17·7]).

In(z) ∼ ez

(2πz)1/2
, z →∞,(5.12)

11Toda was able to remove this condition.
12Other examples of functions with such properties will be given in Section 5 of Chapter VII.
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I−n(z)− In(z) ∼ 2 sinnπ
e−z

2πz)1/2
, z →∞.(5.13)

For given integer q ≥ 3 let

w1(z) = z1/2I1/q(2z
q/2), w2(z) = z1/2I−1/q(2z

q/2).

Since

w1(z) = z

∞∑
k=0

zkq

k!Γ
(

1
q

+ k + 1
) , w2(z) =

∞∑
k=0

zkq

k!Γ
(
− 1
q

+ k + 1
) ,(5.14)

the functions w1(z) and w2(z) are entire. By (5.12) and (5.13) for each ε, 0 < ε <
π/q the asymptotic formulas

w1(z) ∼ z1/2 e2zq/2

(4πzq/2)1/2
, w2(z) ∼ z1/2 e2zq/2

(4πzq/2)1/2
,(5.15)

(5.15′) w2(z)− w1(z) ∼ z1/22 sin
π

q

e−2zq/2

(4πzq/2)1/2
, z →∞

hold uniformly in arg z in the region
{
| arg z| < π

q − ε
}

. We need the relations

T (r, wl) =
4rq/2

π
+ o(rq/2), l = 1, 2,(5.16)

m

(
r,
w1

w2

)
= o(rq/2),

m

(
r,

w2

w1 − w2

)
≥ 8rq/2

qπ
+ o(rq/2).

To prove these relations observe that (5.15) and (5.15′) imply that for each ε,
0 < ε < π

q
, uniformly in ϕ, |ϕ| < π

q
− ε, the relations

ln |wl(reiϕ)| = 2rq/2 cos
q

2
ϕ+O(ln r), l = 1, 2,

ln

∣∣∣∣ w2(reiϕ)

w1(reiϕ)− w2(reiϕ)

∣∣∣∣ = 4rq/2 cos
q

2
ϕ+O(ln r)

(5.17)

hold. From (5.14) we see that M(r, wl) = wl(r), l = 1, 2, 0 ≤ r < ∞, and hence
T (r, wl) ≤ ln+M(r, wl) = 2rq/2 +O(ln r). By (5.14) we have also

w1(ωz) = ωw1(z), w2(ωz) = w2(z),(5.18)

where ω = exp{2πi/q}, therefore

T (r, wl) = m(r, wl) =
q

2π

∫ π/q

−π/q
ln+ |wl(reiϕ)|dϕ,

m

(
r,
w1

w2

)
=

q

2π

∫ π/q

−π/q
ln+

∣∣∣∣w1(reiϕ)

w2(reiϕ)

∣∣∣∣ dϕ.
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Using (5.17) and Theorem 7.4 from Chapter 1 we get

T (r, wl) = 2rq/2
q

2π

∫ π/q

−π/q
cos

q

2
ϕdϕ + o(rq/2) =

4rq/2

π
+ o(rq/2),

m

(
r,
w1

w2

)
= o(rq/2),

m

(
r,

w2

w1 − w2

)
≥ 1

2π

∫ π/q

−π/q
ln+

∣∣∣∣ w2(reiϕ)

w1(reiϕ)− w2(reiϕ)

∣∣∣∣ dϕ
= 4rq/2

1

2π

∫ π/q

−π/q
cos

q

2
ϕdϕ + o(rq/2) =

8rq/2

qπ
+ o(rq/2).

Consider the meromorphic function

f(z) =
w1(z)

w2(z)
.

We show that ρ[f ] = q/2, δ(ωk, f) = 2/q (k = 0, 1, . . . , q − 1). This indicates that
f(z) is a desired example.

We have

T (r, f) = N(r, f) +m(r, f) ≤ N
(
r,

1

w2

)
+m

(
r,
w1

w2

)
≤ T (r, w2) + o(rq/2) =

4rq/2

π
+ o(rr/2).

(5.19)

Next,

m

(
r,

1

f − 1

)
= m

(
r,

w2

w1 − w2

)
≥ 8rq/2

qπ
+ o(rq/2).(5.20)

The inequalities (5.19) and (5.20) imply that ρ[f ] = q/2, δ(1, f) ≥ 2/q.
By (5.18) we have f(ω−kz) = ω−kf(z), k = 0, 1, . . . , q − 1. As it was observed

at the end of Section 1 of Chapter 4 (p. ???) deficiencies of the functions f(z) and
f(az), a 6= 0 coincide. Therefore δ(1, f(z)) = δ(1, f(ω−kz)) = δ(1, ω−kf(z)). But,
obviously, δ(1, af(z)) = δ(a−1, f(z)), a 6= 0, and hence

δ(ωk, f) = δ(1, f) ≥ 2/q, k = 0, 1, . . . , q − 1.(5.21)

Since

q−1∑
k=0

δ(ωk, f) = qδ(1, f) ≤ 2, there is an equality in (5.21), Q.E.D.

Another question arising in connection with Theorem 5.3 is the the following.
What can be said about the connection between ρ[f ] and λ[f ] in the case when
f(z) has at least two deficient values with one of the deficiencies close to one? The
answer to this question is unknown. It is possible that such relation does not exist
at all and all values of ρ[f ] and λ[f ] satisfying the condition 1/2 ≤ λ[f ] ≤ ρ[f ] ≤ ∞
are admissible. The last sentence is supported by following example.

Example 9. There exists an entire function f(z) of order ρ and lower order
λ, 1/2 < λ ≤ ρ <∞, such that δ(0, f) > 0.
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Note that the restriction λ > 1/2 cannot be dropped (see Corollary 1 from
Theorem 1.3 and Theorem 4.5). It is an open problem whether the condition
ρ <∞ can be dropped. 13

Let α be a given number satisfying 1/2 < α < min(1, λ), and n be a positive
integer satisfying n > ρ. Suppose that there exists an entire function g(z) having
the following properties:

(a) The function g(z) can be represented by a power series of the form

g(z) = 1 + cnz
n + cn+1z

n+1 + . . .(5.22)

with real coefficients and cn < 0;
(b) |g(x)| < 1 for 0 < x <∞;
(c) There exists η, 0 < η < π

2 | cotπα|, such that for r > R0(η), 0 ≤ ϕ ≤ 2π,
the inequality

ln |g(reiϕ) < rα
{
η +

π cosα(ϕ− π)

sinπα

}
(5.23)

holds.

We postpone the proof of existence of such function g(z) because we do not
want to interrupt the principal argument.

Let rk be a sequence satisfying 1 < r1 ≤ r2 ≤ r3 ≤ . . . , rk → ∞ as k → ∞,
and such that

∞∑
k=1

r−nk <∞.(5.24)

By Theorem 3.2 from Chapter 2 the absolutely convergent infinite product

f(z) =

∞∏
k=1

g

(
z

rk

)
represents an entire function. Denote by ν(r) the number of points rk on the
segment [0, r]. Since (5.23) implies that lnM(r, g) = O(rα), by Theorem 3.3 from
Chapter 2 we get

lnM(r, f) < C

∫ ∞
0

ν(rτ)

τ1+α

dτ

1 + τn−α
, 0 < r <∞,(5.25)

where C is a positive constant depending on g(z) only.
The representation (5.22) implies that

ln |g(reiϕ)| = cnr
n cosnϕ+O(rn+1)

as r → ∞, whence there exist R1, 0 < R1 < R0, and ϕ1, 0 < ϕ1 <
π
2n , such that

for all r ∈ [0, R1] and |ϕ| ≤ ϕ1 the inequality

ln |g(reiϕ)| ≤ −C1r
n(5.26)

holds (we use the notation Cj for positive constants depending on g(z) only). The

inequality (5.23) implies the existence of R2 > R0 and ϕ2, 0 < ϕ2 < π

(
1− 1

2α

)
13There exist similar examples with ρ = ∞, L. Kotman, An entire function with irregular

growth and more than one deficient value. Complex analysis Joensuu, Lect. Notes. Math., 747,
Springer, Berlin, 1979.
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such that for all r > R2 and |ϕ| ≤ ϕ2 the inequality

ln |g(reiϕ)| ≤ −C2r
α(5.27)

holds. If x ∈ [R1, R2], by the condition (b) we have ln |g(x)| < 0. Since the
function |g(reiϕ)| is uniformly continuous for r ∈ [R1, R2], ϕ ∈ [−π, π], there exists
ϕ3, 0 < ϕ3 < π, such that for all r ∈ [R1, R2] and |ϕ| ≤ ϕ3 the estimate

ln |g(reiϕ)| ≤ −C3(5.28)

holds. Combining (5.26), (5.27), and (5.28) we get that for all r, 0 ≤ r < ∞, and
ϕ, |ϕ| ≤ ϕ0 = min(ϕ1, ϕ2, ϕ3), the inequality

ln |g(reiϕ)| ≤ −C4Ψ(r), Ψ(r) =
rn

1 + rn−α

holds. Hence, for |ϕ| ≤ ϕ0, we have

ln |f(reiϕ)| ≤ −C4

∞∑
k=1

Ψ

(
r

rk

)
= −C4Φ(r)

and

m(r, 0, f) ≥ 1

2π

∫ ϕ0

−ϕ0

ln
1

|f(reiϕ)|dϕ ≥
ϕ0

π
C4Φ(r).

Taking into account the following estimate of Φ(r) from below:

Φ(r) ≥ C5

∫ ∞
0

ν(rτ)

τ1+α

dτ

1 + τn−α
, 0 < r <∞

(the estimate was obtained in the proof of Theorem 3.3 from Chapter 2), we get

m(r, 0, f) ≥ C6

∫ ∞
0

ν(rτ)

τ1+α

dτ

1 + τn−α
, 0 < r <∞.(5.29)

Comparing (5.25) and (5.29) we find that

δ(0, f) ≥ lim inf
r→∞

m(r, 0, f)

lnM(r, f)
≥ C6

C
> 0.

Thus, for each sequence {rk} satisfying the condition (5.24) we have 0 ∈ EN (f).
Now we show that the sequence {rk} can be chosen in such a way that the

function f(z) has prescribed order ρ and lower order λ. Observe that (5.25) and
(5.29) imply

CQ(r) ≥ T (r, f) ≥ C6Q(r), Q(r) =

∫ ∞
0

ν(rτ)

τ1+α

dτ

1 + τn−α
,

therefore the order and the lower order of the functions T (r, f) and Q(r) coincide.
If ρ = λ, we choose the sequence {rk} in such a way that ν(r) = [rρ] for

r ≥ 21/ρ = r0 and ν(r) = 0 for 0 ≤ r < r0. Then for all r ≥ r0 we have
1

2
rρ ≤ ν(r) ≤ rρ and

1

2
rρI(ρ)− 1

2
rρ
∫ r0/r

0

τρ−α−1

1 + τn−α
dτ ≤ Q(r) ≤ rρI(ρ),

where

I(ρ) =

∫ ∞
0

τρ−α−1

1 + τn−α
<∞,



5. THE GROWTH OF A MEROMORPHIC FUNCTION WITH EXCEPTIONAL VALUES 249

and, hence, the order and lower order of the function f(z) are equal to ρ. Though,
in the case ρ = λ there exist easier ways to construct an example (see Exercise 1
from Section 1, Chapter 4).

Now let λ < ρ. We choose a number q1 > 1, such that rρ ≥ 1
2r
ρ + 1 ≥ rλ ≥

1
2r
λ + 1 for r ≥ q1. We define sequences qk, pk, p

′
k, sk, tk, k = 1, 2, . . . , by the

following recursions: pk = exp exp qk, p′k = p
ρ/λ
k , qk+1 = exp exp p′k, sk = exp qk,

tk = exp p′k, k = 1, 2, . . . . It is clear that these sequences tend to ∞. We select a
sequence rk in such a way that

ν(r) =


0 for 0 ≤ r < q1,r

ρ > rρ

for qk ≤ r ≤ pk,rλ > rλ

for p′k ≤ r < qk+1,p
ρ
k > pρk

= [p′λk ] for pk ≤ r ≤ p′k.

Then for all r ≥ q1 we have 1
2r
λ ≤ ν(r) ≤ rρ. Since ρ < n, the condition (5.24) is

satisfied. It is easy to see that

1

2
I(λ)rλ + o(rλ) =

1

2
I(λ)rλ − 1

2
rλ
∫ q1/r

0

τλ−α−1

τn−α + 1
dτ ≤ Q(r) ≤ I(ρ)rρ.

Hence

λ ≤ lim inf
r→∞

lnQ(r)

ln r
≤ lim sup

r→∞

lnQ(r)

ln r
≤ ρ.(5.30)

On the other hand

Q(sk) =

∫ ∞
0

ν(τsk)dτ

τ1+α(τn−α + 1)
≥
∫ pk/sk

qk/sk

ν(τsk)dτ

τ1+α(τn−α + 1)

≥ 1

2
sρk

∫ pk/ ln pk

qk/ exp qk

τρ−α−1dτ

τn−α + 1
=

1

2
sρk{I(ρ) + o(1)}.

Therefore

lim sup
r→∞

lnQ(r)

ln r
≥ lim sup

k→∞

lnQ(sk)

ln sk
≥ ρ,

together with (5.30) this shows that the order of the function Q(r) is equal to ρ.
Next,

Q(tk) =

{∫ qk+1/tk

p′k/tk

+

∫ ∞
qk+1/tk

+

∫ p′k/tk

0

}
ν(τtk)dτ

τ1+α(τn−α + 1)
.

We estimate from above each of the three integrals:∫ qk+1/tk

p′k/tk

ν(τtk)dτ

τ1+α(τn−α + 1)
≤ tλk

∫ qk+1/tk

p′k/tk

τλ−α−1dτ

τn−α + 1
≤ tλkI(λ),

∫ ∞
qk+1/tk

ν(τtk)dτ

τ1+α(τn−α + 1)
≤ tρk

∫ ∞
qk+1/tk

τρ−α−1dτ

τn−α + 1
≤ tρk

∫ ∞
qk+1/tk

τρ−n−1dτ

=
tρk

n− ρ
tn−ρk

qn−ρk+1

=
1

n− ρ
tnk

(exp tk)n−ρ
= o(1),
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0

ν(τtk)dτ

τ1+α(τn−α + 1)
≤ tρk

∫ p′k/tk

0

τρ−α−1dτ

τn−α + 1

≤ tρk
∫ ln tk/tk

0

τρ−α−1dτ =
tρk

ρ− α

(
ln tk
tk

)ρ−α
=

tαk
ρ− α (ln tk)ρ−α = o(tλk).

Joining these estimates, we get

Q(tk) ≤ tλkI(λ) + o(tλk),

therefore

lim inf
r→∞

lnQ(r)

ln r
≤ lim inf

k→∞

lnQ(tk)

ln tk
≤ λ.

Together with (5.30) this shows that the lower order of Q(r) is equal to λ. As was
mentioned above this proves that the order and the lower order of the function f(z)
are equal to ρ and λ, respectively.

It remains to show that there exists a function g(z) having the properties (a),
(b), and (c). Take

V (z) =

∞∏
k=1

(
1− z

k1/α

)
.

The formula (5.32) from Chapter 2 implies that the entire function

g(z) = R(z)V (z),(5.31)

where R(z) is an arbitrary rational function, all poles of which are zeros of V (z),
satisfies the condition (c). We show that the function R(z) can be selected in such
a way that the function (5.31) satisfies also the conditions (a) and (b).

Let p be a positive integer, p > 2n; the choice of p will be specified later. Let

Vp(z) =
∞∏

k=p+1

(
1− z

k1/α

)
, vp(z) =

p∏
k=1

(
1− z

k1/α

)
.

We have a power series representation

1

Vp(z)
=
∞∑
k=0

akz
k, ak = a

(p)
k , a0 = 1,(5.32)

in the circle {|z| < (p+ 1)1/α}. Since

1

Vp(z)
=

∞∏
k=p+1

∞∑
j=0

( z

k1/α

)j
,

obviously ak > 0, k = 0, 1, 2, . . . . The function Vp(z) tends to 1 as p→∞ uniformly
over the circle {|z| = 1}. Therefore |Vp(z)| ≥ 1/2 for {|z| = 1} if p ≥ p0, and

0 < ak =

∣∣∣∣∣ 1

2πi

∫
|z|=1

dz

zk+1Vp(z)

∣∣∣∣∣ ≤ 2, k = 0, 1, 2, . . .(5.33)

Take R(z) =
∑n−1

k=0 akz
k/vp(z) in (5.31), then

g(z) =

∑n−1
k=0 akz

k

vp(z)
V (z) = Vp(z)

n−1∑
k=0

akz
k = 1 + cnz

n + cn+1z
n+1 + . . .
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(see Example 2 from Section 3 of Chapter 2). Since the function Vp(z) takes real
values on the real axis, then, as is easy to see, all coefficients ck, k ≥ n, are real
numbers. Since

Vp(z)

n−1∑
k=0

akz
k = 1− Vp(z)

(
1

Vp(z)
−
n−1∑
k=0

akz
k

)
= 1− Vp(z)

∞∑
k=n

akz
k

for |z| < (p+ 1)1/α, it is clear that cn = −an < 0. Thus the function g(z) satisfies
the condition (a).

We show that |V (x)| < 1 for 0 < x < ∞. For x > 0, x 6= k1/α, k = 1, 2, . . . ,
the inequality

0 <
1− x

k1/α

1− x2α

k2

=
1− x

k1/α

1−
( x

k1/α

)2α < 1

holds, therefore

|V (x)| =
∞∏
k=1

1− x
k1/α

1− x2α

k2

∣∣∣∣1− x2α

k2

∣∣∣∣ ≤ ∞∏
k=1

∣∣∣∣1− x2α

k2

∣∣∣∣ =
| sinπxα|
πxα

< 1.

For 0 < x < (p+ 1)1/α we have

|g(x)| = g(x) = Vp(x)

n−1∑
k=0

akx
k < Vp(x)

∞∑
k=0

akx
k = 1.(5.34)

For x ≥ (p+ 1)1/α the inequality

|g(x)| = |V (x)|
∑n−1

k=0 akx
k

|vp(x)| <

∑n−1
k=0 akx

k

|vp(x)|(5.35)

holds.
Letting xα = ξ, ξ ≥ p+ 1, and using the inequality a1/α− 1 ≥ 1

α
(a− 1), a ≥ 1,

we get

|vp(x)| =
p∏

k=1

( x

k1/α
− 1
)

=

p∏
k=1

{(
ξ

k

)1/α

− 1

}

≥ 1

αp

p∏
k=1

(
ξ

k
− 1

)
=

1

αpp!

2n∏
k=1

(ξ − k)

p∏
k=2n+1

(ξ − k)

≥ 1

app!
(ξ − 2n)2n(p− 2n)! ≥ 1

αpp2n
(ξ − 2n)2n.

Taking into account (5.33), (5.35), and 1/2 < α < 1, for p ≥ p0 we get

|g(x)| < 2nξn/ααpp2n

(ξ − 2n)2n
< 2n

(
ξ

ξ − 2n

)2n

p2nαp ≤ 2n

(
p+ 1

p+ 1− 2n

)2n

p2nαp.

Since for p→∞ the right-hand side of the last inequality tends to 0, the number p
can be chosen so large that it is less than 1. Taking into account (5.34) we find that
|g(x)| < 1 for 0 < x <∞, that is the condition (b) is satisfied. We have proved the
existence of a desired function g(z).

Remark. If in Example 9 we required the inequality 1 < λ ≤ ρ < ∞ only,
using the same idea it would be possible to construct a much easier example. Let
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g(z) = e−z
∑n−1

k=0 z
k/k! and α = 1. We can repeat the previous argument (the

inequality (5.23) will be replaced by

ln |g(reiϕ)| < r(η − cosϕ)

for r > R0(η)), but the investigation of properties of the function g(z) is significantly
simplified.

6. Meromorphic functions representable by series of simple fractions

In this section we consider meromorphic functions of the form

f(z) =

∞∑
k=1

Ak

z − hk
, hk →∞,(6.1)

where the series is assumed to be absolutely convergent, as is∑
|hk|>1

|Ak/hk| <∞.(6.2)

Obviously, rational functions admitting representations of the form

R(z) =

n∑
k=1

Ak

z − hk
(1 ≤ n <∞)

satisfy the following conditions:

(a) R(z)→ 0 as z →∞.
(b) For each a 6= 0 the number of a-points of R(z) is equal to n, and the

number of zeros is equal to n− 1, if
∑n

k=1Ak 6= 0.

The following two theorems, showing that transcendental meromorphic func-
tions of the form (6.1) also have properties, which are in certain sense close to (a)
and (b), are the main results of this section.

Theorem 6.1. Let f(z) be a meromorphic function of the form (6.1). Then

m(r, f) = o(1), r →∞,(6.3)

besides, for each 0 < p < 1 the relation∫ 2π

0

|f(reiϕ)|pdϕ = o(1), r →∞(6.4)

holds.

Theorem 6.2. Let f(z) be a meromorphic function of the form (6.1), for which
λ[f ] < ∞. Then δ(a, f) = 0 for all a 6= 0, and the order of N(r, a) is equal to the
order of T (r, f). This statement remains true also for a = 0, if we assume, in
addition, that

∞∑
k=1

|Ak| <∞(6.5)

and
∞∑
k=1

Ak 6= 0.(6.6)

We shall assume, without loss of generality, that hk 6= 0, k = 1, 2, . . . .
To prove Theorem 6.1 we need the following lemma.
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Lemma 6.1. If a function F (z) is analytic in the disc {|z| < R}, and is such
that the functions ReF (z) and ImF (z) have constant sign, then the inequality∫ 2π

0

up(ϕ)dϕ ≤ 2π

cos πp2
|F (0)|p

holds for each 0 < p < 1, where

u(ϕ) = lim inf
z→Reiϕ

|z|<R

|F (z)|.

Proof. We may assume without loss of generality that Ref(z) > 0 for |z| < R.
The function F (z) does not have zeros in the disc {|z| < R}, and we can fix a branch
of argF (z) in such a way, that | argF (z)| < π/2 for |z| < R. The function

F p(z) = |F (z)|p exp{ip argF (z)}

is analytic in the disc {|z| < R} and hence, Re{F (z)}p is harmonic there. Since

Re{F (z)}p = |F (z)|p cos(p argF (z)) ≥ |F (z)|p cos
pπ

2
,

we have∫ 2π

0

|F (reiϕ)|pdϕ ≤ 1

cos pπ2

∫ 2π

0

Re{F (reiϕ)}pdϕ =
2π

cos pπ2
Re{F (0)}p,

thus ∫ 2π

0

|F (reiϕ)|p ≤ 2π

cos pπ2
|F (0)|p, r < R.

Taking limits as r → R and using the Fatou lemma, we complete the proof of the
lemma. �

Proof. We prove Theorem 6.1. The relation (6.3) follows from (6.4) and the
inequality ln+ a ≤ 1

p
ap, a > 0, therefore it suffices to prove (6.4).

Let θk = arghk, Ak = αk + iβk. Fixing R > 0, we write the function f(z) in
the form

f(z) =
∑
|hk|>R

′ eiθkRe(Ake
−iθk)

z − hk
+
∑
|hk|>R

′′
+ i

∑
|hk|>R

′ eiθkIm(Ake
−iθk)

z − hk

+ i
∑
|hk|>R

′′
+
∑
|hk|≤R

′ αk

z − hk
+
∑
|hk|≤R

′′
+ i

∑
|hk|≤R

′ βk

z − hk
+ i

∑
|hk|≤R

′′

= F1(z) + · · ·+ F8(z),

where the sums
∑′

contain those terms for which Re(Ake
−iθk), Im(Ake

−iθk), αk,

βk, respectively, are positive, and the sums
∑′′

contain all other terms.

Since for |hk| > R, |z| < R, the inequality

Re
eiθk

z − hk
< 0
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holds, the functions Fj(z), j = 1, 2, 3, 4, satisfy the conditions of Lemma 6.1, hence
(j = 1, 2, 3, 4)∫ 2π

0

|Fj(Reiϕ)|pdϕ ≤ 2π

cos pπ2
|Fj(0)|p ≤ 2π

cos pπ2

 ∑
|hk|>R

∣∣∣∣Akhk
∣∣∣∣
p

.

Since for |z| = R the equality∣∣∣∣∣∣
∑
|hk|≤R

′ αk

z − hk

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
|hk|≤R

′ Rαk

R2 − hkz

∣∣∣∣∣∣
holds, and for |hk| ≤ R, |z| < R, the inequality

Re
R

R2 − hkz
> 0

holds, considering the function

F
(1)
5 (z) =

∑
|hk|≤R

′ Rαk

R2 − hkz

we see that it satisfies the conditions of Lemma 6.1, besides, we have |F (1)
5 (Reiϕ)| =

|F5(Reiϕ)|, 0 ≤ ϕ < 2π. Hence∫ 2π

0

|F5(Reiϕ)|pdϕ ≤ 2π

cos
pπ

2

|F (1)
5 (0)|p ≤ 2π

cos
pπ

2

 1

R

∑
|hk|≤R

|Ak|

p

.

In a similar way we get∫ 2π

0

|Fj(Reiϕ)|pdϕ ≤ 2π

cos
pπ

2

 1

R

∑
|hk|≤R

|Ak|

p

, j = 6, 7, 8.

Using the obtained estimates, we get the following conclusion:∫ 2π

0

|f(Reiϕ)|pdϕ ≤
8∑
j=1

∫ 2π

0

|Fj(Reiϕ)|pdϕ

≤ 8π

cos pπ2


 ∑
|hk|>R

∣∣∣∣Akhk
∣∣∣∣
p

+

 1

R

∑
|hk|≤R

|Ak|

p
≤ 8π

cos
pπ

2


 ∑
|hk|>R

∣∣∣∣Akhk
∣∣∣∣
p

+

 1√
R

∑
|hk|<

√
R

∣∣∣∣ Akhk
∣∣∣∣+

∑
√
R≤|hk|≤R

∣∣∣∣Akhk
∣∣∣∣
p

= o(1), R→∞.
Thus the relation (6.4) has been proved. �

Theorem 6.1 immediately implies

Corollary. Functions of the form (6.1) satisfy the relations

T (r, f) = N(r, f) + o(1), δ(∞, f) = 0.
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Let ϕ(r) be an arbitrary function such that
dϕ(r)

d ln r
monotonically tends to +∞.

If we choose poles of the function (6.1) in such a way that

n(r, f) =

[
dϕ(r)

d ln r

]
=
dϕ(r)

d ln r
+O(1),

then

T (r, f) = N(r, f) + o(1) = ϕ(r) +O(ln r),

that is, the characteristic T (r, f) has the prescribed asymptotic behavior.

With the help of a modification of the method used in the proof of Theorem
6.1 we can get an information on the behavior of a function of the form (6.1) along
the rays {arg z = const}.

Theorem 6.3. Let f(z) be a meromorphic function of the form (6.1). Then,
for arbitrary α and p, 0 ≤ α < 2π, 0 < p < 1, the relations∫ ∞

1

ln+ |f(teiα)|
t1+p

dt <∞,(6.7)

∫ ∞
1

|f(teiα)|p
t2

dt <∞(6.8)

hold.

We need the following lemma, similar to Lemma 6.1.

Lemma 6.2. If the function g(z) is analytic in the half-plane {Imz > 0} and
is such that the functions Reg(z) and Img(z) have a constant sign, then for each
p, 0 < p < 1, the inequality∫ ∞

−∞

vp(t)

1 + t2
dt ≤ π

cos
pπ

2

|g(i)|p

holds, where

v(t) = lim inf
z→t

Imz>0

|g(z)|.

Proof. The function F (z) = g
(

1
i
z−1
z+1

)
satisfies the conditions of Lemma 6.1

(R = 1). Observing that for this function we have u(ϕ) = v
(

1
i
eiϕ−1
eiϕ+1

)
= v

(
tan ϕ

2

)
and F (0) = g(i), we get the inequality∫ π

−π
vp
(

tan
ϕ

2

)
dϕ ≤ 2π

cos
pπ

2

|g(i)|p.

Making the change of variables t = tan ϕ
2 , we get the desired inequality. �

Proof. Obviously, it is enough to prove Theorem 6.3 for α = 0. Observe that
the relation (6.7) is a corollary of (6.8). In fact, using the inequality ln+ a < 1

pa
p,
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p > 0, we get∫ ∞
1

ln+ |f(t)|
t1+p

dt ≤
∫ ∞

1

ln+
∣∣∣f(t)t

p−1
p

∣∣∣+ 1−p
p ln t

t1+p
dt

≤ 1

p

∫ ∞
1

|f(t)|p
t2

dt+
1− p
p

∫ ∞
1

ln t

t1+p
dt.

We let Ak = αk + iβk and we represent the function f(z) in the form

f(z) =
∑

Imhk≤0

′ αk

z − hk
+

∑
Imhk≤0

′′
+ i

∑
Imhk≤0

′ βk

z − hk
+ i

∑
Imhk≤0

′′

+
∑

Imhk>0

′ αk

z − hk
+

∑
Imhk>0

′′
+ i

∑
Imhk>0

′ βk

z − hk
+ i

∑
Imhk>0

′′

= g1(z) + · · ·+ g8(z),

where the sums
∑′

contain those terms for which αk and βk are positive, and the

sums
∑′′

contain all other terms.

Since for Imhk ≤ 0, Imz > 0 the inequality

Im
1

z − hk
< 0

holds, Lemma 6.2 can be applied to functions gj(z), j = 1, 2, 3, 4, hence∫ ∞
−∞

|gj(t)|p
1 + t2

dt ≤ π

cos πp2
|gj(i)|p ≤

π

cos πp2

 ∑
Imhk≤0

∣∣∣∣Akhk
∣∣∣∣
p

, j = 1, 2, 3, 4.

Observe, that Lemma 6.2 can be applied also to functions gj(−z), j = 5, 6, 7, 8,
hence ∫ ∞

−∞

|gj(t)|p
1 + t2

dt ≤ π

cos πp2
|gj(−i)|p ≤

π

cos πp2

( ∑
Imhk>0

∣∣∣∣Akhk
∣∣∣∣
)p

,

j = 5, 6, 7, 8.

Thus ∫ ∞
−∞

|f(t)|p
1 + t2

dt ≤
8∑
j=1

∫ ∞
−∞

|gj(t)|p
1 + t2

dt

≤ 4π

cos πp2


 ∑

Imhk≤0

∣∣∣∣Akhk
∣∣∣∣
p

+

( ∑
Imhk>0

∣∣∣∣Akhk
∣∣∣∣
)p <∞,

hence
∫∞

1 |f(t)|pt−2dt <∞, Q.E.D. �

Now we turn to the proof of Theorem 6.2. If a =∞, the statement of Theorem
6.2 is contained in the corollary of Theorem 6.1. The statement of Theorem 6.2 for
a 6= 0,∞ follows from its statement for a = 0. In fact, for a 6= 0,∞ we have

f(z)− a
z

= −a
z

+

∞∑
k=1

Ak

z(z − hk)
=
−a−

∑∞
k=1 Ak/hk

z
+

∞∑
k=1

Ak/hk

z − hk
.
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Letting

f1(z) =
f(z)− a

z
, h0 = 0, B0 = −a−

∞∑
k=1

Ak/hk, Bk = Ak/hk (k ≥ 1),

we have the representation

f1(z) =

∞∑
k=0

Bk

z − hk
,

and, obviously,

T (r, f1) = T (r, f) +O(ln r), N(r, 0, f1) = N(r, a, f) +O(ln r),

δ(0, f1) = δ(a, f),

∞∑
k=0

|Bk| <∞,
∞∑
k=0

Bk = −a 6= 0.

Now we prove the statement of Theorem 6.2 in the case a = 0.
By virtue of (6.5) and (6.6) we may assume without loss of generality that∑∞

k=1 Ak = 1. Let

ψ(z) = zf(z)− 1 =

∞∑
k=1

Ak

(
z

z − hk
− 1

)
=

∞∑
k=1

Akhk

z − hk
.

The function ψ(z) satisfies the conditions of Theorem 6.1, therefore for each p,
0 < p < 1, the relation ∫ 2π

0

|ψ(reiϕ)|pdϕ = o(1), r →∞,

holds. Denote by Er the set of those values of ϕ ∈ [0, 2π) for which |ψ(reiϕ)| ≥ 1/2,
and let εr = mesEr. Observe that

εr ≤ 2p
∫
Er

|ψ(reiϕ)|pdϕ ≤ 2p
∫ 2π

0

|ψ(reiϕ)|pdϕ = o(1), r→∞.

For ϕ ∈ CEr = [0, 2π)\Er the inequality |f(reiϕ)| ≥ 1

2r
holds, hence, we have

m

(
r,

1

f

)
≤ 1

2π

∫
Er

ln+ 1

|f(reiϕ)|dϕ+ ln(2r).

By Theorem 7.3 from Chapter 1 (p. ???) for each k > 1 the estimate

1

2π

∫
Er

ln+ 1

|f(reiϕ)|dϕ ≤
(

6r

k − 1
εr ln

2πe

εr

)
T

(
kr,

1

f

)
holds. Since ln(2r) = o(T (r, f)) (we assume that the function f(z) is transcenden-

tal), and T

(
r,

1

f

)
= T (r, f) +O(1), we obtain the relation

m

(
r,

1

f

)
≤ θ(k, r)T (kr, f),(6.9)

where θ(k, r) = o(1) as r→∞ and k is fixed.
Suppose that δ(0, f) > 0. Then for all sufficiently large r the inequality

T (r, f) ≤ 2

δ(0, f)
m

(
r,

1

f

)
≤ 2θ(k, r)

δ(0, f)
T (kr, f)
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holds. Hence for each β > 1 we can find r0 = r0(k, β) such that for r ≥ r0 the
inequality

T (kr, f) ≥ βT (r, f)

holds. From here we get

T (knr0, f) ≥ βnT (r0, f), n = 1, 2, 3, . . . .

Letting

n =

[
ln r − ln r0

ln k

]
, r ≥ r0,

we get

r ≥ knr0, β
n ≥ β−

ln r0
ln k −1r

ln β
ln k ,

and hence the inequality

T (r, f) ≥ r
ln β
ln k β−

ln r0
ln k −1T (r0, f)

holds.

Thus λ[f ] ≥ lnβ

ln k
. Since k can be chosen to be arbitrarily close to 1, we get

λ[f ] =∞ contrary to the condition of the theorem.
The statement that the orders ofN(r, 0) and T (r, f) coincide requires a separate

proof because (see Example 3 in Section 2) a Borel exceptional value can have zero
deficiency.

Adding N
(
r, 1
f

)
to both sides of (6.9) we get the relation

T (r, f) ≤ ϑ(k, r)T (kr, f) +N

(
r,

1

f

)
,(6.10)

where ϑ(k, r) = o(1) as r →∞ and k is fixed.

Suppose that the order of N

(
r,

1

f

)
is less than the order of T (r, f) and choose

a number µ situated between these orders. Then N

(
r,

1

f

)
< rµ for r > r1. Fixing

k > 1 we choose r2 > r1 in such a way that T (r2, f) ≥ 2rµ2 and 4kµϑ(k, r) < 1 for
r ≥ r2. Then by (6.10) we have

T (kr2, f) ≥ 1

ϑ(k, r2)

{
T (r2, f)−N

(
r2,

1

f

)}
≥ 1

2ϑ(k, r2)
T (r2, f) ≥ 2(kr2)µ.

Using (6.10) repeatedly we get

T (knr2, f) ≥ 1

2nϑ(k, r2)ϑ(k, kr2) . . . ϑ(k, rn−1r2)
T (r2, f) ≥ (2kµ)nT (r2, f).

From here, selecting n =

[
ln r − ln r2

ln k

]
, r ≥ r2, we get the inequality

T (r, f) > (2kµ)
ln r−ln r2

ln k −1T (r2, f), r ≥ r2,

and conclude that λ[f ] ≥ µ ln k + ln 2

ln k
, and, because k can be chosen to be arbi-

trarily close to 1, we again get a contradiction.
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Remark. The statement of Theorem 6.2 is no longer true, if we omit the
condition (6.6).

In fact, assume that δ(0, f) = 0 for each function f(z) of the form (6.1), satis-
fying the condition (6.5). We deduce from this assumption the following corollary:
meromorphic functions of finite order cannot have deficient values different from 0
and ∞. It is clearly a nonsense.

Let g(z) be a meromorphic function of finite order. Denoting the genus of this
function by p, we can, by the remark to Theorem 4.1 from Chapter 2 (p. ???)
represent the function g(z) in the form

g(z) = zseQ(z)

∏
m

E

(
z

am
, p

)
∏
n

E

(
z

bn
, p

) ,

where s is an integer, Q(z) is a polynomial of degree at most p, am are zeros of the
function g(z), bn are its poles. It follows from here that

g′(z)

g(z)
=
s

z
+Q′(z) + zp

∑
m

1

apm(z − am)
− zp

∑
n

1

bpn(z − bn)
.

Let h(z) = (z−c1) . . . (z−cp), where c1, . . . , cp are pairwise distinct and are different
from am, bn, and 0. It is easy to see that the function

f(z) =
g′(z)

h(z)g(z)

is representable in the form (6.1), moreover, the condition (6.5) holds.
By virtue of the assumption made above, the condition δ(0, f) = 0 should hold,

hence, there exists a sequence {rn}∞n=1, rn ↑ ∞, such that

m(rn, 0, f) = o(T (rn, f)).

Since

m(r, 0, f) = m

(
r,
hg

g′

)
≥ m

(
r,
g

g′

)
+O(ln r),

T (r, f) = T

(
r,
g′

hg

)
≤ T

(
r,
g′

g

)
+O(ln r),

T

(
r,
g′

g

)
= m

(
r,
g′

g

)
+N

(
r,
g′

g

)
= O(ln r) + N̄(r, g) + N̄

(
r,

1

g

)
≤ 2T (r, g) +O(ln r),

we have

m

(
rn,

g

g′

)
= o(T (rn, g)).

Using Lemma 2.1 from Chapter 3 (p. ???), we get that the condition

m(rn, a, g) = o(T (rn, g))

holds for each a 6= 0,∞, hence δ(a, g) = 0.





CHAPTER 6

Value distribution with respect to the arguments

As was already mentioned in Section 4 of Chapter 1, the function N(r, a)
characterizes the moduli of a-points only. Therefore Chapters 4 and 5 do not
contain any information on the role of the arguments of a-points.

In the present chapter we show that the restrictions on the arguments of a-
points can have an important impact onto the asymptotic properties of a mero-
morphic function. In particular, restrictions of such type can imply: (a) growth
estimates; (b) regularity of growth; (c) presence of deficient values.

Note, that among theorems presented in previous chapters it is easy to point
out theorems in which (a) or (b) follows from restrictions imposed onto the moduli
of a-points. For example, by Theorem 2.2 from Chapter 3, if the order of N(r, a)
does not exceed ρ for 3 different values of a, then the order of f(z) does not exceed
ρ. By Theorem 5.1 from Chapter 5, if the order of N(r, a) is less than the order of
f(z) for two different values of a, then f(z) has regular growth in the sense that
ρ[f ] = λ[f ]. Finally, we note that from the very definition of the quantity δ(a, f),

δ(a, f) = 1− lim sup
r→∞

N(r, a)

T (r, f)
,

we see that the condition δ(a, f) > 0 can be considered as a condition imposed onto
N(r, a), that is, onto moduli of a-points.

Results related to (a) are considered in Sections 2, 4, and 5; results related
to (b) are considered in Sections 1 and 2; results related to (c) are considered in
Section 1. Section 3 contains proofs of results on asymptotic properties of functions
meromorphic in an angle, which are used in Section 2.

The methods of Sections 2–5 make substantial use of the apparatus of angular
Nevanlinna characteristics, Tsuji characteristics play essential role in Section 5.

1. Meromorphic functions with separated poles and zeros

Let f(z) be a meromorphic function with zeros am and poles bn, p be a positive
integer, and η be a number satisfying the condition 0 ≤ η < π

2p . Let

Dp
1(η) =

p−1⋃
j=0

{∣∣∣∣arg z − π 2j

p

∣∣∣∣ ≤ η} ,

Dp
2(η) =

p−1⋃
j=0

{∣∣∣∣arg z − π 2j + 1

p

∣∣∣∣ ≤ η} .
261
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Definition. If the condition∑
am /∈Dp1 (η)

1

|am|p
+

∑
bn /∈Dp2 (η)

1

|bn|p
<∞,(1.1)

is satisfied, we say that zeros and poles of f(z) are (p, η)-separated.

In particular, zeros and poles of a function f(z) are (p, η)-separated, if all of
its zeros are in Dp

1(η), and all of its poles are in Dp
2(η).

In what follows we assume, without loss of generality, that f(0) = 1.

Theorem 1.1. If poles and zeros of f(z) are (p, η)-separated, then the limit
limr→∞ r

−pT (r, f), finite or infinite, exists.

This theorem shows that the growth of f(z) cannot be arbitrarily irregular. In
particular, it immediately implies that if λ[f ] < p, then ρ[f ] ≤ p.

To prove Theorem 1.1 we need the following lemma, which will be used repeat-
edly in this section.

Lemma 1.1. If zeros and poles of a function f(z) are (p, η)-separated, then the
inequality

1

2π

∫ 2π

0

ln |f(reiϕ)| cos pϕdϕ

≥ cos pη

∫ r

0

n(t; 0,∞) cosh
(
p ln

r

t

) dt
t

+O(rp)

= cos pη

{
N(r; 0,∞) + p

∫ r

0

N(t; 0,∞) sinh
(
p ln

r

t

) dt
t

}
+O(rp)

holds.

Proof. We start from the formula (2.6) from Chapter 1. Separating the real
part, we get the relation

1

2π

∫ 2π

0

ln |f(reiϕ)| cos pϕdϕ =
1

2p

∑
|am|<r

(
rp

|am|p
− |am|

p

rp

)
cos pαm

− 1

2p

∑
|bn|<r

(
rp

|bn|p
− |bn|

p

rp

)
cos pβn + rpRe

dp

dzp
ln f(z)|z=0,

where αm = arg am, βn = arg bn. This relation can be written in the form

1

2π

∫ 2π

0

ln |f(reiϕ)| cos pϕdϕ =
1

p

∑
|am|<r

sinh

(
p ln

r

|am|

)
cos pαm

− 1

p

∑
|bn|<r

sinh

(
p ln

r

|bn|

)
cos pβn + rpRe

dp

dzp
ln f(z)|z=0.

(1.2)
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Since for am ∈ Dp
1(η) the inequality cos pαm ≥ cos pη > 0 holds, we have∑

|am|<r
sinh

(
p ln

r

|am|

)
cos pαm =

∑
|am|<r

am∈Dp1(η)

sinh

(
p ln

r

|am|

)
cos pαm

+
∑
|am|<r

am /∈Dp1 (η)

sinh

(
p ln

r

|am|

)
cos pαm ≥ cos pη

∑
|am|<r

am∈Dp1 (η)

sinh

(
p ln

r

|am|

)

−
∑
|am|<r

am /∈Dp1 (η)

sinh

(
p ln

r

|am|

)

= cos pη
∑
|am|<r

sinh

(
p ln

r

|am|

)
− (1 + cos pη)

∑
|am|<r

am /∈Dp1 (η)

sinh

(
p ln

r

|am|

)
.

By the inequality sinhx ≤ 1
2e
x and the condition (1.1) we get∑

|am|<r
am /∈Dp1 (η)

sinh

(
p ln

r

|am|

)
≤ 1

2

∑
|am|<r

am /∈Dp1 (η)

(
r

|am|

)p
≤ 1

2
rp

∑
am /∈Dp1 (η)

1

|am|p
= O(rp),

therefore∑
|am|<r

sinh

(
p ln

r

|am|

)
cos pαm ≥ cos pη

∑
|am|<r

sinh

(
p ln

r

|am|

)
+O(rp)

= cos pη

∫ r

0

sinh
(
p ln

r

t

)
dn(t, 0) + O(rp)

= p cos pη

∫ r

0

n(t, 0) cosh
(
p ln

r

t

) dt
t

+O(rp)

= p cos pη

{
N(r, 0) + p

∫ r

0

N(t, 0) sinh
(
p ln

r

t

) dt
t

}
+O(rp).

(1.3)

Using similar argument we conclude that

−
∑
|bn|<r

sinh

(
p ln

r

|bn|

)
cos pβn

≥ p cospη

∫ r

0

n(t,∞) cosh
(
p ln

r

t

) dt
t

+O(rp)

= p cospη

{
N(r,∞) + p

∫ r

0

N(t,∞) sinh
(
p ln

r

t

) dt
t

}
+O(rp).

(1.4)

Relations (1.2), (1.3), and (1.4) imply the conclusion of the lemma. �

Proof of Theorem 1.1. Obviously it is sufficient to consider the case when
lim inf
r→∞

r−pT (r, f) <∞.

Since

1

2π

∫ 2π

0

ln |f(reiϕ)| cos pϕdϕ ≤ m(r, f) +m

(
r,

1

f

)
≤ 2T (r, f),(1.5)
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by Lemma 1.1 we get

2T (r, f) ≥ cos pη

∫ r

0

n(t; 0,∞) cosh
(
p ln

r

t

) dt
t

+O(rp).

Since coshx ≥ 1
2e
x, it follows that

2T (r, f) ≥ 1

2
cos pη · rp

∫ r

0

n(t; 0,∞)t−p−1dt+O(rp).

Dividing both sides of this inequality by rp and letting r tend to∞ along a sequence
rk ↑ ∞ such that T (rk, f) = O(rpk), we come to the conclusion that the integral∫ ∞

0

n(t; 0,∞)t−p−1dt

converges.
Convergence of this integral implies, by Theorem 1.8 from Chapter 2, the con-

vergence of the series ∑
m

1

|am|p
and

∑
n

1

|bn|p
,

therefore (see Theorem 3.2 from Chapter 2 and Example 1 on p. ???) the canonical
products

π1(z) =
∏
m

E

(
z

am
, p− 1

)
, π2(z) =

∏
n

E

(
z

bn
, p− 1

)
converge. The function

F (z) = f(z)
π2(z)

π1(z)

is an entire function without zeros. Since

T (r, F ) ≤ T (r, f) + T (r, π1) + T (r, π2)

and, by Remark 2 to Theorem 3.3 from Chapter 2, T (r, πj) = o(rp), j = 1, 2, we
have lim inf

r→∞
r−pT (r, F ) <∞. By Lemma 6.2 from Chapter 1 we get a representation

F (z) = eP (z), where P (z) = cpz
p + · · · + c0 is a polynomial of degree at most p.

Thus

f(z) = eP (z)π1(z)

π2(z)
,

from where

T (r, f) = T (r, eP (z)) + o(rp) =
|cp|
π
rp + o(rp),

and hence the limit lim
r→∞

r−pT (r, f) exists. The theorem has been proved. �

Let us mention the following fact, established in our proof of Theorem 1.1.

Remark. If zeros and poles of a function f(z) are (p, η)-separated and

lim inf
r→∞

r−pT (r, f) <∞,

then ∫ ∞
0

n(t; 0,∞)

tp+1
dt <∞,

∑
m

1

|am|p
+
∑
n

1

|bn|p
<∞.
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Now we turn to corollaries of Theorem 1.1.

Corollary 1. Let f(z) be an entire function of a finite lower order λ with pos-
itive zeros. Then the growth of f(z) does not exceed the minimal type of order [λ]+1.

If λ is a positive integer, then there exists a finite or infinite limit lim
r→∞

r−λT (r, f).

In any case, the numbers ρ[f ] and λ[f ] belong to the same segment [k− 1, k], where
k is a positive integer.

In fact, zeros and poles (the latter are absent) of f(z) are (p, 0)-separated for
each positive integer p. For p = [λ]+1 we have lim inf

r→∞
r−pT (r, f) = 0. By Theorem

1.1 we then also have lim
r→∞

r−pT (r, f) = 0, that is, the growth of f(z) does not

exceed the minimal type of order p = [λ]+1. If λ is a positive integer, we can apply
Theorem 1.1 with p = λ.

The statement of Corollary 1 is sharp in the sense that for each ρ and λ (λ ≤ ρ)
belonging to the same segment [k − 1, k], where k is a positive integer, there exist
entire functions with positive zeros of order ρ and lower order λ. For k − 1 < λ ≤
ρ < k the canonical products considered in n. 1◦ of Section 5, Chapter 2, p. ??? (we
let η1 = λ, η2 = ρ in their construction) are such functions. Now we construct an
example of an entire function with positive zeros and ρ = k, λ = k−1, k = 1, 2, . . . .

Example 1. Let a1 = e, an+1 = exp expan (n = 1, 2, . . . ), qn = akn(ln an)−2.
Since the series

∞∑
n=1

qna
−k
n

converges, by Theorem 3.2 from Chapter 2, the canonical product

fk(z) =
∞∏
n=1

{
E

(
z

an
, k − 1

)}qn
converges. Since

m∑
n=1

akn
(ln an)2

=
akm

(ln am)2
(1 + o(1)), m→∞,

for r = am we have

n(r, 0, fk) =
rk

(ln r)2
(1 + o(1)), r→∞,

and

n(r, 0, fk) ≤ rk

(ln r)2
(1 + o(1)), r→∞,

for all r > 0. Thus, the order of n(r, 0, fk) is equal to k. By Theorem 3.4 from
Chapter 2 the order of fk(z) is also equal to k, moreover, by Remark 2 to Theorem
3.3 from Chapter 2,

lnM(r, fk) = o(rk).(1.6)
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Next, by the estimate (3.6) from Chapter 2 (p. ???) we have

lnM(r, fk) ≤ C(k − 1)

{
rk−1

∫ r

0

n(t, 0, fk)

tk
dt+ rk

∫ ∞
r

n(t, 0, fk)

tk+1
dt

}
.

For r = eam = ln am+1 we have∫ r

0

n(t, 0, fk)

tk
dt ≤ n(am, 0, fk)

∫ r

1

dt

tk
≤ n(am, 0, fk)

k − 1

=
1

k − 1

akm
(ln am)2

(1 + o(1)) = O(lnk r), if k > 1,

∫ r

0

n(t, 0, f1)

t
dt ≤ n(am, 0, f1)

∫ r

1

dt

t
= n(am, 0, f1) ln r

=
am

(ln am)2
(1 + o(1)) ln r = O(ln2 r),

∫ ∞
r

n(t, 0, fk)

tk+1
dt = n(am, 0, fk)

∫ am+1

r

dt

tk+1
+

∫ ∞
am+1

n(t, 0, fk)

tk+1
dt

≤ n(am, 0, fk)

krk
+ 2

∫ ∞
am+1

dt

t(ln t)2

=
1

krk
akm

(ln am)2
(1 + o(1)) +

2

ln am+1
= O

(
lnk r

rk

)
+O

(
1

r

)
.

Thus, for r = eam = ln am+1 we have

lnM(r, fk) = O(rk−1 lnk r), k > 1; lnM(r, f1) = O(ln2 r),(1.7)

hence, the lower order of the function fk(z) does not exceed k− 1. Since the order
of fk(z) is equal to k, then, by Theorem 1.1, the lower order of fk(z) cannot be less
than k − 1.

We leave a construction of an example of an entire function with positive zeros
and k − 1 = λ ≤ ρ < k or k − 1 < λ ≤ ρ = k (k = 1, 2, . . . ) as an exercise.

Corollary 1 and Theorems 6.5 and 6.7 from Chapter 4 immediately imply the
following result.

Corollary 2. Deficiencies of entire functions of finite lower order with posi-
tive zeros are shift-invariant.

Using the observation that poles and zeros of a function f(z) with positive
zeros and negative poles are (p, 0)-separated for each odd p, we get from Theorem
1.1 the following corollary.

Corollary 3. Let f(z) be a meromorphic function of finite lower order λ,
with positive zeros and negative poles. Then the growth of the function f(z) does

not exceed the minimal type of order 2

[
λ+ 1

2

]
+ 1. If λ ≥ 1 is an odd number,

then the limit limr→∞ r
−λT (r, f) exists. In any case, the numbers ρ[f ] and λ[f ]

belong to the same segment of the form [2k−3, 2k−1], where k is a positive integer.

The following corollary of Theorem 1.1 is also of interest.
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Corollary 4. Let f(z) be an entire function of finite lower order λ, zeros am
of which satisfy the condition ∑

m

∣∣∣∣Im 1

am

∣∣∣∣ <∞.(1.8)

Then the growth of f(z) does not exceed the minimal type of order 2

[
λ

2

]
+ 2. If

λ ≥ 2 is an even number, then the limit lim
r→∞

r−λT (r, f) exists. In any case, the

numbers ρ[f ] and λ[f ] belong to the same segment of the form [2k− 2, 2k], where k
is a positive integer.

To prove this corollary it suffices to observe that, by the condition (1.8), zeros

and poles of the function f(z) are

(
p,
π

4p

)
-separated for each even p ≥ 2.

Now we show that functions with sufficiently large growth, having separated
zeros and poles, have “few” zeros and poles in the sense that the number

κ(f) = lim sup
r→∞

N(r; 0,∞)

T (r, f)

is strictly less than 2.

Theorem 1.2. Let zeros and poles of a function f(z) be (p, η)-separated.

(a) If 0 < lim sup
r→∞

r−pT (r, f) <∞, then κ(f) = 0.

(b) If lim sup
r→∞

r−pT (r, f) =∞, then

κ(f) ≤ 2

1 + cos pη
.(1.9)

Proof. In the case (a), by Theorem 1.1 we have lim
r→∞

r−pT (r, f) > 0, that is,

rp = O(T (r, f)). By the remark to Theorem 1.1 on p. ???, the relation n(r; 0,∞) =
o(rp) holds, hence N(r; 0,∞) = o(rp). Therefore κ(f) = 0, Q.E.D.

In the case (b), by Theorem 1.1, we have lim
r→∞

r−pT (r, f) =∞, that is rp =

o(T (r, f)). Therefore, by Lemma 1.1 and relation (1.5), it follows that

m(r, f) +m

(
r,

1

f

)
≥ cos pηN(r; 0,∞) + o(T (r, f)).

Adding N(r; 0,∞) to both sides, we get

2T (r, f) ≥ (1 + cos pη)N(r; 0,∞) + o(T (r, f)).

Dividing both sides by T (r, f) and letting r tend to ∞, we get the inequality
(1.9). �

Let us show that the parameter κ(f) can be equal to 2 for a function with
(p, 0)-separated zeros and poles, and such that lim

r→∞
r−pT (r, f) = 0.

Example 2. For p = 1 the function

f(z) = f1(z)/f1(−z),
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where fk(z) is a function from Example 1, is a desired example. In fact, poles and
zeros of the function f(z) are (1, 0)-separated. Since

T (r, f) ≤ 2T (r, f1) ≤ 2 ln+M(r, f1),(1.10)

the relation (1.6) implies that lim
r→∞

r−1T (r, f) = 0. Now we show that κ(f) = 2.

From (1.7) and (1.10) we get that

T (r, f) = O(ln2 r)

for r = eam and thus the function f(z) has lower order zero. By the corollary of
Theorem 3.1 from Chapter 5 (p. ???), the function f(z) cannot have more than one

deficient value. Since, obviously, N(r, f) = N

(
r,

1

f

)
, we have δ(0, f) = δ(∞, f)

and hence δ(0, f) = δ(∞, f) = 0. From here we get

κ(f) = lim sup
r→∞

N(r, f) +N
(
r, 1
f

)
T (r, f)

= 2 lim sup
r→∞

N(r, f)

T (r, f)
= 2(1− δ(∞, f)) = 2.

To get an example for p > 1 we consider f(zp).
As we already mentioned in Chapter 5, the inequality κ(f) ≤ 2 − δ(0, f) −

δ(∞, f) holds. The question arises: is it possible to strengthen Theorem 1.2
supplementing it with the statement that 2 − δ(0, f) − δ(∞, f) < 2, that is,
δ(0, f) + δ(∞, f) > 0. In the case (a) such strengthening is possible: the rela-
tion κ(f) = 0 and the obvious inequality

min{δ(0, f), δ(∞, f)} ≥ 1− κ(f)(1.11)

imply that δ(0, f) = δ(∞, f) = 1. We show that in the case (b) for each value of
η > 0 it is possible that δ(0, f) = δ(∞, f) = 0.

Example 3. Let a positive integer p and a number η, 0 < η < π
2p be given.

Let ρ be a non-integer satisfying ρ ≥ π
2η . We will construct a meromorphic function

f(z) of order ρ zeros of which are lying on the rays {arg z = 0} and

{
arg z =

π

ρ

}
,

and poles are lying on the rays

{
arg z =

π

p

}
and

{
arg z =

π

p
+
π

ρ

}
, and such that

δ(0, f) = δ(∞, f) = 0. Since π
ρ
≤ 2η, zeros and poles of the function f(z) are

(p, η)-separated, and since ρ ≥ π
2η > ρ, we have lim sup

r→∞
r−pT (r, f) =∞. Thus, the

desired example will be constructed.
Let r1 = 1, rm+1 = exp exp rm (m = 1, 2, . . . ). Denote by g1(z) (g2(z)) the

canonical product of genus q = [ρ] with zeros at the points k1/ρ, k = 1, 2, . . . , getting

into the set

∞⋃
j=1

[r2j−1, r2j)

 ∞⋃
j=1

[r2j , r2j+1)

. Let us show that the function

f(z) =
g1(z)g1(ze−iα)

g2(ze−iβ)g2(ze−iγ)
, α =

π

ρ
, β =

π

p
, γ =

π

ρ
+
π

p

has all the desired properties.
It is clear that its poles and zeros belong to the indicated rays and that the

order of f(z) does not exceed ρ.
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Since

n(r, 0, g1) + n(r, 0, g2) = [rρ],

we have

n(r; 0,∞) = n(r, f) + n

(
r,

1

f

)
= 2[rρ]

and

N(r; 0,∞) ∼ 2

ρ
rρ.

Therefore

T (r, f) ≥
(

1

ρ
+ o(1)

)
rρ,(1.12)

and the order of the function f(z) is equal to ρ.
Let us prove that δ(0, f) = δ(∞, f) = 0.
Using the estimate

lnM(r, g1) ≤ C(q)

{
rq
∫ r

0

n(t, 0, g1)

tq+1
dt+ rq+1

∫ ∞
r

n(t, 0, g1)

tq+2
dt

}
,

which is valid by Remark 1 to Theorem 3.3 from Chapter 2, and taking into account
the fact, that for r = er2j = ln r2j+1 the inequalities∫ r

0

n(t, 0, g1)

tq+1
dt ≤ n(r2j , 0, g1)

q
= O(rρ2j) = O(lnρ r),

∫ ∞
r

n(t, 0, g1)

tq+2
dt ≤ n(r2j , 0, g1)

(q + 1)rq+1
+

∫ ∞
r2j+1

n(t, 0, g1)

tq+2
dt

= O

(
lnρ r

rq+1

)
+

∫ ∞
r2j+1

O(tρ)

tq+2
dt = O

(
lnρ r

rq+1

)
+O(r

ρ−q−1)
2j+1 )

= O

(
lnρ r

rq+1

)
+O(er(ρ−q−1)) = O

(
lnρ r

rq+1

)
hold, we get

lnM(r, g1) = O(rq lnρ r) +O(lnρ r) = o(rρ), r = er2j .(1.13)

In a similar manner, we get

lnM(r, g2) = o(rρ), r = er2j+1 .(1.14)

The function

g(z) = g1(z)g2(z)

is a canonical product with zeros at points k1/ρ, k = 1, 2, . . . , and by the asymptotic
formula (5.32) from Chapter 2, for each δ > 0 the relation

ln |g(reiϕ)| = π

sinπρ
cos ρ(ϕ− π)rρ + o(rρ)

holds uniformly in ϕ, δ ≤ ϕ ≤ 2π − δ. Therefore the function

G(z) = g(z)g(ze−iα), α =
π

ρ
,
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for each δ, 0 < δ < π
2ρ , uniformly in ϕ, satisfies the asymptotic equalities:

ln |G(reiϕ)| = 2π sin ρϕrρ + o(rρ), δ ≤ ϕ ≤ α− δ,

ln |G(reiϕ)| = o(rρ), α+ δ ≤ ϕ ≤ 2π − δ.
Applying Theorem 7.4 from Chapter 1, we get

m

(
r,

1

G

)
=

{
1

2π

∫ α

0

(−2π sin ρϕ)+dϕ

}
rρ + o(rρ) = o(rρ).(1.15)

The function f(z) can be represented in the form

f(z) =
G(z)

g2(ze−iβ)g2(ze−iγ)g2(z)g2(ze−iα)
,

from where we get

m

(
r,

1

f

)
≤ m

(
r,

1

G

)
+ 4m(r, g2) ≤ m

(
r,

1

G

)
+ 4 ln+M(r, g2).

Taking into account (1.15) and (1.14) we get

m

(
r,

1

f

)
= o(rρ), r = er2j+1 ,

applying (1.12), we conclude that δ(0, f) = 0.
Similarly, representing the function f(z) in the form

f(z) =
g1(z)g1(ze−iα)g1(ze−iβ)g1(ze−iγ)

G(z)
,

and using (1.15), (1.13), and (1.12) we conclude that δ(∞, f) = 0.
The question: is it possible that δ(0, f) = δ(∞, f) = 0 holds under the condi-

tions of Theorem 1.2 (b) with η = 0, in full generality is still unanswered. Under
some additional conditions the answer to this question turns out to be negative.

The following two theorems are fairly easy to prove.

Theorem 1.3. Suppose that the conditions of Theorem 1.2 (b) with η = 0 are
satisfied, and suppose, in addition, that the limits

q1 = lim inf
r→∞

N(r, f)

N
(
r, 1
f

) and q2 = lim sup
r→∞

N(r, f)

N
(
r, 1
f

)
are finite and positive. Then

δ(0, f) ≥ q1

1 + q1
> 0, δ(∞, f) ≥ 1

1 + q2
> 0.(1.16)

Theorem 1.4. Suppose that the conditions of Theorem 1.2 (b) with η = 0 are
satisfied, and suppose that, in addition, there exist numbers µ > 1 and 1 > ν > 0,
such that

N(r; 0,∞)

N(µr; 0,∞)
≥ ν, r ≥ r0.(1.17)

Then

min{δ(0, f), δ(∞, f)} ≥ ν(cosh(p lnµ)− 1)

2 + ν(cosh(p lnµ)− 1)
> 0.(1.18)
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Proof of Theorem 1.3. We have

κ(f) = lim sup
r→∞

N(r; 0,∞)

T (r, f)
≥ lim sup

r→∞

N
(
r, 1
f

)
T (r, f)

lim inf
r→∞

1 +
N(r, f)

N
(
r, 1
f

)


= (1 − δ(0, f))(1 + q1),

κ(f) ≥ lim sup
r→∞

N(r, f)

T (r, f)
lim inf
r→∞

1 +
N
(
r, 1
f

)
N(r, f)

 = (1− δ(∞, f))

(
1 +

1

q2

)
.

Since the inequality (1.9) with η = 0 gives us κ(f) ≤ 1, we get the inequalities
(1.16).

Proof of Theorem 1.4. First we establish that for functions satisfying the
conditions of Theorem 1.2 (b) with η ≥ 0 and the condition (1.17) the following,
somewhat more sharp than (1.9) estimate holds:

κ(f) ≤ 2

1 + cos pη{1− ν + ν cosh(p lnµ)} .(1.19)

Using Lemma 1.1 and the inequality (1.5), we get

2T (r, f) ≥ (1 + cos pη)N(r; 0,∞)

+ p cos pη

∫ r

0

N(t; 0,∞) sinh
(
p ln

r

t

) dt
t

+ o(T (r, f)).

By the condition (1.17) we have

p

∫ r

0

N(t; 0,∞) sinh
(
p ln

r

t

) dt
t
≥ p

∫ r

r/µ

N(t; 0,∞) sinh
(
p ln

r

t

) dt
t

≥ N
(
r

µ
; 0,∞

)
p

∫ r

r/µ

sinh
(
p ln

r

t

) dt
t

= N

(
r

µ
; 0,∞

)
{cosh(p lnµ)− 1}

≥ N(r; 0,∞)ν{cosh(p lnµ)− 1}
We come to the relation

2T (r, f) ≥ {1 + cos pη(1− ν + ν cosh(p lnµ))}N(r; 0,∞) + o(T (r, f)),

whence (1.19) follows.
¿From (1.19) with η = 0 we get

κ(f) ≤ 2

2 + ν(cosh(p lnµ)− 1)
< 1

and, using (1.11), get (1.18).

The proof of the following theorem is much more difficult.

Theorem 1.5. If the conditions of Theorem 1.2 (b) are satisfied and, in addi-
tion, there exists a number ξ <∞, such that∑

m

1

|am|ξ
+
∑
n

1

|bn|ξ
<∞,(1.20)

η ≤ π

60ξ
,
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then

min{δ(0, f), δ(∞, f)} ≥ A > 0,(1.21)

where A is an absolute constant.

Let us mention some of the corollaries of Theorem 1.5.

Corollary 1. If the conditions of Theorem 1.2 (b) with η = 0 are satisfied
and, in addition, there exists a number ξ < ∞, such that (1.20) is satisfied, then
(1.21) holds.

Observe that (1.20) is always true for ξ > ρ[f ]. Therefore Corollary 1 immedi-
ately implies

Corollary 2. If the conditions of Theorem 1.2 (b) with η = 0 are satisfied
and, in addition, the function f(z) has finite order, then (1.21) holds.

Let us mention, also, the following statements.

Corollary 3. Let f(z) be a function with positive zeros and negative poles.
If f(z) has finite lower order and lim sup

r→∞
r−1T (r, f) =∞, then (1.21) holds.

Corollary 4. Let f(z) be an entire function with real zeros. If f(z) has a
finite lower order and lim sup

r→∞
r−2T (r, f) =∞, then (1.21) holds.

Corollary 3 follows from Corollary 2, since, by Corollary 3 of Theorem 1.1 the
function f(z) has finite order. Corollary 4 can be derived from Corollary 2 using
Corollary 4 of Theorem 1.1.

Now we turn to auxiliary results needed to prove Theorem 1.5.

Lemma 1.2. Let {ck}∞k=1 be a sequence of points in the complex plane, lying in

the angle
{
| arg z| ≤ π

6
− ε
}

, where 0 < ε ≤ π

6
, and satisfying the condition

∞∑
k=1

1

|ck|3
<∞.

Let1

g(z) =

∞∏
k=1

E

(
z

ck
, 2

)
.

Then ∫ π
3 + ε

2

π
3−

ε
2

ln+

∣∣∣∣ g(reiϕ)

g(−reiϕ)

∣∣∣∣ dϕ ≥ ε sin
ε

2
N(r, 0, g).

Proof. It is easy to see that for Imζ > 0 the equality

ln
E(ζ, 2)

E(−ζ, 2)
= ln

(
1− ζ
1 + ζ

)
+ 2ζ = 2

∫ ζ

0

t2dt

t2 − 1

1By Theorem 3.2 from Chapter 2, the product converges absolutely and uniformly in each
finite disc.
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holds, where the branches on the logarithm in both cases are chosen in such a way
that they have zero value at ζ = 0, and the integral is taken over the segment
joining the points 0 and ζ. Separating the real part, we get

ln

∣∣∣∣ E(ρeiθ, 2)

E(−ρeiθ, 2)

∣∣∣∣ = 2Re

{∫ ρ

0

τ2e2iθ

τ2e2iθ − 1
eiθdτ

}
= 2

∫ ρ

0

τ4 cos θ − τ2 cos 3θ

τ4 − 2τ2 cos 2θ + 1
dτ,

whence

ln

∣∣∣∣∣∣
E
(
reiϕ

ck
, 2
)

E
(
− reiϕ

ck
, 2
)
∣∣∣∣∣∣ = 2

∫ r/|ck|

0

τ4 cos(ϕ− ϕk)− τ2 cos 3(ϕ− ϕk)

τ4 − 2τ2 cos 2(ϕ− ϕk) + 1
dτ,(1.22)

where ϕk = arg ck.

Since |ϕk| ≤
π

6
− ε, for

∣∣∣ϕ− π

3

∣∣∣ ≤ ε

2
we have

π

6
+
ε

2
≤ ϕ− ϕk ≤

π

2
− ε

2
,

hence

cos(ϕ− ϕk) ≥ cos
(π

2
− ε

2

)
= sin

ε

2
;

cos 3(ϕ− ϕk) ≤ cos 3
(π

6
+
ε

2

)
= − sin

3ε

2
.

Therefore (1.22) implies that for
∣∣∣ϕ− π

3

∣∣∣ ≤ ε

2
the inequality

ln

∣∣∣∣∣∣
E
(
reiϕ

ck
, 2
)

E
(
− reiϕ

ck
, 2
)
∣∣∣∣∣∣ ≥ 2

∫ r/|ck|

0

τ4 sin ε
2 + τ2 sin 3ε

2

τ4 + 2τ2 + 1
dτ ≥ 2 sin

ε

2

∫ r/|ck|

0

τ2dτ

τ2 + 1

holds. Adding these inequalities for different values of k, we get
(∣∣∣ϕ− π

3

∣∣∣ ≤ ε

2

)
ln

∣∣∣∣ g(reiϕ)

g(−reiϕ)

∣∣∣∣ ≥ 2 sin
ε

2

∞∑
k=1

∫ r/|ck|

0

τ2dτ

τ2 + 1

= 2 sin
ε

2

∫ ∞
0

dn(t, 0, g)

∫ r/t

0

τ2dτ

τ2 + 1
= 2r3 sin

ε

2

∫ ∞
0

n(t, 0, g)

t2(r2 + t2)
dt

≥ 2r3 sin
ε

2

∫ r

0

n(t, 0, g)

t2(r2 + t2)
dt ≥ sin

ε

2

∫ r

0

n(t, 0, g)

t
dt = sin

ε

2
N(r, 0, g).

Integrating with respect ϕ from π
3 −

ε
2 to π

3 + ε
2 , we get the desired inequality. �

Lemma 1.3. Let G(z), G(0) = 1, be a meromorphic function with all zeros in

the angle
{
| arg z| ≤ π

60

}
and all poles in the angle

{
|π − arg z| ≤ π

60

}
, and let

lim
r→∞

r−1T (r,G) =∞.(1.23)

Suppose, in addition, that G(z) is of the form

G(z) = eS(z)G1(z),(1.24)

where G1(z) is a meromorphic function of genus at most 2, and S(z) is an entire
function.



274 6. VALUE DISTRIBUTION WITH RESPECT TO THE ARGUMENTS

Then

min{δ(0, G), δ(∞, G)} ≥ A > 0,(1.25)

where A is an absolute constant.

Proof. First we consider the case when the genus of the function G(z) itself
does not exceed 2. Let

g(z) =
∏
m

E

(
z

am
, 2

)∏
n

E

(
− z

bn
, 2

)
.

Then

G(z)

G(−z)
= eCz

g(z)

g(−z)
,

where C is some constant. Applying Lemma 1.2 with ε =
9

10
· π

6
, we get

∫ π
3 + ε

2

π
3−

ε
2

ln+

∣∣∣∣ G(reiϕ)

G(−reiϕ)

∣∣∣∣ dϕ ≥ ∫ π
3 + ε

2

π
3−

ε
2

ln+

∣∣∣∣ g(reiϕ)

g(−reiϕ)

∣∣∣∣ dϕ− |C|εr
≥ ε sin

ε

2
N(r, 0, g) +O(r)

=

(
3π

20
sin

3π

40

)
{N(r, 0, G) +N(r,∞, G)}+O(r).

(1.26)

Zeros and poles of the function G(z)/G(−z), obviously, are
(

1,
π

60

)
-separated.

By Lemma 1.1 we have the inequality

1

2π

∫ 2π

0

ln

∣∣∣∣ G(reiϕ)

G(−reiϕ)

∣∣∣∣ cosϕdϕ ≥ cos
π

60

{
N

(
r,

G(z)

G(−z)

)
+N

(
r,
G(−z)

G(z)

)}
+O(r) = 2 cos

π

60
{N(r, 0, G) +N(r,∞, G)} +O(r).

By 2π-periodicity of the function G(reiϕ) in ϕ, we have the equality

1

2π

∫ 2π

0

ln

∣∣∣∣G(−reiϕ)

G(reiϕ)

∣∣∣∣ dϕ = 0.

Adding it to the preceding inequality we get

1

2π

∫ 2π

0

ln

∣∣∣∣G(−reiϕ)

G(reiϕ)

∣∣∣∣ (1− cosϕ)dϕ ≥ 2 cos
π

60
{N(r, 0, G) +N(r,∞, G)} +O(r).

Since

2m

(
r,
G(−z)

G(z)

)
≥ 1

2π

∫ 2π

0

ln+

∣∣∣∣G(−reiϕ)

G(reiϕ)

∣∣∣∣ (1− cosϕ)dϕ

=
1

2π

∫ 2π

0

ln+

∣∣∣∣ G(reiϕ)

G(−reiϕ)

∣∣∣∣ (1− cosϕ)dϕ +
1

2π

∫ 2π

0

ln

∣∣∣∣G(−reiϕ)

G(reiϕ)

∣∣∣∣ (1− cosϕ)dϕ,
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it follows from here, that

(
ε =

9

10
· π

6

)
2m

(
r,
G(−z)

G(z)

)
≥ 1

2π

∫ 2π

0

ln+

∣∣∣∣ G(reiϕ)

G(−reiϕ)

∣∣∣∣ (1− cosϕ)dϕ

+ 2 cos
π

60
{N(r, 0, G) +N(r,∞, G)} +O(r)

≥ 1

2π

(
1− cos

π

4

) ∫ π
3 + ε

2

π
3−

ε
2

ln+

∣∣∣∣ G(reiϕ)

G(−reiϕ)

∣∣∣∣ dϕ
+ 2 cos

π

60
{N(r, 0, G) +N(r,∞, G)} +O(r).

Using (1.26) we get

2m

(
r,
G(−z)

G(z)

)
≥
{

3

40

(
1− cos

π

4

)
sin

3π

40
+ 2 cos

π

60

}
{N(r, 0, G) +N(r,∞, G)}+O(r).

Since

m

(
r,
G(−z)

G(z)

)
≤ m(r,G) +m

(
r,

1

G

)
= 2T (r,G)− {N(r, 0, G) +N(r,∞, G)} = 2T (r,G)−N(r; 0,∞),

we have

T (r,G) ≥ 1

2

{
1 +

3

80

(
1− cos

π

4

)
sin

3π

40
+ cos

π

60

}
N(r; 0,∞) + O(r).

Straightforward computation shows that the number in braces exceeds 2.0004. De-
noting this number by 2 + 2B, where B > 0.0002, we get

T (r,G) ≥ (1 +B)N(r; 0,∞) +O(r),

by (1.23), this inequality implies

κ(G) ≤ 1/(1 +B).

Using the inequality (1.11) and letting A = B/(1 +B), we get (1.25).
In the case when the genus of G(z) exceeds 2, the function S(z) in the represen-

tation (1.24) is either a polynomial of degree at least 3, or an entire transcendent
function. In both cases, by Lemma 6.2, we have

r3 = O(T (r, eS(z))).

Since the genus of G1(z) does not exceed 2, we have

T (r,G1) = o(r3),

and hence

N(r, 0, G) = N(r, 0, G1) = o(r3), N(r,∞, G) = N(r,∞, G1) = o(r3),

r3 = O(T (r, eS(z)) + T (r,G1)) = O(T (r,G)).

Therefore δ(0, G) = 1, δ(∞, G) = 1. The proof of the lemma is completed. �
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Now we turn to the proof of Theorem 1.5.
Without loss of generality we may assume that all zeros of the function f(z)

are in the region Dp
1(η) and all of its poles are in the region Dp

2(η). In fact, by (1.1)
the products

π1(z) =
∏

am /∈Dp1 (η)

E

(
z

am
, p− 1

)
, π2(z) =

∏
bn /∈Dp2 (η)

E

(
z

bn
, p− 1

)
are absolutely convergent. Let

f1(z) = f(z)
π2(z)

π1(z)
.

Then all zeros of the function f1(z) are in Dp
1(η), and all of its poles are in Dp

2(η),
the function f1(z) also satisfies (1.20), and since T (r, πj) = o(rp), j = 1, 2, we have

T (r, f1) = T (r, f) + o(rp),

N(r,∞, f1) = N(r,∞, f) + o(rp), N(r, 0, f1) = N(r, 0, f) + o(rp),

and because (see the proof of Theorem 1.2 (b)) rp = o(T (r, f)), we get

lim
r→∞

r−pT (r, f1) =∞, δ(0, f1) = δ(0, f), δ(∞, f1) = δ(∞, f).

We may assume also, that∑
m

1

|am|p
+
∑
n

1

|bn|p
=∞,(1.27)

since otherwise we have N(r,∞, f) = o(rp), N(r, 0, f) = o(rp), and hence δ(0, f) =
δ(∞, f) = 1.

Thus, we assume that all zeros of the function f(z) are in the region Dp
1(η),

and all of its poles are in the region Dp
2(η), and the condition (1.27) is satisfied.

Note that then ξ > p, where ξ is the number appearing in the statement of the
theorem; and denote by q a positive integer satisfying∑

m

1

|am|q
+
∑
n

1

|bn|q
=∞;

∑
m

1

|am|q+1
+
∑
n

1

|bn|q+1
<∞.(1.28)

It is clear that the inequality

p ≤ q ≤ [ξ]

holds.
By (1.28) the function f(z) can be represented in the form

f(z) = eH(z)

∏
m

E

(
z

am
, q

)
∏
n

E

(
z

bn
, q

) ,

where H(z) is an entire function. We choose an odd number s in such a way, that

ps ≤ q < p(s+ 2),(1.29)

and let

l = ps, ω = exp

(
2πi

l

)
.
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Consider the function

F (z) =
l−1∏
k=0

f(ωkz).(1.30)

Using the equality (ν = 0, 1, 2, . . . )

l−1∑
k=0

ωkν =

{
l, if ν is divisible by l,

0, if ν is not divisible by l,

we easily get

l−1∏
k=0

E(ωkz, q) = E
(
zl,
[q
l

])
,

l−1∑
k=0

H(ωkz) = S(zl),

where S(z) is an entire function. Therefore we have

F (z) = eS(zl)

∏
m

E

(
zl

alm
,
[q
l

])
∏
n

E

(
zl

bln
,
[q
l

]) .

Let us show that the meromorphic function

G(z) = F (z1/l) = eS(z)

∏
m

E

(
z

alm
,
[q
l

])
∏
n

E

(
z

bln
,
[q
l

])
satisfies the conditions of Lemma 1.3 and the inequalities

δ(0, G) ≤ δ(0, f), δ(∞, G) ≤ δ(∞, f)(1.31)

hold.
Since (1.29) implies q < l + 2p ≤ 3l, we have

[q
l

]
≤ 2. The conditions∣∣∣∣arg am − π

2j

p

∣∣∣∣ ≤ η, ∣∣∣∣arg bn − π
2j + 1

p

∣∣∣∣ ≤ η
(j ≥ 0 is an integer) imply that

| arg(alm)− sπ2j| ≤ lη, | arg(bln)− sπ(2j + 1)| ≤ lη,

where s is defined by (1.29). Taking into account that s is odd, and lη ≤ qη ≤ [ξ]η ≤
π
60 , we observe that all zeros of the function G(z) are in the angle

{
| arg z| ≤ π

60

}
,

and all of its poles are in the angle
{
|π − arg z| ≤ π

60

}
.

Now we show that zeros and poles of different factors in (1.30) cannot cancel
each other, this fact will be used later on. Zeros of all function f(ωkz), k =
0, 1, . . . , l − 1, belong to the set

l−1⋃
k=0

p⋃
j=0

{∣∣∣∣arg z − k 2π

l
− π 2j

p

∣∣∣∣ ≤ η, 0 < |z| <∞
}
,
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and their poles belong to the set

l−1⋃
k=0

p⋃
j=0

{∣∣∣∣arg z − k 2π

l
− π 2j + 1

p

∣∣∣∣ ≤ η, 0 < |z| <∞
}
.

Let us show that these sets have an empty intersection.
Assume the contrary, let z be a point belonging to both sets. Then there exist

integers k1, j1, k2, j2, such that∣∣∣∣arg z − π 2k1

l
− π 2j1

p

∣∣∣∣ ≤ η, ∣∣∣∣arg z − π 2k2

l
− π 2j2 + 1

p

∣∣∣∣ ≤ η
Hence ∣∣∣∣π 2k1

l
+ π

2j1
p
− π 2k2

l
− π 2j2 + 1

p

∣∣∣∣ ≤ 2η,

and since l = ps, we have

π

p

∣∣∣∣2(k1 − k2)

s
− 2(j2 − j1)− 1

∣∣∣∣ ≤ 2η.

Because the distance from a fraction with an even numerator and the odd denom-
inator s to an arbitrary odd number is not less than 1/s, we get

π

ps
≤ 2η,

and since ps ≤ q < ξ, η ≤ π
60ξ , we get a contradiction.

It is clear that all points alm are zeros of the function G(z), and all points bln
are its poles. If we assumed that lim inf

r→∞
r−1T (r,G) <∞, we would get

∑
m

1

|alm|
+
∑
n

1

|bln|
<∞.

But this contradicts (1.28) since l ≤ q. Therefore (1.23) holds, and hence the
function G(z) satisfies the conditions of Lemma 1.3.

To prove (1.31) observe that (1.30) implies

T (r,G) = T (r1/l, F ) ≤ lT (r1/l, f).(1.32)

Next, since, as we have already shown, zeros and poles of different factors in
(1.30) cannot cancel each other, the equalities

N(r,∞, G) = N(r1/l,∞, F ) = lN(r1/l,∞, f);

N(r, 0, G) = N(r1/l, 0, F ) = lN(r1/l, 0, f)
(1.33)

hold. The inequalities (1.31) follow immediately from (1.32) and (1.33).
Applying Lemma 1.3 to the function G(z) and using (1.31), we get the conclu-

sion of Theorem 1.5.
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2. Meromorphic functions with poles and zeros located close to a
system of rays

In this section we shall use systematically angular Nevanlinna characteristics
and the results of Sections 5 and 6 from Chapter 1, and Section 3 from Chapter 3.

Denote by D = D(α1, . . . , αn) the system of rays

n⋃
j=1

{arg z = αj}, α1 < α2 < · · · < αn < αn+1 = α1 + 2π.

Let

ωj(D) =
π

αj+1 − αj
(j = 1, . . . , n), ω(D) = max

1≤j≤η
ωj(D).

Let f(z) be a meromorphic function, and a be a number from the extended
complex plane. We introduce the function2

UD(r, a, f) = max
1≤t≤r

n∑
j=1

tωj(D)−ω(D)C̄αjαj+1 (t, a, f).

The growth of the function UD(r, a, f) as r →∞ is one of the natural ways to mea-
sure how distant are the a-points of the function f(z) from the systemD(α1, . . . , αn)
of rays. Note that the relations UD(r, a, f) ≡ 0 means that all a-points of the func-
tion f(z) lying outside the disc {|z| ≤ 1} belong to the system D(α1, . . . , αn) of
rays. The relation UD(r, a, f) = O(1) holds if the number of a-points not lying on
the rays of the system D(α1, . . . , αn) is finite, but it can also hold in cases when
the number of such points is infinite.

Example 1. The condition UD(r, a, f) = O(1) for the system D(0, π) is equiv-
alent to the condition ∑

rm>1

| sinϕm|
rm

<∞,(2.1)

where rme
iϕm are a-points of the function f(z), listed without taking into account

their multiplicities. In fact, we have

C̄0π(r, a, f) = 2
∑

1<rm<r
0<ϕm<π

(
1

rm
− rm

r2

)
sinϕm ≤ 2

∑
1<rm<r
0<ϕm<π

sinϕm
rm

≤ 2
∑
rm>1

0<ϕm<π

sinϕm
rm

;

C̄0π(r, a, f) ≥ 2
∑

1<rm<
r
2

0<ϕm<π

(
1

rm
− rm

r2

)
sinϕm

= 2
∑

1<rm<
r
2

0<ϕm<π

(
1− r2

m

r2

)
sinϕm
rm

≥ 2 · 3

4

∑
1<rm<

r
2

0<ϕm<π

sinϕm
rm

.

2The parameters C̄αβ(r, a, f) were defined on p.???
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Estimating in a similar way the parameter C̄π,2π(r, a, f) and observing that for
the system D(0, π) we have ω1(D) = ω2(D) = ω(D) = 1 and

UD(r, a, f) = max
1≤t≤r

{C̄0π(t, a, f) + C̄π,2π(t, a, f)} = C̄0π(r, a, f) + C̄π,2π(r, a, f),

we verify the claim stated above. It is clear that (2.1) holds, for example, when
rm = m, ϕm = 1/m.

Observe that letting zm = rme
iϕm , we can rewrite the condition (2.1) in the

form ∑
|zm|>1

∣∣∣∣Im 1

zm

∣∣∣∣ <∞.
For a 6= b we let

UD(r, a, b; f) = UD(r, a, f) + UD(r, b, f),

in the cases when f is clear from context, we write UD(r, a, b) and UD(r, a) instead
of UD(r, a, b; f) and UD(r, a, f), respectively.

The quantity

µ(E) = lim sup
r→∞

r−1mes(E ∩ (0, r)),

defined for a measurable subset E ⊂ [0,∞), will be called the upper relative measure
of E.

It is easy to see that the following statements are true.

(a) 0 ≤ µ(E) ≤ 1 for each E.

(b) If E ⊂
m⋃
k=1

Ek, m <∞, then µ(E) ≤
m∑
k=1

µ(Ek).

(c) If the logarithmic measure of E is finite

(
that is,

∫
E∩[1,∞)

r−1dr <∞
)

,

then3 µ(E) = 0.

Denote by L′ the class of all measurable subsets E ⊂ [0,∞) satisfying µ(E) < 1.
We shall repeatedly use the property of the class L′ described in the following
lemma.

Lemma 2.1. Let u(r) and v(r) be two non-decreasing functions such that u(r) ≤
v(r) for all r ≥ 0, excluding, possibly, a set E ∈ L′. Then there exists a constant
K, 1 ≤ K < ∞, such that for all sufficiently large r the inequality u(r) ≤ v(Kr)
holds.

Proof. Suppose that there exists a sequence rn ↑ ∞, such that

u(rn) > v

(
2

1− µ(E)
rn

)
.

3In fact,

mes (E ∩ (0, r)) =

∫
E∩(0,

√
r)
dt+

∫
E∩(
√
r,r)

dt ≤
√
r + r

∫
E∩(
√
r,r)

t−1dt = o(r).
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Consider the set E1 =

∞⋃
n=1

(rn, rn1), where rn1 =
2

1− µ(E)
rn. It is clear that

µ(E1) ≥ lim sup
n→∞

r−1
n1 mes(E1 ∩ (0, rn1))

≥ lim sup
n→∞

r−1
n1 (rn1 − rn) =

1 + µ(E)

2
> µ(E).

Therefore there exists a point r ∈ E1\E. Let r ∈ (rk, rk1), then we have

u(rk) ≤ u(r) ≤ v(r) ≤ v(rk1) = v

(
2

1− µ(E)
rk

)
, we get a contradiction. �

We introduce the parameter

δ′(a, f) = sup
CE∈L′

lim inf
r→∞
r∈E

m(r, a)

T (r, f)
= 1− inf

CE∈L′
lim sup
r→∞
r∈E

N(r, a)

T (r, f)
.

Comparing with the parameter δ(a, f) and the parameter δ∗(a, f) introduced in
Section 6 of Chapter 4 (p. ???), we see that

δ(a, f) ≤ δ∗(a, f) ≤ δ′(a, f),

thus, for each deficient value a the inequality δ′(a, f) > 0 holds.
The following theorem is the main result of this section.

Theorem 2.1. Let D = D(α1, . . . , αn) be a system of rays, f(z) be a meromor-
phic function satisfying δ′(a, f) > 0 for some a 6= 0,∞. Then the growth category
of f(z) does not exceed the growth category of

rω(D){UD(r, 0,∞) + 1}.

Let us agree for the remainder of this section that K will be used for different
finite, positive, independent of r constants.

The condition δ′(a, f) > 0 implies that the inequality

T (r, f) ≤ 2

δ′(a, f)
m(r, a), r /∈ B1(2.2)

holds, where B1 ⊂ [0,∞) is a set satisfying µ(B1) < 1. By Lemma 2.1 from Chapter
3 (p. ???) we have

m(r, a) ≤ m
(
r,
f

f ′

)
+Q(r, f).(2.3)

We assume that f(z) is transcendental, since otherwise Theorem 2.1 is trivial. Then

Q(r, f) = O(ln r) +O(ln T (r, f)) ≤ 1

2
T (r, f)

outside some set B2 ⊂ [0,∞) of finite measure, and (2.2) and (2.3) imply that for
r /∈ B3 = B1 ∪B2 the inequality

T (r, f) ≤ Km
(
r,
f

f ′

)
(2.4)

holds. Observe that µ(B3) ≤ µ(B1) + µ(B2) = µ(B1) < 1.

Next, we need to estimate m
(
r, ff ′

)
from above in terms of UD(r, 0,∞). Since

such estimates are of independent interest, we state them as a separate theorem.
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Theorem 2.2. Let D = D(α1, . . . , αn) be a system of rays, f(z) be a mero-
morphic function, ε > 0 and d > 1 be preassigned numbers.

(A) For all r ≥ 0 except, possibly, a subset E ⊂ [0,∞) satisfying µ(E) < ε, the
inequality

m

(
r,
f

f ′

)
≤ Krdω(D){UD(r, 0,∞) + ln r + 1}d{ln+ T (r, f) + 1}d(2.5)

holds.
(B) If the function f(z) satisfies the condition∫ ∞

1

r−q(D)−1 ln+ T (r, f)dr <∞, q(D) = min
1≤j≤n

ωj(D),(2.6)

then for all r ≥ 0 except, possibly, a subset E ⊂ [0,∞) satisfying µ(E) < ε, the
inequality

m

(
r,
f

f ′

)
≤ Krω(D){UD(dr, 0,∞) + 1}(2.7)

holds.

To prove Theorem 2.2 we need estimates from above for

mαβ(r, f) =
1

2π

∫ β

α

ln+ |f(reiϕ)|dϕ,

where f(z) is an arbitrary meromorphic function and 0 < β − α ≤ 2π, in terms of
the Nevanlinna characteristic Sαβ(r, f). Such estimates are given by the following
theorem. Its proof is rather tedious, and will be postponed till Section 3 of the
present chapter.

Theorem 2.3. Let f(z) be a function meromorphic in the angle {α ≤ arg z ≤
β}, 0 < β − α ≤ 2π; ε > 0 and d > 1 be preassigned numbers; ω = π/(β − α). For
all r ≥ 0 except, possibly, a subset E ⊂ [0,∞) satisfying µ(E) < ε, the inequalities

mαβ(r, f) ≤ Krω{Sαβ(r, f) + 1}d,

mαβ(r, f) ≤ Krω{Sαβ(dr, f) + 1}
hold.

Now we prove the statement (A) of Theorem 2.2.
By Theorem 2.3 for all r ≥ 0 except, possibly, a subset Ej ⊂ [0,∞) satisfying

µ(Ej) <
ε
n

, the inequality

mαjαj+1

(
r,
f

f ′

)
≤ Krωj(D)

{
Sαjαj+1

(
r,
f

f ′

)
+ 1

}d
holds (j = 1, . . . , n). Applying Theorem 5.2 from Chapter 1 (p. ???) and Theorem
3.1 from Chapter 3 (p. ???), we get

Sαjαj+1

(
r,
f

f ′

)
= Aαjαj+1

(
r,
f ′

f

)
+Bαjαj+1

(
r,
f ′

f

)
+ Cαjαj+1

(
r,
f ′

f

)
+O(1) = Cαjαj+1

(
r,
f ′

f

)
+Qαjαj+1(r, f).

(2.8)

Recalling that, by the definition of Qαjαj+1(r, f) (see p. ???),

Qαjαj+1(r, f) = O(ln r) +O(ln T (r, f))
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outside some set E
(1)
j ⊂ [0,∞) of finite measure, and using the obvious equality

Cαjαj+1

(
r,
f ′

f

)
= C̄αjαj+1(r, f) + C̄αjαj+1

(
r,

1

f

)
,(2.9)

we get that for r /∈ E =
n⋃
j=1

(
Ej ∪ E(1)

j

)
the inequality

m

(
r,
f

f ′

)
=

n∑
j=1

mαjαj+1

(
r,
f

f ′

)

≤ K
n∑
j=1

rωj(D)

{
C̄αjαj+1(r, f) + C̄αjαj+1

(
r,

1

f

)
+ ln r + ln+ T (r, f)

}d

≤ Krdω(D)
n∑
j=1

{
rωj(D)−ω(D)

(
C̄αjαj+1(r, f)

+C̄αjαj+1

(
r,

1

f

)
+ ln r + ln+ T (r, f)

)}d

holds. Using the inequality
∑
j

adj ≤

∑
j

aj

d

, aj ≥ 0, d > 1, we get from here,

that for r /∈ E the inequality

m

(
r,
f

f ′

)
≤ Krdω(D)


n∑
j=1

rωj(D)−ω(D)
(
C̄αjαj+1 (r, f)

+ C̄αjαj+1

(
r,

1

f

)
+ ln r + ln+ T (r, f)

)}d
≤ Krdω(D){UD(r, 0,∞) + ln r + ln+ T (r, f)}d

≤ Krdω(D){UD(r, 0,∞) + ln r + 1}d{ln+ T (r, f) + 1}d

holds. Since

µ(E) ≤
n∑
j=1

µ(Ej ∪ E(1)
j ) ≤

n∑
j=1

{µ(Ej) + µ(E
(1)
j )} < ε,

the statement (A) of Theorem 2.2 has been proved.
Next, by Theorem 2.3, for all r ≥ 0 except, possibly, a subset E′j ⊂ [0,∞)

satisfying µ(E′j) <
ε
n , the inequality

mαjαj+1

(
r,
f

f ′

)
≤ Krωj(D)

{
Sαjαj+1

(
dr,

f

f ′

)
+ 1

}
holds (j = 1, . . . , n). Using (2.8), (2.9) and observing, that by the condition (2.6)
and the definition of Qαjαj+1(r, f) (see p. ???) the relation Qαjαj+1(r, f) = O(1)
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holds, we conclude that for r /∈ E′ =
⋃n
j=1 E

′
j the inequality

m

(
r,
f

f ′

)
=

n∑
j=1

mαjαj+1

(
r,
f

f ′

)

≤ K
n∑
j=1

rωj(D)

{
C̄αjαj+1(dr, f) + C̄αjαj+1

(
dr,

1

f

)
+K

}
≤ Krω(D){UD(dr, 0,∞) + 1}

holds. Since µ(E′) ≤
∑n

j=1 µ(E′j) < ε, we have proved the statement (B) of
Theorem 2.2.

Now we turn to the proof of Theorem 2.1.
We may assume that the order of the function UD(r, 0,∞) is finite, otherwise

Theorem 2.1 is trivial.
First we show that this assumption implies that the order of the function f(z)

is also finite.
Let B3 be a set outside which the inequality (2.4) holds. We choose ε > 0 to

be so small that µ(B3) + ε < 1. To estimate m

(
r,
f

f ′

)
we use the statement (A)

of Theorem 2.2. Let E be a set, such that µ(E) < ε and for r /∈ E the inequality
(2.5) holds. The inequalities (2.4) and (2.5) imply that for r /∈ B4 = B3 ∪ E the
inequality

T (r, f) ≤ Krdω(D){UD(r, 0,∞) + ln r + 1}d{ln+ T (r, f) + 1}d(2.10)

holds. For each ε1, 0 < ε1 < 1, we can find r1 > 0, such that

{ln+ T (r, f) + 1}d ≤ T ε1(r, f), r ≥ r1.(2.11)

Therefore (2.10) implies that for r /∈ B5 = B4 ∪ (0, r1) we have

T (r, f) ≤ Kr
dω(D)
1−ε1 {UD(r, 0,∞) + 1}

d
1−ε1 .(2.12)

We denote the function from the right-hand side of this inequality by v(r). It
is a non-decreasing function, and for all r /∈ B5 the inequality T (r, f) ≤ v(r) holds.
Since

µ(B5) ≤ µ(B3) + µ(E) + µ((0, r1)) < µ(B3) + ε < 1,

by Lemma 2.1, for all sufficiently large r the inequality T (r, f) ≤ v(Kr) holds.
Since UD(r, 0,∞), and hence v(r) have finite order, then f(z) also has finite order.

To prove Theorem 2.1 it suffices to get the inequality

T (r, f) ≤ Krω(D){UD(Kr, 0,∞) + 1}, r ≥ K.(2.13)

This inequality can be obtained using (2.4) and the statement (B) of Theorem 2.2
(the condition (2.6) is satisfied since, as we have proved, the order of f(z) is finite).
In fact, choose so small ε > 0, that µ(B3) + ε < 1, and denote by E a set satisfying
µ(E) < ε and such that for r /∈ E the inequality (2.7) holds. The inequalities (2.4)
and (2.7) imply that for r /∈ B4 = B3 ∪ E the inequality

T (r, f) ≤ Krω(D){UD(dr, 0,∞) + 1}(2.14)

holds. Since µ(B4) ≤ µ(B3) + ε < 1, applying Lemma 2.1 we get (2.13). Our proof
of Theorem 2.1 is complete. �
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The statement of Theorem 2.1 is no longer true if we drop the condition that
for some a 6= 0,∞ the inequality δ′(a, f) > 0 holds. In fact, for each entire function
f(z) without zeros the condition δ(0, f) = δ(∞, f) = 1 holds, and for each system
D of rays we have UD(r, 0,∞) ≡ 0. However the growth of such entire function
f(z) can be arbitrarily rapid.

We consider also the following example.
Example 2. Let {hk}∞k=1 and {Ak}∞k=1 be sequences of positive numbers such

that limk→∞ hk =∞,
∑∞

k=1Ak <∞. Consider the meromorphic function

f(z) =

∞∑
k=1

Ak

z − hk
.

By the corollary of Theorem 6.1 from Chapter 5 (p. ???) we have

T (r, f) = N(r, f) + o(1).

Since the growth of N(r, f) depends on the choice of the sequence hk only, then,
choosing an appropriate sequence we can assure that the function f(z) has a pre-
assigned growth category. Next, since for Imz 6= 0 we have

Imf(z) = −Imz ·
∞∑
k=1

Ak

|z − hk|2
6= 0,

and for real negative z the function f(z) is negative, then all real non-negative values
the function f(z) takes on the ray {arg z = 0} only. This ray can be considered as
the system D = D(0), for which ω(D) = 1/2.

Thus, there exist functions of an arbitrary preassigned growth, such that for
infinitely many values of b the equality UD(0)(r, b) ≡ 0 holds. It shows that, if we
do not suppose that δ′(a, f) > 0 for some a 6= 0,∞, then we cannot estimate the
growth category of f(z) not only by means of the growth category of the function
rω(D){UD(r, 0,∞)+1}, but even by means of the growth categories of the functions
of the form

rω(D)

{
q∑

ν=1

UD(r, bν) + 1

}
,

for an arbitrarily large q.
Let us mention some corollaries of Theorem 2.1.

Corollary 1. Let a, b, and c be three different numbers from the extended
complex plane, D = D(α1, . . . , αn) be a system of rays. If a meromorphic function
f(z) satisfies the condition δ′(a, f) > 0, then its category of growth does not exceed
the category of the function rω(D){UD(r, b, c) + 1}.

To prove this corollary it suffices to apply Theorem 2.1 to the function L(f(z)),
where L(w) is a linear-fractional transformation mapping the points b and c onto
the points 0 and ∞, respectively.

Corollary 2. Let a, b, and c be three different numbers from the extended
complex plane, D = D(α1, . . . , αn) be a system of rays. If a meromorphic function
f(z) satisfies the conditions δ′(a, f) > 0, UD(r, b, c) = O(1), then the growth of the
function f(z) does not exceed normal type of order ω(D).
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Since for an entire function f(z) the condition δ(∞, f) = 1 holds, we have
Corollary 3. Let a and b, a 6= b, be complex numbers, D = D(α1, . . . , αn)

be a system of rays, f(z) be an entire function. If the condition UD(r, a, b) = O(1)
holds, then the growth of f(z) does not exceed normal type of order ω(D).

This growth estimate cannot be improved.

Example 3. Let us show that for each system D = D(α1, . . . , αn) of rays it is
possible to construct an entire function ΦD(z) of normal type of order ω(D) such
that for each a the relation UD(r, a) = O(1) holds.

Let {αj0 ≤ arg z ≤ αj0+1} be an angle formed by rays of the system D, such
that ωj0(D) = ω(D). Denoting, as in Section 5 of Chapter 2, the Mittag-Leffler
function by Eρ(z), let

ΦD(z) = Eω(D)

(
z exp

(
−iαj0 + αj0+1

2

))
.

Let us show that ΦD(z) is a desired function.
By the result proved in Section 5 of Chapter 2 (see (5.40)), the function ΦD(z)

is a function of normal type of order ω(D), and its modulus is bounded outside the
angle {αj0 < arg z < αj0+1}. Therefore we have (j = 1, . . . , n)

Aαjαj+1 (r,ΦD) = O(1), Bαjαj+1(r,ΦD) = O(1),

and hence (j = 1, . . . , n)

Sαjαj+1(r,ΦD) = O(1).

But then, by Theorem 5.1 from Chapter 1, for each a we have

Cαjαj+1(r, a) ≤ Sαjαj+1(r,ΦD) +O(1) = O(1),

from where

UD(r, a) = max
1≤t≤r

n∑
j=1

tωj(D)−ω(D)C̄αjαj+1 (t, a) ≤
n∑
j=1

Cαjαj+1(r, a) = O(1).

Observe that the condition UD(r, a) = O(1) will also be satisfied for the entire
function

n∑
j=1

Eωj(D)

(
z exp

(
−iαj + αj+1

2

))
.

Applying Corollary 3 to the system D(0, π) and using the comments made at
the beginning of this section (see Example 1) we get

Corollary 4. Let f(z) be an entire function, a 6= b be complex numbers,
{zm} be the set of all solutions of the equations f(z) = a and f(z) = b, in which
each solution is listed only once, regardless its multiplicity. If the condition∑

|zm|>1

∣∣∣∣Im 1

zm

∣∣∣∣ <∞
is satisfied, then the growth of the function f(z) does not exceed normal type of
order 1.

Note that the function f(z) = sin z takes all real values a, |a| ≤ 1, on the real
line only.
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We cannot deduce the following result from Theorem 2.1.

Theorem 2.4. Let D = D(α1, . . . , αn) be a system of rays, f(z) be a mero-
morphic function having a Borel exceptional value a 6= 0,∞. Then the category
of growth of the function f(z) does not exceed the category of growth the function
rω(D){UD(r, 0,∞) + 1}.

Proof. By the first fundamental theorem we have

T (r, f) = N(r, a) + m(r, a) +O(1).

Using (2.3) and assuming that the function f(z) is transcendental, we get that for
all r ≥ 0 except, possibly, a set of finite length, the inequality

T (r, f) ≤ K
{
N(r, a) +m

(
r,
f

f ′

)}
holds. To estimate m

(
r,
f

f ′

)
we use the statement (A) of Theorem 2.2. For all

r ≥ 0 except, possibly, a set B1 such that µ(B1) < ε < 1 we have

T (r, f) ≤ KN(r, a) +Krdω(D){UD(r, 0,∞) + ln r + 1}d{ln+ T (r, f) + 1}d

≤ K{N(r, a) + rdω(D)(UD(r, 0,∞) + ln r + 1)d}{ln+ T (r, f) + 1}d.

Taking into account (2.11) we get

T (r, f) ≤ K{N(r, a) + rdω(D)(UD(r, 0,∞) + ln r + 1)d}
1

1−ε1

(r /∈ B1, 0 < ε1 < 1).

Denote by v(r) the function in the right-hand side. By Lemma 2.1, for sufficiently
large r the inequality T (r, f) ≤ v(Kr) holds. By the definition of a Borel exceptional
value, the order of N(r, a) is finite. We may assume that the order of the function
UD(r, 0,∞) is also finite, otherwise Theorem 2.4 is trivial. Therefore the order of
v(r), and hence of the function f(z), is finite.

To estimate m

(
r,
f

f ′

)
we use the statement (B) of Theorem 2.2. We get that

for all r ≥ 0 except, possibly some set B2 satisfying µ(B2) < ε < 1, the inequality

T (r, f) ≤ K{N(r, a) + rω(D)(UD(dr, 0,∞) + 1)}

holds. Using Lemma 2.1 we get that for sufficiently large r the estimate

T (r, f) ≤ K{N(Kr, a) + rω(D)(UD(Kr, 0,∞) + 1)}

holds. Since the category of the characteristic N(r, a) is lower than the category of
the characteristic T (r, f), the conclusion of the theorem follows. �

The condition of positivity of δ′(a, f) for some a 6= 0,∞ in Theorem 2.1 can
be replaced by a condition of more general character which can be stated in the
following way: there exist a finite set {a1, . . . , aq}, aν 6= 0,∞, ν = 1, . . . , q of
numbers, such that the quantity

δ′(a1, . . . , aq; f) = sup
CE∈L′

lim inf
r→∞
r∈E

∑q
ν=1m(r, aν)

T (r, f)
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is positive. In fact, this condition implies that outside some set B1, µ(B1) < 1, the
inequality

T (r, f) ≤ 2

δ′(a1, . . . , aq; f)

q∑
ν=1

m(r, aν)

holds. By Lemma 2.1 from Chapter 3 we have
q∑

ν=1

m(r, aν) ≤ m
(
r,
f

f ′

)
+Q(r, f).

Therefore we again get the inequality (2.4) outside some set of relative upper mea-
sure < 1, from here, as it was already shown, the conclusion of Theorem 2.1 follows.

Theorem 2.1 admits also the following generalization.

Theorem 2.5. Let D = D(α1, . . . , αn) be a system of rays, f(z) be a meromor-
phic function, such that for some a 6= 0,∞ and some integer l ≥ 0 the inequality
δ′(a, f (l)) > 0 holds. Then the category of the function f(z) does not exceed the
category of the function

rω(D){UD(r, 0,∞; f) + 1}.

Proof. Now the role of the inequality (2.4) will be played by the inequality

T (r, f) ≤ K
l∑

ν=0

m

(
r,

f (ν)

f (ν+1)

)
.(2.15)

Let us show that this inequality takes place for all r ≥ 0 except, possibly, some set
B1 ⊂ [0,∞) such that µ(B1) < 1.

The condition δ′(a, f (l)) > 0 together with Lemma 2.1 from Chapter 3, applied
to f (l)(z), imply that for r /∈ B2, whereB2 ⊂ [0,∞) is some set satisfying µ(B2) < 1,
the inequality

T (r, f (l)) ≤ 2

δ′(a, f (l))
m(r, a, f (l)) ≤ 2

δ′(a, f (l))
m

(
r,

f (l)

f (l+1)

)
+Q(r, f (l))

holds. Since

T (r, f) = N(r, f) +m(r, f) ≤ N(r, f (l)) +m

(
r,
f

f ′
· f
′

f ′′
· · · · · f

(l−1)

f (l)
f (l)

)
≤ N(r, f (l)) +

l−1∑
ν=0

m

(
r,

f (ν)

f (ν+1)

)
+m(r, f (l))

= T (r, f (l)) +

l−1∑
ν=0

m

(
r,

f (ν)

f (ν+1)

)
,

we get

T (r, f) ≤ 2

δ′(a, f (l))

l∑
ν=0

m

(
r,

f (ν)

f (ν+1)

)
+Q(r, f (l)).

By Theorem 2.3 from Chapter 3, for all r ≥ 0 except, possibly, a set of finite
measure, the inequality

Q(r, f (l)) = Q(r, f) ≤ 1

2
T (r, f)
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holds (we suppose that the function f(z) is transcendental). ¿From here it follows
that (2.15) holds for all r ≥ 0 except, possibly, some set B1 ⊂ [0,∞) satisfying
µ(B1) < 1.

Next, we need to estimate m

(
r,

f (ν)

f (ν+1)

)
, ν = 0, . . . , l, from above in terms of

UD(r, 0,∞; f). For this we need, besides Theorem 2.2, the following inequality:

UD(r, 0,∞; f (ν)) ≤ KUD(r, 0,∞; f) +

n∑
j=1

Qαjαj+1(r, f).(2.16)

To prove this inequality we use the induction. For ν = 0 the inequality is trivial.
Suppose that it is true for some ν ≥ 0. We have

C̄αjαj+1 (r, f (ν+1)) = C̄αjαj+1 (r, f (ν)),

C̄αjαj+1

(
r,

1

f (ν+1)

)
≤ C̄αjαj+1

(
r,

1

f (ν)

)
+ C̄αjαj+1

(
r,

f (ν)

f (ν+1)

)
.(2.17)

By Theorem 5.2 from Chapter 1 the inequality

C̄αjαj+1

(
r,

f (ν)

f (ν+1)

)
≤ Sαjαj+1

(
r,
f (ν+1)

f (ν)

)
+O(1)

= Aαjαj+1

(
r,
f (ν+1)

f (ν)

)
+Bαjαj+1

(
r,
f (ν+1)

f (ν)

)
+ Cαjαj+1

(
r,
f (ν+1)

f (ν)

)
+O(1)

holds. Using Theorem 3.1 from Chapter 3 and the fact that the relation (2.14)
from Chapter 3 (p. ???) remains true if we replace Q(r, f) by Qαjαj+1(r, f) (this
was established in Theorem 3.3 from Chapter 3), we get

Aαjαj+1

(
r,
f (ν+1)

f (ν)

)
+Bαjαj+1

(
r,
f (ν+1)

f (ν)

)
= Qαjαj+1(r, f (ν)) = Qαjαj+1(r, f),

hence

C̄αjαj+1

(
r,

f (ν)

f (ν+1)

)
≤ Qαjαj+1 (r, f) + Cαjαj+1

(
r,
f (ν+1)

f (ν)

)
= C̄αjαj+1(r, f (ν)) + C̄αjαj+1

(
r,

1

f (ν)

)
+Qαjαj+1(r, f).

¿From here and from (2.17) we get the inequality

C̄αjαj+1(r, f (ν+1)) + C̄αjαj+1

(
r,

1

f (ν+1)

)
≤ 2

{
C̄αjαj+1(r, f (ν)) + C̄αjαj+1

(
r,

1

f (ν)

)}
+Qαjαj+1(r, f),

and we conclude that

UD(r, 0,∞; f (ν+1)) ≤ 2UD(r, 0,∞; f (ν)) +

n∑
j=1

Qαjαj+1(r, f).

Using the induction hypothesis, we get (2.16).
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Let ε > 0 be so small that µ(B1) + lε < 1, where B1 is a set, outside which the
inequality (2.15) holds. By the statement (A) of Theorem 2.2, for all r ≥ 0 except,
possibly, a subset Eν ⊂ [0,∞), µ(Eν) < ε, the following inequality holds (d > 1).

m

(
r,

f (ν)

f (ν+1)

)
≤ Krdω(D){UD(r, 0,∞; f (ν)) + ln r + 1}d{ln+ T (r, f (ν)) + 1}d.

Using the inequality (2.16) and Theorem 2.3 from Chapter 3 we get that for all

r ≥ 0 except, possibly, a subset E
(1)
ν ⊂ [0,∞) satisfying µ(E

(1)
ν ) < ε, the inequality

m

(
r,

f (ν)

f (ν+1)

)
≤ Krdω(D){UD(r, 0,∞; f) + ln r + 1}d{ln+ T (r, f) + 1}d

holds. From here, using (2.15) and (2.11) we conclude that the inequality (2.12)
holds outside a set whose upper relative measure does not exceed µ(B1) + lε < 1,
and, as in the proof of Theorem 2.1, we derive the conclusion that the function f(z)
has finite order.

Next, using the statement (B) of Theorem 2.2 and the inequality (2.16) we get

that for all r ≥ 0 except, possibly a set E
(2)
ν satisfying µ(E

(2)
ν ) < ε, the inequality

m

(
r,

f (ν)

f (ν+1)

)
≤ Krω(D){UD(dr, 0,∞; f (ν)) + 1} ≤ Krω(D){UD(dr, 0,∞; f) + 1}

holds. From here and from (2.15) we conclude that outside a set whose upper
relative measure does not exceed µ(B1)+lε < 1, the inequality (2.14) holds. Q.E.D.

�

Corollary. Let D = D(α1, . . . , αn) be a system of rays, f(z) be a meromor-
phic function, such that for some a 6= 0,∞ and some integer l ≥ 0 the inequality
δ′(a, f (l)) > 0 holds. If UD(r, 0,∞; f) = O(1), then the growth of f(z) does not
exceed normal type of order ω(D).

Under a more restrictive assumption than UD(r, 0,∞; f) = O(1), we can get
an additional information about the asymptotic behavior of the function f(z).

Theorem 2.6. Let D = D(α1, . . . , αn) be a system of rays, f(z) be a meromor-
phic function, such that for some a 6= 0,∞ and some integer l ≥ 0 the inequality
δ′(a, f (l)) > 0 holds. If for some b 6= 0,∞ and some integer m ≥ 0 the relation

n∑
j=1

{Cαjαj+1(r, 0, f) + Cαjαj+1 (r,∞, f) + Cαjαj+1(r, b, f (m))} = O(1)(2.18)

holds, then the growth of the function f(z) does not exceed normal type of order
ω(D), besides, as r → ∞ missing, possibly, a set of finite logarithmic measure, we
have, uniformly in ϕ, αj ≤ ϕ ≤ αj+1, j = 1, . . . , n, the relation

ln |f(reiϕ)| = rωj(D)cj sin{ωj(D)(ϕ − αj)}+ o(rωj(D)),(2.19)

where cj, j = 1, . . . , n, are real constants.

The proof of Theorem 2.6 is based on the following theorem about the behavior
of functions with the bounded characteristic Sαβ(r, f) in the angle {α ≤ arg z ≤ β}.
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Theorem 2.7. Let f(z) be a function meromorphic in the angle {α ≤ arg z ≤
β}, 0 < β − α ≤ 2π, and such that Sαβ(r, f) = O(1). As r →∞ missing, possibly,
some set of finite logarithmic measure, the relation

ln |f(reiϕ)| = rωc sin{ω(ϕ− α)} + o(rω)

holds uniformly in ϕ, α ≤ ϕ ≤ β, where c is a constant and ω = π/(β − α).

Theorem 2.7 will be proved in Section 3.
We need also the following lemma.

Lemma 2.2. Let f(z) be a function meromorphic in the angle {α ≤ arg z ≤ β}.
For each b 6= 0,∞ and for each integer m ≥ 0 the inequality

Sαβ(r, f) ≤ Cαβ(r,∞, f) + Cαβ(r, 0, f) + Cαβ(r, b, f (m)) +Qαβ(r, f)

holds.

This lemma follows immediately from an analogue of the relation (2.17) from
Chapter 3 for Nevanlinna characteristics for half-plane. The validity of this analogue
was established in Theorem 3.3 from Chapter 3.

Now we prove Theorem 2.6. Since the condition (2.18) implies UD(r, 0,∞; f) =
O(1), then, by Theorem 2.5, the growth of the function f(z) does not exceed normal
type of order ω(D). Next, we apply Lemma 2.2 to the function f(z) in each of the
angles {αj ≤ arg z ≤ αj+1}, j = 1, 2, . . . , n. Since the function f(z) has the finite
order, we have Qαjαj+1 (r, f) = O(1), j = 1, . . . , n, therefore using the condition
(2.18) and Lemma 2.2 we get Sαjαj+1(r, f) = O(1), j = 1, . . . , n. Applying Theorem
2.7 in each of the angles {αj ≤ arg z ≤ αj+1}, we get the statement of Theorem
2.6.

Remark 1. If a meromorphic function f(z) and a system D = D(α1, . . . , αn)
of rays satisfy the condition (2.18) for some b 6= 0,∞ and some integer m ≥ 0, and
besides ∫ ∞

1

ln+ T (r, f)

rq(D)+1
dr <∞, q(D) = min

1≤j≤n
ωj(D),(2.20)

then, as r →∞ missing, possibly, a set of finite logarithmic measure, the relation

ln |f(reiϕ)| = rωj(D)cj sin{ωj(D)(ϕ − αj)}+ o(rωj (D))

holds uniformly in ϕ, αj ≤ ϕ ≤ αj+1, j = 1, . . . , n.

In fact, the condition (2.20) implies that Qαjαj+1(r, f) = O(1). Therefore,
using the condition (2.18) and Lemma 2.2 we again get Sαjαj+1(r, f) = O(1), after
that we use Theorem 2.7.

Remark 2. Under the conditions of Theorem 2.6, as r→∞, outside some set
of finite logarithmic measure the relations

ln |f(reiαj )| = o(rqj (D)), qj(D) = min(ωj−1(D), ωj(D))

hold (j = 1, . . . , n). These relations can be supplemented by the following relations:∫ ∞
1

| ln |f(teiαj )||
tqj(D)+1

dt <∞, j = 1, . . . , n.(2.21)
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In fact, in the proof of Theorem 2.6 we established that Sαjαj+1(r, f) = O(1),
j = 1, . . . , n. Therefore by Theorem 5.2 from Chapter 1 we have Aαjαj+1(r, f) +

Aαjαj+1

(
r, 1
f

)
= O(1), j = 1, . . . , n. Since (ωj = ωj(D), j = 1, . . . , n)

Aαjαj+1(r, f) +Aαjαj+1

(
r,

1

f

)
=
ωj

π

∫ r

1

(
1

tωj
− tωj

r2ωj

)
{| ln |f(teiαj )||+ | ln |f(teiαj+1)||}dt

t

≥ ωj

π

∫ r/2

1

(
1

tωj
− tωj

r2ωj

)
{| ln |f(teiαj )||+ | ln |f(teiαj+1)||}dt

t

≥ ωj

π

(
1−

(
1

2

)ωj)∫ r/2

1

t−ωj{| ln |f(teiαj )||+ | ln |f(teiαj+1 )||}dt
t
,

we easily get (2.21).

Remark 3. The statement of Theorem 2.6 remains true if we replace f(z) in

the relation (2.19) by
αf (l)(z) + β

γf (l)(z) + δ
, where αδ − βγ 6= 0, and l ≥ 0 is an integer.

This follows from the relations

Sαjαj+1

(
r,
αf + β

γf + δ

)
= Sαjαj+1(r, f) +O(1), αδ − βγ 6= 0,

Sαjαj+1(r, f (l)) ≤ (l + 1)Sαjαj+1(r, f) +Qαjαj+1(r, f).

The first of these relations holds by (6.11) from Chapter 1 (p. ???), and the second
relation is an analogue of (2.13) from Chapter 3 (p. ???), it holds by Theorem 3.3
from Chapter 3.

The following corollary of Theorem 2.6 can be obtained using Remark 2.

Corollary 1. Let f(z) be an entire function, a 6= b be complex numbers,
{zm} be the set of all roots of the equations f(z) = a and f(z) = b, each root is
listed according to its multiplicity. If the condition∑

m

∣∣∣∣Im 1

zm

∣∣∣∣ <∞
is satisfied, then the function f(z) has growth of at most normal type of order 1,
besides, as r →∞ outside some set of finite logarithmic measure, the relation

ln |f(reiϕ)| =
{
rc1 sinϕ+ o(r), 0 ≤ ϕ ≤ π,
rc2 sinϕ+ o(r), π ≤ ϕ ≤ 2π

holds uniformly in ϕ, where c1 and c2 are constants, and∫ ∞
−∞

| ln |f(t)||
1 + t2

dt <∞.

The assumptions of this corollary are close to, but are somewhat stronger (we
take into account the multiplicity of a- and b-points) the assumptions of Corollary
3 of Theorem 2.1 for the system D(0, π).
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Observe that the statement of Corollary 1 remains true for each entire function
f(z) having at most normal type of order 1, and satisfying the condition∫ ∞

−∞

ln+ |f(t)|
1 + t2

dt <∞.

In fact, for such function we have

S0π(r, f) =
1

π

∫ r

1

(
1

t2
− 1

r2

)
{ln+ |f(t)|+ ln+ |f(−t)|}dt

+
2

πr

∫ π

0

ln+ |f(reiϕ)| sinϕdϕ = O(1),

and, similarly, Sπ,2π(r, f) = O(1). Therefore the desired conclusion follows from
Theorem 2.7 and Remark 2.

Theorem 2.6 and Remark 3 immediately imply

Corollary 2. Under the assumptions of Theorem 2.6 for each number d from
the extended complex plane and each integer p ≥ 0 the relation

m
(
r, d, f (p)

)
= crω(D) + o(rω(D))

holds as r →∞ missing, possibly, some set of finite logarithmic measure (c ≥ 0 is
a constant which, in general, depends on d and p).

Now we prove the following theorem.

Theorem 2.8. Let D = D(α1, . . . , αn) be a system of rays, f(z) be a mero-
morphic function, such that for some a 6= 0,∞ the relation δ′(a, f) > 0 holds. If for
some b 6= 0,∞ and some integer m ≥ 0 the relation (2.18) holds, and, in addition

lim sup
r→∞

r−ω(D)T (r, f) > 0,(2.22)

then

lim inf
r→∞

r−ω(D)T (r, f) > 0(2.23)

and the function f(z) has at most s deficient values, where s is the number of angles
{αj ≤ arg z ≤ αj+1}, such that ωj(D) = ω(D).

Proof. For all r ≥ 0 except, possibly, a subset B1 ⊂ [0,∞) satisfying µ(B1) <
1, the inequality

T (r, f) ≤ 2

δ′(a, f)
m(r, a, f)

holds. By Corollary 2 of Theorem 2.6 the relation

m(r, a, f) = crω(D) + o(rω(D)), c ≥ 0,(2.24)

holds, as r → ∞ missing, possibly, a set B2 of finite logarithmic measure. If the
constant c in (2.24) were 0, then outside a set B3 satisfying µ(B3) < 1, the condition

T (r, f) = o(rω(D))

would hold. By Lemma 2.1 we would derive from here that the function f(z) has
growth of at most minimal type of order ω(D), which would contradict (2.22). Thus
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we have c > 0 in (2.24), and since T (r, f) ≥ m(r, a, f) +O(1), we have

T (r, f) ≥ crω(D) + o(rω(D)), r /∈ B2.(2.25)

Take an arbitrary sequence {rk}∞k=1, rk ↑ ∞. If the condition T (rk, f) =

o(r
ω(D)
k ) were satisfied, since the function T (r, f) is non-decreasing, we would have

max
rk/2≤r≤rk

T (r, f) = o(r
ω(D)
k ).(2.26)

Since the set

∞⋃
k=1

(
1

2
rk, rk

)
has an infinite logarithmic measure, we can find in

it a sequence {ρν}∞ν=1, ρν ↑ ∞, such that ρν /∈ B2. By (2.25) we would get

T (ρν, f) ≥ cρ
ω(D)
ν + o(ρ

ω(D)
ν ), which contradicts (2.26). Thus we have established

the validity of (2.23).
By Remark 3 to Theorem 2.6 for each d 6=∞ the relation

ln |f(reiϕ)− d| = rωj(D)cj(d) sin{ωj(D)(ϕ− αj)} + o(rωj(D))(2.27)

holds uniformly in ϕ, αj ≤ ϕ ≤ αj+1, as r → ∞ missing, possibly, some set B4 of
finite logarithmic measure. If all cj(d), for which ωj(D) = ω(D) are non-negative,

then (2.27) implies that for r /∈ B4 the relation m(r, d, f) = o(rω(D)) holds; taking
into account (2.23) we get δ(d, f) = 0. Thus, if δ(d, f) > 0, then for some j the
conditions cj(d) < 0 and ωj(D) = ω(D) should be satisfied simultaneously. But it
is obvious that if cj(d) < 0, then cj(d

′) = 0 for each d′ 6= d. Therefore the number
of deficient values cannot exceed the number of values of j for which ωj(D) = ω(D),
Q.E.D. �

The estimate for the number of deficient values in Theorem 2.8 cannot be
improved in general.

Example 4. Let D be a system of rays

q⋃
j=1

{
arg z =

2j − 1

q
π

}
. For this system

we have ω(D) = q/2, and the number s, defined in the statement of Theorem 2.8
is equal to q. Let f(z) be the meromorphic function from Example 8 from Section
5 of Chapter 5. The number of deficient values of this function is equal to q. Let
us show that the function f(z) satisfies the conditions of Theorem 2.8 with the
mentioned above system D of rays. Here we shall use the notation of Example 8
from Section 5 of Chapter 5.

The condition (2.22) holds, since by relation (5.20) (p. ???) we have

T (r, f) ≥ 8

qπ
rq/2 + o(rq/2).

To verify that the relation (2.18) holds, we show that for an arbitrary number
b from the extended complex plane the relation

q∑
j=1

Cαjαj+1 (r, b, f) = O(1), αj =
2j − 1

q
π, j = 1, . . . , q,(2.28)

holds.
By the formula (see [WW96, 17·7])

In(z) =
zn

2nΓ
(

1
2

)
Γ
(
n+ 1

2

) ∫ π

0

cosh(z cosϕ) sin2n ϕdϕ, n > −1

2
,
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we get that for | arg z| = π
2 the relation

In(z) = O(|z|n), |z| → ∞,

holds. Therefore for | arg z| = π
q we have

wl(z) = O(|z|), |z| → ∞, l = 1, 2.

This relation, by the equalities (5.18), p.???, holds for all rays of the system D.
Therefore for all j = 1, 2, . . . , q the relation

Aαjαj+1(r, wl)

=
q

2π

∫ r

1

(
1

tq/2
− tq/2

rq

)
{ln+ |wl(teiαj )|+ ln+ |wl(teiαj+1 )|}dt

t
= O(1)

holds. The relation (5.16), p. ???, implies that

Bαjαj+1(r, wl) =
q

πrq/2

∫ αj+1

αj

ln+ |wl(reiϕ)| sin q
2

(ϕ− αj)dϕ

≤ 2q

rq/2
T (r, wl) = O(1).

Thus,

Sαjαj+1(r, wl) = Aαjαj+1(r, wl) +Bαjαj+1(r, wl) = O(1),

and using the relations (6.11) and (6.12) from Chapter 1 we get

Sαjαj+1(r, f) ≤ Sαjαj+1(r, w1) + Sαjαj+1

(
r,

1

w2

)
= Sαjαj+1(r, w1) + Sαjαj+1(r, w2) +O(1) = O(1).

By Theorem 5.2 from Chapter 1, for each b we have

Cαjαj+1 (r, b, f) ≤ Sαjαj+1(r, f) +O(1) = O(1), j = 1, 2, . . . , q,

and the relation (2.28) has been proved.
Theorems of this section, proved above, have applications to the study of con-

sidered in Section 6 of Chapter 5 functions of the form

f(z) =

∞∑
k=1

Ak

z − hk
, hk →∞(2.29)

(the series is assumed to be absolutely convergent). These applications are based
on the following lemma.

Lemma 2.3. If a function f(z) is representable in the form (2.29), then for
each complex number b and each α and β satisfying 0 < β − α ≤ 2π, the relation

Cαβ(r, b, f) ≤ Cαβ(r,∞, f) +O(1)

holds.

Proof. By Theorem 5.2 from Chapter 1 we have

Cαβ(r, b, f) ≤ Sαβ(r, f) +O(1) = Aαβ(r, f) +Bαβ(r, f) + Cαβ(r, f) +O(1).
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Since (w = π/(β − α))

Aαβ(r, f) =
ω

π

∫ r

1

(
1

tω
− tω

r2ω

)
{ln+ |f(teiα)|+ ln+ |f(teiβ)|}dt

t

≤ ω

π

∫ ∞
1

ln+ |f(teiα)|
t1+ω

dt+
ω

π

∫ ∞
1

ln+ |f(teiβ)|
t1+ω

dt,

using Theorem 6.3 from Chapter 5 we get

Aαβ(r, f) = O(1).

Since

Bαβ(r, f) =
2ω

πrω

∫ β

α

ln+ |f(reiϕ)| sinω(ϕ− α)dϕ ≤ 4ω

rω
m(r, f),

by Theorem 6.1 from Chapter 5,

Bαβ(r, f) = o(1).

�

Let f(z) be a function of the form (2.29), D = D(α1 . . . , αn) be a system of
rays. Lemma 2.3 implies that for each complex number b the relation

UD(r, b, f) ≤ UD(r,∞, f) +O(1)

holds. Therefore Corollary 1 of Theorem 2.1 implies the following result.

Theorem 2.9. Let D = D(α1, . . . , αn) be a system of rays, f(z) be a mero-
morphic function of the form (2.29) such that for some a the inequality δ′(a, f) > 0
holds. Then the category of growth of the function f(z) does not exceed the category
of growth of the function

rω(D){UD(r,∞, f) + 1}.

Note that, by Theorem 6.1 from Chapter 5, functions of the form (2.29) satisfy
δ(∞, f) = δ′(∞, f) = 0. By Theorem 6.2 from Chapter 5, for a 6= 0,∞ we have
δ(a, f) = 0, but we do not know whether δ′(a, f) = 0 always holds. The cases
when δ(0, f) > 0 are possible, we discussed this matter at the end of Section 6 from
Chapter 5.

We would like to mention the following corollary of Theorem 2.9.

Corollary. Let D = D(α1, . . . , αn) be a system of rays, f(z) be a meromor-
phic function of the form (2.29) such that for some a the inequality δ′(a, f) > 0
holds. If UD(r,∞, f) = O(1), then the growth of the function f(z) does not exceed
normal type of order ω(D).

This corollary shows that Theorem 6.2 from Chapter 5 can be complemented
with the following statement. If a function f(z) of the form (2.29) has growth
at least maximal type of order ω(D) and UD(r,∞, f) = O(1), then (regardless

of whether the conditions

∞∑
k=1

|Ak| <∞ and

∞∑
k=1

Ak 6= 0 are satisfied) the equality

δ′(0, f) = 0 holds.
By Theorem 2.4 the statements of Theorem 2.9 and its corollary remain true

if the condition of positivity of δ′(a, f) for some a is replaced by the condition that
a is a Borel exceptional value.
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Using Theorem 2.6, Remark 2 to it, and Lemma 2.3, we get the following
theorem.

Theorem 2.10. Let D = D(α1, . . . , αn) be a system of rays, f(z) be a mero-
morphic function of the form (2.29), such that for some a the inequality δ′(a, f) > 0
holds. If

n∑
j=1

Cαjαj+1(r,∞, f) = O(1),

then the growth of the function f(z) does not exceed normal type of order ω(D),
and the integrals∫ ∞

1

| ln |f(teiαj )||
t1+qj(D)

dt, qj(D) = min{ωj−1(D), ωj(D)}, j = 2, . . . , n+ 1,

converge. Besides, as r → ∞ missing, possibly, some set of finite logarithmic
measure, the relation

ln |f(reiϕ)| = rωj(D)cj sin{ωj(D)(ϕ − αj)}+ o(rωj (D))

holds uniformly in ϕ, αj ≤ ϕ ≤ αj+1, j = 1, . . . , n, where cj, j = 1, . . . , n, are
some constants.

Corollary 1. Let f(z) be a meromorphic function of the form (2.29), such
that for some a the inequality δ′(a, f) > 0 holds. If the condition∑

k

∣∣∣∣Im 1

hk

∣∣∣∣ <∞
is satisfied, then the growth of the function f(z) does not exceed normal type of
order 1 and, in addition, for r →∞ outside some set of finite logarithmic measure
the relation

ln |f(reiϕ)| =
{
rc1 sinϕ+ o(r), 0 ≤ ϕ ≤ π,
rc2 sinϕ+ o(r), π ≤ ϕ ≤ 2π

holds uniformly in ϕ, where c1 and c2 are constants, and∫ ∞
−∞

| ln |f(t)||
1 + t2

dt <∞.

Corollary 2. If zeros {ak} of an entire function f(z) satisfy the condition∑
k

∣∣∣∣Im 1

ak

∣∣∣∣ <∞,
and, in addition, the function 1/f(z) is representable in the form (2.29), then the
statement of Corollary 1 remains true for the function f(z).

The growth estimate in Corollary 2 is sharp, since the function (z2 − 1) sin z

is exactly of normal type of order 1, and
1

(z2 − 1) sin z
is representable in the form

(2.29), namely,

1

(z2 − 1) sin z
=

1

2 sin 1
· 1

z − 1
+

1

2 sin 1
· 1

z + 1
+

∞∑
k=−∞

(−1)k

{(kπ)2 − 1}(z − kπ)
.
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3. Proofs of main Theorems 2.3 and 2.7

We prove Theorems 2.3 and 2.7 under the assumption that the angle {α ≤
arg z ≤ β} is a half-plane

Π = {Imz ≥ 0}.
The general case can be easily reduced to this case using the transformation w =
z1/ωeiα, ω = π/(β − α), which maps the half-plane Π onto the angle {α ≤ argw ≤
β}. We assume, without mentioning this explicitly, that all functions f(z) appearing
in the statements of theorems of this section are of the form f(z) = g(zω), where
ω > 0, and g(ζ) is a function meromorphic in the angle {0 ≤ arg ζ ≤ π/ω}.

The proof of Theorem 2.7 is based on the following representation of functions
with the bounded characteristic S(r, f) = S0π(r, f).

Theorem 3.1. If

S(r, f) = O(1),

then the formula (z = reiϕ, 0 < ϕ < π)

ln |f(z)| = r sinϕ

π

∫ ∞
−∞

ln |f(t)|
r2 + t2 − 2rt cosϕ

dt

−
∑
m

ln

∣∣∣∣z − āmz − am

∣∣∣∣+
∑
n

ln

∣∣∣∣z − b̄nz − bn

∣∣∣∣+ ηr sinϕ

(3.1)

holds, where am are zeros of the function f(z), and bn are its poles, belonging to
Π, η is a constant which does not depend on z. The integral and the series in the
right-hand side of (3.1) are absolutely convergent.

Proof. Observe that the condition S(r, f) = O(1) implies the convergence of
the integral ∫ ∞

−∞

| ln |f(t)||
1 + t2

dt(3.2)

and of the series ∑
m

sinϕm
rm

,
∑
n

sinψn
ρn

,(3.3)

where am = rme
iϕm , bn = ρne

iψn . This can be shown using the argument used in
the proof of Remark 2 to Theorem 2.6 and in Example 1 in Section 2.

By Theorem 2.3 from Chapter 1 (p. ???) and the remark after it the formula
(z = reiϕ)

ln |f(z)| = 1

π

∫ R

−R
ln |f(t)|

{
r sinϕ

|z − t|2 −
R2r sinϕ

|R2 − zt|2

}
dt

+
1

2π

∫ π

0

ln |(Reiθ)|
{

R2 − r2

|Reiθ − z|2 −
R2 − r2

|Re−iθ − z|2

}
dθ

−
∑
|am|<R

ln

∣∣∣∣ R2 − āmz
R(z − am)

· R(z − ām)

R2 − amz

∣∣∣∣+
∑
|bn|<R

ln

∣∣∣∣ R2 − b̄nz
R(z − bn)

· R(z − b̄n)

R2 − bnz

∣∣∣∣
= I1(R) + I2(R)− I3(R) + I4(R)

(3.4)

holds in the half-disc {|z| < R, Imz > 0}. To get the formula (3.1) we consider the
limits as R→∞.
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The convergence of the integral (3.2) clearly implies the absolute convergence
of the integral (3.1). Therefore the limit

lim
R→∞

1

π

∫ R

−R
ln |f(t)| r sinϕ

|z − t|2 dt =
1

π

∫ ∞
−∞

ln |f(t)| r sinϕ

|z − t|2 dt

exists.
Next we note that∣∣∣∣∣

∫ R

−R
ln |f(t)| R

2r sinϕ

|R2 − zt|2 dt
∣∣∣∣∣ ≤

∫ R

−R
| ln |f(t)|| R

2r sinϕ

(R2 − rt)2
dt

≤ r

(R− r)2

∫ R

−R
| ln |f(t)||dt ≤ r

(R− r)2

{
(1 +R)

∫ √R
−
√
R

| ln |f(t)||
1 + t2

dt

+ (1 +R2)

∫ R

√
R

| ln |f(t)||
1 + t2

dt+ (1 +R2)

∫ −√R
−R

| ln |f(t)||
1 + t2

dt

}
→ 0

as R→∞. Thus, the limit

lim
R→∞

I1(R) =
r sinϕ

π

∫ ∞
−∞

ln |f(t)|
r2 + t2 − 2rt cosϕ

dt (z = reiϕ)

exists.
The convergence of the series

∑
m

r−1
m sinϕm implies the convergence of the

series ∑
m

ln

∣∣∣∣z − āmz − am

∣∣∣∣ ,
since for |am| > 2|z| we have

ln

∣∣∣∣z − āmz − am

∣∣∣∣ = ln

∣∣∣∣∣1 +
z2iIm 1

am

1− z
am

∣∣∣∣∣ ≤ 2|z|
∣∣∣Im 1

am

∣∣∣∣∣∣1− z
am

∣∣∣ ≤ 4|z| sinϕm
rm

.

Therefore the following limit exists:

lim
R→∞

∑
|am|<R

ln

∣∣∣∣z − āmz − am

∣∣∣∣ =
∑
m

ln

∣∣∣∣z − āmz − am

∣∣∣∣ .
Next we observe that∣∣∣∣∣∣

∑
|am|<R

ln

∣∣∣∣R2 − āmz
R2 − amz

∣∣∣∣
∣∣∣∣∣∣ =

∑
|am|<R

ln

∣∣∣∣R2 − amz
R2 − āmz

∣∣∣∣
=

∑
|am|<R

ln

∣∣∣∣1− z2iImam

R2 − āmz

∣∣∣∣ ≤ ∑
|am|<R

2|z||Imam|
|R2 − āmz|

≤ 2r

R(R− r)
∑
|am|<R

rm sinϕm

≤ 2r

R(R− r)

R ∑
|am|<

√
R

sinϕm
rm

+R2
∑

√
R≤|am|≤R

sinϕm
rm

→ 0
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as R→∞. Thus, the following limit exists:

lim
R→∞

I3(R) =
∑
m

ln

∣∣∣∣z − āmz − am

∣∣∣∣ .
In a similar way we show the existence of the limit

lim
R→∞

I4(R) =
∑
n

ln

∣∣∣∣z − b̄nz − bn

∣∣∣∣ .
Since the left-hand side of the equality ln |f(z)| = I1(R)+I2(R)−I3(R)+I4(R)

does not depend on R, the limit lim
R→∞

I2(R) also exists. We need to show that

lim
R→∞

I2(R) = ηr sinϕ,

where η does not depend on r and ϕ. It suffices to show that

lim
R→∞

J(R) = 0,

where

J(R) = I2(R)− r sinϕ
2

πR

∫ π

0

ln |f(Reiθ)| sin θdθ.

We have

J(R) =
1

2π

∫ π

0

ln |f(Reiθ)| (R2 − r2)4Rr sinϕ sin θdθ

(R2 + r2 − 2Rr cos(ϕ− θ))(R2 + r2 − 2Rr cos(ϕ+ θ))

− r sinϕ
2

πR

∫ π

0

ln |f(Reiθ)| sin θdθ

= r sinϕ
2

πR

∫ π

0

ln |f(Reiθ)| sin θ ·K(R, r, ϕ, θ)dθ,

where K(R, r, ϕ, θ) = O(R−1) uniformly in θ, 0 ≤ θ ≤ π as R → ∞, and r and ϕ
are fixed. Therefore

|J(R)| ≤ r 2

πR

∫ π

0

| ln |f(Reiθ)|| sin θdθ ·O(R−1)

= r{B(R, f) +B(R, 1/f)} ·O(R−1)

≤ r{2S(R, f) +O(1)} ·O(R−1)→ 0 as R→∞.
Q.E.D. �

Remark. In passing we proved, that

η = lim
R→∞

{B(R, f)−B(R, 1/f)}.

Let (z = reiϕ, 0 < ϕ < π)

u(z) =
r sinϕ

π

∫ ∞
−∞

| ln |f(t)||
r2 + t2 − 2rt cosϕ

dt

+
∑
m

ln

∣∣∣∣z − āmz − am

∣∣∣∣+
∑
n

ln

∣∣∣∣z − b̄nz − bn

∣∣∣∣ .(3.5)

Theorem 3.1 implies that

| ln |f(reiϕ)| − ηr sinϕ| ≤ u(reiϕ).

Whence to prove Theorem 2.7 it suffices to prove the following lemma.
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Lemma 3.1. For the function u(z) given by (3.5) the relation

u(reiϕ) = o(r)

holds uniformly in ϕ, 0 < ϕ < π, as r → ∞ missing some set A ⊂ [1,∞) of finite
logarithmic measure.

A proof of the lemma could be based on estimates of the integral and the series
from the right-hand side of (3.5). Doing so we would repeat twice essentially the
same argument. This can be avoided if we write the right-hand side of (3.5) as a
Lebesgue–Stieltjes integral over the half-plane Π.

We proceed in the following way. We define on Borel subsetsE ⊂ Π a Lebesgue–
Stieltjes measure ν(E) by the formula

ν(E) =
1

π

∫
E∩(−∞,∞)

| ln |f(t)||
1 + t2

dt

+
∑
am∈E

2rm sinϕm
1 + r2

m

+
∑
bn∈E

2ρn sinψn
1 + ρ2

n

.
(3.6)

This measure takes finite values only, since by the convergence of the integral (3.2)
and the series (3.3) we have

ν(Π) =
1

π

∫ ∞
−∞

| ln |f(t)||
1 + t2

dt+
∑
m

2rm sinϕm
1 + r2

m

+
∑
n

2ρn sinψn
1 + ρ2

n

<∞.

Let (ζ = ξ + iη, η ≥ 0, z = reiϕ)

K(z, ζ) =


1+|ζ|2

2η ln
∣∣∣ z−ζ̄z−ζ

∣∣∣ , η > 0,

(1+ξ2)r sinϕ
r2+ξ2−2rξ cosϕ , η = 0.

(3.7)

Then we have

u(z) =

∫∫
Π

K(z, ζ)dν(ζ).(3.8)

Having in mind also the proof of Theorem 2.3, we obtain the following very
general theorem about estimates of integrals of the form (3.8).

Theorem 3.2. Let ν(E) be a Lebesgue–Stieltjes measure defined on Borel sub-
sets E ⊂ Π and such that ν(Π) < ∞. Define a function u(z; ν), z ∈ Π, by the
equality

u(z; ν) =

∫∫
Π

K(z, ζ)dν(ζ),

where K(z, ζ) is given by (3.7)
For each q > 0 the inequality

u(reiϕ; ν) ≤ D

q
ν(Π)r

+
4

r

∫∫
|ζ|< 1

2 r

(1 + |ζ|2)dν(ζ) + 18r

∫∫
|ζ|> 3

2 r

dν(ζ), 0 < ϕ < π,

(3.9)
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where D is an absolute constant, holds for all r ∈ [1,∞) except, possibly, some
subset Aq ⊂ [1,∞) satisfying ∫

Aq

r−1dr ≤ q.

Before turning to the proof of Theorem 3.2 we derive from it a corollary con-
taining Lemma 3.1.

Corollary. Let u(z; ν) be a function defined in the statement of Theorem
3.2. Then the relation

u(reiϕ; ν) = o(r)

holds uniformly in ϕ, 0 < ϕ < π, as r →∞ missing some subset A ⊂ [1,∞) having
finite logarithmic measure.

Let q be a positive integer, Aq be the corresponding set from the statement of
Theorem 3.2. Choose a so large number Rq, that Rq > q and∫

Aq∩ (Rq,∞)

r−1dr <
1

2q
.

Let

A =

∞⋃
q=1

{Aq ∩ (Rq,∞)}.

Obviously, ∫
A

r−1dr ≤
∞∑
q=1

2−q = 1.

Let r be sufficiently large, r /∈ A, q(r) be the largest integer q satisfying Rq < r.
Then the inequality (3.9) holds with q = q(r). Obviously q(r) → ∞ as r → ∞,
therefore

D

q(r)
ν(Π)r = o(r).

Since

4

r

∫∫
|ζ|< 1

2 r

(1 + |ζ|2)dν(ζ)

=
4

r

{∫∫
|ζ|<
√
r

(1 + |ζ|2)dν(ζ) +

∫∫
√
r≤|ζ|< 1

2 r

(1 + |ζ|2)dν(ζ)

}

≤ 4

r

{
(1 + r)ν(Π) +

(
1 +

1

4
r2

)∫∫
|ζ|≥
√
r

dν(ζ)

}
= o(r),

18r

∫∫
|ζ|> 3

2 r

dν(ζ) = o(r),

the corollary and, thus, Lemma 3.1 have been proved.

Now we prove Theorem 3.2.
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Denote by B the set of those values of r ≥ 1 for which the following is true: for
each h, 0 < h ≤ 1

2r, the inequality

ν({r − h ≤ |z| ≤ r + h} ∩Π) <
8ν(Π)h

qr
(3.10)

holds. The set B is Borel since it can be represented in the form

B =

{
r : sup

0≤h≤ 1
2 r

F (r + h)− F (r − h− 0)

h
≤ 8ν(Π)

r

}
,

where F (r) = ν({|z| ≤ r}) is a non-decreasing function. Therefore the set Aq =
[1,∞)\B is also Borel. Let us show that∫

Aq

r−1dr ≤ 3

2
q.(3.11)

Let Aq1 be an arbitrary compact subset of the set Aq. The definition of the set
B implies that for each x ∈ Aq1 there exists an interval Ix = (x − hx, x + hx),
0 < hx ≤ 1

2x, such that

ν({|z| ∈ Īx} ∩Π) ≥ 8ν(Π)hx
qx

,(3.12)

where Īx = [x − hx, x + hx]. By the Heine-Borel lemma there is a finite system
{Ixk} of intervals covering Aq1. Discarding intervals containing in unions of two
other intervals, we may assume that each point of the set Aq1 is covered by at most
two intervals of the system {Ixk}. It follows from here that each point of the set
Aq1 belongs to at most three segments Īxk . Therefore we have∑

k

ν
({
|z| ∈ Īxk

}⋂
Π
)
≤ 3ν(Π).

Hence, using (3.12), we get∫
Aq1

r−1dr ≤
∑
k

∫
Īxk

r−1dr =
∑
k

ln

(
1 +

2hxk
xk − hxk

)
≤ 4

∑
k

hxk
xk

≤ 4
q

8ν(Π)

∑
k

ν
({
|z| ∈ Īxk

}⋂
Π
)
≤ 3

2
q.

Let A
(1)
q1 ⊂ A

(2)
q1 ⊂ . . . be a sequence of compact subsets of the set Aq, such

that

mes

(
Aq\

∞⋃
n=1

A
(n)
q1

)
= 0.

Then we have∫
Aq

r−1dr =

∫
∪∞n=1A

(n)
q1

r−1dr = lim
n→∞

∫
A

(n)
q1

r−1dr ≤ 3

2
q,

the inequality (3.11) has been proved.
Now we show that (3.9) is satisfied for r ∈ B, thus completing our proof of

Theorem 3.2.
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We need the following estimate of the function K(z, ζ):

K(z, ζ) ≤ (1 + |ζ|2)y

|z − ζ|2 (z = x+ iy, y > 0).(3.13)

For η = 0 (ζ = ξ + iη) this estimate is trivial. For η > 0 we have

K(z, ζ) =
1 + |ζ|2

4η
ln

(x− ξ)2 + (y + η)2

(x− ξ)2 + (y − η)2

=
1 + |ζ|2

4η
ln

(
1 +

4yη

(x− ξ)2 + (y − η)2

)
≤ (1 + |ζ|2)y

(x− ξ)2 + (y − η)2
=

(1 + |ζ|2)y

|z − ζ|2 .

We write the equality (z = reiϕ, 0 < ϕ < π, r > 1)

u(z; ν) =

∫∫
|ζ|< 1

2 r

K(z, ζ)dν(ζ) +

∫∫
1
2 r≤|ζ|≤

3
2 r

K(z, ζ)dν(ζ)

+

∫∫
|ζ|> 3

2 r

K(z, ζ)dν(ζ) = I1 + I2 + I3.

(3.14)

Integrals I1 and I3 can be easily estimated, using (3.13), in the following way:

I1 ≤
∫∫

|ζ|< 1
2 r

(1 + |ζ|2)y

|z − ζ|2 dν(ζ) ≤ 4y

|z|2
∫∫

|ζ|< 1
2 r

(1 + |ζ|2)dν(ζ)

≤ 4

r

∫∫
|ζ|< 1

2 r

(1 + |ζ|2)dν(ζ);

I3 ≤
∫∫

|ζ|> 3
2 r

(1 + |ζ|2)y

|z − ζ|2 dν(ζ) ≤ 9y

∫∫
|ζ|> 3

2 r

1 + |ζ|2
|ζ|2 dν(ζ)

≤ 18y

∫∫
|ζ|> 3

2 r

dν(ζ).

(3.15)

Let us estimate the integral I2. Fixing a point z = reiϕ, 0 < ϕ < π, r > 1,
denote by Cn, n = 0,±1,±2, . . . , the (possibly, empty) set of all points ζ ∈ Π,
satisfying the following two conditions

2n−1y ≤ |z − ζ| < 2ny,
1

2
r ≤ |ζ| ≤ 3

2
r (y = Imz).

Obviously the sets Cn are pairwise disjoint and

∞⋃
n=−∞

Cn =

{
1

2
r ≤ |ζ| ≤ 3

2
r

}
\{z}.

Since r ∈ B, by (3.10) we have

ν({z}) ≤ ν({|z| = r}) = 0,

hence

I2 =

∞∑
n=−∞

∫∫
Cn

K(z, ζ)dν(ζ).

Note that the condition r ∈ B, by (3.10), implies

ν(Cn) ≤ ν({r − h ≤ |ζ| ≤ r + h}) < 8ν(Π)

qr
2ny, h = min

(
2ny,

r

2

)
.
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For ζ ∈ Cn the inequality (3.13) implies

K(z, ζ) ≤ (1 + |ζ|2)y

(2n−1y)2
≤

1 +
9

4
r2

4n−1y
≤ 16r2

4ny
,

therefore
∞∑
n=0

∫∫
Cn

K(z, ζ)dν(ζ) ≤
∞∑
n=0

16r2

4ny
ν(Cn) ≤ 16r2

y
· 8ν(Π)y

qr

∞∑
n=0

1

2n
≤ 256ν(Π)r

q
.

For ζ ∈ Cn, n < 0, the condition η ≥ 1
2y > 0 holds, therefore we have

K(z, ζ) =
1 + |ζ|2

2η
ln

∣∣∣∣z − ζ̄z − ζ

∣∣∣∣ ≤ 1 +
9

4
r2

y
ln

(
1 +

2y

|z − ζ|

)

≤
1 +

9

4
r2

y
ln

(
1 +

2y

2n−1y

)
≤ 4r2

y
ln(6 · 2|n|)

and
−1∑

n=−∞

∫∫
Cn

K(z, ζ)dν(ζ) ≤
−1∑

n=−∞

4r2

y
ln(6 · 2|n|)ν(Cn)

≤ 4r2

y
· 8ν(Π)y

qr

−1∑
n=−∞

2−|n| ln(6 · 2|n|) ≤ 128ν(Π)r

q
.

Thus,

I2 ≤
384ν(Π)r

q
.(3.16)

The formulas (3.14), (3.15), and (3.16) imply (3.9). As we have already men-
tioned, this completes the proof of Theorem 3.2.

We obtain Theorem 2.3 as a corollary of the following theorem.

Theorem 3.3. Let k(r) ≥ 1 be a continuous non-decreasing function, U(r) =

r

(
1 +

1

k(r)

)
. Then for each ε, 0 < ε < 1, and for all r ≥ 1 except, possibly, some

set Aε ⊂ [1,∞) satisfying µ(Aε) < ε, the inequality

ln+ |f(reiϕ)| ≤ Ck3(r)r{S(U(r), f) + 1}, 0 < ϕ < π,(3.17)

holds, where C is a positive constant which does not depend on r and ϕ.

To get the second inequality of Theorem 2.3 for r /∈ Aε, we choose k(r) ≡ 1
d−1 .

Then U(r) ≡ dr and, integrating (3.17) with respect to ϕ from 0 to π, we get the
desired inequality:

m0π(r, f) ≤ Cπ(d − 1)−3r{S(dr, f) + 1}.
The remaining assertions of Theorem 2.3 can be obtained in the following way. By

Theorem 5.4 from Chapter 1 (p. ???) we have S(r, f) =
◦
S (r, f) + O(1), where

◦
S (r, f) is a non-decreasing function. Increasing, if necessary, the constant C, we

can replace S(r, f) by
◦
S (r, f) in (3.17), after that we let k(r) = ln{

◦
S (r, f) + 1}.
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Applying the corollary of the Borel–Nevanlinna theorem stated in Exercise 2 of

Section 1 from Chapter 3 (p. ???) to the function u(r) =
◦
S (r, f) + 1, we get

◦
S (U(r), f) + 1 ≤ {

◦
S (r, f) + 1}

1+d
2

for r /∈ A, where A is a set of finite logarithmic measure. For r /∈ A ∪Aε we have

ln+ |f(reiϕ)| ≤ C ln3{
◦
S (r, f) + 1}r{

◦
S (r, f) + 1}

1+d
2

≤ C1r{
◦
S (r, f) + 1}d ≤ C2r{S(r, f) + 1}d, 0 < ϕ < π,

where 0 < C1 < C2 <∞ are constants which do not depend on r and ϕ. Integrating
with respect to ϕ from 0 to π, we get (r /∈ A ∪A3)

m0π(r, f) ≤ C2πr{S(r, f) + 1}d.

It remains to observe that µ(A ∪Aε) ≤ µ(A) + µ(Aε) < ε.
Now we turn to the proof of Theorem 3.3.
First we prove the inequality

ln+ |f(reiϕ)| ≤ r sinϕ

π

∫ R

−R

ln+ |f(t)|
r2 + t2 − 2rt cosϕ

dt

+
∑
|bn|<R

ln

∣∣∣∣z − b̄nz − bn

∣∣∣∣+ 2

(
R

R− r

)3

rB(R, f)

(z = reiϕ, 0 < r < R, 0 < ϕ < π).

(3.18)

Now we use the formula (3.4). Observe that the expression in braces from the
formulas for I1(R) and I2(R) are non-negative by formulas (1.10) and (1.11) from
Chapter 1. Therefore

I1(R) ≤ 1

π

∫ R

−R
ln+ |f(t)|

{
r sinϕ

|z − t|2 −
R2r sinϕ

|R2 − zt|2

}
dt

≤ r sinϕ

π

∫ R

−R

ln+ |f(t)|
r2 + t2 − 2rt cosϕ

dt;

I2(R) ≤ 1

2π

∫ π

0

ln+ |f(Reiθ)|
{

R2 − r2

|Reiθ − z|2 −
R2 − r2

|Re−iθ − z|2

}
dθ

=
1

2π

∫ π

0

ln+ |f(Reiθ)| (R2 − r2)4Rr sinϕ sin θdθ

(R2 + r2 − 2Rr cos(ϕ− θ))(R2 + r2 − 2Rr cos(ϕ+ θ))

≤ (R2 − r2)4Rr

(R − r)4
· 1

2π

∫ π

0

ln+ |f(Reiθ)| sin θdθ ≤ 2

(
R

R− r

)3

rB(R, f).

The summands in I3(R) and I4(R) represent, by formula (1.5) from Chapter
1, values of the Green function for the half-disc {|z| < R, Imz > 0}, and hence, are
non-negative. Discarding I3(R) in (3.4) and observing that∣∣∣∣ R2 − b̄nz

R(z − bn)
· R(z − b̄n)

R2 − bnz

∣∣∣∣ ≤ ∣∣∣∣z − b̄nz − bn

∣∣∣∣ ,
we get the inequality (3.18).
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Let us estimate the function

u(reiϕ) =
r sinϕ

π

∫ R

−R

ln+ |f(t)|dt
r2 + t2 − 2rt cosϕ

+
∑
|bn|<R

ln

∣∣∣∣z − b̄nz − bn

∣∣∣∣(3.19)

using Theorem 3.2. This function can be represented in the form (3.8) by letting

ν(E) =
1

π

∫
(−R,R)∩E

ln+ |f(t)|
1 + t2

dt+
∑
bn∈E
|bn|<R

2ρn sinψn
1 + ρ2

n

(bn = ρne
iψn).

By Theorem 3.2 the inequality

u(reiϕ) ≤ D

q
ν(Π)r +

4

r

∫∫
|ζ|< 1

2 r

(1 + |ζ|2)dν(ζ) + 18r

∫∫
|ζ|> 3

2 r

dν(ζ)

≤ D

q
ν(Π)r +

4

r

(
1 +

1

4
r2

)∫∫
|ζ|< 1

2 r

dν(ζ) + 18r

∫∫
|ζ|> 3

2 r

dν(ζ)

≤ D

q
ν(Π)r + 18rν(Π) =

(
D

q
+ 18

)
ν(Π)r, 0 < ϕ < π,

(3.20)

holds for all r ≥ 1 except, possibly, some subset Aq ⊂ [1,∞) satisfying∫
Aq

r−1dr ≤ q.(3.21)

Let us estimate

ν(Π) =
1

π

∫ R

−R

ln+ |f(t)|
1 + t2

dt+
∑
|bn|<R

2ρn sinψn
1 + ρ2

n

.

Let U > R. We have

A(U, f) =
1

π

∫ U

1

(
1

t2
− 1

U2

)
{ln+ |f(t)|+ ln+ |f(−t)|}dt

≥ 1

π

∫ R

1

(
1

t2
− 1

U2

)
{ln+ |f(t)|+ ln+ |f(−t)|}dt

≥
(

1− R2

U2

)
1

π

∫ R

1

t−2{ln+ |f(t)|+ ln+ |f(−t)|}dt

≥ U −R
Uπ

{∫ R

−R

ln+ |f(t)|
1 + t2

dt−
∫ 1

−1

ln+ |f(t)|
1 + t2

dt

}
,

C(U, f) = 2
∑

1<|bn|<U

(
1

ρn
− ρn

U2

)
sinψn

≥ 2
∑

1<|bn|<R

(
1

ρn
− ρn

U2

)
sinψn ≥

(
1− R2

U2

)
2

∑
1<|bn|<R

sinψn
ρn

≥ U −R
U

 ∑
|bn|<R

2ρn sinψn
1 + ρ2

n

−
∑
|bn|≤1

2ρn sinψn
1 + ρ2

n

 .
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From here we get

ν(Π) ≤ U

U −R{A(U, f) + C(U, f)}

+
1

π

∫ 1

−1

ln+ |f(t)|
1 + t2

dt+
∑
|bn|≤1

2ρn sinψn
1 + ρ2

n

(3.22)

In what follows the letter K will be used to denote finite positive constants
which do not depend on variables denoted by r,R, ϕ, t, q, U , and ε.

By (3.18) and (3.19), for 0 < r < R, 0 < ϕ < π, the inequality

ln+ |f(reiϕ)| ≤ u(reiϕ) + 2

(
R

R− r

)3

rB(R, f)

holds. ¿From here, using (3.20) and (3.22), we get that for r ∈ [1, R)\Aq, 0 < ϕ < π,
the inequality

ln+ |f(reiϕ)| ≤ K
(

1

q
+ 1

)
Ur

U −R{A(U, f) + C(U, f) + 1}

+ 2

(
R

R− r

)3

rB(R, f), (U > R),

(3.23)

holds. Since, by Theorem 5.4 from Chapter 1, the function S(r, f) is, up to a
bounded summand, non-decreasing, we have

B(R, f) ≤ S(R, f) ≤ S(U, f) +K.

Taking into account A(U, f) + C(U, f) ≤ S(U, f), we get the inequality

ln+ |f(reiϕ)| ≤ Kr
{(

1

q
+ 1

)
U

U −R +

(
R

R− r

)3
}
{S(U, f) + 1},(3.24)

where r ∈ [1, R)\Aq, 0 < ϕ < π, U > R.
Let (k(r) and ε are from the statement of Theorem 3.3)

U(t) = t

(
1 +

1

k(t)

)
, U1(t) = max

0≤τ≤t
U(τ),

R(t) = t

(
1 +

1

2k(t)

)
, t′ = t

(
1 +

1

4k(t)

)
, q(t) =

ε

16k(t)
,

and denote by j(t) the interval [t, t′]. Since

U(t)

U(t)−R(t)
≤ 4k(t),

1

q(t)
+ 1 ≤ 17k(t)

ε
,

and for r ∈ j(t) the inequality

R(t)

R(t)− r ≤ 6k(t)

holds, the inequality (3.24) implies that for r ∈ j(t)\Aq(t) the inequality

ln+ |f(reiϕ)| ≤ Krk3(t){S(U(t), f) + 1}, 0 < ϕ < π,

holds. Since, obviously, t ≤ r for r ∈ j(t)\Aq(t), we have also k(t) ≤ k(r), U(t) ≤
U1(t) ≤ U1(r), and, by Theorem 5.4 from Chapter 1,

S(U(t), f) ≤ S(U1(r), f) +K.
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Therefore for r ∈ j(t)\Aq(t) the inequality

ln+ |f(reiϕ)| ≤ Krk3(r){S(U1(r), f) + 1}, 0 < ϕ < π,(3.25)

also holds.
We show that the inequality (3.25) holds for all r ≥ 1 except, possibly, some

subset Eε ⊂ [1,∞) satisfying µ(Eε) ≤ ε.
Denote by E(t) the set j(t) ∩Aq(t). Using (3.21) and the choice of q(t) we get

mesE(t) ≤ t′
∫
E(t)

dτ

τ
≤ t′

∫
Aq(t)

dτ

τ
≤ t′q(t) ≤ 2t

ε

16k(t)
=

tε

8k(t)
,

whence

mesE(t) ≤ ε

2
mesj(t).(3.26)

Consider a sequence of intervals j(tk), k = 0, 1, . . . , letting

t0 = 1, tk = t′k−1, k = 1, 2, . . . .

These intervals cover the whole semiaxis [1,∞). In fact, otherwise we would have
lim
k→∞

tk = α <∞. Choosing δ > 0 and n in such a way, that 4k(α) < δ−1 and

tn > α(1 + δ)−1, we would arrive at a contradiction:

tn+1 = t′n = tn

(
1 +

1

4k(tn)

)
≥ tn

(
1 +

1

4k(α)

)
>

α

1 + δ
(1 + δ) = α.

Take

Eε =

∞⋃
k=0

E(tk).

Obviously, for r ∈ [1,∞)\Eε the inequality (3.25) holds. Besides, by (3.26), we
have

µ(Eε) = lim sup
r→∞

r−1mes{Eε ∩ (0, r)}

≤ lim sup
r→∞

r−1
∑
tk<r

mesE(tk) ≤ ε

2
lim sup
r→∞

r−1
∑
tk<r

mesj(tk)

≤ ε

2
lim
r→∞

r−1mes

{[
1, r

(
1 +

1

4k(r)

)]}
≤ ε

2
· 5

4
< ε.

The theorem will be proved is we establish that for all r ≥ 1 except, possibly,
a set of finite logarithmic measure, the equality U1(r) = U(r) holds. Denote by E
the set on which U1(r) > U(r). Since the functions U1(r) and U(r) are continuous,
the set E is open and hence is a union of a finite or a countable set of pairwise
disjoint intervals (aα, bα).

Since lim
r→∞

U(r) =∞, none of the intervals can be infinite.

Obviously, U(aα) = U(bα), that is,

aα

(
1 +

1

k(aα)

)
= bα

(
1 +

1

k(bα)

)
.

This implies

bα − aα =
aα

k(aα)
− bα

k(bα)
≤ aα

(
1

k(aα)
− 1

k(bα)

)
,
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and we get∫
E

dt

t
=
∑
α

∫ bα

aα

dt

t
≤
∑
α

bα − aα
aα

≤
∑
α

(
1

k(aα)
− 1

k(bα)

)
.

Using Leibniz’s theorem on alternating series we get the desired conclusion.

4. Meromorphic functions with poles and zeros located in small angles

Consider a system of rays

D′ = D(α1, β1, α2, β2, . . . , αn, βn)(4.1)

α1 < β1 < α2 < β2 < · · · < αn < βn < αn+1 = α1 + 2π,(4.2)

such that

max
1≤j≤n

(βj − αj) < min
1≤j≤n

(αj+1 − βj).(4.3)

The angles {αj ≤ arg z ≤ βj} will be called small angles of the system D′. Let

ω′j(D
′) = π/(βj − αj), ω′′j (D′) = π/(αj+1 − βj), j = 1, . . . , n,

ω′(D′) = min
1≤j≤n

ω′j(D
′), ω′′(D′) = max

1≤j≤n
ω′′j (D′).

Note that by the condition (4.3), the inequality

ω′(D′) > ω′′(D′)

holds.

Definition. If the condition

n∑
j=1

rω
′′
j (D′)−ω′′(D′)C̄βjαj+1(r, a, f) = O(1), r →∞,(4.4)

is satisfied, we say that almost all a-points of the function f(z) are in small angles
of the system D′.

This condition is obviously satisfied if all a-points of the function f(z) except,
possibly, finitely many are in small angles of the system D′.

The following theorem is the main result of this section.

Theorem 4.1. Let f(z) be a meromorphic function of order ρ <∞, almost all
of whose zeros and poles are in small angles of the system D′. If the inequality

δ(a, f) > 1− cos
πρ

2ω′(D′)
(4.5)

holds for some a 6= 0,∞, then the relation

ω′′(D′) < ρ < ω′(D′)

cannot be true.
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In particular, if the systemD′ consists of two rays, D′ = D(α, β), 0 < β−α < π,
then ω′(D′) = π/(β −α), ω′′(D′) = π/(2π− β +α), and Theorem 4.1 immediately
implies

Corollary 1. Let f(z) be a meromorphic function of order ρ < ∞, almost
all of whose poles and zeros are in the small angle of the system D′ = D(α, β),
0 < β − α < π. If the inequality

(4.5′) δ(a, f) > 1− cos
ρ(β − α)

2

holds for some a 6= 0,∞, then the relation

π

2π − β + α
< ρ <

π

β − α
cannot be true.

¿From here we get

Corollary 2. Let f(z) be an entire function of order ρ, all of b- and c-
points of which (b 6= c; b, c 6= ∞) except, possibly, finitely many, are in the angle
{α ≤ arg z ≤ β}, 0 < β−α < π. Then either ρ ≥ π/(β−α), or ρ ≤ π/(2π−β+α).

In fact, consider the system D′ = D(α, β) and the meromorphic function

f1(z) =
f(z)− b
f(z)− c . Almost all zeros and poles of this function are in the small angle

of the system D′ = D(α, β), and δ(1, f1) = 1. If ρ < π/(β − α), then the function
f1(z) satisfies the condition (4.5′) with a = 1, and by Corollary 1 the inequality
ρ > π/(2π − β + α) cannot be true.

We show that for each ρ ≥ π/(β − α) and each ρ ≤ π/(2π − β + α) it is
possible to construct an entire function of order ρ, such that for some b and c
(b 6= c; b, c 6= ∞), all b- and c-points of f(z), except, possibly, finitely many are in
the angle {α ≤ arg z ≤ β}.

Example 1. As it was proved in n. 3◦ from Section 5 of Chapter 2, the
Mittag-Leffler function Eρ(z) has order ρ. We shall assume that ρ > 1/2. By the
formula (5.40) from Chapter 2 the value of

M = sup
π
2ρ≤arg z≤2π− π

2ρ

|Eρ(z)|

is finite. Therefore, if the numbers b and c satisfy the condition min(|b|, |c|) > M ,

then all b- and c-points of the function Eρ(z) are in the angle

{
− π

2ρ
≤ arg z ≤ π

2ρ

}
.

Thus, for each ρ ≥ π/(β − α) all b- and c-points of the function Eρ

(
ze−i(α+ π

2ρ )
)

are in the angle

{
α ≤ arg z ≤ α+

π

ρ

}
⊂ {α ≤ arg z ≤ β}

Consider now the case ρ ≤ π/(2π − β + α). The formula (5.40) from Chapter
2 implies that the number

m = inf
− π

2ρ≤arg z≤ π
2ρ

|z|≥R

|Eρ(z)|
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is positive if R > 0 is sufficiently large. Therefore, if the numbers b and c satisfy the
condition max(|b|, |c|) < m, then all b- and c-points of the function Eρ(z) except,

possibly, finitely many are in the angle

{
π

2ρ
≤ arg z ≤ 2π − π

2ρ

}
. Then all b- and

c-points of the function Eρ

(
ze−i(α−

π
2ρ )
)

except, possibly, finitely many are in the

angle

{
α ≤ arg z ≤ α+ 2π − π

ρ

}
⊂ {α ≤ arg z ≤ β}.

Later on we shall show that Corollary 1 is no longer true if the sign > in the
condition (4.5′) is replaced by ≥. Now we observe that the condition (4.5′) cannot
be dropped. In fact, Example 2 from Section 2 shows that even for a function whose
zeros and poles lie on a ray, the growth can be absolutely arbitrary.

Now we point to a connection between Theorems 4.1 and 2.1.
Let all zeros and poles except, possibly, finitely many of a meromorphic function

f(z) of order ρ lie on rays of the system D = D(α1, α2, . . . , αn), and δ(a, f) > 0 for
some a 6= 0,∞. Then, by Theorem 2.1, the inequality ρ ≤ ω(D) holds. Under the
additional assumption that ρ <∞ this estimate can be derived, also, from Theorem
4.1. In fact, we choose numbers βj in such a way that the inequalities (4.2) and
(4.3) hold. Then almost all zeros and poles of the function f(z) are in the small
angles of the system D′ = D(α1, β1, . . . , αn, βn). Choosing βj sufficiently close to
αj , we can make ω′(D′) arbitrarily large, in particular, so large that (4.5) holds
and ρ < ω′(D′). By Theorem 4.1 we get ρ ≤ ω′′(D′) and, since ω′′(D′)→ ω(D) as
βj → αj , we conclude that ρ ≤ ω(D).

Note also, that if we formally pass to the limit as βj → αj (j = 1, . . . , n) in
Theorem 4.1, its conditions will take the form

UD(r, 0,∞) = O(1), δ(a, f) > 0,

where D = D(α1, α2, . . . , αn), and the statement will be reduced to the inequality
ρ ≤ ω(D), that is, we get a special case of Theorem 2.1.

Now we turn to auxiliary results used in the proof of Theorem 4.1.

Lemma 4.1. Let

χ(z) =

∞∏
ν=1

(
1− z

p̄ν

)
∞∏
ν=1

(
1− z

pν

)(4.6)

be a meromorphic function of genus zero, all poles pν of which are in the half-plane
{Imz > 0}. Suppose that the order of the function χ(z) is equal to η < 1. Then for
each σ, η < σ < 1, the inequality∫ ∞

b

m(t, χ)

tσ+1
dt ≤

(
sec

πσ

2
− 1
)∫ ∞

b

N(t, χ)

tσ+1
dt, 0 < b <∞,(4.7)

holds.

Proof. First we establish the inequality∫ ∞
b

q(t)

t1+σ
dt ≤

(
sec

πσ

2
− 1
)∫ ∞

b

ln+ t

t1+σ
dt, 0 < b <∞, 0 < σ < 1,(4.8)
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where

q(t) =
1

2π

∫ π/2

−π/2
ln

∣∣∣∣1 + teiθ

1− teiθ

∣∣∣∣ dθ.
Choosing arbitrarily a branch of the function arg

(
1 + z

1− z

)
on the semicircle Ct ={

|z| = t, −π
2
≤ arg z ≤ π

2

}
oriented counterclockwise, by the Cauchy–Riemann

equations we have (t 6= 1)

q′(t) =
1

2π

∫ π/2

−π/2

∂

∂t
ln

∣∣∣∣1 + teiθ

1− teiθ

∣∣∣∣ dt
=

1

2πt

∫ π/2

−π/2

∂

∂θ
arg

(
1 + teiθ

1− teiθ

)
dθ =

1

2πt
∆Ct arg

(
1 + teiθ

1− teiθ

)
.

Therefore

q′(t) =
2

πt
arctan t, 0 < t < 1,

q′(t) =
2

πt
arctan t− 1

t
, t > 1,

hence,

q(t) =
2

π

∫ t

0

arctan s
ds

s
− ln+ t.

Below we use the argument employed in the proof of Lemma 3.3 from Chapter 5.
Consider the function

ϕ(b) =

∫ ∞
b

{(
sec

πσ

2
− 1
)

ln+ t− q(t)
} dt

t1+σ
.(4.9)

Since ∫ ∞
0

q(t)

t1+σ
dt =

1

σ

∫ ∞
0

q′(t)

tσ
dt =

2

πσ

∫ ∞
0

arctan t

t1+σ
dt− 1

σ

∫ ∞
1

dt

t1+σ

=
2

πσ2

∫ ∞
0

dt

tσ(1 + t2)
− 1

σ2
=

1

σ2

(
sec

πσ

2
− 1
)
,

∫ ∞
0

ln+ t

t1+σ
dt =

1

σ2
,

we have ϕ(0) = 0. Obviously lim
b→∞

ϕ(b) = 0.

The integrand in (4.9) is negative for 0 < t < 1, for t > 1 we have{(
sec

πσ

2
− 1
)

ln+ t− q(t)
}′

=
1

t

{
sec

πσ

2
− 2

π
arctan t

}
> 0.

Therefore the function ϕ′(b) change its sign only once on the semiaxis {0 < b <∞},
from plus to minus. Since lim

b→∞
ϕ(b) = 0, we have ϕ(b) > 0 for all b, 0 < b < ∞,

thus, the inequality (4.8) has been proved.
Using Lemma 4.4 from Chapter 5 and the notation from its statement, we have

m(r, χ) ≤ m(r, χ̌).(4.10)
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But, obviously,

m(r, χ̌) =
1

2π

∫ 2π

0

ln+

∣∣∣∣∣∣
∞∏
ν=1

1− reiθ

|pν |

1 + reiθ

|pν |

∣∣∣∣∣∣ dθ
=

1

2π

∫ 3π/2

π/2

ln

∣∣∣∣∣∣
∞∏
ν=1

1− reiθ

|pν |

1 + reiθ

|pν |

∣∣∣∣∣∣ dθ
=

1

2π

∫ π/2

−π/2
ln

∣∣∣∣∣∣
∞∏
ν=1

1 + reiθ

|pν |

1− reiθ

|pν |

∣∣∣∣∣∣ dθ =

∞∑
ν=1

q

(
r

|pν |

)
.

By (4.8) for each b > 0 we have∫ ∞
b

q
(

r
|pν |

)
r1+σ

dr ≤
(

sec
πσ

2
− 1
)∫ ∞

b

ln+ r
|pν |

r1+σ
dr.

Assuming that η < σ < 1 and summing over ν, we get∫ ∞
b

m(r, χ̌)

r1+σ
dr ≤

(
sec

πσ

2
− 1
)∫ ∞

b

N(r, χ)

r1+σ
dr,

from where, by (4.10), the inequality (4.7) follows. �

Lemma 4.2. Let a function g(t) ≥ 0, −∞ < t < ∞, be such that for some λ,
0 ≤ λ ≤ 2, the inequality ∫ ∞

−∞

g(t)

1 + |t|λ <∞

holds. Let

u(z) =
y

π

∫ ∞
−∞

g(t)dt

(x− t)2 + y2
, z = x+ iy, y > 0.

Then

u(z) ≤ K|z|λy−1, |z| > 1,

where K is a positive constant which does not depend on z.

The statement of the lemma follows from the estimate

πu(z)

y
=

∫ ∞
−∞

g(t)

|z − t|2 dt =

∫
|t|<2|z|

g(t)

1 + |t|λ ·
1 + |t|λ
|z − t|2 dt

+

∫
|t|≥2|z|

g(t)

1 + |t|λ ·
1 + |t|λ
t2

· dt

|zt−1 − 1|2

≤ 1 + 2λ|z|λ
y2

∫
|t|<2|z|

g(t)dt

1 + |t|λ +

(
1

|z|2 +
2λ

|z|2−λ

)∫
|t|≥2|z|

g(t)dt

1 + |t|λ .

Lemma 4.3. Let f(z) be a meromorphic function of finite order, a 6= 0,∞ be a
complex number, 0 < β − α ≤ 2π, ω = π/(β − α). Suppose that

C̄αβ(r, f) + C̄αβ

(
r,

1

f

)
= O(rp), p > 0, r→∞.



4. POLES AND ZEROS LOCATED IN SMALL ANGLES 315

For an arbitrary ε satisfying 0 < ε <
1

2
(β − α) the estimate

mα+ε, β−ε

(
r,

1

f − a

)
= O(rω+p), r →∞,(4.11)

holds, and for each ε1 > 0 the integral

I(ϕ) =

∫ ∞
1

ln+ 1

|f(reiϕ)− a|
dr

r1+p+ω+ε1

converges for all ϕ ∈ (α+ε, β−ε) except, possibly, some set E satisfying mesE = 0.

Proof. It is easy to see that

mα+ε, β−ε

(
r,

1

f − a

)
≤ rω

4ω sinωε
Bαβ

(
r,

1

f − a

)
.

Using the analogue of Lemma 2.1 from Chapter 3 for angular Nevanlinna charac-
teristics, valid by Theorem 3.3 from Chapter 3, we have

Bαβ

(
r,

1

f − a

)
≤ Aαβ

(
r,
f

f ′

)
+Bαβ

(
r,
f

f ′

)
+Qαβ(r, f) ≤ Sαβ

(
r,
f

f ′

)
+O(1).

Now we use Theorems 5.2 from Chapter 1 and 3.1 from Chapter 3, and get

Sαβ

(
r,
f

f ′

)
= Aαβ

(
r,
f ′

f

)
+Bαβ

(
r,
f ′

f

)
+ Cαβ

(
r,
f ′

f

)
+O(1)

= C̄αβ(r, f) + C̄αβ

(
r,

1

f

)
+O(1).

Thus,

mα+ε, β−ε

(
r,

1

f − a

)
≤ rω

4ω sinωε

{
C̄αβ(r, f) + C̄αβ

(
r,

1

f

)
+ O(1)

}
= O(rω+p).

Dividing relation (4.11) by r1+p+ω+ε1 and integrating with respect to r from 1 to
∞, we get

∞ >

∫ ∞
1

mα+ε, β−ε

(
r,

1

f − a

)
dr

r1+p+ω+ε1

=
1

2π

∫ ∞
1

dr

r1+p+ω+ε1

∫ β−ε

α+ε

ln+ 1

|f(reiϕ)− a|dϕ

=
1

2π

∫ β−ε

α+ε

dϕ

∫ ∞
1

ln+ 1

|f(reiϕ)− a| ·
dr

r1+p+ω+ε1
=

1

2π

∫ β−ε

α+ε

I(ϕ)dϕ.

¿From here it follows that I(ϕ) < ∞ for all ϕ ∈ (α + ε, β − ε), except, possibly,
some set E, mesE = 0. Q.E.D. �

Now we turn to a proof of Theorem 4.1. Suppose that the order ρ of the
function f(z) satisfies the inequality ω′′(D′) < ρ < ω′(D′), and let us prove that
for each a 6= 0,∞ the inequality

δ(a, f) ≤ 1− cos
πρ

2ω′(D′)
(4.12)

holds.
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Denote byD′ε the systemD′ε = D(α1−ε, β1+ε, α2−ε, β2+ε, . . . , αn−ε, βn+ε)
of rays, where ε > 0 is so small that

max
1≤j≤n

(βj − αj) + 4ε < min
1≤j≤n

(αj+1 − βj),

ω′′(D′) < ω′′(D′ε) < ω′′(D′2ε) < ρ < ω′(D′2ε) < ω′(D′ε) < ω′(D′).(4.13)

We have

m(r, a) =

n∑
j=1

mαj−ε, βj+ε

(
r,

1

f − a

)
+

n∑
j=1

mβj+ε, αj+1−ε

(
r,

1

f − a

)
= Φ1(r) + Φ2(r).

The estimate for the sum Φ2(r) is obtained using Lemma 4.3. Since almost all
of zeros and poles of the function f(z) are in small angles of the system D′, then

C̄βjαj+1(r, f) + C̄βjαj+1

(
r,

1

f

)
= O

(
rω
′′(D′)−ω′′j (D′)

)
, j = 1, . . . , n.

Applying Lemma 4.3, we get the estimate

mβj+ε, αj+1−ε

(
r,

1

f − a

)
= O(rω

′′(D′)), j = 1, . . . , n,

hence,

Φ2(r) = O(rω
′′(D′)).(4.14)

The estimate of Φ1(r) is significantly more complicated.
By Lemma 4.3 there are numbers ϕj and ψj , αj − 2ε < ϕj < αj − ε, βj + ε <

ψj < βj + 2ε, such that for θ = ϕj , ψj (j = 1, . . . , n) we have∫ ∞
1

ln+ 1

|f(reiθ)− a|
dr

r1+ω′′(D′ε)
<∞.(4.15)

We map the angle {ϕj ≤ arg z ≤ ψj} onto the half-plane {Imζ ≥ 0} using the

mapping ζ = (ze−iϕj)π/(ψj−ϕj). Under this mapping the angle {αj − ε ≤ arg z ≤
βj + ε} is mapped onto an angle of the form {ξj ≤ arg ξ ≤ ηj}, 0 < ξj < ηj < π.
Let

Fj(ζ) = {f(eiϕjζ(ψj−ϕj)/π)− a}−1.(4.16)

It is easy to see that

mαj−ε, βj+ε

(
r,

1

f − a

)
=
ψj − ϕj

π
mξjηj

(
r

π
ψj−ϕj , Fj

)
,(4.17)

therefore to estimate the sum Φ1 it suffices to estimate the quantities mξjηj (r, Fj),
j = 1, . . . , n.

Let us show that the function Fj(z) satisfies

S(r, Fj) = O(1),(4.18)

and hence, Theorem 3.1 is applicable to it.
Note that ∫ ∞

−∞

ln+ |Fj(t)|
1 + |t|1+µj

dt <∞,(4.19)
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where µj = (ψj − ϕj)ω′′(D′ε)/π. In fact, by (4.16) and (4.15), we have∫ ∞
−∞

ln+ |Fj(t)|
1 + |t|1+µj

dt =

∫ 1

−1

ln+ |Fj(t)|
1 + |t|1+µj

dt+

∫ ∞
1

ln+ |Fj(t)|
t1+µj

dt

+

∫ −1

−∞

ln+ |Fj(t)|
|t|1+µj

=

∫ 1

−1

ln+ |Fj(t)|
1 + |t|1+µj

dt

+
π

ψj − ϕj

∫ ∞
1

ln+
∣∣∣{f (teiϕj)− a}−1

∣∣∣
t1+ω′′(D′ε)

dt

+
π

ψj − ϕj

∫ ∞
1

ln+
∣∣∣{f (teiψj)− a}−1

∣∣∣
t1+ω′′(D′ε)

dt <∞.

Next, since

(4.19′)
ψj − ϕj

π
< {ω′(D′2ε)}−1,

by (4.13) we have µj < {ω′(D′2ε)}−1ω′′(D′ε) < 1. Therefore (4.19) implies

A(r, Fj) ≤
1

π

∫ r

1

{ln+ |Fj(t)|+ ln+ |Fj(−t)|}
dt

t2
= O(1).

The quantity B(r, Fj) can be estimated in the following way:

B(r, Fj) ≤
4

r
m0π(r, Fj) =

4π

(ψj − ϕj)r
mϕjψj

(
r
ψj−ϕj
π ,

1

f − a

)
≤ 4π

(ψj − ϕj)r
{
T
(
r
ψj−ϕj
π , f

)
+O(1)

}
.

By (4.13) and (4.19′) we have
ψj−ϕj
π

ρ < 1, and get

B(r, Fj) = o(1).(4.20)

In a similar way we get

B(r, 1/Fj) = o(1).(4.21)

Denoting a-points of the function f(z) by rνe
iθν , we have

C(r, Fj) = Cϕjψj

(
r
ψj−ϕj
π ,

1

f − a

)
≤ 2

∑
rν>1

ϕj≤θν≤ψj

r
− π
ψj−ϕj

ν <∞,

since
π

ψj − ϕj
> ρ.

Thus (4.18) has been proved, and, by Theorem 3.1, the function Fj(ζ) admits
a representation

ln |Fj(ζ)| =
r sinϕ

π

∫ ∞
−∞

ln |Fj(t)|dt
r2 + t2 − 2rt cosϕ

−
∑
κ

ln

∣∣∣∣ζ − q̄κζ − qκ

∣∣∣∣+
∑
ν

∣∣∣∣ζ − p̄νζ − pν

∣∣∣∣+ ηr sinϕ, ζ = reiϕ,

(4.22)
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where qκ are zeros of the function Fj(ζ), and pν are its poles (lying in {Imζ > 0}),
η is a constant which does not depend on ζ. Estimates (4.20) and (4.21) and the
remark to Theorem 3.1 imply that η = 0. Therefore (4.22) implies that

ln+ |Fj(ζ)| ≤
y

π

∫ ∞
−∞

ln+ |Fj(t)|dt
(x− t)2 + y2

+
∑
ν

ln

∣∣∣∣ζ − p̄νζ − pν

∣∣∣∣ , ζ = x+ iy.

The relation (4.19) and Lemma 4.2 imply that the estimate

y

π

∫ ∞
−∞

ln+ |Fj(t)|
(x − t)2 + y2

dt = O(|ζ|µj ), ζ = x+ iy,

holds in the angle {ξj ≤ arg ζ ≤ ηj}. Defining a function χ(z) by the equality (4.6),
we get that

ln+ |Fj(reiϕ)| ≤ O(rµj ) + ln |χ(reiϕ)|, ξj ≤ arg ζ ≤ ηj ,

from where, integrating with respect to ϕ from ξj to ηj , we conclude that

mξjηj (r, Fj) ≤ Kjr
µj +mξjηj (r, χ) ≤ Kjr

µj +m(r, χ), r ≥ 1,(4.23)

where Kj is a constant which does not depend on r.
Let us agree to use the notation Nαβ(r, f), 0 < β − α ≤ 2π, r ≥ 0, for the sum

Nαβ(r, f) =
∑

α≤arg an≤β
ln+ r

|an|
,

where an are poles of the function f(z) counted according to their multiplicity.
Obviously,

N(r, χ) =
π

ψj − ϕj
Nϕjψj

(
r
ψj−ϕj
π ,

1

f − a

)
.(4.24)

Therefore

N(r, χ) ≤ π

ψj − ϕj
N

(
r
ψj−ϕj
π ,

1

f − a

)
≤ π

ψj − ϕj
T
(
r
ψj−ϕj
π , f

)
+O(1).

¿From here it follows that the order of the function N(r, χ) does not exceed the

number
ψj − ϕj

π
ρ < {ω′(D′2ε)}−1ρ < 1. Since N(r, χ) = N(r, 1/χ), and the func-

tion χ(z) is a quotient of two canonical products of genus zero, then (Theorem 3.4

from Chapter 2) the order of this function also does not exceed
ψj − ϕj

π
ρ.

Using Lemma 4.1, we write the inequality (4.7) for our function χ(z). It holds

for all b > 0 and σ satisfying the condition
ψj − ϕj

π
ρ < σ < 1.

We divide (4.23) by r1+σ and integrate it with respect to r from b > 1 to ∞.
Taking into account (4.7) we get∫ ∞

b

mξjηj (r, Fj)

r1+σ
dr ≤

(
sec

πσ

2
− 1
)∫ ∞

b

K ′jr
µj +N(r, χ)

r1+σ
dr,

where K ′j is a constant which does not depend on r and b. Using the equalities

(4.17) and (4.24), and making the change of variable r = tπ/(ψj−ϕj) in the integrals,
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we have that for
ψj−ϕj
π

ρ < σ < 1 and for all b > 1 the inequality

∫ ∞
b

mαj−ε, βj+ε

(
t,

1

f − a

)
t
1+ σπ

ψj−ϕj
dt

≤
(

sec
πσ

2
− 1
)∫ ∞

b

K ′′j t
ω′′(D′ε) +Nϕjψj

(
t,

1

f − a

)
t
1+ σπ

ψj−ϕj
dt

holds, where K ′′j is a constant which does not depend on t and b. Let η =
σπ

ψj − ϕj
and note that as σ ranges over the interval

(
ρ
ψj − ϕj

π
, 1

)
, the parameter η ranges

over the interval

(
ρ,

π

ψj − ϕj

)
, which contains the interval (ρ, ω′(D′2ε)). Note, also,

that σ < η{ω′(D′2ε)}−1. Then we can claim that for ρ < η < ω′(D′2ε) and b > 1
the inequality∫ ∞

b

mαj−ε, βj+ε
(
t, 1
f−a

)
t1+η

dt

≤
(

sec
πη

2ω′(D′2ε)
− 1

)∫ ∞
b

K ′′j t
ω′′(D′ε) +Nϕjψj

(
t, 1
f−a

)
t1+η

dt

holds. Adding these inequalities over j = 1, . . . , n and taking into account that
n∑
j+1

Nϕjψj

(
t,

1

f − a

)
≤ N

(
t,

1

f − a

)
, t ≥ 1, since the intervals (ϕj , ψj) do not

intersect, we get∫ ∞
b

Φ1(t)

t1+η
dt ≤

(
sec

πη

2ω′(D′2ε)
− 1

)∫ ∞
b

Ktω
′′(D′ε) +N(t, a)

t1+η
dt,(4.25)

where K is a constant which does not depend on b and t, ρ < η < ω′(D′2ε), b > 1.
The relation (4.14) implies that for η > ρ(> ω′′(D′ε) > ω′′(D′)) the inequality∫ ∞

b

Φ2(t)

t1+η
dt ≤

∫ ∞
b

K ′tω
′′(D′ε)

t1+η
dt

holds, where K ′ is a constant which does not depend on b and t. Adding with
(4.25) we get the inequality∫ ∞

b

m(t, a)

t1+η
dt ≤

(
sec

πη

2ω′(D′2ε)
− 1

)∫ ∞
b

K ′′tω
′′(D′ε) +N(t, a)

t1+η
dt,

where K ′′ does not depend on b and t, ρ < η < ω′(D′2ε), b > 1.
Since ρ > ω′′(D′ε), for each ε1 > 0 there is a sequence {bq}, bq ↑ ∞, such that∫ ∞

bq

K ′′tω
′′(Dε)

t1+η
dt ≤ ε1

∫ ∞
bq

T (t, f)

t1+η
dt.

Therefore we have the inequality∫ ∞
bq

m(t, a)

t1+η
dt ≤

(
sec

πη

2ω′(D′2ε)
− 1

)∫ ∞
bq

N(t, a) + ε1T (t, f)

t1+η
dt.
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This inequality implies that there exists a number tq > bq, such that

m(tq, a) ≤
(

sec
πη

2ω′(D′2ε)
− 1

)
{N(tq, a) + ε1T (tq, f)}.(4.26)

Dividing both sides of (4.26) by T (tq, f) and taking the limit as tq →∞, we get

δ(a, f) ≤
(

sec
πη

2ω′(D′2ε)
− 1

)
{1− δ(a, f) + ε1}.

Letting here ε and ε1 tend to 0, and η tend to ρ, we get the inequality

δ(a, f) ≤
(

sec
πρ

2ω′(D′)
− 1

)
{1− δ(a, f)},

which is equivalent to (4.12). This completes the proof of the theorem. �

Now we construct an example showing that the sign > in the condition (4.5′)
from Corollary 1 cannot be replaced by ≥.

Example 2. For arbitrary preassigned γ and ρ, 0 < γ < π, 0 < ρ < πγ−1, we
construct a meromorphic function f(z) of order ρ, all zeros and poles of which are

in the angle
{
| arg z| ≤ γ

2

}
, and δ(1, f) = 1− cos

ργ

2
.

Let

Φ(z; η) =

∞∏
ν=1

1 + zν−
1
η

1− zν− 1
η

, 0 < η < 1.

The function Φ(z; η) is a special case of the function fuv(z) considered in Example
1 of Section 3 from Chapter 5 (u = v = 1, l(r) ≡ η). Therefore, by the formulas
(3.38) and (3.39) from Chapter 5 we have

N(r,Φ(z; η)) =
1

η
rη + o(rη),(4.27)

T (r,Φ(z; η)) =
1

η
{I(1, 1, η) + 1}rη + o(rη) =

1

η
sec

πη

2
rη + o(rη).(4.28)

Note that

|Φ(z; η)| ≤ 1 for Rez ≤ 0.(4.29)

Denote by L(θ, a) the boundary of the region D(θ, a) = {| arg z| < θ, |z| > a},
oriented clockwise, by D1(θ, a) we denote the region on the left from L(θ, a). For

z ∈ D1

(
γ

2
,

1

2

)
we let

Ψ(z) =
1

2πi

∫
L( γ2 ,

1
2 )

Φ
(
ζπ/γ ; ργ

π

)
(ζ + 1)2(ζ − z)

dζ.(4.30)

The inequality (4.29) implies that∣∣∣Φ(ζπ/γ ;
ργ

π

)∣∣∣ ≤ 1 for
γ

2
≤ | arg ζ| ≤ γ,(4.31)

therefore the integral in (4.30) is absolutely convergent, and the function Ψ(z) is

analytic in D1

(
γ

2
,

1

2

)
.
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Using the residue theorem we get the following relation for R ≥ 1

2
, R 6= ν1/ρ,

ν = 1, 2, . . . ,

(
z ∈ D1

(
γ

2
,

1

2

))
1

2πi

∫
L(γ2 ,

1
2 )

Φ
(
ζπ/γ ; ργπ

)
(ζ + 1)2(ζ − z)

dζ

=
1

2πi

∫
L(γ2 ,R)

Φ
(
ζπ/γ ; ργ

π

)
(ζ + 1)2(ζ − z)

dζ −
[Rρ]∑
ν=1

resζ=ν1/ρ

Φ
(
ζπ/γ ; ργ

π

)
(ζ + 1)2(ζ − z)

.

(4.32)

The right-hand side of this relation represents a function meromorphic in the region

D1

(γ
2
, R
)

. Since R can be chosen to be arbitrarily large, the function Ψ(z) can

be extended to a meromorphic function in the whole complex plane. We shall keep
the notation Ψ(z) for this extension.

We show that for z ∈ D
(
γ,

1

2

)
the formula

Ψ(z) =
1

2πi

∫
L(ν, 12 )

Φ
(
ζπ/γ ; ργπ

)
(ζ + 1)2(ζ − z)

dζ +
Φ
(
zπ/γ; ργπ

)
(z + 1)2

(4.33)

holds.

For z ∈ D
(
γ,

1

2

)
the function Ψ(z) can be represented by the right-hand side

of the relation (4.32) with R > |z|. Using the Cauchy theorem and (4.31) it is easy
to get that the integral from the right-hand side of (4.32) does not change if the

path of integration is changed from L
(γ

2
, R
)

to L(γ,R). On the other hand, by

the residue theorem we have

(
z ∈ D

(
γ,

1

2

)
, R > |z|

)
1

2πi

∫
L(γ,R)

Φ
(
ζπ/γ ; ργπ

)
(ζ + 1)2(ζ − z)

dζ =
1

2πi

∫
L(γ, 12 )

Φ
(
ζπ/γ ; ργπ

)
(ζ + 1)2(ζ − z)

dζ

+

[Rρ]∑
ν=1

resζ=ν1/ρ

Φ
(
ζπ/γ ; ργ

π

)
(ζ + 1)2(ζ − z)

+
Φ
(
zπ/γ; ργ

π

)
(z + 1)2

.

Thus the formula (4.33) has been proved.
Using (4.31), we get from (4.30) and (4.33) the following relations

|Ψ(z)| ≤ c/(|z|+ 1),
γ

2
≤ arg z ≤ 2π − γ

2
,∣∣∣∣∣Ψ(z)−

Φ
(
zπ/γ ; ργ

π

)
(z + 1)2

∣∣∣∣∣ ≤ c/(|z|+ 1), | arg z| ≤ γ

2
,

(4.34)

where c is a constant which does not depend on z. These relations imply the
following equalities:

N(r,Ψ) = N
(
rπ/γ , Φ

(
z;
ργ

π

))
,
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m(r,Ψ) = m− γ2 ,
γ
2
(r,Ψ) +O(1) = m

(
rπ/γ , Φ

(
z;
ργ

π

))
+O(ln r)

= T
(
rπ/γ , Φ

(
z;
ργ

π

))
−N

(
rπ/γ ,Φ

(
z;
ργ

π

))
+O(ln r).

Taking into account (4.27) and (4.28) we get

N(r,Ψ) =
π

ργ
rρ + o(rρ),

T (r,Ψ) =
π

ργ
sec

ργ

2
rρ + o(rρ),

whence δ(∞,Ψ) = 1− cos
ργ

2
.

By (4.34) the quantity

Q = sup
γ
2≤arg z≤2π− γ2

|Ψ(z)|

is finite. Therefore for each b, |b| > Q, all b-points of the function Ψ(z) are
in the angle {| arg z| ≤ γ/2}. Choose arbitrarily two complex numbers b and c,
min(|b|, |c|) > Q, and consider the function

f(z) =
Ψ(z)− b
Ψ(z)− c .

It is clear that it is a desired function.

5. Entire functions with derivatives only vanishing close to the real axis

As is known, zeros of a polynomial with real zeros are real. The direct analogue
of this result for entire transcendental functions does not hold. For example, all

zeros of the function f(z) = (z2 − 1)ez
2/2 are real, while f ′(z) = (z3 + z)ez

2/2 has
non-real zeros also. Sufficient conditions under which zeros of all derivatives of an
entire function with real zeros are real, are given by the following classical theorem.

Theorem 5.1 (Laguerre). If an entire function f(z) is representable in the
form

f(z) = e−γz
2

h(z),(5.1)

where γ ≥ 0 and h(z) is an entire function of genus at most 1, real on the real
line, and having only real zeros, then zeros of all derivatives of the function f(z)
are real.

Proof. The formula (5.1) implies that

f ′(z) = e−γz
2

h1(z),

where

h1(z) = h′(z)− 2γzh(z).

Theorem 5.1 will be proved, if we establish that h1(z) is an entire function of genus
at most 1, real on the real line and having only real zeros.

The function h(z) is representable in the form

h(z) = zmeaz+b
∏
k

(
1− z

ak

)
e
z
ak ,
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where m ≥ 0 is an integer, a, b, and ak are real numbers, and∑
k

a−2
k <∞.(5.2)

Therefore we have

f ′(z)

f(z)
= −2γz +

m

z
+ a+

∑
k

(
1

z − ak
+

1

ak

)
,(5.3)

whence

Im
f ′(z)

f(z)
= −

{
2γ +

m

|z|2 +
∑
k

1

|z − ak|2

}
Imz.(5.4)

We may assume that f(z) is not of the form eaz+b, because otherwise the
theorem is trivial. Then the expression in braces in (5.4) is different from zero and
hence

Im
f ′(z)

f(z)
6= 0 for Imz 6= 0.

This means that all zeros of f ′(z), and hence, of h1(z) are real.
It remains to prove that the genus of the function h1(z) does not exceed 1. Since

the genus of the function h(z) does not exceed 1, then, by Remark 2 to Theorem 3.3
from Chapter 2, the relation T (r, h) = o(r2) holds. By Theorem 2.3 from Chapter
3 we have, also, T (r, h′) = o(r2), and hence, T (r, h1) = T (r, h′ − 2γzh) = o(r2).
Therefore, in order to show that the genus of the function h1(z) does not exceed 1,
it suffices to establish the convergence of the series∑

k

a−2
k1 ,(5.5)

where ak1 are zeros of the function h1(z) away from z = 0 (multiple zeros are
repeated according to their multiplicity).

The equality (5.3) implies(
f ′(x)

f(x)

)′
= −2γ −

∑
k

1

(x− ak)2
.

For real x the expression in the right-hand side is negative. Therefore in the interval

between two consecutive zeros of the function f(x) the function f ′(x)
f(x) is decreasing

and is varying from∞ to −∞. Thus, between two consecutive zeros of the function
f(x) there is exactly one simple root of the function f ′(x). Therefore the conver-
gence of the series (5.2) implies the convergence of the series (5.5), Q.E.D. �

We say that an entire function f(z) belongs to the class A (notation: f(z) ∈ A)
if its zeros {zn} satisfy the condition∑

|zn|>1

∣∣∣∣Im 1

zn

∣∣∣∣ <∞
(multiple zeros are repeated according to their multiplicity). As we mentioned in
Section 2 (see Example 1), a function f(z) belongs to the class A if and only if

C(r, 0, f(z)) + C(r, 0, f(−z)) = O(1).

If is clear that all functions with real zeros belong to the class A.
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We shall find conditions under which all derivatives of a function from the class
A belong to the class A.

Theorem 5.2. Let f(z) be an entire function belonging to the class A, which
is representable in the form

f(z) = eg(z)h(z),(5.6)

where g(z) is an entire function which does not exceed the normal type of order 1
and which satisfies the condition∫ ∞

−∞

ln+ |g′(t)|
1 + t2

dt <∞,(5.7)

and h(z) is an entire function satisfying the condition∫ ∞
1

t−2 ln+ T (t, h)dt <∞.(5.8)

Then all derivatives of the function f(z) belong to the class A.

Theorem 5.2 can be considered as an analogue of Laguerre’s Theorem 5.1 in
the case when the condition that all zeros of f(z) are real is replaced by a weaker
condition: the function f(z) belongs to the class A.

To prove the theorem it suffices to establish that the function f ′(z) belongs to
the class A and is representable in the form

f ′(z) = eg(z)h1(z),(5.9)

where h1(z) is an entire function satisfying the condition∫ ∞
1

t−2 ln+ T (t, h1)dt <∞.(5.10)

We need the following lemma.

Lemma 5.1. If a function f(z) satisfies the conditions of Theorem 5.2, then

S

(
r,
f ′

f

)
= O(1).

Proof. Since f(z) belongs to the class A, it is clear that

C

(
r,
f ′

f

)
= C̄(r, 0, f) ≤ C(r, 0, f) = O(1).

Further, we have

A

(
r,
f ′

f

)
+B

(
r,
f ′

f

)
= A

(
r, g′ +

h′

h

)
+B

(
r, g′ +

h′

h

)
≤ A(r, g′) +B(r, g′) +A

(
r,
h′

h

)
+B

(
r,
h′

h

)
+O(1).

The condition (5.7) implies that A(r, g′) = O(1). Since T (r, g) = O(r), by the
inequality (2.13) from Chapter 3, we have T (r, g′) = O(r) and hence

B(r, g′) ≤ 4

r
m(r, g′) = O(1).

By Theorem 1.3 from Chapter 3,

A

(
r,
h′

h

)
+B

(
r,
h′

h

)
= Q0π(r, h).
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Recalling the definition of Q0π(r, h) (page ???), from the condition (5.8) we get

A

(
r,
h′

h

)
+B

(
r,
h′

h

)
= O(1).

Thus,

S

(
r,
f ′

f

)
= A

(
r,
f ′

f

)
+B

(
r,
f ′

f

)
+ C

(
r,
f ′

f

)
= O(1).

Lemma has been proved. �

Since

C(r, 0, f ′) ≤ C
(
r,
f

f ′

)
+ C(r, 0, f) ≤ S

(
r,
f ′

f

)
+ C(r, 0, f) +O(1)

(we used Theorem 5.1 from Chapter 1), we have C(r, 0, f ′) = O(1), if the function
f(z) satisfies the conditions of Theorem 5.2. Considering the function f1(z) =
f(−z), in an analogous way we get C(r, 0, f ′1) = O(1). Thus we have proved that
f ′(z) belongs to the class A.

It is clear that the function f ′(z) can be represented in the form (5.9) with
h1(z) = g′(z)h(z) + h′(z). We have

T (r, h1) ≤ T (r, g′) + T (r, h) + T (r, h′) + ln 2 ≤ T (r, h) + T (r, h′) +O(r).

Since

T (r, h′) = m(r, h′) ≤ m(r, h) +m

(
r,
h′

h

)
= T (r, h) +m

(
r,
h′

h

)
,

using the estimate (1.13) from Chapter 3, we get

T (r, h1) ≤ 2T (r, h) +O(ln r + lnT (2r, h)) +O(r) ≤ 3T (2r, h) +O(r),

ln+ T (r, h1) ≤ ln+ T (2r, h) +O(ln r).

Therefore (5.8) implies (5.10).
Observe that the conditions of Theorem 5.2 are satisfied for each entire function

h(z) belonging to the class A, and satisfying the condition (5.8). In particular,
Theorem 5.2 has the following corollary.

Corollary. If an entire function of finite order belongs to the class A, then
all of its derivatives belong to the class A.

If we weaken somewhat the conditions of Theorem 5.2 and suppose only that the
function f(z) belongs to the class A and satisfies the condition ln+ T (r, f) = O(r),
the statement of Theorem 5.2 is no longer true. It suffices to consider the example
f(z) = ecosh z . It is clear that ln+ T (r, f) = O(r), f(z) ∈ A, but f ′(z) = sinh zecosh z

does not belong to A.
In 1914 G. Pólya and A. Wiman posed the following problem. Whether the

conditions indicated in Theorem 5.1 are not only sufficient, but also necessary for a
real-valued on the real line entire function with real zeros to have derivatives with
only real zeros.

Complete answer to this problem is still unknown.
An analogous problem can be posed in connection with Theorem 5.2: whether

its conditions are not only sufficient, but are also necessary for an entire function
of the class A to have all of its derivatives in the class A? Clearly, any results on
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the latter problem can be considered as progress towards a solution of the problem
of G. Pólya and A. Wiman.

It seems likely that the following conjecture is true. If an entire function f(z)
is such that f(z) ∈ A and f ′′(z) ∈ A, then f(z) is representable in the form (5.6),
where g(z) is an entire function which does not exceed normal type of order 1 and
satisfies (5.7), and h(z) satisfies the condition (5.8). We can prove the following
theorem.

Theorem 5.3. Let f(z) be an entire function, such that f(z) ∈ A, f ′′(z) ∈ A.
Suppose that the function f(z) is representable in the form

f(z) = eg(z)h(z),

where g(z) is an entire function, and h(z) satisfies the condition (5.8). Then the
function g(z) does not exceed normal type of order 1 and satisfies the condition
(5.7).

Note that the condition f ′′(z) ∈ A cannot be replaced by the condition f ′(z) ∈
A. This can be seen from the example

f(z) = exp

{∫ z

0

G(ζ)dζ

}
,

where G(ζ) is an arbitrary entire function without zeros.
One can observe some analogy between Theorem 5.3 and Theorem 2.7 from

Chapter 3. One of the assumptions in the latter was that f(z)f ′′(z) does not
have zeros, and the condition f(z) ∈ A, f ′′(z) ∈ A means, roughly speaking,
that f(z)f ′′(z) is “rarely” equal to zero in each of the half-planes {Imz > 0} and
{Imz < 0}.

In the proof of Theorem 2.7 from Chapter 3 we considered the function

F (z) =
f(z)

f ′(z)

and studied it using the inequality (2.23) from Chapter 3. Proving Theorem 5.3 we
shall also consider this function, but now we shall use analogues of the inequality
(2.23) from Chapter 3 for Tsuji characteristics and for angular Nevanlinna char-
acteristics. As opposed to the proof of Theorem 2.7 from Chapter 3, where we

succeeded in establishing T (r, F ) = O(ln r) and
f ′(z)

f(z)
≡ const, now we will be able

to get only some estimates for m(r, F ) and m(r, 1/F ). We need an estimate for
m(r, 1/F ) = m(r, f ′/f) only. It is given by the following theorem, interesting by
itself.

Theorem 5.4. If f(z) is an entire function and f(z) ∈ A, f ′′(z) ∈ A, then the
estimate ∫ ∞

R

m
(
r, f

′

f

)
r3

dr = O

(
lnR

R

)
, R→∞,

holds.

To prove this theorem we need the following lemma, connecting the quantity
m0π(r, f) with the Tsuji characteristic m(r, f).
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Lemma 5.2. If a function f(z) is meromorphic in the half-plane {Imz > 0},
then the inequality ∫ ∞

R

m0π(r, f)

r3
dr ≤

∫ ∞
R

m(r, f)

r2
dr, R ≥ 1,(5.11)

holds.

Observe that the statement of the lemma is non-trivial only in the case when
the integral in the right-hand side of (5.11) is convergent.

Consider the integral

I(R) =
1

2π

∫∫
ΩR

ln+ |f(reiϕ)|
r3

drdϕ,

where ΩR = {r > R sinϕ, r > 1, 0 < ϕ < π}. Making the change of variables
ρ = r/ sinϕ, θ = ϕ, we get

I(R) =

∫ ∞
R

dρ

ρ2

{
1

2π

∫ π−arcsin ρ−1

arcsin ρ−1

ln+ |f(ρ sin θeiθ)| dθ

ρ sin2 θ

}
=

∫ ∞
R

m(ρ, f)

ρ2
dρ.

Next, we consider the integral

J(R) =
1

2π

∫∫
KR

ln+ |f(reiϕ)|
r3

drdϕ,

where KR = {r > R, 0 < ϕ < π}. Because of KR ⊂ ΩR we have J(R) ≤ I(R).
Since

J(R) =

∫ ∞
R

dr

r3

{
1

2π

∫ π

0

ln+ |f(reiϕ)|dϕ
}

=

∫ ∞
R

m0π(r, f)

r3
dr,

the inequality (5.11) has been proved. �

Now we prove Theorem 5.4. Let F (z) = f(z)/f ′(z). Since f(z) ∈ A, all zeros
{ρneiψn} of the function F (z) lying in the half-plane {Imz > 0} (all of them are
simple and are zeros of f(z)) satisfy the condition∑

ρn>1

sinψn
ρn

<∞.

The relation

N(r, 0, F ) =
∑

1<ρn≤r sinψn

(
sinψn
ρn

− 1

r

)
implies (cf. Section 5 of Chapter 1, p. ???)

N(r, 0, F ) = O(1).(5.12)

Since

F ′(z) = 1− f(z)f ′′(z)

{f ′(z)}2 ,(5.13)

and f(z) ∈ A, f ′′(z) ∈ A, then the zeros
{
ρ′ne

iψ′n

}
of the function F ′(z)− 1 lying

in the half-plane {Imz > 0} also satisfy the condition∑
ρ′n>1

sinψ′n
ρ′n

<∞,
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hence

N(r, 1, F ′) = O(1).(5.14)

By Theorem 3.3 from Chapter 3, the analogue of the inequality (2.23) from
Chapter 3 holds for Tsuji characteristics. In particular, the inequality

T(r, F ) ≤ 3N(r, 0, F ) + 4N(r, 1, F ′) +Q(r, F )

holds. Taking into account (5.12) and (5.14), we get from here:

T(r, F ) = Q(r, F ).

By the definition of Q(r, F ) it means that outside some set E of finite measure the
relation

T(r, F ) = O(ln r) +O(lnT(r, F )), r →∞,

holds, hence

T(r, F ) = O(ln r), r →∞,(5.15)

for r /∈ E.
By Theorem 5.4 from Chapter 1 the function T(r, F ) is up to a bounded sum-

mand non-decreasing. Therefore, applying Lemma 2.1 we conclude that (5.15)
holds for r ∈ E.

By Theorem 5.3 from Chapter 1, the relation (5.15) implies

m

(
r,

1

F

)
= O(ln r).

Applying Lemma 5.2 we get the estimate∫ ∞
R

m0π(r, 1/F )

r3
dr ≤

∫ ∞
R

m(r, 1/F )

r2
dr = O

(
lnR

R

)
.(5.16)

Clearly, the argument above remains true for F1(z) = F (−z), therefore we can
replace F by F1 in the relation (5.16).

Since

m

(
r,
f ′

f

)
= m0π

(
r,

1

F

)
+m0π

(
r,

1

F1

)
,

Theorem 5.4 has been proved. �

Now we turn to the proof of Theorem 5.3.
First we show that ∫ ∞

1

t−2 ln+ T

(
t,
f ′

f

)
dt <∞.(5.17)

Obviously

N

(
r,
f ′

f

)
≤ N

(
r,

1

h

)
≤ T (r, h) +O(1),
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hence

ln+ T

(
r,
f ′

f

)
≤ ln+ T (r, h) + ln+m

(
r,
f ′

f

)
+O(1)

≤ ln+ T (r, h) + ln+

{
r−1m

(
r,
f ′

f

)}
+O(ln r)

≤ ln+ T (r, h) + r−1m

(
r,
f ′

f

)
+O(ln r).

Dividing by r2 and integrating with respect to r from 1 to ∞, by the condition
(5.8) and Theorem 5.4, we get (5.17).

Now we establish

S

(
r,
f ′

f

)
= O(1).(5.18)

We argue in the same way as in the proof of Theorem 5.4, but instead of Tsuji
characteristics we use Nevanlinna characteristics for the half-plane. Let F (z) =
f(z)/f ′(z) as before. Since f(z) ∈ A, f ′′(z) ∈ A we get (taking into account
(5.13)) the relations C(r, 0, F ) = O(1), C(r, 1, F ′) = O(1). By the analogue of the
inequality (2.23) from Chapter 3 for Nevanlinna characteristics for half-plane we
have

S(r, F ) ≤ 3C(r, 0, F ) + 4C(r, 1, F ′) +Q0π(r, F ),

hence,

S(r, F ) = Q0π(r, F ).

Since (5.17) is equivalent to the condition

∫ ∞
1

t−2 ln+ T (t, F )dt < ∞, the

definition of Q0π(r, F ) implies that Q0π(r, F ) = O(1). Thus, we have proved

S

(
r,
f ′

f

)
= S

(
r,

1

F

)
= O(1).

Since

f ′(z)

f(z)
= g′(z) +

h′(z)

h(z)
,

we have

S(r, g′) ≤ S
(
r,
f ′

f

)
+ S

(
r,
h′

h

)
+O(1).

Applying Lemma 5.1 to the function h(z), we see that S

(
r,
h′

h

)
= O(1). Taking

into account (5.18) we get

S(r, g′) = O(1).(5.19)

The argument above can be applied also to the function f1(z) = f(−z). Therefore
the relation

S(r, g′1) = O(1),

where g1(z) = g(−z), also holds.
Applying Theorem 2.7 to the functions g(z) and g1(z), we see that the relation

ln |g′(reiϕ)| = O(r)
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holds uniformly in ϕ, 0 ≤ ϕ < 2π, as r →∞, possibly omitting some set E of finite
logarithmic measure. Hence for r /∈ E we have

lnM(r, g′) = O(r).(5.20)

Since g′(z) is an entire function, the function lnM(r, g′) is monotonically increasing
with r and, by Lemma 2.1, the relation (5.20) holds, also, for r ∈ E. The equality

g(z) = g(0) +

∫ z

0

g′(ζ)dζ

implies

M(r, g) ≤ |g(0)|+ rM(r, g′),

and by (5.20) we get

lnM(r, g) = O(r),

whence

T (r, g) = O(r).

The validity of (5.7) follows from the relation A(r, g′) = O(1), which follows
immediately from (5.19). The proof of the theorem is completed. �

Corollary. Let G(z) be an entire function, such that the function G2(z) +
G′(z) belongs to the class A. Then G(z) does not exceed normal type of order 1,
and ∫ ∞

−∞

ln+ |G(t)|
1 + t2

dt <∞.

To prove the corollary we consider the function

f(z) = exp

{∫ z

0

G(ζ)dζ

}
.

This function does not have zeros and

f ′′(z) = {G2(z) +G′(z)}f(z) ∈ A.

By Theorem 5.3 the growth of the function g(z) =

∫ z

0

G(ζ)dζ does not exceed

the normal type of order 1, and the relation (5.7) holds for this function. Since
g′(z) = G(z) and, by Theorem 2.3 from Chapter 3, T (r,G) ≤ 2T (r, g) + O(ln r),
we get the desired result. �

Using Theorem 5.3 we can get an affirmative solution of the G. Pólya–A. Wiman
problem under the additional assumption that the considered function has finitely
many zeros. We are not going to present this result here, we refer the reader to the
paper B. Ja. Levin and I. V. Ostrovskĭı [LO60].

The condition of representability of the function f(z) in the form (5.6), where
h(z) satisfies (5.8), imposes a priori restrictions onto the moduli of zeros of the
function f(z), since

N

(
r,

1

f

)
= N

(
r,

1

h

)
≤ T (r, h) +O(1).
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In the next theorem there are no such restrictions, but we have to introduce re-
strictions of another character.

Theorem 5.5. If an entire function f(z) is real on the real line, has only real
zeros, and f ′′(z) ∈ A, then

lnT (r, f) = O(r ln r).(5.21)

Note that under the conditions of Theorem 5.3 we have a stronger estimate
lnT (r, f) = O(r). This estimate cannot be improved. In fact, among functions
satisfying the conditions of Theorem 5.2 may obviously be such that

lim inf
r→∞

r−1 lnT (r, f) > 0

(for example, ee
iz

, ecos z, etc.). All derivatives of these functions belong to the class
A.

Let us prove necessary auxiliary results.

Lemma 5.3. Let g(z) be analytic in the half-plane {Imz > 0} and satisfy there
the condition Img(z) > 0. Then the estimate

1

4
|g(i)| sinϕ

r
≤ |g(reiϕ)| ≤ 4|g(i)| r

sinϕ
, 0 < ϕ < π,(5.22)

holds.

Proof. First we show that if a function G(ζ) is analytic in the disc {|ζ| < 1}
and satisfies the condition ReG(ζ) > 0, then the estimate

|G(ζ)| ≤ 2|G(0)|
1− |ζ|(5.23)

holds. In fact, by the Schwarz formula, we have

G(ζ) =
1

2π

∫ 2π

0

Reiθ + ζ

Reiθ − ζRe{G(Reiθ)}dθ + iIm{G(0)}, |ζ| < R < 1.

Hence

|G(ζ)| ≤ R + |ζ|
R − |ζ| ·

1

2π

∫ 2π

0

Re{G(Reiθ)}dθ + |Im{G(0)}|

≤ R + |ζ|
R − |ζ| |G(0)|+ |G(0)| = 2R

R− |ζ| |G(0)|.

Letting R tend to 1, we get (5.23).
Now let g(z) be a function satisfying the conditions of the lemma. Then the

function

G(ζ) =
1

i
g

(
1

i

ζ − 1

ζ + 1

)
is analytic for |ζ| < 1 and ReG(ζ) > 0. Applying the inequality (5.23) to it, and
then letting ζ = − z−iz+i , we get

|g(z)| ≤ 2|z + i|
|z + i| − |z − i| |g(i)| = 2|z + i|(|z + i|+ |z − i|)

|z + i|2 − |z − i|2 |g(i)|.

Noting, that |z+ i|2− |z− i|2 = 4r sinϕ (z = reiϕ), |z± i| ≤ 2r (r ≥ 1), we get the
right half of the inequality (5.22). To get the left half of the inequality it suffices
to apply the right part to g1(z) = −1/g(z). �
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Lemma 5.4. Let {ak}∞k=N and {bk}∞k=N , −∞ ≤ N < 0, be two sequences of
real numbers, such that

aN < bN < aN+1 < bN+1 < · · · < a0 < b0 < 0 < a1 < b1 < . . . , lim
k→+∞

ak = +∞,

if N > −∞, and

· · · < a0 < b0 < 0 < a1 < b1 < . . . , lim
k→−∞

ak = −∞, lim
k→+∞

ak = +∞,

if N = −∞. Let

Π(z) =

∞∏
k=N

1− z

bk

1− z

ak

.(5.24)

Then the infinite product Π(z) converges absolutely and uniformly on each bounded
subset of a complex plane, hence Π(z) is a meromorphic function with simple poles
at the points ak and simple zeros at the points bk. This function satisfies the
following conditions:

(a) ImΠ(z) · Imz > 0 for Imz 6= 0.
(b) For each η > 0 the relation

Π(reiϕ) = O(r)

holds uniformly in ϕ outside the angles {| arg z| < η}, {|π − arg z| < η}.
(c) m(r,Π) +m(r, 1/Π) = O(ln r)
(d) The relation

ln |Π(reiϕ)| = O(r)

holds uniformly in ϕ, 0 ≤ ϕ < 2π, as r→∞ missing, possibly, some set E of finite
logarithmic measure.

Proof. Note that by the Leibniz theorem on alternating series we have

∞∑
k=N

(
1

ak
− 1

bk

)
<∞.

Since for |ak| > 2|z| the relation∣∣∣∣∣ 1−
z
bk

1− z
ak

− 1

∣∣∣∣∣ = |z|

(
1
ak
− 1

bk

)
∣∣∣1− z

ak

∣∣∣ ≤ 2|z|
(

1

ak
− 1

bk

)

holds, the absolute and uniform convergence of the infinite product Π(z) on each
bounded set follows from Theorem 3.1 from Chapter 2.

Let arg(z − α), where α is a real number, Imz > 0, be the principal value of
the argument, and

arg
1− z

bk

1− z

ak

= arg(z − bk)− arg(z − ak).
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The difference arg(z − bk)− arg(z − ak) represents the size of the angle which
the segment [ak, bk] subtends at the point z (Imz > 0). Therefore the number

arg Π(z) =
∞∑
k=N

arg
1− z

bk

1− z

ak

=
∞∑
k=N

{arg(z − bk)− arg(z − ak)}

satisfies the inequality

0 < arg Π(z) < π, Imz > 0.

Hence

ImΠ(z) > 0 for Imz > 0.

Similarly we prove that ImΠ(z) < 0 for Imz < 0. Thus we have proved that
the function Π(z) satisfies the condition (a).

Applying Lemma 5.3 we get the inequality

1

4
|Π(i)| | sinϕ|

r
≤ |Π(reiϕ)| ≤ 4|Π(i)| r

| sinϕ| , 0 ≤ ϕ ≤ 2π, r ≥ 1.

From here it follows easily that the function Π(z) satisfies the conditions (b) and
(c).

To prove the last assertion of the lemma we establish that

S(r,Π(z)) + S(r,Π(−z)) = O(1),

then the desired conclusion follows by Theorem 2.7.
Let

q(z) =
Π(z)− i
Π(z) + i

.

Since ImΠ(z) > 0 for Imz > 0, the function q(z) is analytic in the half-plane
{Imz > 0} and admits there the estimate |q(z)| < 1. Therefore A(r, q) = B(r, q) =
C(r, q) ≡ 0 and hence, S(r, q) ≡ 0. Using the relation (6.11) from Chapter 1, we
get S(r,Π(z)) = S(r, q)+O(1) = O(1). Similarly we get S(r,Π(−z))) = O(1). This
completes the proof of the lemma. �

Now we prove Theorem 5.5.
We may restrict ourselves to the case when the set of zeros of the function f(z)

is not bounded above. In fact, if the set of zeros of this function is finite, then
f(z) = eg(z)h(z), where g(z) is an entire function and h(z) is a polynomial, and
using Theorem 5.3 we get the estimate lnT (r, f) = O(r), which is more precise than
(5.21). If the set of zeros is infinite, but is bounded from the right, we consider the
function f(−z) instead of f(z).

We enumerate zeros of the function f(z) into a sequence {ak}∞k=N , −∞ ≤ N <
∞, in such a way that the inequalities

· · · < ak−2 < ak−1 < ak < ak+1 < . . .

are satisfied (multiple zeros are counted only once). By the Rolle theorem, each of
the intervals (ak, ak+1) contains zeros of the function f ′(z). We choose one zero of
f ′(z) in each of the intervals, and denote it by bk. Considering, if necessary, the
function f(z+α) instead of f(z), where α is a suitably chosen real number, we may
assume that the sequences {ak}∞k=N and {bk}∞k=N satisfy the conditions of Lemma
5.4.
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Let Π(z) be a function determined by the relation (5.24). Since the function
Π(z) has simple poles at the points ak and simple zeros at the points bk, the function
f ′(z)

f(z)Π(z)
is an entire function. We denote it by ψ(z), then we have the equality

f ′(z)

f(z)
= ψ(z)Π(z).(5.25)

Let us estimate the growth of the function ψ(z). The equality (5.25) implies

m(r, ψ) ≤ m
(
r,
f ′

f

)
+m

(
r,

1

Π

)
.

We divide both sides of this inequality by r3 and integrate it with respect to r from
R ≥ 1 to ∞. We get

∫ ∞
R

m(r, ψ)

r3
dr ≤

∫ ∞
R

m

(
r,
f ′

f

)
r3

dr +

∫ ∞
R

m

(
r,

1

Π

)
r3

dr.

Using Theorem 5.4 and taking into account that by Lemma 5.4 the relation

m

(
r,

1

Π

)
= O(ln r)

holds, we arrive at the estimate∫ ∞
R

m(r, ψ)

r3
dr = O

(
lnR

R

)
.

Since ψ(z) is an entire function, we have m(r, ψ) = T (r, ψ) and, by monotonicity
of the characteristic T (r, ψ), we get

T (R,ψ)

2R2
≤
∫ ∞
R

T (r, ψ)

r3
dr = O

(
lnR

R

)
,

whence

T (R,ψ) = O(R lnR).

Letting R = 2r in the inequality (7.1) from Chapter 1, we get

ln+M(r, ψ) ≤ 3T (2r, ψ) = O(r ln r).(5.26)

Since the function Π(z) satisfies the conditions (b) and (d) of Lemma 5.4 then,
taking into account the relation (5.25) and the estimate (5.26), we come to the
conclusion that for each η, 0 < η < π

2 and all z = reiϕ except, possibly, those for
which

r ∈ E, |ϕ| < η or r ∈ E, |π − ϕ| < η,

where E ⊂ (0,∞) is some set of finite logarithmic measure, the inequality∣∣∣∣f ′(z)

f(z)

∣∣∣∣ ≤ exp{Kr ln r}(5.27)

holds, where K > 0 is a constant.
Now we estimate the growth of the function f(z). Let z = reiϕ, r /∈ E. We

integrate both sides of the inequality (5.27) along a path L which starts at 0, goes

to the point ir along the ray
{

arg z =
π

2

}
, and then continues along the arc of the
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circle {|z| = r} in the counterclockwise direction from the point ir to the point
reiϕ. We get∣∣∣∣ln ∣∣∣∣f(z)

f(0)

∣∣∣∣∣∣∣∣ =

∣∣∣∣Re

∫
L

f ′(ζ)

f(ζ)
dζ

∣∣∣∣ ≤ ∫
L

∣∣∣∣f ′(ζ)f(ζ)

∣∣∣∣ |dζ| ≤ (2π + 1)r exp{Kr ln r}.

Hence, for r /∈ E the relation

ln+ ln+M(r, f) = O(r ln r)(5.28)

holds. Since the function M(r, f) is non-decreasing, by Lemma 2.1, the relation
(5.28) holds, also, for r ∈ E. Since T (r, f) ≤ ln+M(r, f), we get the conclusion of
the theorem.

Theorem 5.5 shows that, working on the problem of G. Pólya and A. Wiman,
it suffices to consider entire functions f(z) satisfying lnT (r, f) = O(r ln r).





CHAPTER 7

Applications of Riemann surfaces to value

distribution

In this Chapter we will use some facts about Riemann surfaces. Familiarity
with the corresponding chapter of the well-known course of S. Stöılow [Sto62, Vol.
II, Chapter VII] is much more than sufficient for understanding of this chapter.

1. Geometric meaning of deficient and index values

Let w = f(z) be a function meromorphic in the complex z-plane. It is a one-to-
one mapping of the complex plane {|z| <∞} onto some simply connected Riemann
surface F , that is, onto a Riemann surface which is homeomorphic to the plane1

If the function w = f(z) is meromorphic in the extended complex plane, that is,
if it is rational, then it maps the extended z-plane onto a simply connected closed
Riemann surface (of genus zero), that is, onto a surface which is homeomorphic
to the closed sphere. In this case the surface F is finite-sheeted, and the number
n of sheets is equal to the degree of the rational function. If the function f(z) is
transcendental, then the Riemann surface F is open and infinite-sheeted.

On the other hand, it is known (one of the simplest proofs can be found in
the book by G. M. Goluzin [Gol69, Chapter XI, §2]), that for each open simply
connected Riemann surface F there exists a function w = f(z) meromorphic in the
disc {|z| < R}, 0 < R ≤ ∞, which maps {|z| < R} onto F . If the surface F is
a simply connected closed Riemann surface without one point, then the function
f(z) is rational, and the surface F is called a surface of elliptic type. Otherwise
the surface F is of parabolic or hyperbolic type depending on whether R = ∞ or
R <∞. In all cases the function w = f(z) will be called a mapping function of the
surface F , and the Riemann surface F will be called the surface corresponding to
w = f(z).

We will be mainly interested in functions which are meromorphic and tran-
scendental in {|z| < ∞}, and map {|z| < ∞} onto surfaces of parabolic type. For
this reason, unless stated otherwise, by a Riemann surface we mean an open simply
connected Riemann surface of parabolic type.

A mapping function of a given Riemann surface is determined up to a conformal
univalent mapping of the complex plane onto itself, that is, if f(z) is a mapping
function of F , then all functions of the form f(az + b), a 6= 0, and only such
functions, are mapping functions of F . If we normalize mapping functions in an

1Strictly speaking, the mentioned one-to-one mapping is realized by a function p = f̃(z),

p ∈ F , such that T (f̃(z)) = f(z), where T (p) is the projection of a point p onto the w-plane. We

follow the tradition not to distinguish in f̃(z) and f(z) both in our notation and in our terminology,
the meaning will always be clear from context. We agree also to say that the point p lies over
T (p).

337
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appropriate way2, we get a one-to-one correspondence between Riemann surfaces
and mapping functions. Thus, meromorphic functions can be defined by means
of the corresponding Riemann surfaces. Therefore it is not surprising that, as it
was shown by L. Ahlfors ([Ahl35], see also S. Stöılow [Sto62, Vol. II, Chapter
X, §§1,2]), that the main results of the value distribution theory and their general-
izations can be obtained in a purely geometric way, by studying the corresponding
Riemann surfaces. We will not present the theory of L. Ahlfors here. We shall be
concerned with the determination of the geometric meaning of deficient and index
values only.

Universal necessary and sufficient conditions under which certain value is defi-
cient for a function f(z), which is a mapping function of a surface F , in terms of
the structure of the surface F only, cannot be given in principle. In fact, as we saw
in Section 6 of Chapter 4, the function f(z + h), which is also a mapping function
of F , can have different deficient values for different h. Of course, if we normalize
the mapping function, the mentioned reason will disappear, but it shows that the
problem is very complicated. Up to now necessary and sufficient conditions for ex-
istence of deficient values are known for very restricted classes of Riemann surfaces
only. The same can be said about index values.

Here we only present conditions which are necessary for a to be a deficient or
index value. It is convenient to state them as conditions which are sufficient for
absence of deficient or index values.

Theorem 1.1. If the number of algebraic ramification points of a Riemann
surface F lying over the point a is finite, then the corresponding mapping functions
satisfy ε(a) = 0.

Suppose that the sum of orders of algebraic ramification points lying over a
is equal to q. Algebraic ramification points correspond to multiple a-points of
the mapping function f(z), moreover, if an algebraic ramification point has order
m, then the corresponding multiple a-point has order m + 1. All other points
of F lying over a correspond to simple a-points of the function f(z). Therefore
n1(r, a) = q for r > r0, from where we get N1(r, a) ∼ q ln r. Since the function f(z)
is transcendental, we have ln r = o(T (r, f)) and ε(a) = 0.

Theorem 1.2. Suppose that points of a Riemann surface F whose projections
belong to the η-neighborhood U(a, η) of a point a form a set of regions Fν ⊂ F .

Suppose that each point from U(a, η) is a projection of exactly λν points of
Fν (each algebraic ramification point of order m is counted m + 1 times), where
1 ≤ λν ≤ Λ <∞, that is, the Riemann surface Fν has λν sheets and covers U(a, η)
completely.

Then the value a is not deficient for the mapping function f(z).

We may assume without loss of generality that a = 0 and 1 < η < ∞. In
fact, if this condition is not satisfied, we consider the meromorphic function w =
f1(z) = L(f(z)), where L(w) is a linear-fractional function mapping U(a, η) onto
{|w| < η1}, L(a) = 0, 1 < η1 < ∞. It is clear that δ(a, f) = δ(0, f1) and that
the Riemann surface corresponding to the function f1(z) satisfies the conditions of
Theorem 1.2 with a = 0, η = η1. Denote the closed set of points from Fν lying

2For example, we can require that the point z = 0 is mapped onto a preassigned simple point
of the Riemann surface F (that is, a point which is not an algebraic ramification point), and
f ′(0) = 1.
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over {|w| ≤ 1} by F ′ν . Obviously F ′ν consists of at most Λ closed regions. Let Dν

and D′ν be the pre-images of the sets Fν and F ′ν , respectively, under the mapping
w = f(z). Since Fν covers {|w| < η} completely, then Dν , as well as D′ν contains
as many eiθ-points of the function f(z), as zeros, namely λν . Let Γr be a closed
curve on F , which is the image of the circle {|z| = r}, r > 1, under the mapping
w = f(z), and

L(r) =

∫ 2π

0

◦
f (reiϕ)rdϕ

is the length of Γr with respect to the spherical metric. Denote by l the distance
on the Riemann sphere between the circles whose stereographic projections are the
circles {|w| = 1} and {|w| = η}.

All eiθ-points and zeros of the function f(z) are contained in
⋃
ν D
′
ν ⊂

⋃
ν Dν . If

D′ν ⊂ {|z| ≤ r}, it contributes λν to the functions n(r, eiθ) and n(r, 0). Therefore, if
we denote by k(r) the number of sets D′ν such that D′ν have nonempty intersections
both with {|z| ≤ r} and with {|z| > r}, then

n(r, eiθ)− n(r, 0) ≤ Λk(r),(1.1)

since the number of eiθ-points in D′ν does not exceed Λ. If k(r) ≥ 2, then the
circle {|z| = r} cannot be entirely contained in one of the domains Dν , that is,
the curve Γr is not contained in one of the regions Fν . The curve Γr intersects
k(r) ≥ 2 different sets F ′ν , hence, its projection intersects the ring {1 < |w| < η}
at least 2k(r) times, joining points on the circles {|w| = 1} and {|w| = η}. Hence
L(r) ≥ 2k(r)l. ¿From (1.1) we get the inequality

n(r, eiθ)− n(r, 0) ≤ Λ max(1, k(r))

≤ Λ max

(
1,

1

2l
L(r)

)
≤ Λ

(
1 +

1

2l
L(r)

)
.

(1.2)

Since

N(r, a)−N(1, a) =

∫ r

1

n(t, a)

t
dt,

integrating the inequality (1.2) with respect to ln r we get

N(r, eiθ)−N(1, eiθ)−N(r, 0) +N(1, 0) ≤ Λ

(
ln r +

1

2l

∫ r

1

L(t)

t
dt

)
.(1.3)

Integrating this inequality with respect to θ and using Cartan’s formula (4.13) from
Chapter 1, we get

T (r, f)− T (1, f)−N(r, 0) +N(1, 0) ≤ Λ

(
ln r +

1

2l

∫ r

1

L(t)

t
dt

)
,

from where, by Jensen’s formula (4.1) from Chapter 1,

m(r, 0)−m(1, 0) ≤ Λ

(
ln r +

1

2l

∫ r

1

L(t)

t
dt

)
.(1.4)
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Now we estimate the integral in the right-hand side of (1.4) using the Cauchy-
Buniakowsky inequality. We have∫ r

1

L(t)

t
dt =

∫ r

1

∫ 2π

0

◦
f (teiθ)dθdt

≤
{∫ r

1

∫ 2π

0

{
◦
f (teiθ)}2tdtdθ

} 1
2
{∫ r

1

∫ 2π

0

dtdθ

t

} 1
2

≤
√

2π ln r

{∫ r

0

∫ 2π

0

{
◦
f (teiθ)}2tdtdθ

} 1
2

=
√

2π ln r

√
π
◦
A (r, f),

by the definition of
◦
A (r, f) from Section 4 of Chapter 1. Thus (1.4) implies

m(r, 0) ≤ m(1, 0) + Λ

(
ln r +

π√
2l

√
ln r

√
◦
A (r, f)

)
.(1.5)

Now we use the following lemma.

Lemma 1.1. Let ϕ(t) be a continuously differentiable, positive, non-decreasing
for t ≥ t0 function. Then the inequality ϕ′(t) ≤ {ϕ(t)}1+ε, ε > 0 holds for all t ≥ t0
except, possibly, a set ∆ of intervals, having finite total length.

In fact, the inequality ϕ′(t) > {ϕ(t)}1+ε holds on ∆, therefore∫
∆

dt ≤
∫

∆

ϕ′(t)

{ϕ(t)}1+ε
dt ≤

∫ ∞
t0

ϕ′(t)dt

{ϕ(t)}1+ε
≤ 1

ε

1

{ϕ(t0)}ε .

By the definition of the Shimizu–Ahlfors spherical characteristic
◦
T (r, f) (see

Section 4 of Chapter 1), we have

◦
A (r, f) ln r =

d
◦
T (r, f)

d ln r
ln r =

d
◦
T (r, f)

d ln ln r
.

Therefore, applying Lemma 1.1 to the function
◦
T (r, f) with t = ln ln r, ε = 1/2,

we get that outside a set ∆ of intervals, for which∫
∆

d ln ln r <∞,

the inequality
◦
A (r, f) ln r ≤ {

◦
T (r, f)}3/2 holds. Since ln r = o(T (r, f)), we get

from (1.5) that outside ∆, that is, on an unbounded from above set of values of r
the relation

m(r, 0) ≤ O(1) + Λ

{
ln r +

π√
2l

(
◦
T (r, f))3/4

}
= o(

◦
T (r, f)), r →∞,

holds, that is, δ(0, f) = 0.

It is obvious that the conditions of Theorem 1.2 are not satisfied if a is an
asymptotic value for f(z). In fact, if the conditions of the theorem are satisfied even
with the weaker condition 1 ≤ λν <∞, then the regions in which |f(z)−a| < η′ < η

(or |f(z)| > 1

η′
>

1

η
, if a = ∞) are all bounded, and a cannot be an asymptotic

value.
Theorem 1.2 does not remain true if we omit the condition λν ≤ Λ.
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Consider, for example, the meromorphic function f(z) from the example 1 of
Section 2 from Chapter 5. The set D of those z for which |f(z)| > K, where
K > M and M is the constant defined in the analysis of the example, consists

of bounded connected components Dν since D ⊂
⋃
j∈B

Cj . Obviously, Dν contains

finitely many poles (in our example it is one multiple pole, since each disc Cj
contains one multiple pole). By the known theorems (see S. Stöılow [Sto62, Vol.
II, Ch. V, §2]) the image of Dν under the mapping f(z) onto the Riemann surface
F is a finite-sheeted region Fν ⊂ F covering entirely the disc {|w| > K}. Hence all
the conditions of Theorem 1.2 except λν ≤ Λ, are satisfied. In fact, in our example
the number λν of sheets of Fν is equal to the order of the pole of f(z) lying in
Dν , and the orders of poles of f(z) are not bounded. On the other hand, as it was
shown in the analysis of the example 1, ∞ is a deficient value for f(z).

2. Quasiconformal mappings

Let w = f(z) be a meromorphic function which is a one-to-one mapping of
the complex plane onto a Riemann surface F . This mapping is conformal and uni-
valent in sufficiently small neighborhoods of all points z except multiple a-points
of the function f(z), which correspond to algebraic ramification points on F . For
brevity we call such mapping conformal, without mentioning the exceptional, at
most countable, set. Thus, the problem of determination of a mapping function for
a given Riemann surface F can be described in other words as a problem of deter-
mination of a conformal mapping of F onto {|z| < ∞}. With very few exceptions
it is not known how to construct such mapping effectively. For this reason so-called
quasiconformal mappings of the Riemann surface F onto the complex plane are
constructed. The definition of a quasiconformal mapping which we give is not the
most general, but it is sufficiently general for our purposes.

We say that a function w = ϕ(z) = u(z) + iv(z) is continuously differentiable
in the closed region D̄ if there exist continuous in D̄ functions a(z), b(z), c(z), and
d(z), such that for each point z the equalities (z = x+ iy)

u(z + ∆z)− u(z) = a(z)∆x+ b(z)∆y + o(|∆z|),
v(z + ∆z)− v(z) = c(z)∆x+ d(z)∆y + o(|z|)

}
(2.1)

hold as ∆z → 0, z+ ∆z ∈ D̄. The number J = J [ϕ] = a(z)d(z)− c(z)b(z) is called
the Jacobian of the function ϕ(z) at the point z. It is clear that at all interior
points of D̄ the equalities

a(z) =
∂u(z)

∂x
, b(z) =

∂u(z)

∂y
, c(z) =

∂v(z)

∂x
, d(z) =

∂v(z)

∂y
(2.2)

hold.
The same equalities hold for those points on the boundary of D̄, where the

corresponding partial derivatives exist. However, the partial derivatives of u and v
can be undefined at some boundary points. We shall consider the equalities (2.2)
as definitions of the partial derivatives on ∂D. The equalities (2.1) imply that the
image of a smooth curve C ⊂ D̄ under the mapping w = ϕ(z) is a smooth curve if
J [ϕ] 6= 0 for z ∈ C.

Let D1 and D2 be two closed regions bounded by finite number of piece-wise
smooth closed Jordan curves. A mapping w = ϕ(z) of the regionD1 onto the region
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D2 is called quasiconformal3 if: (1) the mappings ϕ(z) and if: (1) the mappings
ϕ(z) and ϕ−1(w) are one-to-one and continuous on D1 and D2, respectively; (2)
the region D1 can be decomposed by a finite set of piece-wise smooth curves into
closed regions, in each of which the function ϕ(z) is continuously differentiable and
has a positive Jacobian. It is clear in such a case that the inverse mapping ϕ−1(w)
is also quasiconformal.

Let F be a simply connected Riemann surface covering the w-plane (the case of
a plane region is not excluded). Let p0 be a point on F , whose projection is w0; we
let m = 1 if p0 is a simple point, and m = k+1 if p0 is a ramification point of order
k. For sufficiently small η = η(p0) > 0 the function w = w0 + ζm maps the disc
{|ζ| ≤ η} onto a closed neighborhood of the point p0. Let q = ψ(p) be a one-to-one
mapping of the Riemann surface F onto the Riemann surface F1 which covers the
z-plane, p ∈ F , q ∈ F1, and T (q) be the projection of the point q in the z-plane.
The mapping q = ψ(p) is called quasiconformal if the mapping z = T {ψ(w0 + ζm)}
of the disc {|ζ| ≤ η} is quasiconformal for each point p0 ∈ F . In the case when F1

is a region in the z-plane we have T {ψ(w0 + ζm)} ≡ ψ(w0 + ζm).
Thus, the definition of a quasiconformal mapping of a Riemann surface (includ-

ing the case of open plane regions) is reduced to the definition of a quasiconformal
mapping of a closed plane region.

Suppose that a Riemann surface F is mapped conformally onto {|z| <∞} and
quasiconformally onto {|ζ| <∞}. Then the mapping {|z| <∞} → F → {|ζ| <∞}
is a quasiconformal mapping ζ = ζ(z) of the z-plane onto the ζ-plane. The inverse
mapping z = z(ζ) is also quasiconformal. We may assume without loss of generality
that z(0) = 0. As we have already mentioned usually it is not known how to
construct a conformal mapping w = f(z) of the z-plane onto the Riemann surface
F , but a quasiconformal mapping w = ϕ(ζ) of the ζ-plane onto F can sometimes
be efficiently constructed.

Suppose that such a mapping has been constructed. A root ζ0 of the equation
ϕ(ζ) = a (1/ϕ(ζ) = 0 for a = ∞) will be called an a-point of the function ϕ(ζ),
moreover, if ζ0 is mapped onto a simple point of F , then ζ0 is considered as an a-
point of the first order, if ζ0 is mapped onto an algebraic ramification point of order
m, then ζ0 is considered as an a-point of order m + 1. If ϕ(ζ) is a meromorphic
function, this definition is equivalent to the usual definition of an a-point. We
denote the number of a-points of the function ϕ(ζ) in the disc {|ζ| ≤ r} by n(r, a, ϕ),
and the spherical area of the Riemann surface Fr which is the image of {|ζ| < r}
under w = ϕ(ζ) by π

◦
A (r, ϕ). The curves γr, which are images of the circles

{|ζ| = r} under the mapping z = z(ζ), exhaust the z-plane. It is clear that

nγ(r, a, f) ≡ n(r, a, ϕ),
◦
Aγ (r, f) ≡

◦
A (r, f),

where the quantities nγ(r, a, f) and
◦
Aγ (r, f) have the same meaning as in Section 6

of Chapter . Thus, knowledge of the quasiconformal mapping w = ϕ(ζ) allows us to
study the value distribution of the meromorphic function w = f(z) in the case when
we exhaust the complex plane {|z| <∞} by the family of the curves γr, moreover,
we can find Tγ(r, f), Nγ(r, a, f), δγ(a, f), εγ(a, f) etc. Since we are interested in
the usual deficiencies and indices, δ(a, f) and ε(a, f), rather than in the quantities
δγ(a, f) and εγ(a, f), we need conditions on the family γr of curves, and on T (r, f),

3This definition is different from the modern one.
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under which the equalities δγ(a, f) = δ(a, f) and εγ(a, f) = ε(a, f) hold. Such
conditions were found in Section 6 of Chapter 4. In Theorem 6.9 from Chapter 4
the following condition was imposed on the family γr of curves:

r2(r) ∼ r1(r), r →∞,(2.3)

where r2(r) = maxz∈γr |z|, r1(r) = minz∈γr |z|. Since in our case

r2(r) = max
|ζ|=r

|z(ζ)|, r1(r) = min
|ζ|=r

|z(ζ)|,

it is clear that the condition (2.3) holds if

lim
ζ→∞

|z(ζ)|
|ζ| = lim

z→∞

|z|
|ζ(z)| = A, 0 < A <∞.(2.4)

In the next section we shall find a rather wide class of quasiconformal mappings
z(ζ) for which the relation (2.4) takes place.

Now we consider some properties of quasiconformal mappings. We restrict our
attention to quasiconformal mappings of plane regions (as we saw, quasiconformal
mappings of Riemann surfaces can be reduced to this case).

First we observe that a composition of two quasiconformal mappings is also a
quasiconformal mapping. Let w = ψ(z) = u(z) + iv(z) be a function which maps
quasiconformally a region G onto a region D. Let z0 be such point in G that the
function ψ(z) is continuously differentiable in its sufficiently small neighborhood.
Let dz = |dz|eiϕ, then

|dw|2 = (du)2 + (dv)2 = (E cos2 ϕ+ 2F sinϕ cosϕ+G sin2 ϕ)|dz|2,

where E =

(
∂u

∂x

)2

+

(
∂v

∂x

)2

, F =
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y
, G =

(
∂u

∂y

)2

+

(
∂v

∂y

)2

. The

modulus of the derivative in the direction arg(z − z0) is equal to∣∣∣∣dwdz
∣∣∣∣
ϕ

=

√
E cos2 ϕ+ 2F sinϕ cosϕ+G sin2 ϕ =

√
h(ϕ).

It is easy to compute that

(2.5)

(2.5′) max
0≤ϕ≤2π

h(ϕ) =
1

2
{E +G+

√
(E +G)2 − 4J2},

(2.5′′) min
0≤ϕ≤2π

h(ϕ) =
1

2
{E +G−

√
(E +G)2 − 4J2}.

The quantity

p(z0, w0) = pψ(z0, w0) =

(
max

0≤ϕ≤2π

∣∣∣∣dwdz
∣∣∣∣
ϕ

)/(
min

0≤ϕ≤2π

∣∣∣∣dwdz
∣∣∣∣
ϕ

)
, w0 = ψ(z0),

is called the characteristic of the quasiconformal mapping w = ψ(z). At those
points of G for which there is no neighborhood in which ψ(z) is a continuously
differentiable function, the characteristics p(z0, w0) is not defined. However, as is
easy to see, even at these points there exists the derivative |dw/dz|ϕ in an arbitrary
direction, continuously depending on ϕ. By the Heine–Borel lemma, in each closed
subregion of the region G the characteristic p(z, w) is defined and is continuous
everywhere except, possibly, a finite set of piecewise smooth curves. If the mapping
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w = ψ(z) is conformal at z0, then |dw/dz| does not depend on the direction ϕ, and
p(z0, w0) = 1. Conversely, if p(z0, w0) = 1, then the mapping is conformal at z0. In
fact, if p(z0, w0) = 1, then (E +G)2 − 4J2 = 0, that is,

(E +G− 2J)(E +G+ 2J)

=

{(
∂u

∂x
− ∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2
}{(

∂u

∂x
+
∂v

∂y

)2

+

(
∂u

∂y
− ∂v

∂x

)2
}

= 0.

The expression in the second braces cannot be equal to zero, since otherwise we

would have
∂u

∂x
= −∂v

∂y
,
∂u

∂y
=
∂v

∂x
, J = −

(
∂u

∂x

)2

−
(
∂u

∂y

)2

≤ 0, contrary to the

assumption J > 0. Hence the expression in the first braces is equal to zero, that
is w = ψ(z) satisfies the Cauchy–Riemann equations at the point z0, together with
the condition J > 0 the implies that the mapping is conformal.

If p(z, w) = 1 at all points of G where the characteristic is defined, then the
function w = ψ(z) is analytic in G. In fact, the function ψ(z) is continuous in G
and is analytic in G everywhere except, possibly a set whose intersection with each
closed subregion of G consists of finitely many piecewise smooth curves. By the
well-known result from the theory of analytic functions, the function w = ψ(z) is
analytic everywhere in the region G. Since J [ψ] > 0, we have ψ′(z) 6= 0, and the
mapping w = ψ(z) is conformal in G.

It is easy to verify that at the point z0 where the characteristic p(z0, w0) exists,
the mapping w = ψ(z) transfers the element dz = |dz|eiϕ into a certain element
dw = |dw|eiθ , where θ gets an increment 2π if ϕ gets an increment 2π. Therefore

max
ϕ
|dw/dz|ϕ =

1

minθ |dz/dw|θ
;

min
ϕ
|dw/dz|ϕ =

1

maxθ |dz/dw|θ
;

p(z0, w0) =
maxϕ |dw/dz|ϕ
minϕ |dw/dz|ϕ

=
maxθ |dz/dw|θ
minθ |dz/dw|θ

= p(w0, z0).

In what follows, when writing relations containing the characteristics, we as-
sume that the characteristics are defined at the corresponding points. Note, first
of all, an obvious inequality: 1 ≤ p(z, w) <∞.

Next, if a quasiconformal mapping w = ψ(z) is obtained as a composition of
two quasiconformal mappings w = w(ζ) and ζ = ζ(z), then

p(z, w) ≤ p(z, ζ)p(ζ, w).(2.6)

In fact,

p(z, w) =
max |dw/dz|
min |dw/dz| =

max{|dw/dζ||dζ/dz|}
min{|dw/dζ||dζ/dz|}

≤ max |dw/dζ|max |dζ/dz|
min |dw/dζ|min |dζ/dz| = p(ζ, w)p(z, ζ).

If one of the mappings w = w(ζ) and ζ = ζ(z) is conformal, then the equality is
attained in (2.6). In fact, let, for example, ζ = ζ(z) be a conformal mapping. Then
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|dζ/dz|ϕ = |dζ/dz| does not depend on ϕ and

p(z, w) =
max{|dw/dζ||dζ/dz|}
min{|dw/dζ||dζ/dz|} =

max |dw/dζ|
min |dw/dζ| = p(ζ, w).(2.7)

Similarly, if the mapping w = w(ζ) is conformal, then

p(z, w) = p(z, ζ).(2.8)

It is also easy to see that if we, along with the quasiconformal mapping w =
ψ(z) consider the “symmetric” mapping w = ψ1(z) = ψ(z̄), we have pψ(z, w) =
pψ1(z̄, w̄). The equalities (2.7) and (2.8) show that the characteristic of a quasicon-
formal mapping is a conformal invariant.

The equalities (2.5′) and (2.5′′) imply that

p(z, w) =
E +G

2J
+

√(
E +G

2J

)2

− 1

=
maxϕ |dw/dz|2ϕ

J
=

J

minϕ |dw/dz|2ϕ
= K +

√
K2 − 1,

(2.9)

where K = (E +G)/2J . From here we get the estimate

p(z, w) ≤ (E +G)/J = 2K.(2.10)

Now we introduce several examples of quasiconformal mapping which we shall
refer to in what follows.

Example 1. The function w = ψ(z) = xl1/l + iy maps quasiconformally the
rectangle {0 ≤ x ≤ l, 0 ≤ y ≤ 1} onto the rectangle {0 ≤ u ≤ l1, 0 ≤ v ≤ 1}. In
this case J = l1/l, E = (l1/l)

2, G = 1. Using the formula (2.9) we get

p(z, w) =
1 + (l1/l)

2 + |1− (l1/l)
2|

2l1/l
= max

(
l1

l
,
l

l1

)
.(2.11)

Example 2. The function

w = ψ(z) = x+ i

{(
q2 − q1

l
x+ q1

)
y

m
+
a

l
x

}
,

where −∞ < a < ∞, 0 < q1, q2 < ∞, 0 < l < ∞, maps the rectangle {0 ≤ x ≤
l, 0 ≤ y ≤ m} quasiconformally onto the trapezoid with vertices at the points
w = 0, q1i, l + (a+ q2)i, l + ai. For this mapping we have

max(q1, q2)

m
≥ J =

∂v

∂y
=

(
q2 − q1

l
x+ q1

)
1

m
≥ min(q1, q2)

m
,

E +G = 1 +

(
q2 − q1

l
· y
m

+
a

l

)2

+

(
q2 − q1

l
x+ q1

)2
1

m2
,

2K = J +
1

J
+

1

J

(
q2 − q1

l
· y
m

+
a

l

)2

.

Taking into account (2.10), we get the estimate

p(z, w) ≤ m

min(q1, q2)
+

max(q1, q2)

m
+m

max{a2, (q2 − q1 + a)2}
l2 min(q1, q2)

.(2.12)
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In some special cases the estimate can be simplified. If q1 = q2 = m, then J ≡ 1,
E +G = 2 + (a/l)2, K = 1 + 1

2 (a/l)2,

p(z, w) ≡ 1 +
1

2

(a
l

)2

+
|a|
l

√
1

4

(a
l

)2

+ 1 ≤ 2 +
(a
l

)2

.(2.13)

If a = 0, m = q1 = 1, q2 = q, then (2.12) implies

p(z, w) ≤ 1 + max

(
q,

1

q

)
+

(q − 1)2

l2 min(1, q)
.

Suppose that a closed regionG is mapped quasiconformally onto a closed region
D by a function w = ψ(z). Let C be a smooth curve, C ⊂ G. If the equality
|dw/dz|ϕ = const holds on C, where the derivative is taken in the direction of the
tangent to C, we say that the mapping has constant distortion on C. If the curve
C is piecewise-smooth, and the distortion is equal to the same constant on each of
the smooth pieces forming C, we say that the mapping has a constant distortion
on C. It is easy to verify that in the both preceding examples the distortion is
constant on each of the edges of the mapped quadrilaterals.

Remark. We will have to use quasiconformal mappings which can be obtained
from the considered above by additional entire linear mappings or by passage to
“symmetric” mappings. It is clear that the estimates for the characteristic obtained
above will remain true. Therefore referring to one of the examples we assume that,
if needed, readers will make these additional transformations themselves. This
remark will be applied, also, to the examples considered below.

Example 3. Let u = ω(x) be a continuously differentiable on {0 ≤ x ≤ l}
function, such that ω(0) = 0, ω(l) = l, 0 < 1/M ≤ ω′(x) ≤ M < ∞. Our purpose
is to construct a quasiconformal mapping of the rectangle {0 ≤ x ≤ l, 0 ≤ y ≤ 1}
onto the same rectangle {0 ≤ u ≤ l, 0 ≤ v ≤ 1}, such that the points z = x+ i are
mapped to the points w = ω(x) + i, and all points on the other three edges of the
rectangle are fixed by the mapping. The mapping{

u = (ω(x) − x)y + x,

v = y

is a desired mapping. For this mapping we have

J = (ω′(x)− 1)y + 1, min(1, ω′) ≤ J ≤ max(1, ω′),

E +G = 1 + {(ω′(x)− 1)y + 1}2 + (ω(x)− x)2.

Then, by (2.10),

p(z, w) ≤ 1

J
+ J +

(ω(x) − x)2

J
≤ 1 + max

(
ω′,

1

ω′

)
+

(ω(x) − x)2

min(1, ω′)
≤ 1 +M +Ml2.

(2.14)

Example 4. Let ωj(x)(j = 1, 2) be continuously differentiable on {0 ≤ x ≤ l}
functions, ωj(0) = 0, ωj(l) = l, 0 < 1/M ≤ ω′j(x) ≤ M < ∞, j = 1, 2, and ωj(y)

(j = 3, 4) be continuously differentiable on {0 ≤ y ≤ 1} functions, ωj(0) = 0,
ωj(1) = 1, 0 < 1/M ≤ ω′j(y) ≤ M < ∞, j = 3, 4. Our purpose is to map the
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rectangle R = {0 ≤ x ≤ l, 0 ≤ y ≤ 1} quasiconformally onto the same rectangle
{0 ≤ u ≤ l, 0 ≤ v ≤ 1} in such a way, that the points z = x are mapped to the
points w = ω1(x), the points z = x + i are mapped to the points w = ω2(x) + i,
the points z = iy are mapped to the points w = iω3(y), and the points z = l + iy
are mapped to the points w = l + iω4(y).

Thus we are given certain continuous one-to-one mapping of the boundary of
the rectangle {0 ≤ x ≤ l, 0 ≤ y ≤ 1} onto the boundary of the same rectangle
{0 ≤ u ≤ l, 0 ≤ v ≤ 1}, which preserves vertices and satisfies additional smoothness
conditions. We need to extend this mapping to a quasiconformal mapping of {0 ≤
x ≤ l, 0 ≤ y ≤ 1} onto {0 ≤ u ≤ l, 0 ≤ v ≤ 1}.

The desired mapping can be constructed in the following way. First we map
the rectangle R onto itself in such a way that points on vertical edges are fixed,
and points on horizontal edges are mapped in the described way. In order to
get such a mapping we apply the mappings from Example 3 to the rectangles
{0 ≤ x ≤ l, 0 ≤ y ≤ 1/2} and {0 ≤ x ≤ l, 1/2 ≤ y ≤ 1}, the points of the intervals
{x = 0, 0 ≤ y ≤ 1}, {x = l, 0 ≤ y ≤ 1}, and {y = 1/2, 0 ≤ x ≤ l} are fixed points
of these mappings. After this, in a similar way, we construct a quasiconformal
mapping of R onto R, such that points on horizontal edges are fixed, and points
on vertical edges are mapped in the described way (to do this we divide R into
two rectangles: {0 ≤ x ≤ l/2, 0 ≤ y ≤ 1} and {l/2 ≤ x ≤ l, 0 ≤ y ≤ 1}). The
composition of these two quasiconformal mappings is a desired mapping. Using
(2.6) and (2.14) it is not difficult to get an estimate for its characteristic. We
mention only that p(z, w) is bounded by a constant depending on M and l only.

Example 5. Let F be a closed Riemann surface of genus zero, covering the
w-plane, D be a closed simply connected region on F , bounded by a closed Jordan
curve C having the following properties:

(1) C does not pass through the algebraic ramification points of the surface
F .

(2) There are four points A1, A2, A3, A4 on C, listed according to their order
on C, such that the arcs A1A2, A2A3, A3A4, A4A1, which partition C,
have continuous curvature.

(3) In a sufficiently small neighborhood of the point Aj , the arcs Aj−1Aj and
AjAj+1, j = 1, 2, 3, 4, A5 = A1, A0 = A4, either consist of two orthogonal
line segments, or of one line segment and one circular arc, also orthogonal
at Aj , moreover the region D has at Aj an angle of magnitude π/2.

Our purpose is to construct a quasiconformal mapping z = ψ(w), which maps
D onto some rectangle R = {0 ≤ x ≤ l, 0 ≤ y ≤ 1} in the (z = x + iy)-plane,
such that the points A1, A2, A3, A4 are mapped to the vertices of the rectangle, and
the mapping has a constant distortion on each of the arcs AjAj+1. To solve this
problem we need some theorems from the theory of conformal mappings, all results
we need can be found, for example, in the book G.M. Goluzin [Gol69].

We may assume without loss of generality that the projection of C is contained
in the w-plane. As is known (see [Gol69, Ch.IV,§6]), for a closed region D there
exists a one-to-one conformal mapping of D onto a rectangle R′ = {0 ≤ ξ ≤ l, 0 ≤
η ≤ 1} in the plane ζ = ξ+iη, where the constant l depends on D and on the choice
of the points Aj ; such that the points A1, A2, A3, and A4 are mapped to the points
ζ = 0, l, l + i, and i, respectively. Denote such a mapping by ζ = ζ(w). Since the
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curves AjAj+1 have continuous curvature, by Kellogg’s theorem (see G.M. Goluzin
[Gol69, Ch.X,§1, Thm. 6]), it is easy to conclude that the meromorphic function
w = w(ζ), inverse to ζ(w), has a continuous derivative w′(ζ) 6= 0 everywhere on
the boundary of R′, except the vertices of R′. But, by the condition (3) and the
symmetry principle, the function w(ζ) can be analytically continued to certain
sufficiently small neighborhoods of the vertices, moreover, it establishes a univalent
conformal mapping of these neighborhoods. Hence the derivative w′(ζ) exists also
in neighborhoods of vertices of R′, where it is also continuous and nonzero. Hence
everywhere on the boundary ∂R′ the derivative w′(ζ) 6= 0 exists and is continuous.
Hence the inequality 0 < 1/M1 ≤ |w′(ζ)| ≤ M1 < ∞ holds, where M1 is some
constant, ζ ∈ ∂R′.

Let z = T (w) be a function establishing a continuous one-to-one correspondence
between the curve C and the boundary ∂R of the rectangle, such that the points
A1, A2, A3, A4 are mapped onto the vertices z = 0, l, l+ i, i, respectively, and the
distortion is constant on each of the arcs AjAj+1, that is,

∣∣∣∣dTdw
∣∣∣∣ =

∣∣∣∣ dzdw
∣∣∣∣ =


l/length(A1A2) for w ∈ A1A2,

1/length(A2A3) for w ∈ A2A3,

l/length(A3A4) for w ∈ A3A4,

1/length(A1A4) for w ∈ A1A4.

(2.15)

It is clear that 0 < 1/M2 ≤ |dz/dw| ≤M2 <∞. On the boundary ∂R′ we have
defined a function z = ω(ζ) = T (w(ζ)) which maps ∂R′ onto ∂R in such a way,
that vertices are mapped onto vertices. The function z = ω(ζ) has a continuous
derivative on each of the sides of ∂R′, moreover

1/(M1M2) ≤ |ω′(ζ)| = |T ′(w)||w′(ζ)) ≤M1M2.

Using the result of Example 4, we can extend this mapping z = ω(ζ) to a
quasiconformal mapping z = Ω(ζ) of the rectangle R′ onto R, moreover, the char-
acteristic p(ζ, z) does not exceed certain constant depending on l and M1M2 only.
The quasiconformal mapping z = Ω(ζ(w)) has the desired properties. In fact, by
the equality (2.7), we have p(w, z) ≡ p(ζ(w), z), and the equality z = Ω(ζ(w)) =
ω(ζ(w)) = T (w(ζ)) = T (w) holds on C, and, by (2.15), the distortion is constant
on each arc AjAj+1.

Example 6. Let w = ψ(z) be a quasiconformal mapping of the disc {|z| ≤ R}
onto the disc {|w| ≤ R}, such that the points z = reiϕ, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π,
are mapped to the point w = reiθ(ϕ), where θ(ϕ) is a continuously differentiable
function on [0, 2π], θ′(ϕ) > 0, θ(0) = 0, θ(2π) = 2π. Let us estimate the character-
istic of this mapping. In this connection it is convenient to consider an auxiliary
mapping of the half-strip {σ < lnR, 0 < τ < 2π}, ζ = σ + iτ onto the half-strip
{σ1 < lnR, 0 < τ1 < 2π}, ζ1 = σ1 + iτ1 by means of the function ζ1 = lnψ(eζ).
It is clear that p(ζ, ζ1) = p(z, w). Therefore it suffices to estimate p(ζ, ζ1). Since

σ1 = σ, τ1 = θ(τ), we have J = θ′, E + G = 1 + θ′
2
, and, using the formulas (2.9)
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we get

p(z, w) = p(ζ, ζ1) =
1

2

(
1

θ′
+ θ′

)
+

√
1

4

(
1

θ′
+ θ′

)2

− 1

=
1

2

(
1

θ′
+ θ′

)
+

1

2

∣∣∣∣ 1

θ′
− θ′

∣∣∣∣ = max

(
θ′,

1

θ′

)
.

(2.16)

Thus

p(z, w) ≤ max

max
[0, 2π]

θ′(ϕ),
1

min
[0, 2π]

θ′(ϕ)

 .

Example 7. Our purpose is to find a quasiconformal mapping of the disc
{|z| ≤ R} onto the disc {|w| ≤ R} in such a way that the point z = x0, 0 < x0 < R,
is mapped onto w = 0, and the points {|z| = R} are fixed points of the mapping.

First we carry out a linear-fractional transformation of the disc {|z| ≤ R} onto
the disc {|ζ| ≤ R}, mapping the point z = x0 onto ζ = 0, and z = R onto ζ = R:

ζ = ζ(z) =
R2(z − x0)

R2 − zx0
.

Under this mapping each point ζ = Reiθ has a unique pre-image z = Reiϕ(θ), where
ϕ(θ) is an odd continuously differentiable strictly increasing function on [−π, π],
ϕ(−π) = −π, ϕ(0) = 0, ϕ(π) = π. Now we construct a quasiconformal mapping
which maps the disc {|ζ| ≤ R} onto the disc {|w| ≤ R} in such a way that the point
ζ = |ζ|eiθ, |θ| ≤ π, 0 < |ζ| ≤ R, is mapped onto the point w = |ζ|eiϕ(θ), w(0) = 0.
It is easy to see that the mapping w = w(z) = w[ζ(z)] has the desired properties.

Let us estimate the characteristic p(z, w) of the mapping. Since the mapping
ζ(z) is conformal, we have p(z, w) = p(ζ, w). The equality (2.16) implies that

p(z, w) = max

(
ϕ′,

1

ϕ′

)
= max

(
dθ

dϕ
,
dϕ

dθ

)
if arg z = ϕ. But

dθ

dϕ
=

∣∣∣∣dζdz
∣∣∣∣
z=Reiϕ

=
R2 − x2

0

|R− eiϕx0|2
,

R− x0

R+ x0
≤ dθ

dϕ
≤ R+ x0

R− x0
.

Hence

p(z, w) ≤ R+ x0

R− x0
=

1 +
x0

R

1− x0

R

.(2.17)

This estimate is sharp because

p(z, w) =
dθ

dϕ

∣∣∣∣
ϕ=0

=
1 +

x0

R

1− x0

R

for z = x, 0 < x < R.
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Example 8. Let F1 be the Riemann surface of the function n
√
z, n = 2, 3, . . . ,

over the disc {|z| < R}, F2 be the Riemann surface of the function n
√
w − a, 0 <

|a| < R, over the disc {|w| < R}. Our purpose is to find a quasiconformal mapping
of F1 onto F2, such that the algebraic ramification point (of order n − 1) of F1

over the point z = 0 is mapped onto the algebraic ramification point of F2 over
w = a, and the boundary points remain fixed. Such a mapping can be obtained
as w = w(z) = w{z2(z1(z))}, where z1(z) = ze−iα, α = arg a, z2 = z2(z1) is the
inverse mapping to the mapping considered in Example 7 (the role of x0 is played
by |a|), and w(z2) = z2e

iα. Here

p(z, w) ≤
1 +
|a|
R

1− |a|
R

.

Example 9. Let F be a closed Riemann surface of genus zero, covering the
w-plane, D be a closed simply connected region on F , bounded by a closed Jordan
curve C, which does not pass through algebraic ramification points of F and has
a continuous curvature. There exists a quasiconformal mapping z = ψ(w) with
a bounded characteristic of the region D onto the disc {|z| ≤ R}, which has a
constant distortion on C.

Such a quasiconformal mapping can be constructed similarly to the construction
of Example 5, but instead of Example 4 we use Example 6, and some parts of the
argument are simpler. Note that the estimate of the characteristic p(w, z) does not
depend on the radius of the disc {|z| ≤ R}, since we can pass from this disc to any
other disc using an additional entire linear transformation.

Example 10. Let W be a Riemann surface constructed in the following way.
Take two copies, G1 and G2, of the disc {|w| < 2} with a cut along the segment
joining the points w = ±1. We paste together the upper boundary of the cut in G1

with the lower boundary of the cut in G2, and vice versa. We get a two-sheeted
Riemann surface W with two algebraic ramification points of the first order over
w = 1 and w = −1. It is clear that the surface W is doubly-connected and its
boundary consists of two circles, C1 and C2, lying over {|w| = 2}, C1 = ∂G1,
C2 = ∂G2. Our purpose is to construct a quasiconformal mapping with bounded
characteristic of the Riemann surface W onto the one-sheeted annulus {1/2 <
|z| < 2}, such that the point 2eiθ ∈ C1 is mapped onto the point 2eiθ, and the
point 2e−iθ ∈ C2 is mapped onto the point eiθ/2. We are not interested in precise
numerical bounds for the characteristic.

We map the Riemann surface W conformally4 onto the annulus {1/R < |ζ| <
R}, where R is some constant, 1 < R <∞ in such a way, that G1 is mapped onto
{1 < |ζ| < R}, G2 is mapped onto {1/R < |ζ| < 1}, and the algebraic ramification
points over w = ±1 are mapped onto ζ = ±1, respectively, and the points ±2 ∈ C1

are mapped onto the points ζ = ±R, and the points ±2 ∈ C2 are mapped onto
ζ = ±1/R. To construct such a mapping it suffices to map {|w| < 2, Imw > 0}
onto {1 < |ζ| < R, Imζ > 0} conformally in such a way that the points −2,−1, 1, 2
are mapped onto the points −R,−1, 1, R, respectively, and to continue the obtained

4The mapping function can be written explicitly using elliptic functions (see L.I. Volkovyskĭı,
G.L. Lunts, and I.G. Aramanovich [VLA91, Problem 1370, 7], or L.I. Volkovyskĭı [Vol54, p. 146]).
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function using the symmetry principle. The symmetry principle implies that there
exists a continuous, odd, increasing on [−π, π] function ϕ = ϕ(θ), such that ϕ(0) =
0, ϕ(±π) = ±π, the point 2eiθ ∈ C1 is mapped onto the point Reiϕ(θ), and the
point 2e−iθ ∈ C2 is mapped onto the point 1

R
eiϕ(θ). Since the mapping is conformal

in the points lying on C1 and C2, then ϕ has a continuous derivative ϕ′(θ) > 0 on
[−π, π]. Using the function ζ1 = ln ζ we map {1/R < |ζ| < R, | arg ζ| < π} onto
the rectangle R1 = {|Reζ1| < lnR, |Imζ1| < π}. Now we map R1 quasiconformally
onto the rectangle R2 = {|Reζ2| < ln 2, |Imζ2| < π} in such a way, that the point

ξ1 ± iπ, |ξ1| < lnR, is mapped onto the point
ln 2

lnR
ξ1 ± iπ = ξ2 ± iπ, and the point

± lnR+ iϕ(θ) is mapped onto the point ± ln 2 + iθ.
Examples 1 and 4 imply that the mapping ζ2 = ψ(ζ1) can be constructed in

such a way, that it characteristic satisfies p(ζ1, ζ2) ≤ Q, where Q is some constant.
Now, in order to get the desired mapping, it remains to map R2 onto {1/2 < |z| <
2, | arg z| < π} by means of the function z = eζ2 , and to observe that the function
z = z(ζ) = exp{ψ(ln ζ)} remains univalent and continuous on the negative radius
of the annulus {1/R < |ζ| < R}. Our mapping of the Riemann surface W onto
{1/2 < |z| < 2} is obtained as a composition of mapping out of which all mappings,
except the mapping ζ2 = ψ(ζ1), were conformal. Hence, p(w, z) = p(ζ1, ζ2) ≤ Q.

3. The Teichmüller theorem

In this section we prove the following theorem.

Theorem 3.1 (O. Teichmüller). Let w = w(z) = u(z) + iv(z) be a homeomor-
phic mapping of the complex z-plane onto {|w| < R ≤ ∞}, which is quasiconformal
for |z| ≥ r0, and ∫∫

|z|≥r0
{p(reiϕ, w)− 1}dr dϕ

r
<∞.(3.1)

Then R is necessarily equal to ∞ and the limit

lim
z→∞

|w(z)|
|z| = A, 0 < A <∞,(3.2)

exists as a finite positive limit.

We introduce some notation. Let

h(t) =

∫∫
|z|≥t
{p(reiϕ, w) − 1}dr dϕ

r
, t ≥ r0.

The inequality (3.1) implies that h(t) has finite values and monotonically tends to
0 as t→∞. Let z = reiϕ, w = ρeiθ, and let dσ(z) be the area differential at z. We
can rewrite the condition (3.1) in the following way:

(3.1′)

∫∫
|z|≥r0

{p(z, w)− 1}dσ(ln z) =

∫∫
|z|≥r0

{p(z, w)− 1}dσ(z)

|z|2 <∞.

The circle {|w| = ρ} corresponds to a piecewise smooth closed Jordan curve Γρ
in the z-plane. It is clear that if ρ0 is sufficiently large, then for ρ ≥ ρ0 the curve Γρ
lies in {r0 < |z| < ∞}, contains the point z = 0 in its interior, and the increment
of arg z over Γρ is equal to 2π. Let

r1(ρ) = min
z∈Γρ

|z|, r2(ρ) = max
z∈Γρ

|z|, ω(ρ) = ln
r2(ρ)

r1(ρ)
.
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It is easy to see that r1(ρ) and r2(ρ) are continuous functions, which tend mono-
tonically to ∞ as ρ → ∞. In fact, the regions Gρ, ρ > ρ0, which are the images
of the discs {|w| < ρ} under the mapping z = z(w), contain z = 0 and exhaust
{|z| < ∞}. Therefore, for each disc {|z| ≤ r}, if ρ is sufficiently large, the region
Gρ contains the disc, hence r2(ρ) ≥ r1(ρ) → ∞. The continuity of the functions
r1(ρ) and r2(ρ) follows immediately from the continuity of the mapping z = z(w).

The proof of the theorem is rather long. Therefore we start with an outline of
its plan, and divide the proof into steps. First we show that R =∞ (Step I). Then
(3.2) is equivalent to the relation

(3.2′) lim
w→∞

|z(w)|
|w| = B, 0 < B = 1/A <∞.

To prove (3.2′) it suffices to establish that

lim
ρ→∞

r1(ρ)

ρ
= lim

ρ→∞

r2(ρ)

ρ
= B.

We prove the existence of a finite limit lim
ρ→∞

ln
r1(ρ)

ρ
using the Bolzano–Cauchy

criterion. Let ρ2 > ρ1 ≥ ρ. We need to estimate the difference

Q(ρ1, ρ2) = ln
r1(ρ2)

ρ2
− ln

r1(ρ1)

ρ1
= ln

r1(ρ2)

r1(ρ1)
− ln

ρ2

ρ1

both from below and from above. Such estimates will be found in Step II of the
proof. In order to show that Q(ρ1, ρ2) tends to 0 as ρ1 →∞, we need to show that
ω(ρ) → 0 as ρ → ∞. The proof of this fact is the contents of Step III, the most
complicated step in the proof. In the final Step IV, using the fact that ω(ρ) → 0
as ρ→∞ and the estimates for Q(ρ1, ρ2) found in Step II, we prove the existence
of the limit limρ→∞ r1(ρ)/ρ = B, and also the existence of the limit

lim
ρ→∞

r2(ρ)

ρ
= lim
ρ→∞

eω(ρ) r1(ρ)

ρ
= B.

Now we turn to the proof.
Step I. We show that R =∞. Let r′ be so large that r′ ≥ r0, and the image of

the disc {|z| < r′} under the mapping w = w(z) contains the point w = 0. Denote
by D the image of the region {r′ < |z| < ∞} under this mapping. If we assume
that R <∞, we get that

K =

∫∫
D

dρ dθ

ρ
=

∫∫
D

dσ(lnw) =

∫∫
|z|>r′

dσ(lnw)

dσ(ln z)
dσ(ln z) <∞.

Since the increment of argw(z) as z runs over the circle {|z| = r}, r > r′, is equal
to 2π, we have

2π ≤
∫
|z|=r

|d lnw(z)| =
∫
|z|=r

∣∣∣∣d lnw

d ln z

∣∣∣∣ dϕ =

∫
|z|=r

∣∣∣ z
w

∣∣∣ ∣∣∣∣dwdz
∣∣∣∣ dϕ.

We divide both sides of this inequality by r and integrate with respect to r from r′

to r′′ > r′. We get the inequality

2π ln
r′′

r′
≤
∫∫

r′<|z|<r′′

∣∣∣ z
w

∣∣∣ ∣∣∣∣dwdz
∣∣∣∣ dσ(ln z).(3.3)
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From (2.9) we get that∣∣∣ z
w

∣∣∣ ∣∣∣∣dwdz
∣∣∣∣ ≤ ∣∣∣ zw ∣∣∣max

∣∣∣∣dwdz
∣∣∣∣ =

∣∣∣ z
w

∣∣∣√p(z, w)J [w(z)] =

√
p(z, w)

dσ(lnw)

dσ(ln z)
.

The inequality (3.3) implies

2π ln
r′′

r′
≤
∫∫

r′<|z|<r′′

√
p(z, w)

dσ(lnw)

dσ(ln z)
dσ(ln z).

Applying the Cauchy–Buniakowsky inequality we get

(
2π ln

r′′

r′

)2

≤
∫∫

r′<|z|<r′′

dσ(lnw)

dσ(ln z)
dσ(ln z)

∫∫
r′<|z|<r′′

p(z, w)dσ(ln z)

≤
∫∫

r′<|z|<r′′

dσ(lnw)

dσ(ln z)
dσ(ln z)

{∫∫
|z|>r′

{p(z, w)− 1}dσ(ln z)

+

∫∫
r′<|z|<r′′

dσ(ln z)

}
.

(3.4)

Hence (
2π ln

r′′

r′

)2

≤ K
{
h(r′) + 2π ln

r′′

r′

}
and

2π ln
r′′

r′
≤ K

{
1 +

h(r′)

2π ln r′′

r′

}
.

Letting r′′ → ∞ we get a contradiction, since the left-hand side of this inequality
tends to ∞, but the right-hand side remains bounded. Thus R =∞.

Step II. The purpose of this step is to get estimates of the quantity Q(ρ1, ρ2)
in terms of ω(ρ) and h(ρ). We fix the value of ln z at some point A ∈ Γρ, and map
Γρ onto some curve γρ in the ζ-plane by the branch of ln z which is continuous on
Γρ (that is, such that the function ln z(ρeiθ) is continuous as a function of θ on
some interval of length 2π). The point A will correspond to the ends of the curve
γρ: ζ = a and ζ = b, b− a = 2πi. If ζ = ξ + iη, then

max
ζ∈γρ

ξ = ln r1(ρ), max
ζ∈γρ

ξ = ln r2(ρ).

Denote by c and d some points on γρ for which

Rec = ln r1(ρ), Red = ln r2(ρ).

Suppose that the points c and d are located on the curve γρ in such a way that
the order of the points on the curve is a, c, d, b (we do not exclude the possibilities
a = c and d = b). We map the part of the curve γρ located between the points c
and d symmetrically with respect to the line Reζ = ln r1(ρ), and shift to the left
onto 2(ln r2(ρ) − ln r1(ρ)) = 2ω(ρ) the part of the curve γρ located between the
points d and b. We get a continuous curve γ′ρ with ends at the points ζ = a and
ζ = b − 2ω(ρ) = a − 2ω(ρ) + 2πi. Hence the length of the curve γ′ρ is at least√

4π2 + 4ω2(ρ). But the length of the curve γρ is the same as the length of the



354 7. APPLICATIONS OF RIEMANN SURFACES TO VALUE DISTRIBUTION

curve γ′ρ, hence it is also at least
√

4π2 + 4ω2(ρ). If the order of the points on the
curve γρ is a, d, c, b, we use a similar argument. Thus

2
√
π2 + ω2(ρ) ≤

∫
γρ

|dζ| =
∫

Γρ

|d ln z| =
∫
|w|=ρ

∣∣∣∣ d ln z

d lnw

∣∣∣∣ |d lnw| =
∫ 2π

0

∣∣∣∣ d ln z

d lnw

∣∣∣∣ dθ.
Applying the Cauchy-Buniakowsky inequality we get

2π +
2ω2(ρ)

π
≤
∫ 2π

0

∣∣∣∣ d ln z

d lnw

∣∣∣∣2 dθ,
from where, dividing by ρ and integrating with respect to ρ from ρ1 to ρ2, ρ0 ≤
ρ1 < ρ2 <∞, we get

2π ln
ρ2

ρ1
+

2

π

∫ ρ2

ρ1

ω2(ρ)

ρ
dρ ≤

∫ ρ2

ρ1

∫ 2π

0

∣∣∣∣ d ln z

d lnw

∣∣∣∣2 dρ dθρ .

By (2.9) we get∣∣∣∣ d ln z

d lnw

∣∣∣∣2 ≤ ∣∣∣wz ∣∣∣2 max

∣∣∣∣ dzdw
∣∣∣∣2 =

∣∣∣w
z

∣∣∣2 p(w, z)J [z(w)] = p(z, w)
dσ(ln z)

dσ(lnw)
.

Thus, we have∫ ρ2

ρ1

∫ 2π

0

p(z, w)
dσ(ln z)

dσ(lnw)

dρ dθ

ρ
≥ 2π ln

ρ2

ρ1
+

2

π

∫ ρ2

ρ1

ω2(ρ)

ρ
dρ.(3.5)

But∫ ρ2

ρ1

∫ 2π

0

p(z, w)
dσ(ln z)

dσ(lnw)
dσ(lnw) ≤

∫∫
r1(ρ1)≤|z|≤r2(ρ2)

p(z, w)dσ(ln z)

=

∫∫
r1(ρ1)≤|z|≤r2(ρ2)

{p(z, w)− 1}dσ(ln z) +

∫∫
r1(ρ1)≤|z|≤r2(ρ2)

dσ(ln z)

≤
∫∫

r1(ρ1)≤|z|<∞
{p(z, w)− 1}dσ(ln z) + 2π ln

r2(ρ2)

r1(ρ1)

= h(r1(ρ1)) + 2π

(
ln
r1(ρ2)

r1(ρ1)
+ ω(ρ2)

)
.

Substituting this inequality into (3.5) we get

ln
r1(ρ2)

r1(ρ1)
+ ω(ρ2) +

1

2π
h(r1(ρ1)) ≥ ln

ρ2

ρ1
+

1

π2

∫ ρ2

ρ1

ω2(ρ)

ρ
dρ,(3.6)

that is,

Q(ρ1, ρ2) ≥ 1

π2

∫ ρ2

ρ1

ω2(ρ)

ρ
dρ− ω(ρ2)− 1

2π
h(r1(ρ1))

≥ −ω(ρ2)− 1

2π
h(r1(ρ1)).

(3.7)

Denote the function h(r1(ρ)), ρ0 ≤ ρ < ∞, by h1(ρ). It is clear that the function
h1(ρ) monotonically tends to zero as ρ→∞.

Assume that r1(ρ2) > r2(ρ1). Letting r′′ = r1(ρ2) and r′ = r2(ρ1) in (3.4) and
taking into account∫∫

r2(ρ1)<|z|<r1(ρ2)

dσ(lnw)

dσ(ln z)
dσ(ln z) ≤

∫∫
ρ1<|w|<ρ2

dσ(lnw) = 2π ln
ρ2

ρ1
,
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we find that (
2π ln

r1(ρ2)

r2(ρ1)

)2

≤ 2π ln
ρ2

ρ1

{
h(r2(ρ1)) + 2π ln

r1(ρ2)

r2(ρ1)

}
≤ 2π ln

ρ2

ρ1

{
h1(ρ1) + 2π ln

r1(ρ2)

r2(ρ1)

}
,

2π ln
ρ2

ρ1
≥

(
2π ln

r1(ρ2)

r2(ρ1)

)2

2π ln
r1(ρ2)

r2(ρ1)
+ h1(ρ1)

≥ 2π ln
r1(ρ2)

r2(ρ1)
− h1(ρ1),

ln
ρ2

ρ1
≥ ln

r1(ρ2)

r2(ρ1)
− 1

2π
h1(ρ1) = ln

r1(ρ2)

r1(ρ1)
− ω(ρ1)− 1

2π
h1(ρ1),(3.8)

that is,

Q(ρ1, ρ2) ≤ ω(ρ1) +
1

2π
h1(ρ1).(3.9)

It is clear that the inequality (3.9) remains true even when r1(ρ2) ≤ r2(ρ1). The
inequalities (3.7) and (3.9) imply that for arbitrary ρ1 and ρ2 satisfying ρ0 ≤ ρ1 ≤
ρ2 <∞, the inequality

|Q(ρ1, ρ2)| ≤ max{ω(ρ1), ω(ρ2)} +
1

2π
h1(ρ1)(3.10)

holds. Thus we have achieved the main purpose of Step II.

Step III. Now we show that ω(ρ)→ 0 as ρ→∞. First we observe that (3.6)
and (3.8) imply the inequality

ω(ρ2) + ω(ρ1) ≥ 1

π2

∫ ρ2

ρ1

ω2(ρ)

ρ
dρ− 1

π
h1(ρ1),(3.11)

for all ρ1, ρ2, satisfying ρ0 ≤ ρ1 ≤ ρ2 <∞. Let ρ ≥ max(ρ2
0, 2). We introduce the

following notation:

τ1(ρ) = min√
ρ≤x≤ρ

{
2ω(x)− 1

π2

∫ ρ

x

ω2(t)

t
dt

}
= 2ω(ρ1)− 1

π2

∫ ρ

ρ1

ω2(t)

t
dt,
√
ρ ≤ ρ1 ≤ ρ,

(3.12)

τ2(ρ) = min
ρ≤x≤ρ√ρ

{
2ω(x)− 1

π2

∫ x

ρ

ω2(t)

t
dt

}
= 2ω(ρ2)− 1

π2

∫ ρ2

ρ

ω2(t)

t
dt, ρ ≤ ρ2 ≤ ρ

√
ρ.

(3.13)
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We rewrite the inequality (3.11), where ρ1 and ρ2 are the numbers defined in (3.12)
and (3.13), in the following way:

ω(ρ1) + ω(ρ2) ≤
{

2ω(ρ2)− 1

π2

∫ ρ2

ρ

ω2(t)

t
dt

}
+

{
2ω(ρ1)− 1

π2

∫ ρ

ρ1

ω2(t)

t
dt

}
+

1

π
h1(ρ1)

= τ1(ρ) + τ2(ρ) +
1

π
h1(ρ1).

(3.14)

Now we estimate τ1(ρ) and τ2(ρ). Let

α(x, ρ) = sgn(x− ρ)
1

π2

∫ x

ρ

ω2(t)

t
dt.

Assume that ρ
√
ρ ≥ x ≥ ρ and τ2(ρ) > 0. Then (3.13) implies that

2ω(x) ≥ α(x, ρ) + τ2(ρ),

{α(x, ρ) + τ2(ρ)}2 ≤ 4ω2(x) = 4π2x
dα(x, ρ)

dx
,

whence

1

2
ln ρ =

∫ ρ
√
ρ

ρ

dx

x
≤ 4π2

∫ ρ
√
ρ

ρ

dα(x, ρ)

{α(x, ρ) + τ2(ρ)}2

≤ 4π2

∫ ∞
α=0

dα

{α+ τ2(ρ)}2 =
4π2

τ2(ρ)
,

τ2(ρ) ≤ 8π2

lnρ
.(3.15)

The inequality (3.15) remains true for τ2(ρ) ≤ 0. In a similar way we treat the case
when

√
ρ ≤ x ≤ ρ and τ1(ρ) > 0. In this case (3.12) implies that

2ω(x) ≥ τ1(ρ) + α(x, ρ),

{τ1(ρ) + α(x, ρ)}2 ≤ 4ω2(x) = 4π2x
d{−α(x, ρ)}

dx
,

whence

1

2
ln ρ =

∫ ρ

√
ρ

dx

x
≤ 4π2

∫ ρ

√
ρ

d{−α(x, ρ)}
{τ1(ρ) + α(x, ρ)}2

≤ 4π2

∫ 0

β=−∞

dβ

{τ1(ρ)− β}2 =
4π2

τ1(ρ)
,

τ1(ρ) ≤ 8π2

lnρ
.(3.16)

The last inequality, obviously, holds also when τ1(ρ) ≤ 0. Substituting (3.15) and
(3.16) into (3.14) we get

ω(ρ1) + ω(ρ2) ≤ 16π2

ln ρ
+

1

π
h1(ρ1).(3.17)
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Let η > max{ω(ρ1), ω(ρ2)}, the choice of η will make more precise later. Denote
by E the set of t, ρ1 ≤ t ≤ ρ2, for which ω(t) > η, and by ∆ the logarithmic
measure of this set. The inequalities (3.11) and (3.17) imply that

16π2

ln ρ
+

1

π
h1(ρ1) ≥ 1

π2

∫ ρ2

ρ1

ω2(ρ)

ρ
dρ− 1

π
h1(ρ1)

≥ η2

π2

∫
E

dρ

ρ
− 1

π
h1(ρ1) =

η2

π2
∆− 1

π
h1(ρ1),

η2

π2
∆ ≤ 16π2

ln ρ
+

2

π
h1(ρ1) ≤ 16π2

ln ρ
+

2

π
h1(
√
ρ),

∆ ≤ 16π4

η2 ln ρ
+

2π

η2
h1(
√
ρ).(3.18)

Assume that ω(ρ) > η and that (ρ′, ρ′′) is the component of the set E containing
ρ. Then ρ1 < ρ′ < ρ < ρ′′ < ρ2, ω(ρ′) = ω(ρ′′) = η. The inequality (3.18) implies
that

ln
ρ′′

ρ′
≤ ∆ ≤ 16π4

η2 ln ρ
+

2π

η2
h1(
√
ρ).(3.19)

It is clear that

ω(ρ) ≤ ln
r2(ρ′′)

r1(ρ′)
= ln

r1(ρ′′)

r1(ρ′)
+ ω(ρ′′) = ln

r1(ρ′′)

r1(ρ′)
+ η.(3.20)

Replacing in (3.8) ρ1 and ρ2 by ρ′ and ρ′′, respectively, we get

ln
r1(ρ′′)

r1(ρ′)
≤ ω(ρ′) + ln

ρ′′

ρ′
+

1

2π
h1(ρ′) ≤ η + ln

ρ′′

ρ′
+

1

2π
h1(
√
ρ).(3.21)

The inequalities (3.19), (3.20), and (3.21) imply that

ω(ρ) ≤ 2η +
1

η2

{
16π4

ln ρ
+ 2πh1(

√
ρ)

}
+

1

2π
h1(
√
ρ).(3.22)

It is clear that the inequality (3.22) holds also when ω(ρ) ≤ η. Now we choose
η in such a way that the right-hand side of the inequality (3.22) takes the least
possible value. If A > 0, then the function 2η+Aη−2, for positive η takes the least
value 3 3

√
A, achieved for η = 3

√
A. We should let

η = 3

√
16π4

ln ρ
+ 2πh1(

√
ρ),(3.23)

we have right to do so if the inequality η > max{ω(ρ1), ω(ρ2)} holds. But the
inequality (3.17) implies that it is sufficient that the inequality

16π2

ln ρ
+

1

π
h1(
√
ρ) < 3

√
16π4

ln ρ
+ 2πh1(

√
ρ)

holds, it is obviously the case when the expression under the radical sign is less
than 1, that is, when ρ > ρ̄, where ρ̄ ≥ max(ρ2

0, 2) is sufficiently large. Thus for
ρ > ρ̄ we choose η according to (3.23), substituting it into (3.22), we get

ω(ρ) ≤ 3

√
16π4

ln ρ
+ 2πh1(

√
ρ) +

1

2π
h1(
√
ρ),
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whence ω(ρ)→ 0 as ρ→∞.
Now we can complete the proof.

Step IV. Let again ρ1 and ρ2 be arbitrary numbers satisfying ρ0 ≤ ρ1 ≤ ρ2 <
∞. We see that the right-hand side of the inequality (3.10) tends to 0 as ρ1 →∞,
ρ2 ≥ ρ1. By the Bolzano–Cauchy criterion there exists a finite limit

lim
ρ→∞

ln
r1(ρ)

ρ
= B = eα,

that is, there exists the limit

lim
ρ→∞

r1(ρ)

ρ
= B = eα, 0 < B <∞.

Since

r2(ρ)

ρ
=
r1(ρ)

ρ
eω(ρ) → B, ρ→∞,

we have

lim
w→∞

|z(w)|
|w| = B,

from where the equality (3.2) with A = 1/B follows.

4. Riemann surfaces of the class Fq and line complexes

Surfaces of the so-called class Fq = Fq(a1, a2, . . . , aq) have a particularly simple
structure among all Riemann surfaces. Let us describe this class. Let a1, . . . , aq
be distinct q ≥ 2 points in the extended complex w-plane, and let L be a closed
Jordan curve passing through the points a1, . . . , aq. Without loss of generality we
assume, for simplicity of the description, that aj 6= ∞, 1 ≤ j ≤ q, and L does not
pass through w =∞. We assume that the points aj are labelled in such a way that
they are arranged on L according to the positive orientation, aq+1 = a1, aq = a0.
The curve L divides the extended w-plane into two simply connected regions: the
interior Hi and the exterior He, which will be called half-sheets. The part of the
closed Jordan curve L lying between the points aj and aj+1, excluding these points,
will be denoted by Lj . The regions obtained from the closed regions H̄i and H̄e

after removal of the points aj will be denoted by H◦i and H◦e , respectively.
Consider a Riemann surface F0 consisting of a finite or countable set of half-

sheets, which are “pasted” in such a way that for each half-sheet Hi(He) and each
arc Lj, 1 ≤ j ≤ q, there is a half-sheet He(Hi) which is pasted with a given half-
sheet along the arc Lj (that is, the points of Lj from the half-sheets H◦i and H◦e
are identified).

We fix some point a ∈ Hi and some point b ∈ He. Denote by Cj a Jordan
arc joining the points a and b in the extended complex w-plane and intersecting
the curve L only at one point lying on Lj. Besides, we require that the curves

Cj , 1 ≤ j ≤ q intersect each other at the ends a and b only. Let ã and b̃ be

points from F0 that project to a and b, respectively, and let C̃j be curves whose

projections are Cj . It is clear that the disjoint curves C̃j establish a one-to-one

correspondence between their ends ã and b̃. As a result, for fixed j, we get a one-
to-one correspondence between the points ã and and the points b̃. It follows that
the (finite or countable) numbers of half-sheets Hi and He in F0 are the same. For
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uniformity of notation we denote the half-sheets contained in F0, whose projections
are Hi and He, by H̃i and H̃e, respectively.

Consider the open set in F0 whose projection is the region Dj bounded by the
curves Cj−1 and Cj (1 ≤ j ≤ q, C0 = Cq, Cq+1 = C1) and containing the point aj .

This set is decomposed into connected components D̃
(k)
j which can be finite-sheeted

or infinite-sheeted. If a component D̃
(k)
j is n-sheeted, 1 ≤ n <∞, then the part of

its boundary whose projection is Cj−1 ∪Cj is a closed Jordan curve consisting of n

arcs C̃j and n arcs C̃j−1, which are alternating as we go around the Jordan curve.

It is clear that the function z =

(
w − aj
w − bj

)1/n

, bj /∈ D̄j , maps D̃
(k)
j bijectively onto

some doubly-connected region in the z-plane, whose boundary consists of some

closed Jordan curve and the point z = 0. If we add to D̃
(k)
j (and F0) a point whose

projection is aj , then D̃
(k)
j becomes a simply connected one-sheeted region if n = 1,

and it becomes a simply connected neighborhood of an algebraic ramification point
of order n − 1, whose projection coincides with aj . We denote by F ′0 the surface
F0 complemented in the described way by algebraic ramification points. If the

component D̃
(k)
j is infinite-sheeted, then the part of its boundary whose projection

coincides with Cj−1 ∪Cj is an open Jordan curve consisting of infinitely many arcs

C̃j and C̃j−1, which are alternating as we go around the Jordan curve. It is easy to

see that the function z = ln{(w−aj)/(w−bj)}, bj /∈ D̄j , maps D̃
(k)
j bijectively onto

some simply connected region in the z-plane, which is lying to the left of some open
Jordan arc located in a vertical strip and such that Imz → +∞ and Imz → −∞
as z moves along the curve in one or the other direction. It is clear that D̃

(k)
j is a

neighborhood of a logarithmic ramification point of the surface F0 (and F ′0) whose
projection is aj .

If the surface F ′0 is simply connected, we say that F ′0 belongs to the class Fq.

It is clear that the condition∞ /∈ L was imposed only for the sake of simplicity
of the verbal description of the construction of surfaces of the class Fq. If ∞ ∈ L,
then, to define Hi and He, we need only to orient the curve L beforehand, and

writing the functions mapping D̃
(k)
j take into account the possibility of aj =∞.

The curve L will be called a base curve, and the points a1, . . . , aq will be called
base points.

Finite-sheeted surfaces F ′0 are obviously closed and, if they belong to the class
Fq, they have genus zero. It is easy to see that, conversely, each closed Riemann
surface of genus zero belongs to the class Fq . In fact, a closed Riemann surface F
of genus zero is topologically equivalent to the extended complex plane and hence
is simply connected. We draw a closed Jordan curve L through the projections
a1, . . . , aq of the algebraic ramification points, and then make cuts of F along all
curves whose projections are in L. The surface F decomposes into a finite number
of simply connected regions which will play the role of half-sheets H̃i and H̃e. It
is easy to see that in order to reconstruct the surface F from these half-sheets we
have to paste the half-sheets H̃i and H̃e in the same way as it was done in the
description of surfaces from Fq.

Open simply connected Riemann surfaces do not have to belong to a class Fq.
Take, for example, the Riemann surface corresponding to the function w = ez − z.
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The derivative of this entire function has zeros of order one at the points zk = 2kπi,
k = 0,±1,±2, . . . , hence the Riemann surface has algebraic ramification points of
the first order, whose projections are the points wk = 1 − 2kπi. Since the set of
all such points wk is infinite, the surface cannot belong to the class Fq. It is easy
to see that if an open surface F of parabolic type belongs to the class Fq, then the
mapping meromorphic function w = f(z) can have multiple a-points or have a as
an asymptotic value only when a is one of the base points. In this case asymptotic
spots of f(z) correspond bijectively to logarithmic branch points of F .

Let us show that, conversely, if a meromorphic in {|z| <∞} function w = f(z)
has multiple a-points or asymptotic values a only for a finite set a = a1, . . . , aq,
then the Riemann surface F corresponding to the function f(z) belongs to the class
Fq(a1, . . . , aq).

Let ∆ be an arbitrary simply connected region in the extended w-plane which
does not contain the points a1, . . . , aq. Let w0 ∈ ∆, and let K be an arbitrary
continuous curve lying in ∆ and having w0 as its starting point. We show that
an arbitrary analytic element z = Pj(w,w0) of the function z = f−1(w) centered
at the point w0 admits an analytic continuation along the curve K. Suppose that
Pj(w,w0) has an analytic continuation up to the point w1 ∈ K, excluding the point
w1. LetK1 be the part of the curveK between w0 and w1, K1 : w = w(t), 0 ≤ t ≤ 1,
w(0) = w0, w(1) = w1, we denote by K ′1 the curve K1 without the point w1,
K ′1 : w = w(t), 0 ≤ t < 1. Let Q : z = z(t), 0 ≤ t < 1 be the continuous
curve in {|z| <∞} corresponding to K ′1 under the mapping based on the analytic
continuation of z = Pj(w,w0). It is obvious that f(z(t))→ w1 ∈ ∆ as t→ 1.

Suppose that the function z = z(t) has at least two limit points in the extended
z-plane as t → 1. Denote one of them by z0, z0 6= ∞. It is clear that f(z0) = w1.
Then f(z) 6= w1 if z is in a sufficiently small neighborhood of z0 and z 6= z0. Let
η > 0 be so small that the circle {|z−z0| = η} is contained in this neighborhood and
at least one of the limit points of z(t) is outside the circle. The curve Q intersects
the circle {|z−z0| = η} infinitely many times. Hence there exists a sequence tn → 1
such that z(tn) → z1, |z(tn) − z0| = η. Then f(z1) = w1, we get a contradiction
with the condition that f(z) 6= w1 on the circle {|z − z0| = η}. Hence the function
z(t) has a (finite or infinite) limit as t→ 1.

Let z(t)→ z0 6=∞ as t→ 1. Then f(z0) = w1, moreover, z0 is not a multiple
w1-point of the function f(z), since otherwise the point z0 would be mapped onto
an algebraic ramification point on F , whose projection is w1 6= aj , 1 ≤ j ≤ q. Since
the function f(z) is univalent in a sufficiently small neighborhood of the point
z0, continuing the element Pj(w,w0) along K ′1 we can continue it to the point
w1 ∈ K1, getting an analytic element Pj(w,w1), Pj(w1, w1) = z0. We contradicts
the assumption.

If z(t)→∞ as t→ 1, then the curve Q is an asymptotic curve for the function
f(z), and w1 is an asymptotic value, but again, it is impossible because w1 6= aj ,
1 ≤ j ≤ q.

Thus, we have shown that the analytic element Pj(w,w0) admits an analytic
continuation along an arbitrary continuous curve in ∆, hence, by the monodromy
theorem (A.I. Markushevich [Mar77, Vol. 3, Ch.VIII,§40], S. Stöılow [Sto62, Vol.
1, Ch. IV,§1,6]5 the function obtained as a result of such analytic continuation is
defined in the region ∆ and is single valued in it. In other words, the set of points

5Or L. Ahlfors, Complex Analysis, Ch. 8, 1.6.
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of the Riemann surface F which are projected into ∆ decomposes into infinitely
many one-sheeted regions, forming a complete covering of the region ∆.

We draw a closed Jordan curve L through the points a1, . . . , aq. The curve L
divides the extended w-plane into two simply connected regions Hi and He. One-
sheeted regions on F forming a complete covering of Hi and He make up half-sheets
H̃i and H̃e. Since for fixed j, 1 ≤ j ≤ q, the region Hi ∪ Lj ∪ He is also simply
connected and the parts of the surface F forming a complete covering of this region
are one-sheeted, each half-sheet H̃i (H̃e) is pasted along each the arc C̃j to one

half-sheet H̃e (H̃i). Hence the surface F belongs to the class Fq.
The discussion above shows, in particular, that in the case when F is a closed

Riemann surface of genus zero or an open Riemann surface of parabolic type, then
belonging of F to the class Fq does not depend on the choice of the base curve
L, since we gave a complete characterization of mapping meromorphic functions
which does not involve base curves. Similar conclusion can be derived for surfaces
of hyperbolic type.

The Riemann surfaces corresponding to the functions (1) w = ez (base points
a1 = 0, a2 =∞); (2) w = ee

z

(base points a1 = 0, a2 = 1, a3 =∞); (3) w = sin z
(base points a1 = −1, a2 = 1, a3 = ∞) are examples of open Riemann surfaces
from the class Fq .

Riemann surfaces of the class Fq can be conveniently presented using so-called
line complexes. By a line complex B of order q, 2 ≤ q <∞, we mean a connected
set in the extended z-plane having the following properties:

(1) B consists of a finite or countable set of Jordan arcs which are called edges,
and their ends are called vertices. Two different edges can intersect at vertices only.

(2) All vertices are divided into two classes: internal and external. Each edge has,
as its ends, one external vertex and one internal vertex.

(3) Edges are labelled using numbers from 1 to q. Each vertex is an end of q edges,
which are located around the edge according to their labels, the order is positive
(anti-clockwise) if the vertex is interior and is negative if the vertex is exterior.

(4) If B contains infinitely many vertices, then B does not contain ∞ and z = ∞
is the only limit point of vertices.

Line complexes B1 and B2 are regarded as the same if one of them can be
mapped onto the other by a homeomorphism of the extended z-plane, which maps
edges to edges with the same label, internal vertices onto internal vertices, and
external vertices onto external vertices.

The complement of B in {|z| ≤ ∞}, if B has a finite number of vertices, and
the complement of B in {|z| < ∞}, if B has infinitely many vertices, is an open
set. Each component of this set is a region bounded by either a finite set of edges
(elementary algebraic region), or by an infinite set of edges (elementary logarithmic
region). By the condition (4) elementary logarithmic regions are unbounded. It is
easy to see that when we go around an elementary region edges with labels j − 1
and j (1 ≤ j ≤ q, the label 0 is equivalent to the label q, the label q+1 is equivalent
to the label 1) alternate. Such elementary region is called a j-region. It is clear that
the boundary of an algebraic elementary region consists of an even number of edges.
Conversely, it is easy to see that each Jordan curve on B, closed or approaching
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z =∞ and consisting of alternating edges with labels j − 1 and j is a boundary of
a j-region.

Several edges with consecutive labels, having common ends lying in one internal
and one external vertices form a so-called edge bundle. Clearly, two edges belonging
to the same edge bundle and having labels j− 1 and j form a boundary of a digon.

Consider the class of Riemann surfaces Fq(a1, . . . , aq) and fix a base curve
L. Now we describe a one-to-one correspondence between Riemann surfaces F ∈
Fq(a1, . . . , aq) and line complexes B.

1◦. Let a Riemann surface F ∈ Fq be given. If F is open, we map it homeomor-
phically onto the complex z-plane, if F is closed, we map it homeomorphically onto
the extended complex z-plane. Then the set of points on F , whose projections are

in

q⋃
j=1

Cj is mapped onto a line complex B, moreover, C̃j are mapped onto edges

with label j, points ã are mapped onto internal vertices, and points b̃ are mapped
onto external vertices. It is easy to check that the conditions (1)-(4) are satisfied.
Hence we get a line complex. This complex is uniquely determined by F and by the
base curve. In fact, if we chose points a′ ∈ Hi, b

′ ∈ He, and curves C′j , 1 ≤ j ≤ p,
differently, then, as is easy to see that it is possible to map the extended complex
w-plane homeomorphically onto itself6 in such a way that the points aj , 1 ≤ j ≤ p,
are fixed, L is mapped onto L, a′ onto a, b′ onto b, and C′j onto Cj . If we map all

half-sheets H̃i and H̃e, and all curves L̃j using the same homeomorphism, the Rie-
mann surface F will be mapped homeomorphically onto itself, moreover, points ã′

will be mapped on ã, point b̃′ will be mapped onto b̃, and curves C̃′j will be mapped
onto the curves Cj . Hence the line complex B, corresponding to the surface F , does
not depend on the choice of curves Cj , and hence is uniquely determined by the
surface F . We would like to mention that there exist examples (see V.G. Tairova
[Tai62], [Tai64]) showing that with different choices of the base curve, the line
complexes corresponding to the same Riemann surface F ∈ Fq can be different.

2◦. Now suppose that we are given a line complex B. Since we a given a
base curve L, the regions Hi and He are determined. We consider a one-to-one
correspondence which maps each internal vertex of B onto a copy of the region Hi

and each external vertex of B onto a copy of the region He. We paste copies of Hi

and He along the arc Lj, 1 ≤ j ≤ q, if an only if the corresponding internal and
external vertices are the ends of the same edge from B with label j. By the property
(3) of line complexes we get a Riemann surface F0 (see above). As before, we can

choose points a ∈ Hi, b ∈ He, and curves Cj , define regions D̃
(k)
j , and complement

the surface F0 to the surface F ′0. Now we need to show that the surface F ′0 is simply
connected.

Mark in each algebraic j-region of the line complex B a point a′j ; if the j-region
is logarithmic, we place the corresponding point a′j into the boundary point z =∞.

Each edge with label j is contained in the boundary of one (j − 1)-region and one
j-region. We join the corresponding points a′j−1 and a′j by a Jordan arc lj which

6Here and later on we use the following fact, without mentioning it explicitly. A homeo-

morphic mapping between boundaries of two regions bounded by closed Jordan curves can be
extended to a homeomorphic mapping between the regions. In the case when the regions are unit
discs, the statement is obvious. The general case can be reduced to this special case by mapping
the regions conformally onto the unit disc.
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is contained in the union of the considered (j − 1)-region and j-region, except for
one point on the edge with label j and, possibly, the points a′j−1 and a′j , if one
or both of them coincide with ∞. We draw these Jordan arcs in such a way that
they are pairwise disjoint, it is easy to see that it is always possible. Then the
z-plane (the extended z-plane if the number of vertices is finite) is divided into
regions S, each of which contains one vertex, and its boundary consists of q Jordan
curves lj with ends at points a′j and a′j+1, where, as the index increases, the points
a′1, . . . , a

′
q follow along the boundary in the positive direction if the vertex is internal,

and in the negative direction if the vertex is external. We established a one-to-one
correspondence between half-sheets H̃i(H̃e) of our surface F ′0 and internal (external)

vertices. We map homeomorphically each half-sheet H̃i or H̃e onto the region S
containing the corresponding vertex in such a way that the mapping is continuous
on the closure of these half-sheets, and in addition the boundary arcs L̃j are mapped

onto the arcs lj , and the points ãj on the boundary H̃i or H̃e are mapped onto the
points a′j . Observe that a point a′j , corresponding to a point ãj ∈ F ′0, lies inside

an algebraic j-region. The constructed mapping F ′0 onto the (possibly extended)

z-plane is not, generally speaking, single valued on arcs L̃j , since when we map

half-sheets H̃i and H̃e, pasted along L̃j, we can map the same point from L̃j onto
two different points in the z-plane. However, using some additional topological
transformations of the closed regions S̄ we can eliminate this multivalence. In fact,
regions S can be arranged into a (finite or infinite) sequence S1, S2, . . . such that

S̄k has at least one common arc lj with

k−1⋃
j=1

S̄j . This is equivalent to writing the

line complex as a sequence, such that each vertex with number k is joined with at
least one of the vertices having smaller number by an edge. Since the line complex
is connected, we can always choose such a sequence of vertices. No we subject S̄2

to an additional topological transformation, mapping S̄2 onto S̄2 in such a way
that all points a′j ∈ ∂S2 remain fixed, and the arcs lj belonging to ∂S1 ∩ ∂S2 are

transformed in such a way that points on the corresponding arcs L̃j ⊂ F ′0 will have
the same image in the z-plane both under the mapping onto ∂S1 and the mapping
onto ∂S2. Then we transform S̄3 topologically into S̄3 in such a way that all points
a′j ∈ ∂S3 remain fixed, and arcs lj belonging to ∂(S̄1∪ S̄2)∩∂S3 are transformed as
above. Continuing this process, we get a topological transformation of the whole
Riemann surface F ′0 onto {|z| < ∞} or {|z| ≤ ∞} depending on whether F ′0 is a
closed or open surface. Thus, the surface is simply connected and belongs to the
class Fq.

It is easy to see that if we use the rule described in 1◦ to get a line complex B1

corresponding to the obtained Riemann surface F ′0, the complex B1 would coincide
with the line complex B with which we started our construction of the surface F ′0.

Thus, we established a one-to-one (for a fixed base curve L) correspondence
between Riemann surfaces of the class Fq and line complexes. The line complex
corresponding to a Riemann surface will be called the line complex of this surface.
On our diagrams internal vertices of a complex will be marked by circles, external
vertices will be marked by crosses. The label of an elementary region (the point
aj) will be written inside the region. We will not write labels inside digons. It is
clear, that if on a line complex the labels of elementary regions are marked, it is
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not necessary to label edges, since the edge between the j-region and the (j + 1)-
region is the edge label j. If some j-region is a digon, then, as is easy to see, the
corresponding point ãj ∈ F ′0 is not a ramification point. If a j-region is an 2m-gon,
2 ≤ m < ∞, then the corresponding point ãj is an algebraic ramification point of
order m− 1.

We suggest the reader to analyze the following examples of line complexes of
Riemann surfaces, for which the mapping functions are indicated. In all examples
the base curve is the real line, Hi = {Imw < 0}, He = {Imw > 0}.

(1) w = z2 (Fig. 5); (2) w = z3 (Fig. 6); (3) w =
1

2

(
z +

1

z

)
(Fig. 7);

(4) w =
1

2

(
z3 +

1

z3

)
(Fig. 8); (5) w = ez (Fig. 9); (6) w = ez

2

(Fig. 10);

(7) w = ez
3

(Fig. 11); (8) w = ee
z

(Fig. 12); (9) w = sin z (Fig. 13); (10) w = sin z2

(Fig. 14); (11) w = cos
√
z (Fig. 15).

We suggest, also, to sketch the location of regions S. As an example we sketch
the corresponding diagrams for the functions (4), (5), and (6) (Fig. 16, 17, and 18).

Now we turn our attention to closed Riemann surfaces F of genus zero. Sup-
pose that a1, . . . , aq are projections of their ramification points (we do not ex-
clude the case when there are no ramification points above some point aj). Sup-
pose that aj is the projection of νj algebraic ramification points of F with orders
λ1(aj), . . . , λνj (aj). Let n be the number of sheets of F and n̄(a) be the number of
points of the Riemann surface whose projection is a, here each ramification point
is counted once. It is clear that n̄(a) ≤ n for all a, moreover

n̄(a) =

{
n for a 6= aj , j = 1, . . . , q,

n− λ1(aj)− · · · − λνj (aj) for a = aj .

Let B be the line complex of a Riemann surface F . Elementary regions, edges and
vertices of B for on the Riemann sphere a topological polyhedron. Using the well-
known Euler formula, we get the equality K − S + E = 2, where K is the number
of elementary regions, S is the number of edges, E is the number of vertices in the
line complex B. The number K is equal to the number of all points of the surface

F lying over the base points a1, . . . , aq, that is,

q∑
j=1

n̄(aj). The number of vertices

of E is equal to 2n, where the number of both internal and external vertices is equal
to n. Since exactly q edges leave each internal vertex, moreover, each edge has as
one of its ends one and only one internal vertex, we have S = nq. Hence

n∑
j=1

n̄(aj)− nq + 2n = 2,

2(n− 1) =

q∑
j=1

{n− n̄(aj)} =

q∑
j=1

νj∑
k=1

λk(aj).(4.1)

The equality (4.1) represents the well-known Riemann–Hurwitz formula.
The following question arises in a natural way. Assume that we are given com-

plex numbers a1, . . . , aq and natural numbers n, νj , λk(aj), satisfying the inequality
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(4.1) and the inequalities

Λ(aj) =

νj∑
k=1

λk(aj) ≤ n− νj , j = 1, . . . , q.(4.2)

Is it possible to construct a closed Riemann surface F of genus zero, which is n-
sheeted, has λk(aj), with νj ramification points whose projection is aj , with orders
λk(aj), 1 ≤ k ≤ νj , 1 ≤ j ≤ q?

It turns out that it is not always possible.

Example 1. Let n = 4, q = 3, ν1 = ν2 = 2, ν3 = 1, λ1(a1) = λ2(a1) =
λ1(a2) = λ2(a2) = 1, λ1(a3) = 2. It is easy to see that these numbers satisfy
the relations (4.1) and (4.2), but it is impossible to construct the corresponding
Riemann surface. In fact, if there were the corresponding surface, its line complex
would have eight vertices, its elementary 1- and 2-regions would be quadrangles,
one 3-region G1 would be a hexagon, and the other would be a digon G2. The
boundary of the 3-region G1 would contain six vertices, each of which is an end
of some edge lying outside G1. There are only two vertices outside Ḡ1. Suppose
that there are two edges leaving from two vertices on the boundary of G1 which
end at one end outside Ḡ1. The exterior of G1 is divided into two Jordan polygons,
a quadrangle and a hexagon. The second vertex lying outside G1 is either inside
the quadrangle or inside the hexagon. Hence one of these Jordan polygons is an
elementary region, adjoining to G1 along two or four consecutive sides of G1, which
is impossible. If both ends of some edge lying outside G1 are on the boundary of
G1, then this edge divides the exterior of G1 into two quadrangles and, arguing as
above, we get a contradiction. Hence, from each of the vertices on the boundary
of G1 there is an edge lying outside G1 which ends at a vertex lying outside Ḡ1,
where different edges correspond to different vertices. Thus, there are at least six
vertices outside Ḡ1, and we again get a contradiction.

We denote by F = F(n; a1 : λ1(a1), . . . , λν1(a1); . . . ; aq : λ1(aq), . . . , λνq (aq)),
where a1, . . . , aq are distinct complex numbers, n, νj , λk(aj) are positive integers
satisfying the conditions (4.1) and (4.2), the class of closed Riemann surfaces of
genus zero, which are n-sheeted with νj ramification points of orders λk(aj), whose
projections are aj . Sometimes it will be convenient for us to allow λk(aj) to take
zero values also (we will always mention this explicitly), this will mean that we
require the Riemann surfaces from the class F to have over aj at least as many
unramified sheets, as many zeros are there among the numbers λ1(aj), . . . , λνj (aj).
If there is aj : Λ(aj) instead of aj : λ1(aj), . . . , λνj (aj) in the notation of the class
F, it means that we require only that the sum of orders of the ramification points
projected into aj is equal to Λ(aj). It is clear that the numbers Λ(aj) should satisfy
the relations

(4.1′)

q∑
j=1

Λ(aj) = 2(n− 1),

(4.2′) Λ(aj) ≤ n− 1, j = 1, . . . , q.

Obviously, for Λ(aj) = λ1(aj) + · · ·+ λνj (aj) we have

F(n; . . . ; aj : λ1(aj), . . . , λνj (aj); . . . ) ⊂ F(n; . . . ; aj : Λ(aj); . . . ).

Example 1 shows that the class F(4; a1 : 1, 1; a2 : 1, 1; a3 : 2) is empty.
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Theorem 4.1. The classes F(n; a1 : λ1(a1); . . . ; aq : λ1(aq)), λ1(aj) ≥ 0, are
non-empty.

Theorem 4.1 immediately implies

Corollary. The classes F(n; a1 : Λ(a1); . . . ; aq : Λ(aq)), Λ(aj) ≥ 0, are
non-empty.

Before proving Theorem 4.1 we state two more theorems which will be needed
in Section 6.

First we introduce some definitions. A Jordan arc C on a Riemann surface F
(the case of one-sheeted region F is not excluded) will be called a J-curve, if it
has the following properties: (1) different points of C are projected onto different
points, only the ends of C can be projected onto the same point; (2) C does not
contain algebraic ramification points of F , the only possible exception is the ends
of C; (3) there exists a Jordan arc C1 ⊂ C with ends in the interior points of C
such that C\C1 consists of two line segments; (4) C has a continuous curvature.
In some cases by a J-curve we shall mean a Jordan arc satisfying (1)–(4) without
one end or without both ends. Whether or not a J-curve includes the ends will be
clear from context.

A closed Jordan curve C in the plane is called a J ′-curve with ends at a point
a ∈ C, if it has a continuous curvature at all points except, possibly, the point a,
and in a sufficiently small neighborhood of a the curve C has the form of a linear
angle with a vertex at the point a.

It is clear that the projection of an arbitrary J-curve on a Riemann surface is
either a J- or a J ′-curve in the plane.

Theorem 4.2. Let q ≥ 2, let a1, . . . , aq be distinct complex numbers, and let γ
be a J-curve joining the points a1 and a2, which does not pass through the points aj,
3 ≤ j ≤ q. Then each of the classes listed below contains a Riemann surface F , on
which one can draw a J-curve Γ with ends a1 and a2 ∈ F , such that Γ is projected
into γ in a one-to-one way, and aj is a ramification point of order λ1(aj) ≥ 0, lying
above aj, j = 1, 2. The classes of Riemann surfaces mentioned above are:

(a) F(n; a1 : λ1(a1), λ2(a1); a2 : λ1(a2), λ2(a2); a3 : Λ(a3); a4 : λ1(a4); . . . ;

aq : λ1(aq));

(b) F(n; a1 : λ1(a1), λ2(a1); a2 : λ1(a2); a3 : λ1(a3); . . . ; aq : λ1(aq)),

where λ1(a1) ≥ 0;

(c) F(n; a1 : λ1(a1); a2 : λ1(a2), λ(a2); a3 : λ1(a3); . . . ; aq : λ1(aq)),

where λ1(a2) ≥ 0;

(d) F(n; a1 : λ1(a1), λ2(a1); a2 : 0, λ2(a2); a3 : λ1(a3); . . . ; aq : λ1(aq));

(e) F(n; a1 : 0, λ2(a1); a2 : λ1(a2), λ2(a2); a3 : λ1(a3); . . . ; aq : λ1(aq));

(f) F(n; a1 : λ1(a1); a2 : λ1(a2); a3 : λ1(a3); . . . ; aq : λ1(aq))

where λ1(a1) ≥ 0, λ1(a2) ≥ 0;

(g) F(n; a1 : λ1(a1), λ2(a1); a2 : 0; a3 : λ1(a3) . . . ; aq : λ1(aq)),

where λ1(a1) ≥ 0;

(h) F(n; a1 : 0; a2 : λ1(a2), λ2(a2); a3 : λ1(a3); . . . ; aq : λ1(aq)),

where λ1(a2) ≥ 0;

(i) F(n; a1 : 0, λ2(a1); a2 : 0, λ2(a2); a3 : λ1(a3); . . . ; aq : λ1(aq)),
where q ≥ 4.
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Theorem 4.3. Let q ≥ 3, let a1, . . . , aq be distinct complex numbers, and let
γ be a J ′-curve with ends at the point a1, moreover, let the point a2 be inside the
curve γ, and the points a3, . . . , aq be outside γ. Then each of the following two
classes:

(j) F(n; a1 : λ1(a1), λ2(a1), λ3(a1); a2 : λ1(a2); a3 : λ1(a3); . . . ; aq : λ1(aq)),

where λk(a1) ≥ 0, k = 1, 2, 3; λ1(a2) ≥ 2;

(k) F(n; a1 : λ1(a1), λ2(a1); a2 : λ1(a2); . . . ; aq;λ1(aq)),

where λk(a1) ≥ 0, k = 1, 2;

contains a Riemann surface F , on which one can draw a J-curve Γ with ends a1
and a2 ∈ F , such that the curve Γ without ends is projected in a one-to-one way into
γ\{a1}, the point ak is a ramification point of order λk(a1) lying over a1, k = 1, 2.

Proofs of Theorems 4.1, 4.2, and 4.3 are not difficult, but they are rather
cumbersome and are using topological constructions, which are far from the main
topics of this book. Readers who do not wish to analyze these proofs and are ready
to believe the results, can omit the proofs without harm to understanding of the
subsequent results.

Before starting the proofs we fix some notation. Let G1 be a Jordan m1-
gon, we join it with a Jordan m2-gon, lying outside G1 in such a way that ∂G2 ∩
∂G1 is a Jordan arc, consisting of m Jordan arcs which are sides of G1 and G2,
m ≤ min(m1 − 1,m2 − 1), following one after another starting with a vertex α in
the negative direction of the boundary of G1. This operation will be denoted by
U(G1, G2, α,m) (Fig. 19).

Proof of Theorem 4.1. The theorem is trivial if n = 1. We assume that
n ≥ 2 and construct the corresponding line complexes. If q = 2, then necessarily
λ1(a1) = λ1(a2) = n− 1, and the line complex is a closed Jordan curve consisting
of 2n edges (see, for example, Fig. 5 and 6). Now let q ≥ 3. We take the region
G1 which is a Jordan (2λ1(a1) + 2)-gon as an elementary 1-region. We fix on the
boundary of G1 an internal vertex α. Let p be the largest integer satisfying

2 + 2

p∑
j=1

λ1(aj) ≤ 2n.(4.3)

Since, by (4.1), we have

2

q∑
j=1

λ1(aj) = 4(n− 1),

then 1 < p < q. Suppose that there is an equality in (4.3). We join to G1

and elementary 2-region G2, which is a Jordan (2λ1(a2) + 2)-gon using the oper-
ation U(G1, G2, α, 1). Denote the region (Ḡ1 ∪ Ḡ2\∂(Ḡ1 ∪ Ḡ2), which is a Jordan
(2λ1(a1)+2λ1(a2)+2)-gon, by ∆2. We join to ∆2 an elementary 3-regionG3, which
is a Jordan (2λ1(a3)+2)-gon, using U(∆2, G3, α, 1). Suppose that we have already

joined an elementary s-region Gs, 1 < s ≤ p− 1. Let ∆s =

(
s⋃
1

Ḡj

)
\∂
(

s⋃
1

Ḡj

)
.

We join to ∆s and elementary (s+1)-region Gs+1 which is a Jordan (2λ1(as+1)+2)-
gon, using U(∆s, Gs+1, α, 1). The boundary of ∆p contains 2

∑p
j=1 λ1(aj)+2 = 2n

vertices. We join to ∆p an elementary (p + 1)-region Gp+1, which is a Jordan
(2λ1(ap+1)+2)-gon, using U(∆p, Gp+1, α, 2λ1(ap+1)+1). The boundary of ∆p+1



368 7. APPLICATIONS OF RIEMANN SURFACES TO VALUE DISTRIBUTION

contains 2n−2λ1(ap+1) vertices. Joining to ∆s, p ≤ s ≤ q−2, an elementary (s+1)-
region Gs+1, which is a (2λ1(as+1)+2)-gon, using U(∆s, Gs+1, α, 2λ1(as+1)+1),

we get a Jordan region ∆s+1, the boundary of which contains 2n− 2
∑s+1
p+1 λ1(aj)

vertices. The boundary of the region ∆q−1 contains

2n− 2

q−1∑
j=p+1

λ1(a1) = 2(n− 1)− 2

q−1∑
j=p+1

λ1(aj) + 2

vertices. By (4.1) and the assumption that there is an equality in (4.3), we have

2

p∑
j=1

λ1(aj) = 2(n− 1) =

q∑
j=1

λ1(aj),

p∑
j=1

λ1(aj) =

q∑
j=p+1

λ1(aj) = n− 1.

Therefore the boundary of ∆q−1 contains

2

q∑
j=p+1

λ1(aj)− 2

q−1∑
j=p+1

λ1(aj) + 2 = 2λ1(aq) + 2

vertices. As an elementary q-region Gq we take the complement of ∆̄q−1 in the
extended complex plane.

Thus, we have constructed all needed elementary regions different from digons.
Our system of edges does not yet satisfy the condition (3) from the definition of
line complexes. However, it, as is easy to see, has the property that if some internal
(external) vertex lies on the boundary of more than two elementary regions, then
the labels of these elementary regions increase (decrease) as we go around the vertex
in the positive direction. Clearly, some edges can be replaced by bundles in such a
way, that we get a line complex having all required properties, that is, representing a
Riemann surface belonging to the class F(n; a1 : λ1(a1); . . . ; aq : λ1(aq)), λ1(aj) ≥ 0.

If there is a strict inequality in (4.3), then the construction is changed at one
point only. We construct the elementary 1-, 2-, . . . , p-regions G1, G2, . . . , Gp, and
the regions ∆2,∆3, . . . ,∆p in the same way as before, but now there are m1 vertices
on the boundary of ∆p, where

m1 = 2 + 2

p∑
j=1

λ1(aj) < 2n.(4.4)

On the other hand,

2λ1(ap+1) +m1 = 2 + 2

p+1∑
j=1

λ1(aj) > 2n.

The inequality (4.4) implies that

λ1(ap+1) +

p∑
j=1

λ1(aj) < (n− 1) + (n− 1) = 2(n− 1),

therefore, by (4.1), we have p+ 1 < q. Now we join to ∆p and elementary (p+ 1)-
region Gp+1, which is a Jordan (2λ1(ap+1)+2)-gon, using U(∆p, Gp+1, α,m2 +1),
where m2 = 2λ1(ap+1) + m1 − 2n. We can use this operation since m2 + 1 < m1
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and m2 + 1 < 2λ(ap+1) + 2. Since the number m2 + 1 is odd, the end of the Jordan
arc ∂∆p ∩ ∂Gp+1, different from α, is an external vertex. It is easy to count that
there are m1 + (2λ1(ap+1) + 2)− (m2 + 2) = 2n vertices in ∆̄p+1, moreover, there
are 2n−m2 vertices on the boundary of ∆p+1.

After the construction of the region ∆p+1, we construct the elementary regions
Gs and the regions ∆s, p+ 2 ≤ s ≤ q− 1 in the same way as before. The boundary
of ∆q−1 contains

2n−m2 − 2

q−1∑
j=p+1

λ1(aj) = 4n−m1 − 2λ1(ap+1)− 2

q−1∑
j=p+2

λ1(aj)

= 2{2(n− 1)}+ 4− 2

p∑
j=1

λ1(aj)− 2− 2

q−1∑
j=p+1

λ1(aj)

= 2

q∑
j=1

λ1(aj) + 2− 2

q−1∑
j=1

λ1(aj) = 2λ1(aq) + 2

vertices. After that the construction of the line complex is completed in the same
way as in the previous case. Fig. 20 and 21 show examples of line complexes
corresponding to the cases when there is an equality and the strict inequality in
(4.3). �

Remark. Later on we shall use the observation that in the construction that
we used in the proof of Theorem 4.1 there is an internal vertex α which lies simul-
taneously on the boundaries of the elementary j-regions G1, G2, . . . , Gq, which are
Jordan (2λ1(aj) + 2)-gons, that is, all ramification points of the Riemann surface
are lying on the boundary of one internal half-sheet.

Proof of Theorem 4.2. We draw a base curve L through the points a1, . . . ,
aq in such a way that the curve γ, except its ends, is inside L. Now, obviously,
it suffices to construct a line complex with prescribed ramification and satisfying
the additional condition that the elementary regions corresponding to the points
a1 and a2 have on their boundary at least one common internal vertex.

Case (a). Since τ = λ1(a1)+λ2(a1)+λ1(a2)+λ2(a2) < 2(n−2) < 2(n−1), then

n ≥ 3, q ≥ 3, and

q∑
j=3

Λ(aj) ≥ 2. Assume first that τ ≤ n− 1. In this case we con-

sider surfaces of the class F(n; a1 : λ1(a1), λ2(a1); a2 : λ1(a2), λ2(a2); a3 : λ1(a3);
. . . ; aq : λ1(aq)), where λ1(a3) = Λ(a3). Take as an elementary 1-region G′1 a Jor-
dan (2λ2(a1) + 2)-gon and mark some internal vertex α′ on its boundary. We
join to G′1 and elementary 2-region G′2, which is a Jordan (2λ2(a2) + 2)-gon using
U(G′1, G

′
2, α

′, 1). Let β be the next after α′ external vertex, as we go around the
boundary of G′2 in the negative direction. We join to ∆′ = (Ḡ′1∪Ḡ′2)\∂(Ḡ′1∪Ḡ′2) an
elementary 1-regionG′′1 , which is a Jordan (2λ1(a1)+2)-gon, using U(∆′, G′′1 , β, 1).
Let α be the next after β internal vertex, as we go around the boundary of G′′1 in the
negative direction. We join to ∆′′ = (Ḡ′′1 ∪ ∆̄′)\∂(Ḡ′′1 ∪ ∆̄′) an elementary 2-region
G′′2 , which is a Jordan (2λ1(a2) + 2)-gon using the operation U(∆′′, G′′2 , α, 1).
Let ∆2 = (∆̄′′ ∪ Ḡ′′2 )\∂(∆̄′′ ∪ Ḡ′′2 ). It is easy to count that the boundary of ∆2

contains 2 + 2λ1(a1) + 2λ1(a2) + 2λ2(a1) + 2λ2(a2) = 2 + 2τ ≤ 2n vertices, and
there are no vertices inside ∆2. After this we join to ∆2 successively elementary 3-,
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. . . , q-regions and construct a line complex in exactly the same way as in the proof
of Theorem 4.1, in addition, the internal vertex α is lying on the boundary of the
elementary regions G′′1 , G

′′
2 , G3, . . . , Gq (only the fact that α belongs to ∂G′′1 ∩ ∂G′′2

is important for us).
A line complex corresponding to the case when τ ≤ n− 1 is shown in Fig. 22.
Now we consider the case when τ ≥ n. If Λ(a3) > 1, we construct a surface of

the class F(n; a1 : λ1(a1), λ2(a1); a2 : λ1(a2), λ2(a2); a3 : λ1(a3), λ2(a3); a4 :
λ1(a4); . . . ; aq : λ1(aq)), where λ2(a3) = 1, λ1(a3) = Λ(a3) − 1; if Λ(a3) = 1 then
necessarily q ≥ 4, and wee construct a surface of the class F(n; a1 : λ1(a1), λ2(a1);
a2 : λ1(a2), λ2(a2); a3 : λ1(a3); . . . ; aq : λ1(aq)), where λ1(a3) = 1. At first we
assume τ = n. The corresponding line complex can be constructed in the following
way. Let Q1 be the square with vertices A = (−1,−1), B = (−1, 1), C = (1, 1),
D = (1,−1), Q2 be the square with the vertices A′ = (−2,−2), B′ = (−2, 2), C′ =
(2, 2), D′ = (2,−2). The square Q1 will play the role of an elementary 3-region.
Using segments of bisectors of the coordinate angles we join the corresponding
vertices of the squares Q1 and Q2, we divide the region Q2\Q̄1 into four trapezoids
T1, . . . , T4, where T1 is the lower, T2 is the left, T3 is the upper, and T4 is the right
trapezoid. We place internal vertices in the points α = A′, C′, B,D, and external
vertices in the remaining vertices of Q1 and Q2. Now we place (2λ1(a1)−2) vertices
in the interval A′D′, (2λ1(a2) − 2) vertices in the interval A′B′, (2λ2(a1) − 2) in
the interval B′C′, (2λ2(a2) − 2) in the interval C′D′. We shall regard T1 and
T2 as elementary 1-regions and T2 and T4 as elementary 2-regions. The closed
square Q̄2 will contain 2(λ1(a1) + λ1(a2) + λ2(a1) + λ2(a2) − 4) + 8 = 2τ = 2n
vertices, 2n − 4 of them lie on the boundary of Q2. If Λ(a3) > 1, we join to Q2

successively elementary 3-, 4-, . . . , (q− 1)-regions, which are Jordan (2λ1(aj) + 2)-
gons, using the operations U(∆j−1, Gj , α, 2λ1(aj) + 1), 3 ≤ j ≤ q − 1, where
∆2 = Q2, ∆j = (∆̄j−1 ∪ Ḡj)\∂(∆̄j−1 ∪ Ḡj). It is easy to count that the boundary

of ∆q−1 contains 2n− 4− 2
∑q−1
j=3 λ1(aj) vertices. But (4.1) implies that

q∑
j=3

λ1(aj) = 2(n− 1)− τ − λ2(a3) = 2(n− 1)− n− 1 = n− 3,

therefore 2n−4 = 2
∑q
j=3 λ1(aj)+2, and the boundary of the region ∆q−1 contains

2λ(aq)+2 vertices. We take the complement of ∆̄q−1 in the extended complex plane
as an elementary q-region. Replacing some of the edges by bundles we get, as before,
a required line complex. If Λ(a3) = 1, we carry out the construction in the same
way, the only difference is that we do not need to take an elementary 3-region in
the complement of Q2. Both cases are illustrated on Fig. 23 and 24.

Now we assume that p = τ − n > 0. Then λ1(a1) + λ2(a1) = τ − λ1(a2) −
λ2(a2) ≥ n + p − (n − 2) = p + 2 and, similarly, λ1(a2) + λ2(a2) ≥ p + 2. We
subtract one from the largest of the numbers λ1 and λ2 and from the largest of the

numbers λ3 and λ4. We get numbers, which we denote λ
(1)
1 , λ

(1)
2 , λ

(1)
3 , λ

(1)
4 . We

repeat the same operation with the new numbers, and get λ
(2)
1 , . . . , λ

(2)
4 . Repeating

the same operation p times, we get the numbers λ
(p)
1 , . . . , λ

(p)
4 . It is easy to see

that λ
(p)
1 , . . . , λ

(p)
4 ≥ 1. Let p13 be the number of ones which were subtracted

simultaneously from λ1 and λ3 in the process of all p operations. The numbers
p14, p23, p24, p31, p32, p41, p42 are defined similarly. It is easy to see that pjk = pkj ,
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λ
(p)
1 = λ1−p13−p14, λ

(p)
2 = λ2−p23−p24, λ

(p)
3 = λ3−p31−p32, λ

(p)
4 = λ4−p41−p42,

p13 + p14 + p23 + p24 = p31 + p32 + p41 + p42 = p.
Now we construct the squares Q1 and Q2 and trapezoids T1, . . . , T4, and place

vertices of the line complex in the vertices of these squares and trapezoids in the
same way as we did for τ = n. Now in the intervals, joining the points shown in
the table below, we place the number of vertices shown in the right column of the
table:

A′D′

A′B′

B′C′

C′D′

∣∣∣∣∣∣∣∣∣
2λ

(p)
1 − 2 A′A

2λ
(p)
3 − 2 B′B

2λ
(p)
2 − 2 C′C

2λ
(p)
4 − 2 D′D

∣∣∣∣∣∣∣∣∣
2p13

2p23

2p24

2p14

The boundary of T1 contains (2λ
(p)
1 − 2) + 2p13 + 2p14 + 4 = 2λ1 + 2 = 2λ1(a1) + 2

vertices, the boundary of T2 contains (2λ1(a2) + 2) vertices, the boundary of T3

contains (2λ2(a1) + 2) vertices, and the boundary of T4 contains (2λ2(a2) + 2)
vertices. We take Q1 as an elementary 3-region, T1 and T3 as elementary 1-regions,

T2 and T4 as elementary 2-regions. The boundary of Q2 contains 2(λ
(p)
1 −1)+ · · ·+

2(λ
(p)
4 −1)+4 = 2(λ1−1−p13−p14)+ · · ·+2(λ4−1−p41−p42)+4 = 2τ−4p−4 =

2n − 2p − 4 vertices, and the interior of Q2 contains (2p + 4) vertices. Now we
successively join to Q2 elementary 3-, 4-, . . . , (q − 1)-regions, if Λ(a3) > 1, or 4-,
. . . , (q − 1)-regions if Λ(a3) = 1, in the same way as we did this in the case τ = n.

Now the boundary of ∆q−1 contains σ = 2n−2p−4−2(Λ(a3)−1)−2
∑q−1
j=4 λ1(aj)

vertices. Since 2n− 2 = τ + Λ(a3) +
∑q

j=4 λ1(aj) and τ = n+ p, we have

τ = 2p+ 2 + Λ(a3) +

q∑
j=4

λ1(aj)

and

σ = 2τ − 4p− 2− 2Λ(a3)− 2

q−1∑
j=4

λ1(aj) = 2λ1(aq) + 2.

We take as an elementary q-region the complement of ∆̄q−1 in the extended
complex plane, and then complete the proof as in the previous case. A line complex
with τ > n is shown on Fig. 25.

Case (b). Denote τ = λ1(a1)+λ2(a1)+λ1(a2). It is clear that τ ≤ n−2+n−1 =
2n−3, therefore q ≥ 3. At first we assume τ ≤ n−1. Take as a 1-regionG′1 a Jordan
(2λ(a1)+2)-gon and mark an interior vertex α on its boundary. Then we join to G′1,
as a 2-region G2, a Jordan (2λ1(a2) + 2)-gon using the operation U(G′1, G2, α, 1).
We join to the region ∆1 = (Ḡ′1 ∪ Ḡ2)\∂(Ḡ′1 ∪ Ḡ2) a 1-region G′′1 , which is a Jordan
(2λ2(a1) + 2)-gon, using the operation U(∆1, G

′′
1 , β, 1), where β is an exterior

vertex on the boundary of G2, next after α as we go around the boundary in
the negative direction. The boundary of the region ∆2 = (∆̄1 ∪ Ḡ′′1 )\∂(∆̄1 ∪ Ḡ′′1 )
contains 2λ1(a1) + 2 + 2λ1(a2) + 2λ2(a1) = 2τ + 2 ≤ 2n vertices, After that we
complete the construction of a line complex in the same way as in the proof of
Theorem 4.1. If τ ≥ n, then τ = n − 1 + p, p ≥ 1. It is easy to see that p =
λ1(a1)+λ2(a1)+λ1(a2)−(n−1) ≤ λ1(a1)+λ2(a1). Therefore we can find numbers
p1, p2, such that 0 ≤ p1 ≤ λ1(a1), 0 ≤ p2 ≤ λ2(a1), p = p1 + p2. Now we carry out
the construction of a line complex in the same way as in the case τ ≤ n−1, with the
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only difference that we join G2 to G′1 using the operation U(G′1, G2, α, 2p1+1), and
join G′′1 to ∆1 using the operation U(∆1, G

′′
1 , β, 2p2+1). Now the closed region ∆̄2

contains 2λ1(a1)+2+2λ2(a1)+2+2λ1(a2)−(2p1 +1)−(2p2+1) = 2τ+2−2p = 2n
vertices, and the boundary of ∆2 contains 2n− 2p1− 2p2 = 2(n− p) vertices. Now
we again join successively 3-, . . . , (q − 1)-regions as in the proof of Theorem 4.1,
and get a region ∆q−1 whose boundary contains

2(n− p)− 2

q−1∑
j=3

λ1(aj) = 2n+ 2n− 2− 2τ − 2

q−1∑
j=3

λ1(aj)

= 2{2(n− 1)}+ 2− 2τ − 2

q−1∑
j=3

λ1(aj)

= 2

τ +

q∑
j=3

λ1(aj)

+ 2− 2τ − 2

q−1∑
j=3

λ1(aj) = 2λ1(aq) + 2

vertices. After that the construction of a line complex is completed in the usual
way. Line complexes corresponding to the case (b) for τ ≤ n − 1 and τ ≥ n are
shown on Fig. 26 and Fig. 27.

Case (c). First we construct a line complex for a Riemann surface of the class
F(n; a1 : λ1(a2), λ2(a2); a2 : λ1(a1); a3 : λ1(aq); a4 : λ1(aq−1); . . . ; aq : λ1(a3)) in the
same way as we did it in the case (b). Then we take a mirror image of this line
complex and the images of 2-regions consider as 1-regions, the images of 1 regions
as 2-regions, the images of q-regions as 3-regions, the images of (q − 1)-regions as
4-regions, . . . , the images of 3 regions as q-regions. It is easy to verify that as a
result of this transformation (we denote it by S) we get a line complex satisfying
all the conditions imposed in the case (c). The line complex obtained as the result
of the transformation S for the line complex from Fig. 27 is shown on Fig. 28.

Case (d). Consider the line complex which we constructed in our study of case
(b), where λ1(a2) is equal to the number λ2(a2) prescribed in the case (d), and
λ1(a1) ≥ 1. Let α′ be the exterior vertex on the boundary of the elementary 1-
region G′1, β′ be the interior vertex following after α′ as we go around the boundary
of G′1 in the positive direction. Some elementary 2-region G′2 has the edge joining
α′ and β′ as its common boundary with G′1. If τ ≤ n− 1, then clearly G′2 6= G2. If
τ ≥ n, we observe, that λ1(a2) ≤ n− 2 in our case, therefore p = λ1(a1) +λ2(a1) +
λ1(a2) − (n − 1) ≤ λ1(a1) + λ2(a2) − 1, and we can take 0 ≤ p1 ≤ λ1(a1) − 1,
0 ≤ p2 ≤ λ2(a1). With this choice of p1 we get that G′2 6= G2 for τ ≥ n also. Thus
G′2 is a digon. The line complex satisfies all the conditions, there is an interior
vertex α′ in ∂G1 ∩ ∂G′2.

Case (e). We get the solution by using the solution of the case (d) in the same
way as we used the solution of the problem in the case (b) to solve it in the case
(c).

Case (f). The solution is contained in Theorem 4.1 and the remark after it.
Case (g). First we a construct a line complex disregarding the existence of

the base point a2, that is, assuming that there are q − 1 base points: a1, a3, . . . ,
aq. Then the construction is reduced to the case (b). If we take into account the
base point a2, we need only to replace each edge separating 1- and 3-regions by
a digon. Since in our construction in the case (b) the regions G′1 and G2 in the
constructed complex have in their boundaries at least one common edge, in our
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case the boundary of the 1-region G′1, which is a Jordan (2λ1(a1) + 2)-gon, and the
boundary of some 2-region which is a digon have one common internal vertex.

Case (h). The argument is similar to the case (g).
Case (i). We construct a line complex in the same way as in the proof of The-

orem 4.1 for a Riemann surface of the class F(n; a2 : λ2(a2); a3 : λ1(a3); . . . ; aq :
λ1(aq); a1 : λ2(a1)), that is, the region Gj is an elementary (j + 1)-region,
1 ≤ j ≤ q − 1, and the region Gq is an elementary 1-region. The first and the
second vertices on the boundary of G2, counting starting at α in the negative direc-
tion, we denote by β and α′, respectively; the vertex β is external, and the vertex
α′ is internal. These vertices do not lie on the boundary of G1 since it is a Jordan
(2λ2(a2)+2)-gon, and 2λ2(a2)+2 ≤ 2n−2 since λ2(a2) ≤ n−2. The vertices β and
α′ lie on the common part of the boundary of a 3-region and a 4-region, therefore
they also belong to the common part of the boundary of two digons, which are
elementary 1- and 2-regions. Since α′ is an internal vertex, the constructed line
complex has all required properties.

Note that in the case (i) the requirement q ≥ 4 is essential. For q = 3 the class
F(n; a1 : 0, λ2(a1); a2 : 0, λ2(a2); a3 : λ1(a3)) is nonempty, as is easy to show
referring to Theorem 4.1. However, it is easy to verify that for q = 3 the digons
which are elementary 1- and 2-regions have disjoint boundaries. �

Remark. In Theorem 4.2 we assume that λ1(aj) ≥ 1, 3 ≤ j ≤ q in all cases.
This is done for simplicity of the proof only. It is easy to see that it would suffice
to require λ1(aj) ≥ 0, 3 ≤ j ≤ q only, in addition, in the case (a) for one of the
points aj , 3 ≤ j ≤ q, we require that Λ(aj0) ≥ 1 if λ1(aj) = 0 for 3 ≤ j < j0;
and in the case (i) we require that λ1(aj) ≥ 1 for at least two values j, 3 ≤ j ≤ q.
In fact, in our construction of the line complex we can first disregard those base
points for which Λ(aj) = 0, and then complete the constructed line complex with
the corresponding digons.

Proof of Theorem 4.3. First we note that since

λ1(a1) + λ2(a1) + λ3(a1) ≤ n− 3,(4.5)

λ1(a2) ≤ n− 1,(4.6)

the condition (4.1) implies that the requirement q ≥ 3 in the statement of the
theorem is necessary.

We can draw the base curve L in such a way that it intersects the curve γ in
two points only, one of which is a1. We select interior and exterior vertices on the
curve γ, and the arc of γ joining these vertices and not passing through a1 take as
the curve C2. We select the other curves, C1, C3, . . . , Cq, used in the construction
of a line complex, without any additional requirements. Now it is easy to verify
that it suffices to construct a line complex with the prescribed ramification and the
additional restriction that on the boundary of an elementary 1-region corresponding
to the point a1 (point a2) there is an internal (external) vertex with the property
that these vertices are the ends of the same edge with label 2.

Case (j). We shall distinguish two subcases: (j1) when 2Λ(a1) + 2λ1(a2) + 2 ≤
2n; (j2) when 2Λ(a1) + 2λ1(a2) + 2 = 2n+ 2p, p > 0.

Subcase (j1). Take as an elementary 1-region a Jordan (2λ1(a1) + 2)-gon.
Mark an internal vertex α on its boundary and join as an elementary 2-region G2

a Jordan (2λ1(a2) + 2)-gon using the operation U(G1, G2, α, 1). We mark on the
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boundary of G2 an external vertex β, which is the first after α if we go along the
boundary of G2 in the negative direction, and an internal vertex α′ separated from
α by four edges. We join to the region ∆ = (Ḡ1 ∪ Ḡ2)\∂(Ḡ1∪ Ḡ2) an elementary 1-
region G3 which is a Jordan (2λ2(a1) + 2)-gon, using the operation U(∆2, G3, β, 1).
Then we join to ∆3 = (∆̄2 ∪ Ḡ3)\∂(∆̄2 ∪ Ḡ3) an elementary 1-region G4 which is
a Jordan (2λ3(a1) + 2)-gon using the operation U(∆3, G4, α

′, 1). It is easy to see
that the boundary of the region ∆4 = (∆̄3 ∪ Ḡ4)\∂(∆̄3 ∪ Ḡ4) contains

2(λ1(a1) + λ2(a1) + λ3(a1) + λ1(a2)) + 2 = 2Λ(a1) + 2λ1(a2) + 2 < 2n

vertices. After that we successively join to ∆4 elementary 3-, 4-, . . . , q-regions in
the same way as in the proof of Theorem 4.1, but now the role of the region G1

is played by the region ∆4, and the number p, 2 ≤ p < q is defined as the largest

integer satisfying 2 + 2Λ(a1) + 2

p∑
j=2

λ1(aj) ≤ 2n (cf. (4.3). We leave the details of

the construction to interested readers. Examples of line complexes, corresponding
to the cases when p = 2 and when p = 3 are shown on Fig. 29 and Fig. 30.

Subcase (j2). By (4.6) we have p ≤ Λ(a1). Therefore we can write p =
p1 + p2 + p3, where 0 ≤ pk ≤ λk(a1), k = 1, 2, 3. Take as an elementary 1-
region G1 a Jordan (2λ1(a1) + 2)-gon. We mark on its boundary an internal vertex
α and join as an elementary 2-region G2 a Jordan (2λ1(a2) + 2)-gon using the
operation U(G1, G2, α, 2p1+1). The inequality (4.5) implies that 2p ≤ 2λ1(a2)−4 =
(2λ1(a2) + 2)− 6. Therefore the indicated operation of joining, as well as the next
two, is admissible. We mark on the boundary of G2 an external vertex β which is
the first after α as we go around the boundary of G2 in the negative direction. We
join to the region ∆2 = (Ḡ1 ∪ Ḡ2)\∂(Ḡ1 ∪ Ḡ2) an elementary 1-region G3 which is
a Jordan (2λ2(a1) + 2)-gon using the operation U(∆2, G3, β, 2p2 + 1). The Jordan
arc ∂G3 ∩ ∂∆2 has two ends: one is in the vertex β, the other is in an internal
vertex, which we denote by β′. We mark on the boundary of G2 an external vertex
α′, which is the first external vertex after β′ if we go around the boundary of G2

in the negative direction. We join to the region ∆3 = (∆̄2 ∪ Ḡ3)\∂(∆̄2 ∪ Ḡ3) an
elementary 1-region G4, which is a Jordan (2λ3(a1) + 2)-gon, using the operation
U(∆3, G4, α

′, 2p3+1). It is easy to count that the region ∆4 = (∆̄3∪Ḡ4)\∂(∆̄3∪Ḡ4)
contains 2(p1 + p2 + p3) = 2p vertices, and the boundary of ∆4 contains 2n − 2p
vertices. Let

∆s = (∆s−1 ∪ Ḡs)\∂(∆̄s−1 ∪ Ḡs),

5 ≤ s ≤ q+1, Gs be an elementary (s−2)-region, which is a Jordan (2λ1(as−2)+2)-
gon, joined to ∆s−1 using the operation U(∆s−1, Gs, α, 2λ1(as−2) + 1). It is easy
to count that the boundary of ∆q+1 contains

2n− 2p− 2

q−1∑
j=3

λ1(aj) = 2n− (2Λ(a1) + 2λ1(a2) + 2− 2n)− 2

q−1∑
j=3

λ1(aj)

= 4(n− 1) + 2− 2Λ(a1)− 2

q−1∑
j=2

λ1(aj) = 2λ1(aq) + 2

vertices. We take as an elementary q-region the complement of ∆̄q+1 in the extended
complex plane. We have constructed all elementary regions, and, replacing some of
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the edges by edge bundles, we get the desired line complex. An example of a line
complex corresponding to the case (j2) is shown on Fig. 31.

Case (k). The argument is completely analogous to the argument in the case
(j), the only difference is that we do not need to join to ∆3 the third elementary
1-region. We leave the detailed argument in this case to interested readers. An
example of a line complex corresponding to the case (k) is shown on Fig. 32. Note
also, that if the relation (4.5) is satisfied with λ1(a2) ≥ 2, then the case (k) is
reduced to the case (j) with λ3(a1) = 0. �

Remark. It is clear that in the condition of Theorem 4.3 we may assume that
the point a2 is outside γ, and the points a3, . . . , aq are inside this curve.

Exercise. Prove the following statement. Let q ≥ 4 distinct complex numbers
a1, . . . , aq and a J ′-curve γ with ends at the point a1 be given, moreover, let points
a2, . . . , ar, 2 < r < q, be inside the curve γ, and the points ar+1, . . . , aq be outside
the curve γ. Then each of the classes

(l) F(n; a1 : λ1(a1), λ2(a1), λ3(a1), a2 : λ1(a2); a3 : λ1(a3), 0 . . . ; aq−1 :
λ1(aq−1), 0; aq : λ1(aq)), where λk(a1) ≥ 0, k = 1, 2, 3; λ1(a2) ≥ 2;

(m) F(n; a1 : λ1(a1), λ2(a1); a2 : λ1(a2); a3 : λ1(a3), 0; . . . ; aq−1 : λ1(aq−1);
aq : λ1(aq)), where λk(a1) ≥ 0, k = 1, 2;
contains a Riemann surface F on which a J-curve Γ with the ends a1 and a2 ∈ F ,
such that the curve Γ without ends is projected in a one-to-one way onto γ\{a1},
and the point ak is a ramification point of order λk(a1) lying over a1, k = 1, 2.

Fig. 33, containing a “typical” line complex corresponding to the case (l) can
be considered as a hint showing the changes which should be made in the proof of
Theorem 4.3 (cf. Fig. 31) in order to get the desired statement.

5. Statement of the inverse problem of the value distribution theory.
Riemann surfaces with finitely many logarithmic ends

The direct problem of the value distribution theory is the problem of deter-
mination of the distribution of deficiencies and indices of a given meromorphic
function. The inverse problem consists in finding a meromorphic function having
the prescribed distribution of deficiencies and indices. In the general form the in-
verse problem of the value distribution theory for meromorphic function (later on
we shall call it briefly ‘the inverse problem’) is stated in the following way:

Let a1, a2, . . . , be a (finite or infinite) sequence of complex numbers. Suppose
that for each member of this sequence numbers δ(ak) and ε(ak) are given, and these
numbers satisfy the conditions

0 < δ(ak) + ε(ak) ≤ 1, k = 1, 2, . . . ,(5.1)

∑
k

{δ(ak) + ε(ak)} ≤ 2.(5.2)

The problem is to find a meromorphic function having at the points ak, k = 1, 2, . . . ,
deficiencies δ(ak) and indices ε(ak), and having no other deficient or index values
in the complex plane.
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The most interesting is the study of the distribution of deficiencies. For this
reason the inverse problem is often considered in more narrow form, with no re-
striction on indices. Thus, the “restricted” inverse problem, as we shall call it, is
the following

Let {ak} be a (finite or infinite) sequence, let δ(ak) be numbers corresponding
to the elements of the sequence and satisfying the conditions 0 < δ(ak) ≤ 1 and∑

k

δ(ak) ≤ 2.(5.3)

The problem is to find a meromorphic function f(z) such that δ(ak, f) = δ(ak),
k = 1, 2, . . . ,, and δ(a, f) = 0 for all a 6= ak, k = 1, 2, . . . ; or to prove that such
functions do not exist.

Solutions of the inverse problem can be sought among meromorphic functions
belonging to some class C, for example, to the class of entire functions (in this
case we, of course, require a1 = ∞ and δ(∞) = 1) or to the class of meromorphic
functions of finite order. In such a case we say that the inverse problem is solved
in the class C.

The complete solution of the inverse problem is still unknown.7 Fuchs and Hay-
man [FH62] (see also [Hay64, §4.1]) found a complete solution of the “restricted”
inverse problem in the class of entire functions of infinite order. For this result we
refer the reader to the mentioned book of Hayman. All other case in which the
solutions of the inverse problem are known today will be presented in this chapter.

We shall consider the inverse problem in the class of meromorphic functions of
finite order without mentioning this explicitly. Further, we restrict our attention to
the case when the number of points {ak} is finite: a1, a2, . . . , aq. Although, as we
saw in Chapter 4, the set of deficient values of a meromorphic function of a finite
positive order can be an arbitrarily prescribed countable set, the deficiencies in the
points of this set cannot be prescribed arbitrarily, since besides the inequality (5.3)
they satisfy some additional relations (see the commentary to Chapter 7). The fact
that the deficiencies, besides the inequality (5.3) should satisfy some additional
conditions, which are almost unexplored yet, makes the solution of the inverse
problem for countable sets {ak} extremely complicated. As for the set of index
values, we can easily get rid of the requirement of its finiteness and introduce this
requirement only to make our presentation more accessible. In fact, as we shall see,
in the case when the set {ak} is finite it suffices to consider rather simple class Fq
of Riemann surfaces. However, in the corresponding place we shall provide hints
which can be used to generalize the obtained results to the case when the set of
index values is infinite.

So we shall solve the inverse problem assuming that the set {ak} = {a1, a2, . . . ,
aq} is finite. Besides, we shall assume that all numbers aj , 1 ≤ j ≤ q, are finite.
Obviously the latter assumption does not reduce the generality because we can pass
to the general case using a linear-fractional transformation.

Now we shall prove one theorem due to R. Nevanlinna [NevR32b] (see, also
[NevR74, n. 257]). Although this theorem will be considerably generalized in
subsequent sections, we present it here not so much because it is historically the
first example of a rather general solution of the inverse problem, but because the

7Now it is solved. About this and other problems mentioned in this page, see the survey in
the end of the book.
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main idea of the proof (it is different from the original proof due to R. Nevanlinna)
will be used in what follows, and here it is not concealed by technicalities.

Theorem 5.1. Let q ≥ 2, let a1, . . . , aq be complex numbers, and δ(aj), 0 <

δ(aj) ≤ 1, be rational numbers satisfying

q∑
j=1

δ(aj) = 2. Then there exists a mero-

morphic function f(z) whose deficiency at the point aj is equal to δ(aj), 1 ≤ j ≤ q.

First we introduce a class of Riemann surfaces, the so-called surfaces with
finitely many logarithmic ends, and study the value distribution of the meromorphic
mapping functions.

Let a1, . . . , aq be a set of distinct complex numbers (q ≥ 2), for simplicity we
assume that they are finite.

Take a finite sequence of numbers b1, b2, . . . , bp, all members of which are taken
from the set {a1, . . . , aq}, moreover, the number aj (1 ≤ j ≤ q) is repeated pj times
in the sequence {bk}, also we assume that the sequence satisfies bk 6= bk−1, bk+1

(b0 = bp, bp+1 = b1). It is clear that

q∑
j=1

pj = p and pj ≤ p/2 for 1 ≤ j ≤ q. Take a

simply connected finite-sheeted Riemann surface K with boundary,8 bounded by a
closed Jordan curve C, consisting of p J-curves σk = BkBk+1, where the point Bk
is projected onto the point bk. Here and later on all indices k will be taken modulo
p, that is, k = 0 should be replaced by k = p, and k = p + 1 should be replaced
by k = 1. The surface K can be constructed, for example, in the following way.
We draw a closed Jordan curve c through the points a1, a2, . . . , aq in the w-plane,
having a continuous curvature and consisting of line segments in sufficiently small
neighborhoods of points aj . Let w0 be a point inside c. We consider a path on the
curve c which passes through points b1, b2, . . . , bp, b1 moving along c in the positive
direction only (of course, when we move along c from bj to bj+1 we can pass through
some other points bk). Then arg(w − w0) will get an increment 2πν, where ν is a
positive integer. We can take as K a part of the Riemann surface of the function
(w − w0)1/ν (that is, a part of the Riemann surface corresponding to the function
w = w0 + zν), covering the interior of the curve c. Then the boundary of K will
play the role of C, and, obviously, the points Bk can be placed on the curve C in
the desired way. If pj = 1 for all j, we can take as K the interior of the curve c.

Let Λ be a Riemann surface corresponding to the function w = (bez−a)/(ez−1)
(that is, the Riemann surface of the function z = Ln{(w − a)/(w − b)}), with
logarithmic ramification points over a and b, a 6= b. If we join these logarithmic
ramification points by a J-curve Γ on Λ (this curve does not have ends since the
surface Λ does not cover the points a and b, but as a point moves along Γ in each of
the two possible directions, it tends to the corresponding logarithmic ramification
points), and make a cut along this curve, the surface Λ will be decomposed into two
parts Λ1 and Λ2, each of them is called a logarithmic end. The curve Γ oriented
in such a way that the region Λj (j = 1, 2) is on the left, is called the boundary of
the logarithmic end Λj . For each of the logarithmic ends we shall say that it has
logarithmic ramification points over a and b.

8S. Stöılow [Sto62, Vol. 2, Ch.VII,§5] uses the term polyhedral regions for Riemann surfaces
with boundary.
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Now we take p logarithmic ends Λk, 1 ≤ k ≤ p, where the end Λk has log-
arithmic ramification points over bk and bk+1, and its boundary is the J-curve
σk = Bk+1Bk. We paste to the Riemann surface K with the points Bk, 1 ≤ k ≤ p,
excluded, the logarithmic ends Λk along the curves σk for all k, 1 ≤ k ≤ p. We get a
Riemann surface F which is called a Riemann surface with p logarithmic ends. The
part K of the Riemann surface F is called its pseudokernel (clearly it is not uniquely
determined). If we exclude from K sufficiently small one-sheeted neighborhoods of
the boundary points Bk, 1 ≤ k ≤ p, we get a Riemann surface with boundary K0

which is called the kernel of the Riemann surface F . The Riemann surface F has
at most finitely many algebraic ramification points, all of which belong to K, and
p logarithmic ramification points B̃1, . . . , B̃p, which are projected onto the points
a1, . . . , aq, moreover, there are pj logarithmic ramification points over aj .

Sufficiently small ε-neighborhood of the logarithmic ramification point B̃k con-
tains an ε-neighborhood of the boundary point Bk on K and intersects the loga-
rithmic ends Λk and Λk−1. It is clear that the Riemann surface F belongs to the
class Fq1 , q1 ≥ q. The line complex of a Riemann surface with five logarithmic ends
(the sequence bk is of the form a1, a2, a1, a3, a2, ν = 3) is shown in Fig. 34. See,
also, Fig. 10 and 11. The line complex of a surface with p logarithmic ends has
p elementary logarithmic regions, which are separated from each other by parts of
the complex which have the form of a sequence of vertices, each of which is the
end of exactly two bundles, so that bundles and vertices alternate in the following
way: bundle, vertex, bundle, vertex, . . . . These parts of the line complex are also
often called logarithmic ends because they, in some sense, correspond to logarithmic
ends of the Riemann surface. More precisely, if a point moves along a logarithmic
end of the line complex visiting successively all vertices contained in it, then the
corresponding point on the Riemann surface is moving on certain logarithmic end
Λ, moving from sheet to sheet, and moving away from the boundary of Λ.

Now we construct a homeomorphic mapping of the Riemann surface F onto
the complex ζ-plane, which is quasiconformal on F\K0. Let us agree that to all
regions on F , which we consider, we join their boundary points belonging to F .

Take pairwise disjoint 2ε-neighborhoods U(2ε, B̃k) of the logarithmic ramifica-

tion points B̃k, where ε is so small that U(2ε, B̃k) ∩ K is a disc sector with the
vertex at Bk, which does not contain algebraic ramification points and is bounded
by two radii and an arc which is projected into the circle {|w − bk| = 2ε}. The ra-
dian measure of the arc can exceed 2π, so the sector is not necessarily one-sheeted.
We make a cut in U(ε, B̃k) ∩K along a radius

Sk = {|w − bk| ≤ ε, argw = αk},

going out of Bk. Then U(ε, B̃k) decomposes into two parts, U+(ε, B̃k) and U−(ε,

B̃k), where U+(ε, B̃k) has a nonempty intersection with Λk and U−(ε, B̃k) has a

nonempty intersection with Λk−1. Denote the kernel K\
p⋃
k=1

U(ε, B̃k) by K0. Let

λk = Λk\{U(ε, B̃k) ∪ U(ε, B̃k+1)},

Λ′k = Λk ∪ U+(ε, B̃k) ∪ U−(ε, B̃k+1) = λk ∪ U+(ε, B̃k) ∪ U−(ε, B̃k+1).
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It is easy that

F = K0 ∪
(

q⋃
k=1

Λ′k

)
.

We map Λ′k quasiconformally onto the upper half-plane

Hk = {Imζk > 0}
with some trapezoid removed. To construct such mapping we do the following. We
map U−(ε, B̃k+1) conformally onto

H−k = {ξk < −1, ηk > 0}, ζk = ξk + iηk,

using the function

ζk = ln
w − bk+1

ε
− 1− iαk+1,(5.4)

where the branch of the logarithm is chosen in such a way that the point w ∈ Sk+1 is

mapped onto ζk = ξk = ln
|w − bk+1|

ε
−1. Similarly, we map U+(ε, B̃k) conformally

onto

H+
k = {ξk > 1, ηk > 0}

using the function

ζk = ln
ε

w − bk
+ 1 + iαk,(5.5)

where the branch of the logarithm is chosen in such a way that the point w ∈ Sk is

mapped onto ζk = ξk = ln
ε

|w − bk|
+ 1.

We cut Λk along all J-curves lying over σk. Then the Riemann surface λk
decomposes into one-sheeted regions Φ

(k)
j , j = 1, 2, . . . , each of which has the form

of the extended complex w-plane with the discs {|w− bk| < ε} and {|w− bk+1 < ε}
removed, and a cut σ0

k along those part of the curve σk which lies outside these
discs. We denote the boundaries of this cut by σ+

k and σ−k depending on whether
the positive direction on this boundary (that is, the direction for which the region is
on the left) coincides with the direction from bk to bk+1 on σk, or with the direction

from bk+1 to bk. We map Φ
(k)
j quasiconformally onto the rectangle

Q = {−1 < ξk < 1, 0 < ηk < 2π}
in such a way that the circle {|w − bk+1| = ε} is mapped onto the segment {ξk =
−1, 0 ≤ ηk ≤ 2π}, the circle {|w − bk| = ε} is mapped onto the segment {ξk =
1, 0 ≤ ηk ≤ 2π}, σ+

k is mapped onto the segment {ηk = 2π, −1 ≤ ξk ≤ 1},
and σ−k is mapped onto the segment {ηk = 0, −1 ≤ ξk ≤ 1}, moreover, the
distortion is constant on each of the sides of the rectangle. The existence of such
quasiconformal mapping with a bounded characteristic follows from Example 5 from
Section 2. Each point from λk which is projected into σk, lies simultaneously on the

boundary σ+
k of some Φ

(k)
j , and on the boundary σ−k of the region Φ

(k)
j+1. Under the

mapping onto Q this point is mapped either onto the point (ξ, 0), or onto the point

(ξ, 2π) depending on whether we mapped Φ
(k)
j+1 or Φ

(k)
j , but the x-coordinate in

both cases will be the same, since the distortion |dw/dζk| on the horizontal sides of

the rectangle is constant and is equal to
1

2
length(σ0

k). Therefore, making additional
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vertical shifts of the rectangles Q corresponding to Φ
(k)
j , j = 1, 2, . . . , we can paste

them and get a half-strip Lk = {−1 < ξk < 1, ηk > 0}. In such a way we get a
quasiconformal mapping ζk = ωk(w) of the surface λk onto Lk, moreover, ωk(w)

maps Φ
(k)
j onto

Q
(k)
j = {−1 < ξk < 1, 2π(j − 1) < ηk < 2πj}.

The mapping ωk(w) has a bounded characteristic, and a constant distortion

|dζk/dw| = 1/ε(5.6)

on the part of the boundary of λk which is projected into {|w − bk| = ε} or {|w −
bk+1| = ε}.

The function ζk = ωk(w) maps the part of the boundary of λk, which is pro-
jected into {|w − bk+1| = ε}, into {ξk = −1, ηk ≥ 0}. But the same set of points

considered as a part of the boundary of U−(ε, B̃k+1) is mapped by the function (5.4)
into {ξk = −1, ηk ≥ θ−k+1}, where θ−k+1 > 0 is the angle between Sk+1 and σk at
the point Bk+1, moreover, the distortion is constant and satisfies the relation (5.6).
Similarly, the part of the boundary of λk which is projected into {|w − bk| = ε},
on one hand, is mapped by the function ωk(w) into {ξk = 1, ηk ≥ 0}, and on the
other hand, is mapped by the function (5.5) into {ξk = 1, ηk ≥ θ+

k }, where θ+
k > 0

is the angle between Sk and σk at the point Bk.
Denote by Tk the trapezoid with vertices at the points (−1, 0), (1, 0), (1, θ+

k ),

(−1, θ−k+1). We map quasiconformally Lk onto Lk\Tk using the mapping

ζk = ω̃k(ζk) = ξk + i

{
ηk +

θ+
k − θ

−
k+1

2
ξk +

θ+
k + θ−k+1

2

}
.

This quasiconformal mapping (cf. Example 2 from Section 2) is affine, has a
bounded characteristic, and reduced to vertical shifts on the vertical sides of Lk.

Each rectangle Q
(k)
j is mapped onto some parallelogram by the mapping ω̃k(ζk).

The function ζk = Ωk(w) = ω̃k(ωk(w)) maps λk onto Lk\Tk quasiconformally and
with the bounded characteristic p(w, ζk) ≤ M , moreover now points of the part of
the boundary of λk which are projected into {|w− bk+1| = ε} (into {|w− bk| = ε})
are mapped onto the same points on {ξk = −1, ηk ≥ θ−k+1} (on {ξk = 1, ηk ≥ θ+

k })
both under the mapping ζk = Ωk(w) and under the mapping (5.4) (mapping (5.5)).

We have got a quasiconformal mapping ζk = Ω0
k(w) of the surface Λ′k onto

Hk\Tk, which is represented by the function (5.4) on U−(ε, B̃k+1), by the function

(5.5) on U+(ε, B̃k), and by the function Ωk(w) on λk, where the first two functions
are conformal mappings, and the last function is a quasiconformal mapping with a
bounded characteristic. Therefore∫∫

Hk\Tk
{p(ζk, w)− 1}dσ(ln ζk)

=

∫∫
Lk\Tk

{p(ζk, w) − 1}dσ(ln ζk) ≤M
∫∫

Lk\Tk
dσ(ln ζk)

= M

∫∫
Lk\Tk

dσ(ζk)

|ζk|2
≤M ′ <∞.

(5.7)

Let w = ψk(ζk) be the inverse function of ζk = Ω0
k(w), mapping Hk\Tk onto Λ′k.

Denote by νk(r, a) the number of a-points of the function ψk(ζk) in (Hk\Tk)∩{|ζk | ≤



5. INVERSE PROBLEM OF THE VALUE DISTRIBUTION THEORY 381

r}. It is easy to see that ψk(ζk) 6= bk, bk+1 and ν(r, bk) ≡ 0, ν(r, bk+1) ≡ 0. If a 6=
bk, bk+1, then the a-points ψk(ζk) form a sequence ζ

(0)
k (a) + 2πim, m = 0, 1, 2, . . . .

Therefore νk(r, a) ∼ r/(2π) as r →∞ for all a 6= bk, bk+1.
Now we observe that the point w ∈ Sk, as we have already mentioned, is

mapped onto the point ξk = ln
ε

|w − bk|
+ 1 on the boundary of Hk\Tk, and onto

the point ξk−1 = ln
|w − bk|

ε
− 1 = −ξk on the boundary of Hk−1\Tk−1. Therefore,

if we map Hk\Tk using the function

ζ = ζ
2
p

k e
i 2π
p (k−1), k = 1, 2, . . . , p,(5.8)

onto some region Ξk, which is the angle

{
2π

p
(k − 1) < arg ζ <

2π

p
k

}
with some

bounded region deleted, then the points on the surface F which correspond to a

point ζ from ∂Ξk−1 ∩ ∂Ξk =

{
arg ζ =

2π

p
(k − 1), |ζ| ≥ 1

}
under the mappings

w = ψk((−1)k−1ζp/2) and w = ψk−1((−1)kζp/2) are the same. Then the function

ζ = ζ(w) = {Ω0
k(w)} 2

p ei
2π
p (k−1), k = 1, 2, . . . , p,(5.9)

realizes a quasiconformal mapping of the part of the simply connected Riemann

surface F\K0 =

p⋃
k=1

Λ′k onto

p⋃
k=1

Ξ̄k. We map the Riemann surface K0 homeomor-

phically onto the region {|ζ| <∞}\
p⋃
k=1

Ξ̄k in such a way that the points w ∈ ∂K0

are mapped in the same way as by the function ζ = ζ(w) defined by the formulas
(5.9). Thus we get a homeomorphic mapping ζ = ζ(w) of the Riemann surface
F onto {|ζ| < ∞}9. Thus we have proved that the Riemann surface F is simply
connected. Let z = z(w) be a conformal mapping of F onto {|z| < R}, R ≤ ∞. We
define a homeomorphic mapping z = z(ζ) of the complex ζ-plane onto {|z| < R} as

a composition of two mappings {|ζ| < ∞} → F → {|z| < R}, moreover on

p⋃
k=1

Ξ̄k

this mapping is quasiconformal with the characteristic p(ζ, z) = p(ζ, w) = p(ζk, w),
where ζ and ζk are connected by the formulas (5.8).

Taking into account (5.7) we get∫∫
⋃p
k=1 Ξ̄k

{p(ζ, w) − 1}dσ(ln ζ) =

p∑
k=1

∫∫
Ξ̄k

{p(ζ, w) − 1}dσ(ln ζ)

=

p∑
k=1

∫∫
Hk\Tk

{p(ζk, w)− 1} dσ(ln ζ)

dσ(ln ζk)
dσ(ln ζk)

=

p∑
k=1

1

p2

∫∫
Hk\Tk

{p(ζk, w)− 1}dσ(ln ζk) ≤ 1

p
M ′ <∞.

Thus, the mapping z = z(ζ) satisfies the condition of Theorem 3.1 (O. Teichmüller
theorem). Hence R =∞ and the surface F is of parabolic type. The meromorphic

9It is possible to map K0 by a quasiconformal mapping also, then the mapping ζ = ζ(w)
would be quasiconformal everywhere on F .
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function w = f(z) mapping {|z| <∞} onto F can be normalized in such a way that
the function ζ = ζ(z) = ζ[f(z)], mapping the complex z-plane onto the complex
ζ-plane satisfies the condition

lim
z→∞

∣∣∣∣ζ(z)

z

∣∣∣∣ = lim
ζ→∞

∣∣∣∣z(ζ)

ζ

∣∣∣∣ = 1.(5.10)

Let w = ϕ(ζ) be the inverse function to ζ = ζ(w), ϕ maps {|ζ| <∞} onto the
surface F . Outside

⋃p
k=1 Ξ̄k the function ϕ(ζ) has at most finitely many a-points

for each a. It is not difficult to count, using (5.8), that

n(r, a, ϕ) = O(1) +

p∑
k=1

νk(rp/2, a) ∼

p

2π
r
p
2 for a 6= a1, . . . , aq,(5.11)

p− 2pj
2π

r
p
2 +O(1) for a = aj , 1 ≤ j ≤ q,(5.12)

since for a = aj exactly 2pj of the functions νk(r, a) are identically zero. The
summand O(1) in (5.12) is essential only for those aj , for which 2pj = p, if there
are any. Note that the pseudokernel K can always be chosen in such a way that it
does not cover the points aj , 1 ≤ j ≤ q (this is what happens in the construction of
a pseudokernel which was given as an example). Then the summand O(1) in (5.12)
is absent (it appears because of the points on K0 which are projected onto aj), and
if 2pj = p, the function f(z) does not take the value aj.

The equality (5.10) implies

n(r, a, f) ∼


p

2π
r
p
2 for a 6= a1, . . . , aq,

p− 2pj
2π

r
p
2 +O(1) for a = aj , 1 ≤ j ≤ q;

so

N(r, a, f) ∼ 1

π
r
p
2 for a 6= a1, . . . , aq,(5.13)

and

N(r, a, f) ∼ 1

π

(
1− 2pj

p

)
r
p
2 +O(ln r) for a = aj , 1 ≤ j ≤ q.(5.14)

Take a 6= a1, . . . , aq such that the Valiron deficiency ∆(a, f) = 0. Then (5.13)
implies that

(5.14′) T (r, f) ∼ 1

π
r
p
2 .

On one hand, the relation (5.14′) implies that the function f(z) has a normal
type of order ρ = p/2, on the other hand, using (5.13) and (5.14) we find that

δ(a, f) = ∆(a, f) =

{
0 for a 6= a1, . . . , aq,
2pj
p for a = aj , 1 ≤ j ≤ q,

(5.15)
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moreover, by the corollary of Theorem 6.5 from Chapter 4, (5.15) remains true for
each normalization of the function f(z) mapping {|z| <∞} onto F , that is, for all
f(Az +B), A 6= 0. We have

p∑
j=1

δ(aj , f) =
2

p

p∑
j=1

pj = 2.(5.16)

If we let p be an odd number ≥ 3, we get examples of meromorphic functions with
properties similar to the properties of functions from Example 8 from Section 5 of
Chapter 5.

Now it is not difficult to prove Theorem 5.1. We write the rational numbers
δ(aj)/2 in the form δ(aj)/2 = pj/p, where pj and p are positive integers. Since∑p
j=1 δ(aj) = 2, we have

∑q
j=1 pj = p. Besides, it is obvious that pj ≤ p/2,

1 ≤ j ≤ q. It is clear that we can find a sequence b1, . . . , bp whose elements belong
to the set {a1, . . . , aq}, and the value aj (1 ≤ j ≤ q) occurs pj times in the sequence
b1, . . . , bp, and bk 6= bk−1, bk+1. Constructing for such sequence b1, . . . , bp a surface
F with p logarithmic ends in the way described above, we get, that for the mapping
function f(z) the formulas (5.1) hold, that is, the deficiency at the point aj is equal
to δ(aj), 1 ≤ j ≤ q, and there are no other deficient values.

If δ(aj) = 1, then the surface F can be chosen in such a way that it does not
cover the point aj , that is, f(z) 6= aj for all z.

6. Almost periodic ends

In the construction of surfaces with logarithmic ends, which was presented in
the previous section, the main role was played by the notion of a logarithmic end, a
sort of a “half” of the Riemann surface of a logarithmic function. In order to solve
the inverse problem for a wider class of cases than the one for which the solution
is given by Theorem 5.1, we generalize the class of Riemann surfaces with finitely
many logarithmic ends, to do this we first generalize the notion of a logarithmic
end.

Consider a sequence {Φk}, k = ±1,±2, . . . , of closed Riemann surfaces of genus
zero, all ramification points of which are projected into the points a1, a2, . . . , aq only,
where the points a1, . . . , aq are distinct. For simplicity we shall assume that the
complex numbers a1, . . . , aq are finite. Let b1 and b2 be complex numbers, such
that either b1 = a1, b2 = a2, or b1 = b2 = a1. We assume that Φk = Φ−k, k ≥ 1.
For each Riemann surface Φk we make a cut Γk along some J-curve with ends
Bk1 , B

k
2 ∈ Φk, which is projected to a fixed curve γ with ends b1 and b2, which

does not pass through the points aj , unless aj 6= b1, b2. The case b1 = b2, which
corresponds to a closed Jordan curve γ is not excluded, but, obviously, in this case
the requirement of possibility making the cut Γk imposes certain restriction on the
surface Φk, for example, Φk cannot be a one-sheeted surface. The Riemann surface
obtained from Φk after making the cut Γk will be called a brick Φ̃k, Φ̃k = Φ̃−k.

Considering γ as a cut, denote its boundaries by γ+ and γ−, so that in the
sufficiently small neighborhood of b2 the angle between γ− and γ+ with the vertex
at b2 is equal to 2π. Transferring this notation to each of the cuts Γk we get the
boundaries Γ+

k and Γ−k . Now we paste Γ+
k with Γ−k+1, k 6= −1, 0, and Γ+

−1 with Γ−1 .
We get an open simply connected Riemann surface Φ which has two logarithmic
ramification points B̃1 and B̃2 which are projected onto b1 and b2, respectively (if
b1 = b2, then the correspondence between logarithmic ramification points and bj,
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j = 1, 2 is established in an arbitrary, but fixed way). The cut on the surface φ
along the curve Γ = Γ−1 = Γ+

−1 divides Φ into two parts, Λ1 and Λ2, each of which
is called an end. The boundary of the end Λj is defined in the same way as for
logarithmic ends.

We shall distinguish between surfaces Φ with b1 6= b2, and with b1 = b2.
Following L.I. Volkovyskĭı [Vol50], we call the ends arising from Φ the ends of
the first and the second kind, respectively.

If all Φk are one-sheeted, then, as is easy to see, the surface Φ is the Riemann
surface of the function ln w−a2

w−a1
, and the ends Λj are logarithmic. In the case

when all bricks Φ̃k are the same, the ends Λj are called periodic10. Ends satisfying
somewhat less restrictive assumptions are called almost periodic. Before listing the
assumption, we introduce some notation.

Let mk be the number of sheets on the surface Φk.
Denote by Φν , ν = 1, 2, . . . , the part of the Riemann surface Φ consisting of

ν⋃
k=1

Φ̃k, moreover we include Γ−1 into Φν , but exclude Γ+
ν . Let n̄ν(a) be the number

of the points of Φν lying over a, and nν(a) is the number of the same points, but
each ramification point of order m is counted m+ 1 times. The number

nν =

ν∑
k=1

mk

is called the number of sheets of the surface Φν . Besides, we let n0 = n0(a) = 0 for
all a. Obviously, n̄ν(a) ≤ nν(a) ≤ nν , besides, nν(a) = nν for all a 6= b1, b2. In the
case when b1 = b2 = a1, we denote the sum over k, 1 ≤ k ≤ ν, of numbers of points
(in the case of algebraic ramification points we take into account their orders) of
the Riemann surfaces Φk\{Bkj }, lying over the point a1 by n′ν(bj), j = 1, 2. It is
easy to see that

2nν − n′ν(b1)− n′ν(b2) = nν − nν(a1).(6.1)

Later on we shall write nν(bj) instead of n′ν(bj), because it does not lead to any
confusion, but will allow us not to consider the cases b1 = b2 and b1 6= b2 separately
in some formulas. By the Riemann–Hurwitz formula (4.1) the sum of all algebraic
ramification points of the surface Φk is equal to 2mk, if we agree to count the orders
of the points Bkj , j = 1, 2, according to the number of sheets included in the cycle,

that is, we add one to the order of a ramification point (or to zero, in the case of a
simple point). Then it is easy to check that

2∑
j=1

(nν − n̄ν(aj)) +

q∑
j=3

(nν(aj)− n̄ν(aj))

=
2∑
j=1

(nν − nν(aj)) +

q∑
j=1

(nν(aj)− n̄ν(aj)) = 2nν

(6.2)

10In the case of periodic ends the requirement that the curves Γk ≡ Γ1 are J-curves is
superfluous, since the equal bricks Φ̃k ≡ Φ̃1 can be pasted into a surface Φ if the cuts in Φk = Φ1

are made along an arbitrary Jordan curve, the same for all Φk.



6. ALMOST PERIODIC ENDS 385

for b1 6= b2, and

nν − n̄ν(a1) +

q∑
j=2

(nν(aj)− n̄ν(aj))

= (nν − nν(a1)) +

q∑
j=1

(nν(aj)− n̄ν(aj)) = 2nν

(6.3)

for b1 = b2 = a1.
The quantities

δg(a) = δg(a,Λ1) = 1− lim sup
ν→∞

nν(a)

nν
= lim inf

ν→∞

nν − nν(a)

nν
,

εg(a) = εg(a,Λ1) = lim inf
ν→∞

nν(a)− n̄ν(a)

nν

will be called the geometric deficiencies and indices, respectively, of the end Λ1,
as well as of the end Λ2, and of the surface Φ. It is clear that for a 6= b1, b2 we
have δg(a) = 0, and for a 6= a1, . . . , aq, we have εg(a) = 0. It is easy to see that
εg(a) + δg(a) ≤ 1, εg(a) ≥ 0, δg(a) ≥ 0. Besides, the equalities (6.2) and (6.3)
imply that ∑

a

(δg(a) + εg(a)) ≤ 2,

moreover, the equality here takes place if and only if all geometric deficiencies
and indices are obtained as exact limits, that is, for all a the relations nν(a) =
nν(1− δg(a)) + o(nν) and nν(a)− n̄ν(a) = εg(a)nν + o(nν) hold.

For b1 = b2 = a1 we will consider, in addition to δg(a1), the quantity

δ′g(bj) = δ′g(bj ,Λ1) = 1− lim sup
ν→∞

n′ν(bj)

nν
, j = 1, 2.

The equality (6.1) implies that, if n′ν(bj)/nν = 1 − δ′g(bj) + o(1) as ν → ∞,
j = 1, 2, then δg(a1) = δ′g(b1)+ δ′g(b2). Later on we shall write δg(bj) and δg(bj ,Λ1)
instead of δ′g(bj) and δ′g(bj ,Λ1).

It is clear that the surface Φ belongs to the class Fq and can be represented
by means of a line complex. It will be convenient for us to choose base curves in
a special way. If Φ has ends of the first kind, we choose the base curve in such
a way that it includes the curve γ. If Φ has ends of the second kind, then γ is a
closed Jordan curve, and we choose the base curve in such a way that it intersects
γ at two points only: at a1 = b1 = b2 and at one more point b. In this case as
vertices we choose one point on each of the arcs on which the curve γ is divided
by the points a1 and b. It is easy to see that with such choice of the base curve
the boundary between the parts of the line complex of the surface Φ corresponding
to the neighboring bricks passes either through one edge (b1 6= b2), or through two
vertices joined by one edge (b1 = b2). A line complex of the surface Φ with ends of
the first kind is shown on Fig. 9 and 35, a line complex of the surface with ends
of the second kind is shown on Fig. 13 and 36. In the case shown on Fig. 9, the
surface Φ has two logarithmic ends, in the case shown on Fig. 13, the surface Φ
has two periodic ends, which in this special case are called sine-ends.
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It is easy to single out those parts of the line complex of Φ which correspond
to surfaces Φν , and, as it easy to verify, the geometric deficiencies and indices of
the surface Φ can be computed directly from the line complex of the surface Φ.

Now we assume that δg(b1) > 0 and δg(b2) > 0. We cut from Φk pairwise
disjoint ε-neighborhoods U(ε,Bkj ), j = 1, 2, of the points Bk1 and Bk2 , where ε > 0

is chosen to be so small that 2ε-neighborhoods of the points Bk1 and Bk2 do not
contain other ramification points of Φk, and the part of Γk containing in each of
the neighborhoods U(2ε,Bkj ) consists of one line segment. We find a quasiconformal
mapping of the Riemann surface

Φ′k = Φ̃k\(U(ε,Bk1 ) ∪ U(ε,Bk2 ))

onto the rectangle Rk = {−1/δg(b2) ≤ ξ ≤ 1/δg(b1), 0 ≤ η ≤ 2πmk}, ζ = ξ + iη,
such that the part of the boundary of Φ′k lying over {|w − b2| = ε} and over
{|w − b1| = ε} is mapped onto the left and the right sides of the rectangle Rk,
respectively; and the part of the boundary of Φ′k lying on Γ−k and on Γ+

k , is mapped
onto the lower side and the upper side of Rk, respectively; moreover the distortion of
the quasiconformal mapping is constant on each side of the rectangle. The existence
of the required quasiconformal mapping follows from Example 5 of Section 2. These
quasiconformal mappings are not uniquely determined. Denote by pk the infimum
of the set of numbers sup

w∈Φ′k

p(w, ζ) over all quasiconformal mappings Φ′k on Rk with

the described correspondence between the boundaries. It ic clear that p−k = pk.
Since Φ′k depends on ε, then pk depends on ε. We shall assume that ε is fixed11.

Denote the function realizing the quasiconformal mapping of Φ′k onto Rk with
the indicated correspondence between the boundaries by

ζ = ϕk(w),

we also assume that p(w,ϕk(w)) < 2pk for w ∈ Φ′k.

Definition. Ends Λ1 and Λ2 of the Riemann surface Φ are called almost
periodic, if the following conditions are satisfied:

1◦ 1− nν(bj)

nν
+O

(
1

nν

)
= δg(bj) > 0, j = 1, 2;

2◦
∞∑
ν=1

pνmν

n2
ν

<∞;

3◦ The following limits exists: lim
ν→∞

nν(a)− n̄ν(a)

nν
= εg(a) ≥ 0;

4◦ lim
ν→∞

mν

nν
= 0.

In the case when the surface Φ has periodic ends, mk ≡ m1, nν = νm1 = νn1,
nν(a) = νn1(a), n̄ν(a) = νn̄1(a), nν(bj) = νn1(bj), j = 1, 2, pν ≡ p1. It is clear
that the conditions 1◦–4◦ hold, hence periodic ends are almost periodic. It is easy
to see that all geometric deficiencies and indices of a surface Φ with periodic ends
are rational numbers, and if εg(a) > 0, then εg(a) + δg(a) < 1.

11Since, as we shall see, the sequence pk is used in the definition of an almost periodic end,
the almost periodicity of an end depends, generally speaking, not only on Λj , but also on the
choice of ε. This deficiency of the definition can be eliminated, but we are not going to do this,
because the present definition will no cause any inconvenience.
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The conditions 1◦ and 3◦ together with (6.2) and (6.3) imply that for a surface
Φ with almost periodic ends the condition∑

a

(δg(a) + εg(a)) = 2(6.4)

holds.
In what follows we consider surfaces Φ with almost periodic ends only without

mentioning this explicitly.
We construct a quasiconformal mapping of the surface Φ onto the complex ζ-

plane, ζ = ξ + iη. To this end we map the ε-neighborhoods U(ε, B̃1) and U(ε, B̃2)
of the logarithmic ramification points using the function

ζ =
1

δg(b2)
ln
w − b2
εe

+ iα2,(6.5)

ζ =
1

δg(b1)
ln

εe

w − b1
+ iα1(6.6)

onto the regions G2 = {ξ < −1/δg(b2)} and G1 = {ξ > 1/δg(b1)}, respectively.
We choose the real constants α2 in (6.5) and α1 in (6.6) in such a way that these

mappings map the line segment Γ ∩ U(ε, B̃2) onto {η = 0, ξ < −1/δg(b2)}, and

the line segment Γ ∩ U(ε, B̃1) onto {η = 0, ξ > 1/δg(b1)}. We place the vertices
Ak1 , Ak2 , Ak3 , Ak4 on the boundary Φ′k in the order corresponding to the positive
(counterclockwise) orientation of the boundary, in such a way that Ak1A

k
2 = Γ−k ,

Ak3A
k
4 = Γ+

k , the curve Ak2A
k
3 lies over {|w− b1| = ε}, and the curve Ak4A

k
1 lies over

{|w − b2| = ε}. Under the mapping (6.5) the point Ak1 is mapped onto the point

Dk
1 = − 1

δg(b2)
+

2πi

δg(b2)
(nk−1 − nk−1(b2)) for k ≥ 1,

Dk
1 = − 1

δg(b2)
− 2πi

δg(b2)
(n−k − n−k(b2)) for k ≤ −1,

the point Ak4 is mapped onto the point Dk
4 = Dk+1

1 , D0
1 = D1

1. Under the mapping
(6.6) the point Ak2 is mapped onto the point

Dk
2 =

1

δg(b1)
+

2πi

δg(b1)
(nk−1 − nk−1(b1)) for k ≥ 1,

Dk
2 =

1

δg(b1)
− 2πi

δg(b1)
(n−k − n−k(b1)) for k ≤ −1,

the point Ak3 is mapped onto the point Dk
3 = Dk+1

2 .
We consider a quasiconformal mapping of Φ′k onto the trapezoid Tk with vertices

at the points Dk
1 , Dk

2 , Dk
3 , Dk

4 in such a way that the point Akj is mapped onto the

point Dk
j , j = 1, 2, 3, 4, and the distortion is constant on each of the sides of the

trapezoid. To this end, we first map Φ′k onto the rectangle using the function ζ′ =
ϕk(w) onto the rectangle Rk = {−1/δg(b2) ≤ ξ′ ≤ 1/δg(b1), 0 ≤ η′ ≤ 2πmk}. Then
we map the rectangle Rk onto the trapezoid Tk using a quasiconformal mapping
ζ = ψk(ζ′), such that ψk(−1/δg(b2)) = Dk

1 , ψk(1/δg(b1)) = Dk
2 , ψk(1/δg(b1) +

i2πmk) = Dk
3 , ψk(−1/δg(b2) + i2πmk) = Dk

4 , and the distortion is constant on
each of the sides of Rk. We show that the functions ψk(ζ′) can be chosen in such a
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way that the characteristic p(ζ′, ζ) is bounded by a constant which does not depend
on k. In fact, if we use the inequality (2.12), we get the estimate (k ≥ 1)

p(ζ′, ζ) ≤ 2πmk

min(qk1 , q
k
2 )

+
max(qk1 , q

k
2 )

2πmk

+
2πmk

h2 min(qk1 , q
k
2 )

max{α2
k, (q

k
2 − qk1 − qk1 + αk)2},

(6.7)

where

h =
1

δg(b1)
+

1

δg(b2)
,

qkj = 2π
{nk − nk(bj)} − {nk−1 − nk−1(bj)}

δg(bj)
, j = 1, 2;

αk = 2π

{
nk−1 − nk−1(b1)

δg(b1)
− nk−1 − nk−1(b2)

δg(b2)

}
.

If k ≤ −1, the estimate (6.7) remains true with αk = α|k|, q
k
j = q

|k|
j , j = 1, 2. It

is clear that it suffices to consider the estimate (6.7) for k ≥ 1. The condition 1◦

implies that nν − nν(bj) = nνδg(bj) +O(1), j = 1, 2. Therefore

αk = O(1), qkj = 2π(nk − nk−1) +O(1) = 2πmk +O(1),

qk2 − qk1 + αk = O(1),
qkj

2πmk
= 1 +O

(
1

mk

)
= O(1).

Besides, since the quantities nk − nk(bj) form a non-decreasing sequence, qkj ≥
2π/δg(bj), j = 1, 2, k ≥ 1. Therefore

2πmk

qkj
=

1

1 +O(1/mk)
= O(1).

These estimates imply that the right-hand side of (6.7) is uniformly bounded
by some constant L. Then the characteristic of the quasiconformal mapping ζ =
Ψk(w) = ψk(ϕk(w)) of the surface Φ′k onto the trapezoid Tk is bounded by 2Lpk.

Taking into account the fact that under the mapping of U(ε, B̃1), U(ε, B̃2),
and Φ′k, k = ±1,±2, . . . , onto G1, G2, and Tk, respectively, the distortion on the
common part of the boundary of two of these regions is equal to the same constant,
it is easy to see, that we have constructed a quasiconformal mapping ζ = ζ(w) of

the whole Riemann surface Φ onto {|ζ| <∞}, moreover, in U(ε, B̃1) and U(ε, B̃2)
this mapping is conformal. Under this mapping the end Λ1 is mapped into {η > 0},
the end Λ2 is mapped into {η < 0}, and the curve Γ is mapped into {η = 0}.

We estimate the integral∫∫
ζ∈̄T1∪T−1

p(ζ, w)dσ(ln ζ) =
∞∑
|k|=2

∫∫
Tk

p(ζ, w)dσ(ln ζ)

≤
∞∑
|k|=2

2Lpk

∫∫
Tk

dσ(ln ζ) = 4L

∞∑
k=2

pk

∫∫
Tk

dσ(ln ζ).

(6.8)
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But for sufficiently large k we have∫∫
Tk

dσ(ln ζ) =

∫∫
Tk

dσ(ζ)

|ζ|2 ≤
1

(minζ∈Tk |ζ|)
2

∫∫
Tk

dσ(ζ)

≤ h

2
{

min
(
|Dk

1 |, |Dk
2 |
)}2

{
|Dk

3 −Dk
2 |+ |Dk

4 −Dk
1 |
}

≤ h(qk1 + qk2 )

2
{

minµ=1,2

(
2π

δg(bµ) [nk−1 − nk−1(bµ)]
)}2

=
h

2

4πmk +O(1)

{2πnk−1 +O(1)}2 =
h

2

4πmk +O(1)

{2πnk − 2πmk +O(1)}2

=
h

2
· mk

n2
k

4π +O(1/mk){
2π − 2πmk

nk
+O(1/nk)

}2 = O

(
mk

n2
k

)
.

(6.9)

We used the condition 4◦ here.
By the condition 2◦ the inequality (6.9) implies that the series in the right-hand

side of (6.8) converges. Hence∫∫
|ζ|≥1

{p(ζ, w)− 1}dσ(ln ζ)

=

∫∫
|ζ|≥1,−1/δg(b2)≤ξ≤1/δg(b1)

{p(ζ, w)− 1}dσ(ln ζ)

≤
∫∫

|ζ|≥1,−1/δg(b2)≤ξ≤1/δg(b1)

p(ζ, w)dσ(ln ζ) <∞.

(6.10)

Let z = z(w) be a conformal mapping of the surface Φ onto {|z| < R}. Then
the quasiconformal mapping z = z(ζ), obtained as a composition of the mappings
{|ζ| < ∞} → Φ → {|z| < R} with p(ζ, z) = p(ζ, w), by (6.10), satisfies the
conditions of Theorem 3.1. Hence R =∞ and with a suitable normalization of the
mapping of Φ onto {|z| <∞} we have

lim
z→∞

∣∣∣∣ζ(z)

z

∣∣∣∣ = lim
ζ→∞

∣∣∣∣ ζ

z(ζ)

∣∣∣∣ = 1.(6.11)

Let us study the value distribution of the meromorphic function w = ϕ(ζ), which
maps the complex z-plane onto Φ. By (6.11) it suffices to study the value distribu-
tion of the function w = ϕ(ζ) inverse to the function ζ = ζ(w) constructed above.
The function w = ϕ(ζ) establishes a quasiconformal mapping of {|ζ| <∞} onto Φ.
It is easy to see that for each a, a-points of the function ϕ(z) lie in some vertical
strip {|ξ| < ξ0}, ξ0 = ξ0(a) > 0. On the other hand, the mapping ζ = ζ(w) maps

the brick Φ̃k into the region Sk consisting of the trapezoid Tk and two adjoining to
its vertical sides horizontal half-strips. The region Sk is contained in the horizontal
strip

min
µ=1,2

{
2π

δg(bµ)
[n|k|−1 − n|k|−1(bµ)]

}
≤ (−1)signkη

≤ max
µ=1,2

{
2π

δg(bµ)
[n|k| − n|k|(bµ)]

}
.
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Using the conditions 1◦ and 4◦ we see that the width of this strip is equal to
2π(n|k| − n|k|−1) +O(1) = 2πm|k| +O(1) = o(n|k|). Since the set k⋃

j=1

Sj

 ∪
 −k⋃
j=−1

Sj

 , k ≥ 1,

contains 2nk(a) a-points of the function ϕ(ζ) (2n̄k(a) a-points, if we do not take
into account the multiplicity of a-points), then, using the conditions 1◦, 3◦, and 4◦,
it is easy to show that

n(r, a, ϕ) =



r

π
+ o(r) for a 6= b1, b2,

r

π
(1 − δg(aj)) + o(r) for a = aj , j = 1, 2 (if b1 6= b2),

r

π
(1 − δg(a1)) + o(r) for a = a1 (if b1 = b2 = a1),

(6.12)

n1(r, a, ϕ) = εg(a)
r

π
+ o(r) for all a.(6.13)

Taking into account (6.11) we see that the relations (6.12) and (6.13) remains
true if we replace n(r, a, ϕ) by n(r, a, f) and n1(r, a, ϕ) by n1(r, a, f) in them. Now
we easily find, that

N(r, a, f) =


r
π + o(r) for a 6= b1, b2,
r
π

(1− δg(aj)) + o(r) for a = aj , j = 1, 2 (if b1 6= b2),
r
π

(1− δg(a1)) + o(r) for a = a1 (if b1 = b2 = a1),

(6.14)

N1(r, a, f) = εg(a)
r

π
+ o(r) for all a.(6.15)

Taking a 6= b1, b2 such that ∆(a, f) = 0, we get

T (r, f) =
r

π
+ o(r).(6.16)

The relation (6.16) implies that the type, and also deficiencies and indices are
the same for all functions f(Az + B), A 6= 0, that is, for all normalizations of
functions mapping the complex z-plane onto the surface Φ. Taking into account
(6.14), (6.15), and (6.16), we get the following theorem.

Theorem 6.1. If the meromorphic functions w = f(z) maps the complex z-
plane onto the Riemann surface Φ with almost periodic ends, then the function f(z)
has the normal type of the first order, and its deficiencies and indices coincide with
the geometric deficiencies and indices of the surface Φ.

Taking into account this theorem we shall write simply δ(a,Λ1) and ε(a,Λ1)
instead of δg(a,Λ1) and εg(a,Λ1). However we cannot omit the subscript g in the
notation δg(a) and εg(a), because it can lead to a confusion.

Exercise. Suppose that the surface Φ has periodic ends and Φk ≡ Φ1. Sup-
pose that a rational function w = R1(z) maps the extended z-plane onto Φ1, more-
over R1(βj) = B1

j ∈ Φ1, j = 1, 2; R(z) = R1(L(z)), where L(z) is a linear-fractional
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transformation, mapping the points 0 and ∞ onto the points β1 and β2, respec-
tively. Prove that the function w = R(ez) maps {|z| < ∞} onto Φ. Conversely,
each meromorphic function of the form w = R(ez), where R(z) is some rational
function, maps the complex z-plane onto some surface Φ with periodic ends.

We would like to make some remarks in connection with the study if surfaces
Φ, undertaken above. This remarks will be used later on.

Remark 1. When we constructed the quasiconformal mapping ζ = ζ(w) of
the Riemann surface Φ onto {|ζ| <∞}, the part of the Riemann surface which was

mapped into the strip {−1/δg(b2) ≤ ξ ≤ 1/δg(b1)} was Φ\(U(ε, B̃1) ∪ U(ε, B̃2)),
where ε is the fixed number from the definition of the quantity pk entering the con-
dition 2◦. Let us show that the quasiconformal mapping ζ1 = ζ1(w) with similar
properties can be constructed if we take instead of ε an arbitrary number ε1 satisfy-
ing 0 < ε1 < ε. In fact, let us map U(ε1, B̃2) and U(ε1, B̃1) onto {ξ1 < −1/δg(b2)}
and {ξ1 > 1/δg(b1)}, respectively, using the functions (6.5) and (6.6), with ε1 in-

stead of ε. We map Φ\(U(ε1, B̃1) ∪ U(ε1, B̃2)) onto the strip{
− 1

δg(b2)
ln
εe

ε1
≤ ξ ≤ 1

δg(b1)
ln
εe

ε1

}
using the function ζ = ζ(w), and then map this strip using the function

ξ1 + iη1 =
ξ

ln εe
ε1

+ iη(6.17)

onto the strip {−1/δg(b2) ≤ ξ ≤ 1/δg(b1)}. The quasiconformal mapping (6.17)
has characteristic p(ζ, ζ1) ≡ const, therefore it is easy to verify that the relations
(6.10), (6.12), and (6.13) are valid also for the function w = ϕ1(ζ1) which is the
inverse of ζ1 = ζ1(w). Therefore in what follows we shall use these formulas, and
also the formulas (6.5) and (6.6), regarding ε as a sufficiently small number.

Remark 2. The constructed quasiconformal mapping w = ϕ(ζ) maps the
upper half-plane {η > 0} onto the almost periodic end Λ1. Let α and β be some
positive numbers. Denote by Hαβ the region in the ζ1-plane, ζ1 = ξ1 + iη1, whose
boundary is the polygonal line consisting of {η1 = α, ξ1 ≤ −1/δg(b2)}, {η1 =
β, ξ1 ≥ 1/δg(b1)}, and the line segment joining the points (−1/δg(b2)) + iα and
(1/δg(b1)) + iβ, where the ray {ξ1 = 0, η1 > max(α, β)} is contained in Hαβ . We
map Hαβ onto {η > 0} using the mapping

ζ = ξ + iη =


ξ1 + (η1 − α)i for ξ1 ≤ −1/δg(b2),

ξ1 + (η1 − β)i for ξ1 ≥ 1/δg(b1),

ξ1 +
(
η1 − β−α

h
ξ1 − α/δg(b1)+β/δg(b2)

h

)
i for −1

δg(b2) ≤ ξ1 ≤
1

δg(b1) .

It is clear that p(ζ1, ζ) ≡ 1 for ξ1 > 1/δg(b1) and for ξ1 < −1/δg(b2), and p(ζ1, ζ) ≡
C = const for −1/δg(b2) < ξ1 < 1/δg(b1). Denote by w = ϕαβ(ζ1) = ϕ(ζ(ζ1))
a function which establishes a quasiconformal mapping of the region Hαβ onto
the almost periodic end Λ1. It is easy to see that the function ζ = ζ(w), inverse

to w = ϕαβ(ζ), has the form (6.5) and (6.6) in U(ε, B̃2) and U(ε, B̃1), but with
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different constants α1 and α2. Next, by (6.10) we have∫∫
Hαβ

{p(ζ1, w)− 1}dσ(ln ζ1)

=

∫∫
Hαβ∩{−1/δg(b2)<ξ1<1/δg(b1)}

{p(ζ1, w) − 1}dσ(ln ζ1)

≤ C
∫∫

{−1/δg(b2)<ξ<1/δg(b1),|ζ|>1}
p(ζ, w)

dσ(ln ζ1)

dσ(ln ζ)
dσ(ln ζ) + C1

= C

∫∫
{−1/δg(b2)<ξ<1/δg(b1),|ζ|>1}

p(ζ, w)

∣∣∣∣ ζζ1
∣∣∣∣2 dσ(ln ζ) + C1

≤ C2

∫∫
{−1/δg(b2)<ξ<1/δg(b1),|ζ|>1}

p(ζ, w)dσ(ln ζ) + C1 <∞,

(6.18)

where C1 and C2 are some constants.
Denote by n(r, a, ϕαβ) or n̄(r, a, ϕαβ) the numbers of a-points of the function

w = ϕαβ(ζ) lying in Hαβ ∩ {|ζ| ≤ r}, depending on whether we count or no the
order of a-points. Let n1(r, a, ϕαβ) = n(r, a, ϕαβ) − n̄(r, a, ϕαβ). Using (6.12) and
(6.13), it is easy to get

n(r, a, ϕαβ) =


r

2π + o(r) for a 6= b1, b2,
r

2π (1− δg(aj)) + o(r) for a = aj , j = 1, 2 (if b1 6= b2),
r

2π (1− δg(a1)) + o(r) for a = a1 (if b1 = b2 = a1),

(6.19)

n1(r, a, ϕαβ) = εg(a)
r

2π
+ o(r) for all a.(6.20)

Now we prove the following theorem.

Theorem 6.2. Let ε1, ε2, . . . , εq (q ≥ 2), δ1, δ2 be some numbers, such that
δj > 0, j = 1, 2; 0 ≤ εj ≤ 1, j = 1, . . . , q, δj + εj ≤ 1 for j = 1, 2, and

δ1 + δ2 +

q∑
j=1

εj = 2.(6.21)

Let a1, . . . , aq be distinct complex numbers and γ be some J-curve in the w-plane
with ends at the points a1 and a2, which does not pass through the points a3, . . . , aq.
Then there exists a Riemann surface Φ with almost periodic ends of the first kind,
separated by a J-curve Γ ⊂ Φ, such that Γ is projected into γ, δg(aj) = δj, j = 1, 2;
εg(aj) = εj , j = 1, . . . , q; δg(a) = 0 for a 6= a1, a2; εg(a) = 0 for a 6= a1, . . . , aq.

If δ1 +δ2 = 2, then necessarily δ1 = δ2 = 1, εj = 0, j = 1, . . . , q. We can take as

Φ the Riemann surface of the function ln
w − a2

w − a1
, that is, a Riemann surface Φ with

logarithmic ends. The logarithmic ends can be separated by an arbitrary J-curve
on Φ, joining the logarithmic ramification points. In particular, the J-curve can be
selected in such a way that it is projected into γ.

Now we can assume that δ1 + δ2 < 2. First we introduce an additional restric-
tion:

A. If εj > 0, then εj + δj < 1, j = 1, 2, and εj < 1, j = 3, . . . , q. From here it
follows that q ≥ 3,

∑q
j=3 εj > 0. We may assume without loss of generality that

ε3 > 0. Choose a positive integer m so large that, with the notation Dj = mδj − 1,
j = 1, 2, Ej = mεj, j = 1, . . . , q, the following conditions are satisfied:
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(a) Dj ≥ 0, j = 1, 2, moreover, if δj < 1, then Dj ≤ m− 2;
(b) If Ej > 0, then Dj + Ej ≤ m− 4, j = 1, 2, and Ej ≤ m− 2, j = 3, . . . , q;
(c) q + 3 ≤ E3 ≤ m− q − 3.

To construct the surface Φ we shall take surfaces Φk with the same number
m of sheets, and with algebraic ramification points which are projected into the
points a1, . . . , aq only. There exists only a finite number12 of different surfaces Φk.
Since the curve γ for the construction of the surface Φ is fixed, then Φ is composed
if a finite number of bricks Φ̃k of different types. Choosing arbitrarily a sufficiently
small ε, we define Φ′k and find, that max

k
pk = P <∞. It is clear that nν = mν,

mν = m, therefore the conditions 2◦ and 4◦ from the definition of an almost periodic
end hold.

We shall take surfaces Φk which have algebraic ramification points over the
points a1 and a2, and at the ends of the curve Γk of orders dk1 and dk2 , dkj ≥ 0,
j = 1, 2, respectively, and at most one algebraic ramification point of each of the
orders ek1 and ek2 , ekj ≥ 0, j = 1, 2. There is at most one algebraic ramification

point of order ekj ≥ 0, 4 ≤ j ≤ q, over each point aj , j = 4, . . . , q, and there

are at most two algebraic ramification points with the sum or orders ek3 ≥ 0 over
the point a3. Theorem 4.2 implies that the only relations between the numbers
ekj , 1 ≤ j ≤ q, dk1 , d

k
2 are the relations dkj ≤ m − 1 and dkj + ekj ≤ m − 2, if

ekj > 0, j = 1, 2; ekj ≤ m − 1, 3 ≤ j ≤ q, (moreover, if there are two algebraic

ramification points over a3, we have also ek3 ≤ m − 2) and the Riemann-Hurwitz

formula: dk1 +dk2 +

q∑
j=1

ekj = 2(m−1), that is, we can construct Riemann surfaces Φk

with preassigned numbers dkj , ekj , provided they satisfy the relations listed above.

Choosing the sequence dkj , j = 1, 2, we shall distinguish two variants. In the

first variant dkj = [kDj ]− [(k − 1)Dj ], k = 1, 2, . . . . Then

nν − nν(aj)

nν
− δj =

1

νm

k∑
k=1

(dkj + 1)− δj =
1

νm

ν∑
k=1

dkj − δj +
1

m

=
1

m

{
1

ν

ν∑
k=1

dkj −Dj

}
=

1

m

{
[νDj ]

ν
−Dj

}
= − 1

mν
{νDj − [νDj ]}.

(6.22)

Hence

(6.231) − 1

nν
= − 1

mν
<
nν − nν(aj)

nν
− δj ≤ 0.(6.23)

In the second variant the choice of dkj differs from the first only when we set

d1
j = [Dj ] + 1. The second variant is applicable only if δj < 1 and, by the condition

(a), Dj ≤ m − 2. In the second variant of choice of dkj we get, instead of (6.231),
the following inequality

(6.232) 0 <
nν − nν(aj)

nν
− δj ≤

1

nν
.

12Readers who are not acquainted with this fact, can replace this sentence by the following:
“We shall use only a finite number of different surfaces Φk”.
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In both cases we have ∣∣∣∣1− nν(aj)

nν
− δj

∣∣∣∣ ≤ 1

nν
, j = 1, 2,(6.24)

that is, δg(aj) = δj , j = 1, 2, and the surface Φ satisfies the condition 1◦ from the
definition of an almost periodic end.

Now we can choose ekj , 1 ≤ j ≤ q, k ≥ 1, in such a way, that

lim
ν→∞

nν(aj)− n̄ν(aj)

nν
= εj, 1 ≤ j ≤ q.(6.25)

For 1 ≤ j ≤ q, j 6= 3, it suffices to take

ekj = [kEj ]− [(k − 1)Ej ] ≤ Ej + 1.

By the condition (b) such choice of ekj is possible. Then (j 6= 3)

nν(aj)− n̄(aj)

nν
=

1

νm

ν∑
k=1

ekj =
[νEj ]

νm
=

[νmεj ]

νm
→ εj, ν →∞.(6.26)

Now as ek3 we take

ek3 = 2(m− 1)− dk1 − dk2 −
q∑
j=1
j 6=3

ekj .(6.27)

Since mδj − 2 ≤ dk1 ≤ mδj + 1, j = 1, 2; Ej − 1 ≤ ekj ≤ Ej + 1 for j 6= 3, by the

condition (c) and (6.21) we have

ek3 ≤ 2(m− 1)− (mδ1 − 2)− (mδ2 − 2)−
∑
j 6=3

(mεj − 1)

= 2m+ q + 1−m

δ1 + δ2 +
∑
j 6=3

εj


= 2m+ q + 1−m(2− ε3) = E3 + q + 1 ≤ m− 2,

ek3 ≥ 2(m− 1)− (mδ1 + 1)− (mδ2 + 1)−
∑
j 6=3

(mεj + 1)

= 2m− (q + 3)−m(2− ε3) = E3 − (q + 3) ≥ 0.

Hence such choice of ek3 is admissible. Now, by (6.21), (6.24), (6.26), and (6.27)
we get

nν(a3)− n̄ν(a3)

nν
=

1

νm

ν∑
k=1

ek3 = 2− 1

νm

ν∑
k=1

(dk1 + 1)

− 1

νm

ν∑
k=1

(dk2 + 1)−
∑
j 6=3

1

νm

ν∑
k=1

ekj → 2− δ1 − δ2 −
∑
j 6=3

εj = ε3 (ν →∞).

Thus, the relation (6.25) has been proved for all j, 1 ≤ j ≤ q. So we have proved
that the condition 3◦ from the definition of an almost periodic end is satisfied, and
also, that εg(aj) = εj, 1 ≤ j ≤ q.
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Note, that we not only proved (6.25), but also obtained the inequalities∣∣∣∣nν(aj)− n̄ν(aj)

nν
− εj

∣∣∣∣ ≤ Cj

nν
,(6.28)

where Cj = 1 for j 6= 3 and C3 = q + 1.
Now we shall eliminate the restriction A. We may assume that q ≥ 3, letting

ε3 = 0 if necessary. We can choose numbers ε
(n)
1 , . . . , ε

(n)
q ≥ 0, n = 1, 2, . . . , such

that

(a) δ1 + δ2 +

q∑
j=1

ε
(n)
j = 2;

(b) If ε
(n)
j > 0, then ε

(n)
j + δj < 1, j = 1, 2, and ε

(n)
j < 1, j = 3, . . . , q;

(c) lim
n→∞

ε
(n)
j = εj , 1 ≤ j ≤ q.

We already know how to construct a surface Φ(n) with almost periodic ends,

such that δg(aj) = δj , j = 1, 2; εg(aj) = ε
(n)
j , 1 ≤ j ≤ q. We denote bricks of the

surface Φ(n) by Φ̃
(n)
k . Now we construct a surface Φ, each of whose ends consists of

the following sequence of bricks:

Φ̃
(1)
1 , . . . , Φ̃

(1)
l1
, Φ̃

(2)
1 . . . , Φ̃

(2)
l2
, . . . , Φ̃

(n)
1 , . . . , . . . , Φ̃

(n)
ln
, . . . ,

the choice of the sequence l1, l2, . . . will be specified later. We shall use the same
notation for the surface Φ(n) as we used for Φ, but shall add an upper index n. If

δj = 1 (j = 1, 2), we take d
k,(n)
j = m(n) − 1 for all n. Then obviously nν(aj) = 0,

and the condition 1◦ for the point aj is satisfied for Φ. Now let 0 < δj < 1. Let

us show that we can choose d
k,(n)
j according to the first or the second variant,

depending on n, in such a way that the inequality (6.24) is satisfied for Φ. Let us

choose d
k,(1)
j according to the first variant. Then, obviously, (6.231) and (6.24) are

satisfied for 1 ≤ ν ≤ l1. We introduce the notation ντ = l1 + l2 + · · ·+ lτ . Suppose
that (6.24) is satisfied for 1 ≤ ν ≤ ντ . Consider the expression

Qτ = 1− nντ (aj)

nντ
− δj.

If Qτ > 0, then we choose d
k,(τ+1)
j according to the second variant, if Qτ ≤ 0, we

use the first variant. Then the inequality (6.24) is valid also for ντ < ν ≤ ντ+1. In
fact, let, for example, Qτ > 0, that is

0 < 1− nντ (aj)

nντ
− δj ≤

1

nντ
.(6.29)

Then we choose d
k,(τ+1)
j according to the first variant and, denoting N = ν − ντ ,

by (6.231), we have

− 1

n
(τ+1)
N

<
n

(τ+1)
N − n(τ+1)

N (aj)

n
(τ+1)
N

− δj ≤ 0.(6.30)

By (6.29) and (6.30), respectively, we have

0 < nντ − nντ (aj)− δjnντ ≤ 1,

−1 < n
(τ+1)
N − n(τ+1)

N (aj)− δjn(τ+1)
N ≤ 0.
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Adding these inequalities and observing that

nντ + n
(τ+1)
N = nντ+N = nν , nντ (aj) + n

(τ+1)
N (aj) = nν(aj),

we find that

−1 < nν − nν(aj)− δjnν ≤ 1,

the inequality (6.24) follows. The case Qτ ≤ 0 is treated similarly. Thus, we
may assume that (6.24) holds for all ν independently of the choice of the sequence
l1, l2, . . . . Hence δg(aj) = δj, and the condition 1◦ holds for Φ.

Let ντ < ν ≤ ντ+1. By (6.28) we get

|n(s)
ls

(aj)− n̄(s)
ls

(aj)− ε(s)
j n

(s)
ls
| ≤ Cj , 1 ≤ s ≤ τ,

then

|n(s)
ls

(aj)− n̄(s)
ls

(aj)− εjn(s)
ls
| ≤ Cj + |ε(s)

j − εj |n
(s)
ls
, 1 ≤ s ≤ τ.(6.31)

Similarly for N = ν − ντ we have

|n(τ+1)
N (aj)− n̄(τ+1)

N (aj)− εjn(τ+1)
N | ≤ Cj + |ε(τ+1)

j − εj |n(τ+1)
N .(6.32)

Adding the inequalities (6.31) and (6.32), and taking into account

nν =

τ∑
s=1

n
(s)
ls

+ n
(τ+1)
N(6.33)

and similar inequalities for nν(aj) and n̄ν(aj), we get

|nν(aj)− n̄ν(aj)− εjnν | ≤ (τ + 1)Cj

+
τ∑
s=1

|ε(s)
j − εj |n

(s)
ls

+ |ε(τ+1)
j − εj|n(τ+1)

N .
(6.34)

Since ε
(n)
j → εj as n→∞, taking into account (6.33) we get (ν →∞)

1

nν

{
τ∑
s=1

|ε(s)
j − εj|n

(s)
ls

+ |ε(τ+1)
j − εj |n(τ+1)

N

}
→ 0.(6.35)

We shall assume that ln ≥ n, then τ = o(ντ ), and for τ →∞ we have

τ + 1

nν
≤ τ + 1

nντ
≤ τ + 1

ντ
→ 0.(6.36)

The relations (6.34), (6.35), and (6.36) imply that, for Φ, the relation εg(aj) = εj,
1 ≤ j ≤ q, holds, and the condition 3◦ is satisfied.

It is easy to see that13 (ν0 = 0)
∞∑
ν=1

pνmν

n2
ν

≤
∞∑
τ=1

ντ∑
ν=ντ−1+1

P (τ)m(τ)

n2
ν

≤
∞∑
τ=1

P (τ)m(τ)
ντ∑

ν=ντ−1+1

1

ν2
<

∞∑
τ=1

P (τ)m(τ)
∞∑

ν=ντ−1+1

1

ν2

<

∞∑
τ=2

P (τ)m(τ)

ντ−1
+ P (1)m(1)

∞∑
ν=1

1

ν2
.

(6.37)

13Recall that P (τ) = max
k

p
(τ)
k .
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It is clear that for arbitrary given sequences {P (τ)}, {m(τ)} we can, by means
of a suitable choice of l1, l2, . . . make the sequence ντ−1 so rapidly increasing that

∞∑
τ=2

P (τ)m(τ)

ντ−1
<∞.(6.38)

The inequality (6.37) then implies that the condition 2◦ holds for Φ. The
condition (6.38) implies that m(τ) = o(ντ−1) as τ →∞, that is, the condition 4◦ is
satisfied.

Theorem 6.2 has been proved.

Theorem 6.3. Let ε1, ε2, . . . , εq (q ≥ 2), δ1, δ2 be some numbers such that
δj > 0, j = 1, 2, 1 ≥ εj ≥ 0, j = 1, . . . , q, δ1 + δ2 + ε1 ≤ 1, and

δ1 + δ2 +

q∑
j=1

εj = 2.

Let a1, . . . , aq be distinct complex numbers and let γ be a J ′-curve with ends at the
points a1 and with all points a2, . . . , aq on the same side of the curve γ with the
possible exception of one point, which is lying on the other side of γ. Then there
exists a Riemann surface Φ with almost periodic ends of the second kind, which are
separated by a J-curve Γ ⊂ Φ, such that Γ is projected into γ, δg(a1) = δ1 + δ2,
εg(aj) = εj, j = 1, . . . , q, δg(a) = 0 if a 6= a1, εg(a) = 0 if a 6= a1, . . . , aq, and
δg(bj) = δj, j = 1, 2.

We are not going to present a proof of Theorem 6.3 because its proof is very
close to the proof of Theorem 6.2. First we construct a Riemann surface Φ under
the following additional restrictions:

B. All points a3, . . . , aq lie on the same side of the curve γ, and the point a2

is on the other side; 1 > ε(a2) > 0; if ε1 > 0, then ε1 + δ1 + δ2 < 1; εj < 1 for
3 ≤ j ≤ q.

The construction is carried out in the same way as in the corresponding part
of the proof of Theorem 6.2, but the reference to Theorem 4.2 is replaced by the
reference to Theorem 4.3. Then we turn to the general case, as before, but if the
given points a2, . . . , aq lie on the same side of the curve γ, we add a point aq+1,
which is separated from a2, . . . , aq by the curve γ in the construction of the auxiliary

surfaces Φ(n), and let ε
(n)
q+1 > 0, ε

(n)
q+1 → 0 as n→∞.

Remark. In the condition of Theorem 6.3 we can require only that the curve
γ is a J ′-curve with ends at a1, and aj /∈ γ, 2 ≤ j ≤ q. To prove this modification
we replace the reference to Theorem 4.3 in the proof by a reference to the exercise
at the end of Section 4.

Exercise. Suppose that we have added the condition A to the conditions of
Theorem 6.2, or the condition B to the conditions of Theorem 6.3, and, besides, the
numbers δ1, δ2, ε1, . . . , εq are rational. Show that in these theorems we can choose
Φ to be Riemann surfaces with periodic ends.

Theorems 6.1, 6.2, and 6.3 immediately imply
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Theorem 6.4. Let q ≥ 2 complex numbers a1, . . . , aq be given, and let δ(aj)
and ε(aj), 1 ≤ j ≤ q, be non-negative numbers, such that 0 ≤ δ(aj)+ε(aj) ≤ 1 and

q∑
j=1

{δ(aj) + ε(aj)} = 2,

moreover, only one or two of the numbers δ(aj) are positive. Then there exists a
meromorphic function f(z) such that its deficiencies and indices at the point aj are
equal to δ(aj) and ε(aj), respectively, 1 ≤ j ≤ q.

Remark. We can drop the requirement that the number of index values in
Theorem 6.4 is finite, extending somewhat the notion of an almost periodic end.
Without giving the details, we shall provide hints, which allow the reader to re-
construct the corresponding argument. We consider the case when δ(aj) = δj > 0,
j = 1, 2. Now we have sequences {a1, a2, . . . } and {ε(a1), ε(a2), . . . }. If the points
a1 and a2 are not accumulation points of the sequence {a3, a4, . . . }, there are no
any new substantial difficulties. We carry out the construction of the surface Φ
in the same way as in the proof of Theorem 6.2, but the number q(n) of the base
points for the surface Φ(n) will depend on n, and q(n) →∞ as n→∞, while before
we had q(n) ≡ q. In general case we need to make more substantial changes in the
construction of the surface Φ.

As before, we choose a J-curve γ with ends at the points a1, a2 in such a
way that it does not pass through the points aj , 3 ≤ j < ∞. Now we cannot
choose neighborhoods U(ε,Bkj ), j = 1, 2 with fixed ε, which does not depend on

k, and we take U(εk, B
k
j ), where εk = ε−k, 0 < εj ≤ εk < 1 for |k| < |j|. Now

Φ′k = Φ̃k\(U(εk, B
k
j ) ∪ U(εk, B

k
2 )), and the role of U(ε, B̃j) is played by

U({εk}, B̃j) =
∞⋃
|k|=1

{U(εk, B
k
j )\Γk}.

We let ε = ε1 in the formulas (6.5) and (6.6), then the functions (6.5) and (6.6) are

conformal mappings of U({εk}, B̃1) and U({εk}, B̃1) onto the regions

G2 =
∞⋃
ν=1

{
ξ <

1

δg(b2)
ln
εν

εe
, 2π

nν−1 − nν−1(b2)

δg(b2)
≤ |η| ≤ 2π

nν − nν(b2)

δg(b2)

}
and

G1 =

∞⋃
ν=1

{
ξ >

1

δg(b1)
ln
εe

εν
, 2π

nν−1 − nν−1(b1)

δg(b1)
≤ |η| ≤ 2π

nν − nν(b1)

δg(b1)

}
,

respectively.
The definition of the number pk also has to be changed. Now we shall find a

quasiconformal mapping of Φ′k onto the rectangle

Rk =

{
1

δg(b2)
ln
εk

εe
≤ ξ ≤ 1

δg(b1)
ln
εe

εk
, 0 ≤ η ≤ 2πmk

}
,

such that: (1) The part of the boundary of Φ′k lying over the circle {|w− b2| = εk}
(over {|w − b1| = εk}) is mapped with the constant distortion onto the left (right)
side of the rectangle; (2) The part of the boundary of Φ′k lying on Γ−k (on Γ+

k ) is

mapped onto the lower (upper) side of Rk, moreover, the points on Γ±k satisfying
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εk ≤ |w − b2| ≤ ε (satisfying εk ≤ |w − b1| ≤ ε) are mapped onto the points with
the real part equal to

ξ =
1

δg(b2)
ln
|w − b2|
εe

(with the real part equal to

ξ =
1

δg(b1)
ln

εe

|w − b1|

)
,

points of the remaining part of Γ±k are mapped with the constant distortion onto
intervals with −1/δg(b2) ≤ ξ ≤ 1/δg(b1). After that the number pk is defined as
before.

We replace the condition 2◦ in the definition of an almost periodic end by the
following condition.

2◦ bis.
∞∑
ν=1

pνmν ln 1
εν

n2
ν

<∞.

Now, modifying somewhat the previous argument, we find a quasiconformal map-

ping of Φ onto {|ζ| <∞}, such that
∞⋃
|k|=1

Φ′k is mapped into {|ζ| <∞}\{G1 ∪G2}

by some function ζ = ζ(w), and U({εk}, B̃2) and U({εk}, B̃1) are mapped by the
functions (6.5) and (6.6).

Observe that now that mapping ζ = ψk(ζ′) is such that we still have ξ = ξ′,
but only the set Rk ∩ {−1/δg(b2) ≤ ξ′ ≤ 1/δg(b1)} is mapped into the trapezoid
Tk, and the sets Rk ∩ {ξ′ ≤ −1/δg(b2)} and Rk ∩ {ξ′ ≥ 1/δg(b1)} are mapped by
affine transformations into rectangles adjoining to Tk from the left and from the
right. Using the condition 2◦ bis we can show that∫∫

|ζ|≥1

{p(ζ, w)− 1}dσ(ln ζ) ≤
∫∫

ζ /∈G1∪G2

|ζ|≥1

p(ζ, w)dσ(ln ζ) <∞.

Let w = ϕ(ζ) be a function realizing the inverse mapping of {|ζ| < ∞} onto Φ. If
we add the condition

5◦. limν→∞
ln εν
nν

= 0,

the arguments of a-points of ϕ(ζ), lying in {(−1)jη > 0}, j = 0, 1, tend to (−1)j
π

2
,

and the formulas (6.12) and (6.13) remain true. Now it is not difficult to prove
analogs of Theorems 6.1, 6.2, and 6.3 for this wider class of generalized almost
periodic ends. In the case of an analog of Theorem 6.3 we impose on the curve
γ the following restrictions only: aj /∈ γ, j = 2, 3 . . . ; a1 is an end of γ, and use
the exercise at the end of Section 4 (cf. Remark to Theorem 6.3). The point is
that the points a2, a3, . . . could be located in such a way (e.g. everywhere dense
in the plane), that no matter how we draw a J ′-curve γ with ends at a1, there are
infinitely many points of the sequence a2, a3, . . . on each of the sides of γ.

7. Riemann surfaces with finitely many almost periodic ends

After the introduction of the notion of an almost periodic end we can introduce
the class of Riemann surfaces with finitely many almost periodic ends in the same
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way as, using the notion of a logarithmic end we constructed surfaces with finitely
many logarithmic ends.

Let K be some simply connected finite-sheeted Riemann surface with boundary,

bounded by a closed Jordan curve C consisting of p J-curves σk = B̂kBk+1, k =
1, . . . , p. As in Section 5, all indices k will be considered mod p. Let bk be the
projection of the point Bk. For simplicity we assume that ∞ is not among the
points bk. Take p almost periodic ends Λk, 1 ≤ k ≤ p, moreover, the boundary of

Λk is a J-curve σ−k = B̂k+1Bk. Obviously, if bk 6= bk+1, then the end Λk is of the
first kind, if bk = bk+1, then the end Λk is of the second kind. We introduce the
following notation

δg(bk,Λk) = d+
k , δg(bk+1,Λk) = d−k .

We paste to the Riemann surface K with the points Bk, 1 ≤ k ≤ p, excluded,
almost periodic ends Λk along the curves σk, 1 ≤ k ≤ p. Then we get some
Riemann surface F which is called a Riemann surface with p almost periodic ends.
The part K of the Riemann surface F is called its pseudokernel. If we exclude from
K sufficiently small neighborhoods of the boundary points Bk, 1 ≤ k ≤ p, we get
a Riemann surface with boundary K0, which is called the kernel of the Riemann
surface F . The Riemann surface F has logarithmic ramification points B̃1, . . . , B̃p,

which are projected into b1, . . . , bp. A sufficiently small ε-neighborhood U(ε, B̃k) of

a logarithmic ramification point B̃k contains and ε-neighborhood of the point Bk
on K, and intersects with the almost periodic ends Λk and Λk−1. From now on we
assume that ε > 0 does not depend on k and does not exceed any of ε from the
definition of almost periodic ends Λk.

Obviously, the Riemann surface F belongs to some class Fq. Note, that it is
possible for a Riemann surface to have one almost periodic end (p = 1), which is,
obviously, and end of the second kind. For example, the function w = cos

√
z (see

Fig. 15) maps the complex z-plane onto a Riemann surface F with one periodic
end (sine-end).

Now we construct a homeomorphic mapping of the Riemann surface F one the
complex ζ-plane, which is quasiconformal outside certain compact region on F .

As in Section 5, we assume that all regions on F which we consider contain
all of their boundary points belonging to F . We make a cut in U(ε, B̃k) ∩ K
along a radius of Sk = {0 < |w − bk| ≤ ε, argw = α′k} starting at Bk. This cut

splits U(ε, B̃k) into two parts: U+(ε, B̃k) and U−(ε, B̃k), where U+(ε, B̃k) has a

non-empty intersection with Λk and U−(ε, B̃k) has a non-empty intersection with

Λk−1. We denote the kernel K\
⋃p
k=1 U(ε, B̃k) by K0. The regions U+

1 (ε, B̃k) =

U+(ε, B̃k)\Λk and U−1 (ε, B̃k) = U−(ε, B̃k)\Λk−1 are circular sectors with the vertex

at Bk and the angles θ̃+
k and θ̃−k , respectively, θ̃+

k + θ̃−k ≤ 2π. Denote by Λ′k the
following part of the Riemann surface F :

Λ′k = Λk ∪ U+(ε, B̃k) ∪ U−(ε, B̃k+1) = Λk ∪ U+
1 (ε, B̃k) ∪ U−1 (ε, B̃k+1)

It is clear that

F = K0 ∪
(

p⋃
k=1

Λ′k

)
.

We find a quasiconformal mapping of Λ′k onto the region Hk = {ηk > 0}\Tk,
ζk = ξk + iηk, where Tk is a trapezoid with vertices at the points −1/d−k , 1/d+

k ,
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1/d+
k + iθ+

k , −1/d−k + iθ−k+1, where θ+
k = θ̃+

k /d
+
k , θ−k+1 = θ̃−k+1/d

−
k . We denote the

region {ξk ≤ 1/d+
k , 0 ≤ ηk ≤ θ+

k } by H(k)(θ+
k ), the region {ξk ≤ −1/d−k , 0 ≤

ηk ≤ θ−k+1} by H(k)(θ−k+1), and the region H(k)(θ−k+1, θ
+
k ) = Hk\(H(k)(θ−k+1) ∪

H(k)(θ+
k )) by H(k)(θ−k+1, θ

+
k ). We map the region H(k)(θ−k+1, θ

+
k ) onto Λk using the

function w = ϕ̃k(ζk), where ϕ̃k(ζk) is the function ϕαβ(ζk) mentioned in Remark 2

to Theorem 6.1 (p. ???) with α = θ−k+1, β = θ+
k (Hαβ = H(k)(θ−k+1, θ

+
k )). This is a

quasiconformal mapping. We map H(k)(θ−k+1) onto U−1 (ε, B̃k+1) using the function

w = bk+1 + ε exp
{
d−k ζk + 1− id−k α

−
k+1

}
(7.1)(

that is, ζk =
1

d−k
ln
w − bk+1

εe
+ iα−k+1

)
, where the real constant α−k+1 is chosen in

such a way that {ξ ≤ −1/d−k , ηk = 0} is mapped into Sk+1. Similarly we map

H(k)(θ+
k ) onto U+

1 (ε, B̃k) using the function

w = bk + ε exp{−d+
k ζk + 1 + id+

k α
+
k }(7.2)(

that is, ζk =
1

d+
k

ln
εe

w − bk
+ iα+

k

)
, where the real constant α+

k is chosen in such

a way that {ξk ≥ 1/d+
k , ηk = 0} is mapped into Sk.

If we take into account the form of the function ϕ̃k(ζk), which can be written
explicitly in the regions {ξk ≤ −1/d−k , ηk ≥ θ−k+1} and {ξk ≥ 1/d+

k , ηk ≥ θ+
k },

it is easy to see that the point ζk ∈ ∂H(k)(θ−k+1, θ
+
k ) ∩ ∂H(k)(θ−k+1), that is, ξk =

ξk + iθ−k+1, ξk ≤ −1/d−k is mapped onto the same point both under the function
ϕ̃k(ζk) and the function (7.1), namely it is mapped onto the point σk satisfying
|w − bk+1| = ε exp{d−k ξk + 1}. Similarly, the point ζk = ξk + iθ+

k , ξk ≥ 1/d+
k is

mapped onto the point σk such that

|w − bk| = ε exp{−d+
k ξk + 1},

both under the mapping ϕ̃k(ζk) or under the function (7.2). In such a way we get a
quasiconformal mapping w = ϕk(ζk) of the region Hk onto the Riemann surface Λ′k,

where ϕk(ζk) = ϕ̃k(ζk) for ζk ∈ H(k)(θ−k+1, θ
+
k ), for ζk ∈ H(k)(θ−k+1) the function

ϕk(ζk) is given by the formula (7.1), and for ζk ∈ H(k)(θ+
k ), the function ϕk(ζk) is

given by the formula (7.2). Taking into account (6.18) we get∫∫
Hk

{p(ζk, w)− 1)}dσ(ln ζk)

=

∫∫
H(k)(θ−k+1,θ

+
k )

{p(ζk, w)− 1}dσ(ln ζk) <∞.
(7.3)

We denote the number of a-points of the function w = ϕk(ζk) in Hk ∩ {|ζk| ≤ r}
by n(r, a, ϕk), similarly we define n1(r, a, ϕk). By (6.19) and (6.20) we have

n(r, a, ϕk) =


r

2π + o(r) for a 6= bk, bk+1,
r

2π (1− δg(bj ,Λk)) + o(r) a = bj , j = k, k + 1 (if bk 6= bk+1)
r

2π (1− δg(b,Λk)) + o(r) for a = b (if bk = bk+1 = b),

(7.4)

n1(r, a, ϕk) = εg(a,Λk)
r

2π
+ o(r) for all a.(7.5)
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Let us observe that for fixed a all a-points of the function ϕk(ζk) lie in some
strip |ξk| ≤ K = K(a). The quantity

χ = χ(F ) =
d+

1 d
+
2 . . . d

+
p

d−1 d
−
2 . . . d

−
p

will be called the characteristic of the surface F . If we change the way in which we
count the points Bk on the curve C, the characteristic χ does not change. Let

β = 1 +

(
lnχ

πp

)2

.

Let ζk = ρke
iθk , 1 ≤ k ≤ p. We map Hk using the function

ζ′ = wk(ζk) =

(
d+

1 . . . d
+
k

d−1 . . . d
−
k−1

ζk

) 2
p

ei
2π
p (k−1), 1 ≤ k ≤ p, d±0 = 1,(7.6)

where the branch of ζ
2
p

k is chosen in such a way, that (ζ′ = ρ′eiθ
′
)

(7.6′) ρ′ =

(
d+

1 . . . d
+
k

d−1 . . . d
−
k

) 2
p

ρ
2
p

k , θ
′ =

2

p
θk + (k − 1)

2π

p
, 1 ≤ k ≤ p.

The function (7.6) maps Hk onto the region

{(k − 1)
2π

p
< arg ζ′ < k

2π

p
}\T ′k,

where T ′k is the image of the trapezoid Tk under the mapping (7.6). The mapping

ζk = ϕ−1
k (w) maps the point w ∈ Sk onto the point

ζk = ξk =
1

d+
k

ln
εe

|w − bk|
,

the mapping ζ′ = ωk(ϕ−1
k (w)) maps the point w ∈ Sk onto the point

ζ′ =

(
d+

1 . . . d
+
k−1

d−1 . . . d
−
k−1

) 2
p (

ln
εe

|w − bk|

) 2
p

ei
2π
p (k−1), k = 1, . . . , p.(7.7)

The mapping ζk−1 = ϕ−1
k−1(w), k = 2, . . . , p maps the same point w ∈ Sk onto the

point

ζk−1 =
1

d−k−1

ln
|w − bk|
εe

= eiπ
1

d−k−1

ln
e

|w − bk|
,

and the mapping ζ′ = ωk−1(ϕ−1
k−1(w)) maps it onto the point

ζ′ =

(
d+

1 . . . d
+
k−1

d−1 . . . d
−
k−2

eiπ
1

d−k−1

ln
εe

|w − bk|

) 2
p

ei
2π
p (k−2)

=

(
d+

1 . . . d
+
k−1

d−k−1 . . . d
−
k−1

) 2
p (

ln
εe

|w − bk|

) 2
p

ei
2π
p (k−1), k = 2, . . . , p.

(7.8)

Comparing the formulas (7.7) and (7.8) we see that the mapping ζ′ = ω(w) =
ωk(ϕ−1

k (w)) remains single-valued and continuous on the radii S2, S3, . . . , Sp for
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w ∈ Λ′k ∪Sk ∪ Sk+1, k = 1, . . . , p, and maps

(
p⋃
k=1

Λ′k

)
∪
(

p⋃
k=2

Sk

)
onto the region

G′ defined as the complex ζ′-plane with

p⋃
k=1

T ′k removed and with the cut along

the positive real half-axis. In the general case the function ζ′ = ω(w) is not single-
valued on S1. In fact, under the mapping ζ′ = ω1(ϕ−1

1 (w)) the point w ∈ S1 is
mapped, by (7.7), onto the point

ζ′ =

(
ln

εe

|w − b1|

) 2
p

= ζ+,

and under the mapping by the function ζ′ = ωp(ϕ
−1
p (w)) it is mapped onto the

point

ζ′ =

(
d+

1 . . . d
+
p

d−1 . . . d
−
p−1

eiπ
1

d−p
ln

εe

|w − b1|

) 2
p

ei
2π
p (p−1)

= χ
2
p

(
ln

εe

|w − b1|

) 2
p

= χ
2
p ζ+ = ζ−.

If χ = 1, then ζ+ = ζ−, and the function ζ′ = ω(w) is continuous and single-valued
also on S1. In the general case we make an additional conformal mapping:

ζ = (ζ′)1/(1−i lnχ
πp ), ζ′ = ρ′eiθ

′
, ζ = ρeiθ,(7.9)

where a single-valued branch is chosen in such a way that the region {0 < θ′ < 2π}
is mapped into the region{

ln ρ lnχ

πp
< θ <

ln ρ lnχ

πp
+ 2π

}
,

that is, into the complex ζ-plane with the cut along a logarithmic spiral θ =
1

πp
ln ρ lnχ, 0 < ρ < ∞. Under this mapping the point ζ+ = ρ′ on the upper

boundary of the cut in the ζ′-plane is mapped onto the point

ζ = (ζ+)1/(1−i lnχ
πp ) = (ρ′)1/β exp

{
i
lnχ lnρ′

πpβ

}
,

and the point ζ− = χ
2
p ζ+e2πi on the lower boundary of the cut is mapped onto the

point

ζ = (ζ+)1/(1−i lnχ
πp )χ2/(p−i lnχ

π )e2πi/(1−i lnχ
πp )

= (ζ+)1/(1−i lnχ
πp ) exp

{
2 lnχ+ 2πip

p− i lnχ
π

}
= (ζ+)1/(1−i lnχ

πp )e2πi,

that is, under the mapping (7.9) the points ζ+ and ζ− are mapped onto the points
on the opposite boundaries of the cut in the ζ-plane, which correspond to the same
number in the complex plane. We denote the image of the region G′ under the
mapping (7.9) by G. It is easy to see that G0 = {|ζ| <∞}\Ḡ is a simply connected
region bounded by a closed Jordan curve. The mapping ζ = ζ(w), which is a
composition of the mapping ζ′ = ω(w) and the mapping (7.9), is a homeomorphic
mapping of F\K0 onto G. There exists a homeomorphic mapping of the kernel
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K0 onto the region G0 such that we get a homeomorphic mapping ζ = ζ(w) of the
whole Riemann surface F onto {|ζ| <∞}. Denote the mapping inverse to ζ = ζ(w)
by w = ϕ(ζ). It is clear that the mapping w = ϕ(ζ) is quasiconformal in G. Taking
into account (7.3) we get

∫∫
G

{p(ζ, w)− 1}dσ(ln ζ) =

∫∫
G′
{p(ζ′, w)− 1}

∣∣∣∣ d ln ζ

d ln ζ′

∣∣∣∣2 dσ(ln ζ′)

=
1

β

∫∫
G′
{p(ζ′, w)− 1}dσ(ln ζ′)

=
1

β

p∑
k=1

∫∫
Hk

{p(ζk, w) − 1}
∣∣∣∣ d ln ζ′

d ln ζk

∣∣∣∣2 dσ(ln ζk)

=
4

p2β

p∑
k=1

∫∫
Hk

{p(ζk, w) − 1}dσ(ln ζk) <∞.

(7.10)

If the function w = f(z) is a conformal mapping of {|z| < R} onto F , then the
mapping z = z(ζ) = f−1(ϕ(ζ)) satisfies, by (7.10), the conditions of Teichmüller
Theorem 3.1, hence, R = ∞ and under the corresponding normalization of the
meromorphic in {|z| <∞} function w = f(z) we have

lim
z→∞

∣∣∣∣ζ(z)

z

∣∣∣∣ = lim
ζ→∞

∣∣∣∣ ζ

z(ζ)

∣∣∣∣ = 1.(7.11)

Let dk(a) = δg(a,Λk), ek(a) = εg(a,Λk). If r is sufficiently large, then the
region corresponding to {|ζ| ≤ r}\G0 in the ζ′-plane is the region which is the

intersection of G′ with the region

{
ρ′ ≤ rβ exp

(
θ′

lnχ

πp

)}
, 0 < θ′ < 2π, and the

corresponding regions in ζk-planes are the intersections of Hk with (ζk = ρke
iθk):

ρk ≤
d−1 . . . d

−
k−1

d+
1 . . . d

+
k

rβp/2 exp

{
lnχ

2π

(
2

p
θk + (k − 1)

2π

p

)}
=
d−1 . . . d

−
k−1

d+
1 . . . d

+
k

rβp/2χ
1
πp{θk+π(k−1)}, 0 < θk < π, 1 ≤ k ≤ p,

this follows from (7.6′) and (7.9). Taking into account the relations (7.4) and (7.5),
and also the fact that for each a the arguments of a-points in the ζk plane tend to
π/2, we find that

n(r, a, ϕ) =
rβp/2

2π

p∑
k=1

{1− dk(a)}
d−1 . . . d

−
k−1

d+
1 . . . d

+
k

χ
1
p (k− 1

2 ) + o(rβp/2),(7.12)

n1(r, a, ϕ) =
rβp/2

2π

p∑
k=1

ek(a)
d−1 . . . d

−
k−1

d+
1 . . . d

+
k

χ
1
p(k− 1

2 ) + o(rβp/2).(7.13)

By (7.11) the relations (7.12) and (7.13) remain true if we replace n(r, a, ϕ) by
n(r, a, f) and n1(r, a, ϕ) by n1(r, a, f). From here we get

N(r, a, f) =
rβp/2

βpπ

p∑
k=1

{1− dk(a)}
d−1 . . . d

−
k−1

d+
1 . . . d

+
k

χ
1
p (k− 1

2 ) + o(rβp/2),(7.14)
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N1(r, a, f) =
rβp/2

βpπ

p∑
k=1

ek(a)
d−1 . . . d

−
k−1

d+
1 . . . d

+
k

χ
1
p(k− 1

2 ) + o(rβp/2).(7.15)

Since dk(a) = 0, 1 ≤ k ≤ p, for all a except at most p, arguing as in the deduction
of (6.16) we find that

T (r, f) =
rβp/2

βpπ

p∑
k=1

d−1 . . . d
−
k−1

d+
1 . . . d

+
k

χ
1
p (k− 1

2 ) + o(rβp/2),(7.16)

and get the following theorem.

Theorem 7.1. Let w = f(z) be a meromorphic function mapping the complex
z-plane onto a Riemann surface F with p almost periodic ends and characteristic
χ. Then the function w = f(z) has a normal type of order

ρ =
βp

2
=
p

2

{
1 +

(
lnχ

πp

)2
}
,(7.17)

moreover T (r, f) ∼ Krρ, 0 < K <∞, and its deficiencies and indices are equal to

δ(a, f) =

∑p
k=1 d

k(a)
d−1 ...d

−
k−1

d+
1 ...d

+
k

χ
1
p(k− 1

2 )

∑p
k=1

d−1 ...d
−
k−1

d+
1 ...d

+
k

χ
1
p (k− 1

2 )
(7.18)

and

ε(a, f) =

∑p
k=1 e

k(a)
d−1 ...d

−
k−1

d+
1 ...d

+
k

χ
1
p (k− 1

2 )

∑p
k=1

d−1 ...d
−
k−1

d+
1 ...d

+
k

χ
1
p (k− 1

2 )
,(7.19)

respectively.

Since
∑

a{dk(a) + ek(a)} = 2 for k = 1, . . . , p, the equalities (7.18) and (7.19)
imply that ∑

a

{δ(a, f) + ε(a, f)} = 2

for each function f satisfying the conditions of Theorem 7.1.
For brevity we shall speak about deficiencies and indices of the surface F with

almost periodic ends meaning deficiencies and indices of the mapping meromorphic
function w = f(z), and defining δ(a, F ) = δ(a, f) and ε(a, F ) = ε(a, f). In what
follows we shall consider surfaces with finitely many almost periodic ends for χ = 1
only, without mentioning this explicitly. For convenience of references we rewrite
the formulas (7.17)–(7.19) for this case.

ρ = p/2,(7.20)

δ(a, f) =

1

d+
1

d1(a) +
d−1
d+

1 d
+
2

d2(a) · · ·+
d−1 . . . d

−
p−1

d+
1 . . . d

+
p

dp(a)

1

d+
1

+
d−1
d+

1 d
+
2

+ · · ·+
d−1 . . . d

−
p−1

d+
1 . . . d

+
p

,(7.21)
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ε(a, f) =

1

d+
1

e1(a) +
d−1
d+

1 d
+
2

e2(a) + · · ·+
d−1 . . . d

−
p−1

d+
1 . . . d

+
p

ep(a)

1

d+
1

+
d−1
d+

1 d
+
2

+ · · ·+
d−1 . . . d

−
p−1

d+
1 . . . d

+
p

.(7.22)

The quantity

L(F,B1) =
1

d+
1

+
d−1
d+

1 d
+
2

+ · · ·+
d−1 . . . d

−
p−1

d+
1 . . . d

+
p

(B1 is the point on the boundary of the pseudokernel, at which we start counting),
which is the denominator in both (7.21) and (7.22) is called the weight of the surface
F at the point B1. Taking into account that χ = 1, it is easy to verify that for
1 ≤ j ≤ p we have

L(F,Bj) =
1

d+
j

+
d−j

d+
j d

+
j+1

+ · · ·+
d−j . . . d

−
p d
−
1 . . . d

−
j−2

d+
j . . . d

+
p d

+
1 . . . d

+
j−1

=
d+

1 . . . d
+
j−1

d−1 . . . d
−
j−1

L(F,B1).

Thus, generally speaking, weight depends on a point at which it is taken. However,
for brevity, we shall write L(F ) instead of L(F,B1).

It is clear that the expressions in the right-hand sides of (7.21) and (7.22) do
not depend on the choice of the starting point B1 such δ(a, f) and ε(a, f) do not
depend on this choice, but this can also be proved by a formal computation.

Let F1 and F2 be two surfaces with finitely many (p1 and p2, respectively)
almost periodic ends, moreover, each of these surfaces have at least one logarith-
mic ramification point B̃′ and B̃′′ which is projected onto b. Let K1 and K2 be
pseudokernels of the surfaces F1 and F2. For sufficiently small ε > 0 the regions
K1∩U(ε, B̃′) and K2∩U(ε, B̃′′) are circular sectors with vertices at points B̃′ ∈ ∂K1

and B̃′′ ∈ ∂K2. Suppose that these two sectors contain two radii with the same
projection. We make cuts along these radii and paste the surfaces F1 and F2 along
them, pasting each boundary of one cut with the opposite boundary of the other
cut. We get a Riemann surface F , which also is a surface with p(= p1 + p2) almost
periodic ends.

We shall write F = F1 +F2 and say that the surface F is obtained by a junction
of the surfaces F1 and F2 at the points B̃′ and B̃′′.

It is easy to see that χ(F ) = χ(F1)χ(F2). Therefore, if χ(F1) = χ(F2) = 1
(we agreed to consider such surface only), then χ(F ) = 1. On each of the joined

surfaces F1 and F2 we start counting the logarithmic ramification points at B̃′ and
B̃′′, respectively, we start counting logarithmic ramification points on the junction
F = F1 +F2 at either the logarithmic ramification point corresponding to B̃′, or at
the logarithmic ramification point corresponding to B̃′′, the specific choice makes
no difference. It is easy to verify that

L(F1 + F2) = L(F1) + L(F2),

and using the formulas (7.21) and (7.22) we find that

δ(a, F1 + F2) =
L(F1)δ(a, F1) + L(F2)δ(a, F2)

L(F1) + L(F2)
(7.23)
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ε(a, F1 + F2) =
L(F1)ε(a, F1) + L(F2)ε(a, F2)

L(F1) + L(F2)
.(7.24)

If we assume that we have already defined F1 + · · ·+Fn−1, we define F1 + · · ·+
Fn =

∑n
j=1 Fj as (F1 + · · ·+ Fn−1) + Fn.

Suppose that the surface F1 + · · · + Fn is obtained in the following way. The
surfaces F1 and F2 are joined at the points B̃′ and B̃′′, and we start counting
logarithmic ramification points of the surface of F1 +F2 at one of the points corre-

sponding to B̃′ or B̃′′ (we denote it by ˜̃
B
′′
). The surfaces F1 +F2 and F3 are joined

at the points ˜̃
B
′′

and B̃′′′, and we start counting logarithmic ramification points of

F1 + F2 + F3 from one of the points corresponding to ˜̃B
′′

and B̃′′′ (we denote it

by ˜̃B
′′′

), we continue in an obvious way till we get the surface F1 + · · ·+ Fn. It is
not always possible to get the surface in this way, but if it is the case, we get, by
induction, that

L

 n∑
j=1

Fj

 =
n∑
j=1

L(Fj),(7.25)

δ

a, n∑
j=1

Fj

 =

∑n
j=1 L(Fj)δ(a, Fj)∑n

j=1 L(Fj)
,(7.26)

ε

a, n∑
j=1

Fj

 =

∑n
j=1 L(Fj)ε(a, Fj)∑n

j=1 L(Fj)
.(7.27)

In the general case, for n ≥ 3, these formulas are no longer true. Later on we
shall need the following

Theorem 7.2. Let b1, . . . , bp be some complex numbers, not necessarily distinct,
a1, . . . , aq be distinct complex numbers, moreover, all terms of the sequence {bk} are
present among terms of the sequence {aj}. Then there exists a Riemann surface F
with p almost periodic ends Λ1, . . . ,Λp, following after each other in the indicated
order, where δ(a,Λk) = 0 for a 6= bk, bk+1, and δ(bk,Λk), δ(bk+1,Λk), ε(aj ,Λk),
1 ≤ j ≤ q, 1 ≤ k ≤ p, are arbitrary preassigned numbers satisfying δ(bk,Λk) > 0,
δ(bk+1,Λk) > 0,

q∑
j=1

{δ(aj,Λk) + ε(aj ,Λk) + ε(aj ,Λk)} = 2, and 0 ≤ δ(aj ,Λk) + ε(aj,Λk) ≤ 1.

First we construct a pseudokernel K. If bk 6= bk+1, that is, all almost periodic
ends Λk are of the first kind, the construction of the pseudokernel K is the same
as in the proof of Theorem 5.1. In general, the construction is somewhat more
complicated.

First wee assume that not all of the numbers bj, j ≥ 2, are equal to b1. Let
b′1, . . . , b

′
ν and b′′1 , . . . , b

′′
µ be subsequences of b1, . . . , bp such that each of them has

the same set of values as b1, . . . , bp, but: (a) b′k 6= b′k−1, b
′
k+1 (b′0 = b′ν, b

′
ν+1 = b′1),

k = 1, . . . , ν; (b) all numbers b′′k are distinct; (c) there is no subsequence with the
same properties and more terms. Let b′k = bnk , 1 = n1 < n2 < · · · < nν ≤ p;
bnk 6= bnk−1, b′′k = b′mk , 1 = m1 < m2 < · · · < mµ ≤ ν. We draw a closed Jordan
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curve c through the points {b′′1 , . . . , b′′µ} which does not pass through the points
a1, . . . , aq, different from {b1, . . . , bp}, has a continuous curvature, and consisting
in line segments in sufficiently small neighborhoods of the points b′′1 , . . . , b

′′
µ. After

that we, in the same way as at the beginning of the proof of Theorem 5.1, construct
a simply connected finite-sheeted Riemann surface K ′ with boundary, bounded by

a closed Jordan curve C′, consisting of ν J-curves σ′k = B̂′kB
′
k+1, where the point

B′k is projected onto b′k. If ν = p, we let K = K ′ and Bk = B′k. If ν < p,
we carry out an additional construction. Suppose that the sequence b1, . . . , bp
satisfies bt−1 6= bt = bt+1 = · · · = bt+s 6= bt+s+1 (indices are taken mod p). Let
bt = b′τ = b′′r . Take a J ′-curve cτ with ends at b′′r such that the regionGτ bounded by
it is contained in the region bounded by the curve c, and Ḡτ\{b′′r} does not contain
points a1, . . . , aq, moreover, for different t the regions Gτ are pairwise disjoint. We
take s copies of the region Gτ and make in each of them the same cut along a line
segment with one end at b′′r and the other end at πτ ∈ Gτ . We make the same cut
on K ′ starting at B′τ . We paste to K ′ s copies of the regions Gτ along this cut in
such a way, that the obtained Riemann surface remains simply connected, and an
algebraic ramification point of order s appears over πτ . Making such pasting for
all t, we get a finite-sheeted simply connected Riemann surface K with boundary,

bounded by a Jordan curve C consisting in p J-curves σk = B̂kBk+1, where the
point Bk is projected onto the point bk, and the arc σk is projected into the arc

b̂kbk+1 on the curve c if bk+1 6= bk, and into some arc cτ if bk+1 = bk. The surface
K plays the role of pseudokernel. Now, using Theorems 6.2 and 6.3, we construct
almost periodic ends Λk with preassigned δ(a,Λk) and ε(a,Λk), and the boundary
σ−k . Joining them to the pseudokernel K we get the desired surface F .

If b1 = · · · = bp = b, the construction of the pseudokernel K is simplified. Take
a J ′-curve c with ends at b, let G be the interior of the curve c. Choose the curve c
in such a way that Ḡ\{b} does not contain the points a1, . . . , aq. Let w0 ∈ G. We

take as K the part of the surface of the function (w − w0)1/p lying over G.

8. The inverse problem of the value distribution theory

First we prove the following theorem.

Theorem 8.1. Let δj, εj, j = 1, . . . , q be non-negative numbers satisfying the
conditions

(1′)

q∑
j=1

{δj + εj} = 2,

(2) 0 < δj + εj ≤ 1, 1 ≤ j ≤ q,

(3) 0 <

p∑
j=1

δj ≤ 2, moreover, if

q∑
j=1

δj = 2, then all numbers δ1, . . . , δq are

rational.

Let a1, . . . , aq be arbitrary distinct complex numbers. Then there exists a Riemann
surface F with almost periodic ends such that δ(aj , F ) = δj, ε(a, F ) = εj, 1 ≤ j ≤ q.
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In the case when

q∑
j=1

δj = 2, the desired Riemann surface F was constructed

in Theorem 5.1, namely, a surface with logarithmic ends. Note that for

q∑
j=1

δj = 2

we cannot drop the restriction that the numbers δj , 1 ≤ j ≤ q, are rational, even
if we use Riemann surfaces with almost periodic ends. In fact, if ε(a0,Λk) > 0 for
at least one almost periodic end Λk and at least one point a0, then, by (7.19), we

have ε(a0, F ) > 0. But this contradicts the condition

q∑
j=1

δj = 2. Hence, for each

end Λk we have d+
k = d−k = 1, 1 ≤ k ≤ q, and, necessarily, χ = 1. The equality

(7.21) implies that the deficiencies δ(a, F ) are rational numbers.

In what follows we assume

q∑
j=1

δj < 2 and

q∑
j=1

εj > 0. The distribution of defi-

ciencies and indices of some surface F with almost periodic ends will be described
using a scheme  a1 . . . aq

δ(a1) . . . δ(aq)
ε(a1) . . . ε(aq)

 =

(
δ1 . . . δq
ε1 . . . εq

)
,

and the construction of a surface with this distribution of deficiencies and indices
will be called a scheme solution. Junction of Riemann surfaces will be symbolically
represented as addition of the corresponding schemes using the following rule:

L1

(
. . . δ

(1)
j . . .

. . . ε
(1)
j . . .

)
+ L2

(
. . . δ

(2)
j . . .

. . . ε
(2)
j . . .

)

= (L1 + L2)

 . . .
L1δ

(1)
j + L2δ

(2)
j

L1 + L2
. . .

. . .
L1ε

(1)
j + L2ε

(2)
j

L1 + L2
. . .

 ,

(8.1)

where the factor in front of a scheme denotes the weight of the surface taken at the
point at which the junction takes place. We mean that the joined surfaces both
have positive deficiencies over one of the points aj0 and the junction takes place at
logarithmic ramification points over aj0 . Solving schemes-summands we, obviously,
can always select pseudokernels in such a way that the junction is possible. We may
assume without loss of generality that aj0 = a1. Thus, in all schemes which we are
going to join should be δ1 > 0, and the weight is always taken in a logarithmic
ramification point over a1. To solve a scheme with weight means to construct a
Riemann surface with almost periodic ends, with preassigned value distribution and
with the given weight up to a rational factor. If we can solve the schemes in the
left-hand side of the equality (8.1) using surfaces F1 and F2 with weights n1

m1
L1 and

n2

m2
L2, respectively, where n1, n2,m1,m2 are positive integers, then, joining n2m1

copies of the surface F2 with n1m2 copies of the surface F1, we, by (7.25), (7.26),
and (7.27), get a surface F solving the scheme in the right-hand side of the equality
(8.1) with weight n1n2(L1 + L2).
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We shall reduce solutions of complicated schemes to solutions of four main
schemes (α-, β-, γ-, and δ-schemes), for which we provide a solution with a preas-
signed weight, up to a rational factor. We use the notation Θj = δj +εj , 1 ≤ j ≤ q.

α-scheme is a scheme with δ1 > 0, δ2 = δ3 = · · · = δq = 0:

L

(
δ1 0 . . . 0
ε1 ε2 . . . εq

)
.

Let m be so large positive integer that 2/(mL) < δ1. We construct a surface Φ
with almost periodic ends of the second kind solving a given α-scheme, moreover,
d+

1 = d−2 = 2/(mL), d−1 = d+
2 = δ1 − d+

1 . Such surface Φ exists by Theorem 6.3.
The weight of such surface Φ is equal to

1

d+
1

+
d−1
d+

1 d
+
2

=
2

d+
1

= mL.

β-scheme is a scheme for which δj > 0, 1 ≤ j ≤ q, ε1 > 0, and all numbers Θj

are rational, 1 ≤ j ≤ q:

L

(
δ1 δ2 . . . δq
ε1 ε2 . . . εq

)
.

Let Θj = nj/n, nj , n be positive integers, ε1 > 1/n. Then

q∑
j=1

nj = 2n. We

represent δj and εj as sums

δj =

nj∑
k=1

∆jk, εj =

nj∑
k=1

Ejk,

where

∆jk > 0, Ejk ≥ 0, ∆jk + Ejk =
1

n
, 1 ≤ k ≤ nj .

Let m be a positive integer satisfying 2/(mL) < 1/n. Since ε1 > 0, we can take
∆11 = 2/(mL), E11 = n−1−∆11 > 0. We take a surface F with 2n almost periodic

ends Λ1, . . . ,Λ2n and with logarithmic ramification points B̃1, . . . , B̃2n, where B̃1

lies over a1, and there are nj logarithmic ramification points over aj , 1 ≤ j ≤ q.

Since nj ≤ n =
1

2

q∑
j=1

nj , the sequence B̃ν can be chosen in such a way that

bν 6= bν±1, 1 ≤ ν ≤ 2n, where bν is a projection of the point B̃ν . Here and later

all indices ν are taken mod 2n. Suppose that B̃ν is the logarithmic ramification
point number s among those projected into aj , s = s(ν), j = j(ν). Let ∆ν = ∆js,
Eν = Ejs, j = j(ν), s = s(ν). Obviously, ∆1 = ∆11. We choose an almost
periodic end ∆ν in such a way that δ(aj(ν),Λν) = ∆νn, δ(aj(ν+1),Λν) = ∆ν+1n,

ε(aj(ν),Λν) = Eνn, ε(aj(ν+1),Λν) = Eν+1n. We have d−ν = d+
ν+1 = ∆ν+1n. The

weight of the surface F is equal to

1

d+
1

2n =
1

∆11n
2n =

2

∆11
= mL.
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The equality (7.21) implies

δ(aj , F ) =
1

2n

2n∑
ν=1

δ(aj ,Λν) =
1

2n

∑
j

′
δ(aj(ν),Λν) +

1

2n

∑
j

′′
δ(aj(ν+1),Λν)

=
1

2n

∑
j

′
{δ(aj(ν),Λν) + δ(aj(ν),Λν−1)},

where
∑′

j means that the sum is taken over those ν for which j(ν) = j, and
∑′′

j

means that the sum is taken over those ν for which j(ν + 1) = j. Therefore

δ(aj , F ) =
1

2n

∑
j

′
{∆νn+ ∆νn} =

∑
j

′
∆ν =

nj∑
s=1

∆js = δj , 1 ≤ j ≤ q.

Similarly we get ε(aj , F ) = εj , 1 ≤ j ≤ q.

Remark. If we considered the “restricted” inverse problem only and did not
impose any conditions on εj in the statement of Theorem 8.1, it would suffice to

restrict our attention to α- and β-schemes. It is clear that if

q∑
j=1

δj < 2, q ≥ 2, we

can always choose non-negative numbers εj such that 0 < δj + εj ≤ 1, 1 ≤ j ≤ q;
q∑
j=1

(δj + εj) = 2, and Θj = δj + εj are rational numbers. We will not have to add

schemes, for this reason their weight does not matter for us, and we can disregard
the requirement ε1 > 0. Besides, if we refer to Theorem 6.4, we may restrict
our attention by the case q ≥ 3 and solve the “restricted” inverse problem using
β-schemes only.

γ-scheme is a scheme for which: (1) δj > 0 for 1 ≤ j ≤ p, 2 ≤ p < q and δj = 0

for p+ 1 ≤ j ≤ q, 1 < p < q; (2) 2Θj ≤
p∑
j=1

Θj = Θ for 1 ≤ j ≤ p; (3) εp+1 > 0:

L

(
δ1 . . . δp 0 . . . 0
ε1 . . . εp εp+1 . . . εq

)
.

Since εp+1 > 0, we have Θ < 2. We show that all Θj, 1 ≤ j ≤ p, can be
represented as sums of nj positive summands θjk in such a way that the following
conditions are satisfied

Θj = θj1 + · · ·+ θjnj , 1 ≤ j ≤ p,(8.2) ∣∣∣∣θjkθil − 1

∣∣∣∣ < 2−Θ, 1 ≤ j ≤ p, 1 ≤ i ≤ p, 1 ≤ k ≤ nj , 1 ≤ l ≤ nj ,(8.3)

2nj ≤
p∑
j=1

nj = n.(8.4)

Let κ be a positive integer, so large that

21−κ

1− 2−κ
< 2−Θ.(8.5)
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Let

Θj =

∞∑
k=1

αjk2−k, αjk = 0 or 1, 1 ≤ j ≤ p;

λ be a positive integer so large that for each j, 1 ≤ j ≤ p, at least one of the
numbers αj1, α

j
2, . . . , α

j
λ is equal to 1. Let

n′j = 2λ+κ
λ+κ∑
k=1

αjk2−k.

If at least two of the numbers n′j , 1 ≤ j ≤ p attain their maximal values, then
nj = n′j , 1 ≤ j ≤ p. If there is j0 such that n′j0 > n′j for j 6= j0, we let nj0 = n′j and

nj = n′j + 1 for j 6= j0. It is clear that (8.4) holds in the first case. In the second
case the inequality (8.4) follows from the inequality

Θj0 ≤
∑

1≤j≤p,
j 6=j0

Θj ,

which holds by the condition (2) in the definition of a γ-scheme. Now we let
θjk = Θj/nj, 1 ≤ k ≤ nj . It is easy to see that

Θj

nj
≤ Θj

n′j
= 2−λ−κ

(
1 +

∑∞
k=λ+κ+1 α

j
k2−k∑λ+κ

k=1 α
j
k2−k

)

≤ 2−λ−κ

(
1 +

∑∞
k=λ+κ+1 2−k

2−λ

)
= 2−λ−κ(1 + 2−κ).

(8.6)

On the other hand,

Θj

nj
≥ Θj

n′j + 1
=

Θj

n′j

(
1− 1

n′j + 1

)
≥ 2−λ−κ

(
1− 1

n′j

)
≥ 2−λ−κ(1− 2−κ).(8.7)

The inequalities (8.6), (8.7) and (8.5) imply that∣∣∣∣θjkθil − 1

∣∣∣∣ ≤ 1 + 2−κ

1− 2−κ
− 1 < 2−Θ,

that is, (8.3) holds.
We write δj and εj in the form

δj =

nj∑
k=1

∆jk, εj =

nj∑
k=1

Ejk, 1 ≤ j ≤ p,

where

∆jk + Ejk = θjk, ∆jk > 0, Ejk ≥ 0, 1 ≤ k ≤ nj .
We can always do this in such a way that ∆11 is equal to rL, where r is a rational
number. To achieve this in the case when ε1 = 0 we possibly need to change
somewhat θ11 and θ12 without changing the sum θ11 + θ12, it is clear that this can
be done without violating any of the strict inequalities in (8.3).

We take a surface F with n almost periodic ends Λ1, . . . ,Λn. We use the
notation B̃ν , bν , s = s(ν), j = j(ν), ∆ν , Eν in the same way as in the case of a β-
scheme, but now 1 ≤ ν ≤ n and indices ν are taken mod n rather than mod 2n,
and the set of values {b1, . . . , bn} coincides with {aj}, 1 ≤ j ≤ p. In addition, we
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let θν = θjs, j = j(ν), s = s(ν). The possibility to satisfy the condition bν 6= bν±1

and, hence, the possibility to choose all ends to be ends of the first kind follows
from (8.4).

We choose a periodic end Λν in such a way that the following conditions are
satisfied:



δ(aj(ν),∆ν) = d+
ν = ∆ν

Θ

θν + θν+1
, ε(aj(ν),∆ν) = Eν

Θ

θν + θν+1
,

δ(aj(ν+1),Λν) = d−ν = ∆ν+1
Θ

θν + θν+1
,

ε(aj(ν+1),Λν) = Eν+1
Θ

θν + θν+1
,

δ(a,Λν) = 0 for a 6= aj(ν), aj(ν+1),
ε(aj ,Λν) = εj , p+ 1 ≤ j ≤ q,
ε(a,Λν) = 0 for a 6= aj(ν), aj(ν+1), ap+1, . . . , aq.

(8.8)

Such an end can be constructed since by (8.3) we have

∆ν
Θ

θν + θν+1
+ Eν

Θ

θν + θν+1
= θν

Θ

θν + θν+1
=

Θ

1 + θν+1

θν

< 1,(8.9)

∆ν+1
Θ

θν + θν+1
+ Eν+1

Θ

θν + θν+1
= θν+1

Θ

θν + θν+1
=

Θ

1 + θν
θν+1

< 1,(8.10)

and also

θν
Θ

θν + θν+1
+ θν+1

Θ

θν + θν+1
+ εp+1 + · · ·+ εq = Θ + (2−Θ) = 2.

The weight of the surface F is equal to

1

∆1
Θ

θ1 + θ2

+
∆2

Θ

θ1 + θ2

∆1
Θ

θ1 + θ2
∆2

Θ

θ2 + θ3

+ · · ·+
∆2

Θ

θ1 + θ2
. . .∆n

Θ

θn−1 + θn

∆1
Θ

θ1 + θ2
. . .∆n

Θ

θn + θ1

=
1

∆1

n∑
j=1

(θj + θj+1)

Θ
=

2

∆1
=

2

∆11
=

2

r
L.
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Using the notation
∑
j

′
,
∑
j

′′
in the same way as in the solution of a β-scheme,

by (7.21) we get

δ(aj , F ) =
∆1

2

n∑
ν=1

θν + θν+1

∆1Θ
δ(aj ,Λν)

=
1

2Θ


′∑
j

(θν + θν+1)δ(aj(ν),Λν) +

′′∑
j

(θν + θν+1)δ(aj(ν+1),Λν)


=

1

2Θ

′∑
j

{(θν + θν+1)δ(aj(ν),Λν) + (θν−1 + θν)δ(aj(ν),Λν−1)}

=
1

2Θ

′∑
j

{
(θν + θν+1)∆ν

Θ

θν + θν+1
+ (θν−1 + θν)∆ν

Θ

θν−1 + θν

}

=

′∑
j

∆ν =

nj∑
s=1

∆js = δj, 1 ≤ j ≤ p.

Similarly we get that ε(aj , F ) = εj , 1 ≤ j ≤ p. For p+ 1 ≤ j ≤ q the equality
ε(aj, F ) = εj is obvious.

A δ-scheme is a scheme satisfying the conditions (1) δj > 0 for 1 ≤ j ≤ p,

2 ≤ p < q, and δj = 0 for p+ 1 ≤ j ≤ q; (2′) Θ =

p∑
j=1

Θj ≤ 1; (3) εp+1 > 0.

As we see the only difference between the conditions for a δ-scheme and for a
γ-scheme is that the condition (2) is replaced by the condition (2′). The scheme is
solved almost in the same way as a γ-scheme, for this reason we restrict ourselves
to a description of differences between solutions of γ- and δ-schemes. We used
the condition (2) in the proof of the inequalities (8.4) (8.9) and (8.10). But the
inequalities (8.9) and (8.10) for a δ-scheme are obviously satisfied by the condition
(2′).

The condition (8.4) is not satisfied in general, for this reason we cannot use
ends of the first kind only. If an end Λν is of the first kind, the formulas (8.8)
remain true. If the end Λν is of the second kind, that is, aj(ν) = aj(ν+1),we choose
it in such a way that

δ(aj(ν),Λν) = (∆ν + ∆ν+1)
Θ

θν + θν+1
,

d+
ν = ∆ν

Θ

θν + θν+1
, d−ν = ∆ν+1

Θ

θν + θν+1
,

δ(a,Λν) = 0 for a 6= aj(ν),

ε(aj(ν),Λν) = (Eν + Eν+1)
Θ

θν + θν+1
,

ε(aj ,Λν) = εj , p+ 1 ≤ j ≤ q,

ε(a,Λν) = 0 for a 6= aj(ν), ap+1, . . . , aq.
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Such an end can be chosen because

δ(aj(ν),Λν) + ε(aj(ν),Λν) = (∆ν + ∆ν+1 + Eν + Eν+1)
Θ

θν + θν+1
= Θ ≤ 1

by the condition (2′). The remaining computations are carried out in the same way
as for a γ-scheme.

Observe that in the solution of a δ-scheme we do not need to obtain (8.3),
therefore we can take Θ1 = θ11 + θ12, Θj = θj1, 2 ≤ j ≤ p, that is, n1 = 2,
n2 = · · · = np = 1. With this choice of nj the condition (8.4) is not satisfied for
p = 2 only, and only in this case it is necessary to use an end of the second kind.
Although for p = 2 we can solve a δ-scheme with the help of a surface Φ with two
almost periodic ends of the first kind (see Theorem 6.2), but, generally speaking,
we will not be able to ensure the preassigned, up to a rational factor, weight of our
scheme.

It is easy to see that a scheme can be a γ-scheme and a δ-scheme simultaneously.
Now we consider schemes of the general form. Let δ(aj) > 0 for 1 ≤ j ≤ p,

p ≤ q, and δ(aj) = 0 for p + 1 ≤ j ≤ q (if p < q). We may assume that p ≥ 2,

since for p = 1 we get an α-scheme. Set Θ =

p∑
j=1

Θj . We may assume without loss

of generality that Θ1 = max
1≤j≤p

Θj . We consider two cases: Case A: Θ < 2; Case

B: Θ = 2. We divide the case A into three subcases: (1) A′, if δ1 = 1, (2) A′′, if
Θ1 = 1 and ε1 > 0, (3) A′′′, if Θ1 < 1.

Subcase A
′
. Set

Θ′ =

p∑
j=2

Θj, Θ′′ =

q∑
j=p+1

εj.

It is clear that Θ′ < 1 and Θ′′ > 0. We write Θj , 2 ≤ j ≤ p, as a sum of nj positive
summands θjk (see (8.2)) in such a way that∣∣∣∣θjkθil − 1

∣∣∣∣ < 2− 2Θ′, 2 ≤ j ≤ p, 2 ≤ i ≤ p, 1 ≤ k ≤ nj , 1 ≤ l ≤ ni.(8.11)

The possibility of such representation can be proved similarly to the proof of rep-
resentation (8.2) under the condition (8.3). Now we write δj and εj in the form

δj =

nj∑
k=1

∆jk, εj =

nj∑
k=1

Ejk, 2 ≤ j ≤ p,

where

∆jk + Ejk = θjk, ∆jk > 0, Ejk ≥ 0, 1 ≤ k ≤ nj, 2 ≤ j ≤ p.

We take a surface F with 2n = 2

p∑
j=2

nj almost periodic ends Λ1, . . . ,Λ2n and

with logarithmic ramification points B̃1, . . . , B̃2n. The points B̃2ν , 1 ≤ ν ≤ n are
projected onto a1, and there are nj logarithmic ramification points lying over aj ,

2 ≤ j ≤ p. Suppose that B̃2ν−1, 1 ≤ ν ≤ n, is the logarithmic ramification point
number s among points projected into aj , s = s(ν), j = j(ν). Let ∆ν = ∆js,
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Eν = Ejs, θν = θjs, j = j(ν), s = s(ν). We take all numbers ν mod n. We take
ends Λk of the first kind in such a way, that for Λ2ν−1 the following is true:

δ(a1,Λ2ν−1) = d−2ν−1 = 1,

δ(aj(ν),Λ2ν−1) = d+
2ν−1 = ∆ν

2Θ′

θν + θν+1
,

δ(a,Λ2ν−1) = 0 for a 6= a1, aj(ν),

ε(aj(ν),Λ2ν−1) = Eν
2Θ′

θν + θν+1
,

ε(aj ,Λ2ν−1) = kνεj , p+ 1 ≤ j ≤ q,
where

kν =
1

Θ′′

(
1− 2θνΘ′

θν + θν+1

)
,

ε(a,Λ2ν−1) = 0 for a 6= aj(ν), ap+1, . . . , aq,

and for Λ2ν the following is true:

δ(a1,Λ2ν) = d+
2ν = 1,

δ(aj(ν+1),Λ2ν) = d−2ν = ∆ν+1
2Θ′

θν + θν+1
,

δ(a,Λ2ν) = 0 for a 6= a1, aj(ν+1),

ε(aj(ν+1),Λ2ν) = Eν+1
2Θ′

θν + θν+1
,

ε(aj ,Λ2ν) = lνεj, p+ 1 ≤ j ≤ q,
where

lν =
1

Θ′′

(
1− 2θν+1Θ′

θν + θν+1

)
,

ε(a,Λ2ν) = 0 for a 6= aj(ν+1), ap+1, . . . , aq.

Let us show that such almost periodic ends can be constructed. In fact, the
inequalities (8.11) imply that

2θνΘ′

θν + θν+1
=

2Θ′

1 + θν+1

θν

<
2Θ′

1 + (−1 + 2Θ′)
= 1

and similarly

2θν+1Θ′

θν + θν+1
< 1,

hence the numbers kν and lν are positive, and δ(aj(ν),Λ2ν−1)+ε(aj(ν),Λ2ν−1) < 1,
δ(aj(ν+1),Λ2ν) + ε(aj(ν+1),Λ2ν) < 1. Besides, for p+ 1 ≤ j ≤ q we have

kνεj ≤ kνΘ′′ < 1 and lνεj ≤ lνΘ′′ < 1.

Thus, by Theorem 7.2 we can construct a Riemann surface F with the indicated
distribution of values of almost periodic ends.
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Since δ(a1,Λk) = 1 for all Λk, we have δ(a1, F ) = 114.
Now let 2 ≤ j ≤ p. Using the notation

∑′
j and

∑′′
j in the same way as before,

we get

δ(aj , F ) =

∑′
j

d−1 ...d
−
2ν−2

d+
1 ...d

+
2ν−1

δ(aj(ν),Λ2ν−1) +
∑′′
j

d−1 ...d
−
2ν−1

d+
1 ...d

+
2ν

δ(aj(ν+1),Λ2ν)∑2n
k=1

d−1 ...d
−
k−1

d+
1 ...d

+
k

=
2
∑′
j

d−1 ...d
−
2ν−2

d+
1 ...d

+
2ν−1

δ(aj(ν),Λ2ν−1)∑2n
k=1

d−1 ...d
−
k−1

d+
1 ...d

+
k

.

(8.12)

It is easy to see that

d−1 . . . d
−
k−1

d+
1 . . . d

+
k

=
θl + θl+1

2Θ′∆1
, k = 2l− 1, 2l (1 ≤ l ≤ n).

Therefore

L(F ) =

2n∑
k=1

d−1 . . . d
−
k−1

d+
1 . . . d

+
k

= 2

n∑
l=1

θl + θl+1

2Θ′∆1
=

1

Θ′∆1

n∑
l=1

(θl + θl+1) =
2

∆1
,(8.13)

∑
j

′ d−1 . . . d
−
2ν−2

d+
1 . . . d

+
2ν−1

δ(aj(ν),Λ2ν−1)

=
∑
j

′ θν + θν+1

2Θ′∆1
∆ν

2Θ′

θν + θν+1
=

1

∆1

∑
j

′
∆ν =

1

∆1

nj∑
s=1

∆js =
δj

∆1
.

(8.14)

¿From (8.12), (8.13), and (8.14) we get that δ(aj , F ) = δj . Similarly we find
that ε(aj , F ) = εj , 2 ≤ j ≤ p.

For p + 1 ≤ j ≤ q, taking into account (7.22) and the equality kν + lν =
2

Θ′′ (1 −Θ′) = 2, we find that

ε(aj , F ) =
∆1

2

{
n∑
ν=1

d−1 . . . d
−
2ν−2

d+
1 . . . d

+
2ν−1

kνεj +

n∑
ν=1

d−1 . . . d
−
2ν−1

d+
1 . . . d

+
2ν

lνεj

}

=
∆1

2
εj

{
n∑
ν=1

θν + θν+1

2Θ′∆1
kν +

n∑
ν=1

θν + θν+1

2Θ′∆1
lν

}

=
εj

4Θ′

n∑
ν=1

(θν + θν+1)(kν + lν) =
εj

2Θ′

n∑
ν=1

(θν + θν+1) = εj .

Thus, the constructed surface F has all desired properties.

14Obviously, the surface F can be constructed in such a way that it does not cover the point
a1, in such a case the value a1 is a Picard exceptional value for the mapping function f(z).
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Subcases A
′′

and A
′′′

. The corresponding schemes are solved in the following
way. After finitely many operations of the form

(δν + εν)

(
δ1 . . . δν . . .
. . . . . . εν . . .

)
= δν

(
δ1 . . . δν + εν . . .
. . . . . . 0 . . .

)
+ εν

(
δ1 . . . 0 . . .
. . . . . . δν + εν . . .

)
,

(8.15)

where δ1 > 0, the problem is reduced to a solution with weight of schemes of the
form (

δ1 0 0 . . .
ε1 ε2 ε3 . . .

)
,

(
δ1 δ2 . . . δn 0 . . . 0
ε1 0 . . . 0 εn+1 . . . εq

)
,

where δ1, . . . , δn > 0, moreover, the numbers δj , εj, 2 ≤ j ≤ q in these schemes
are, generally speaking, different from the original, also the numbers aj, 2 ≤ j ≤ q
could be subjected to a permutation. The first of these schemes is an α-scheme.

The second scheme is either a γ-scheme, or it satisfies the inequality 2Θ1 >

n∑
j=1

Θj

(remind that for the original scheme we assumed that Θ1 ≥ Θj , 2 ≤ j ≤ p, and in
decompositions of the form (8.15) the quantities Θj do not change). In the latter

case, taking into account

n∑
j=2

Θj < Θ1 ≤ 1, by a sequence of operations of the

following type

(δn−1 + δn)

(
δ1 . . . δn−1 δn . . . 0
ε1 . . . 0 0 . . . εq

)
= δn−1

(
δ1 . . . δn−1 + δn 0 . . . 0
ε1 . . . 0 0 . . . εq

)
+ δn

(
δ1 . . . 0 δn−1 + δn . . . 0
ε1 . . . 0 0 . . . εq

)
we reduce the problem to a solution with weight of a scheme of the form(

δ1 δ2 0 . . . 0
ε1 0 ε3 . . . εq

)
,

where δ2 = Θ2 < δ1 + ε1 + Θ1. If we needed just to solve this scheme, we would be
able to refer to Theorem 6.4, however, we need to solve this scheme with weight.

Set Θ′′ =

q∑
j=3

εj . If Θ′′ ≥ 1, then Θ1 + Θ2 ≤ 1, and our scheme is a δ-scheme.

Further consideration is needed in the case Θ′′ < 1.
In the subcase A′′ the equalities δ1+ε1 = 1, δ2+Θ′′ = 1 hold, and we decompose

1

(
δ1 δ2 0 . . . 0
ε1 0 ε3 . . . εq

)
= δ2

(
δ1 1 0 . . . 0
ε1 0 0 . . . 0

)
+ Θ′′

(
δ1 0 0 . . . 0
ε1 0 ε3

Θ′′ . . .
εq
Θ′′

)
.

(8.16)

The first scheme in the right-hand side of (8.16) is a β-scheme, the second is
an α-scheme.
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In the subcase A′′′ we observe that 0 < 1−Θ′′ = Θ1 + δ2− 1 < 2Θ1− 1. Then

(2Θ1 − 1)

(
δ1 δ2 0 . . . 0
ε1 0 ε3 . . . εq

)
= (Θ1 + δ2 − 1)

(
δ1 Θ1 0 . . . 0

ε1 0 ε3
2(1−Θ1)

Θ′′ . . . εq
2(1−Θ1)

Θ′′

)
+ (Θ1 − δ2)

(
δ1 1−Θ1 0 . . . 0
ε1 0 ε3/Θ

′′ . . . εq/Θ
′′

)
.

(8.17)

Here we take into account that

(2Θ1 − 1)εj = (Θ1 + δ2 − 1)εj
2(1−Θ1)

Θ′′
+ (Θ1 − δ2)

εj

Θ′′
, 3 ≤ j ≤ q,

by the equality (Θ1+δ2−1)2(1−Θ1)+(Θ1−δ2) = (1−Θ′′)2(1−Θ1)+(Θ′′+2Θ1−2) =
Θ′′(2Θ1 − 1). The first scheme in the right-hand side of the equality (8.17) is a
γ-scheme, the second is a δ-scheme.

Case B. We may assume that ε1 > 0, but Θ1 is not necessarily the largest
number among Θj , j = 1, . . . , q. The scheme is of the form(

δ1 . . . δq
ε1 . . . εq

)
, δj > 0, 1 ≤ j ≤ q, ε1 > 0.(8.18)

Let Θ1 < 1. We choose rational numbers rj , 1 ≤ j ≤ q, such that (a) 0 < r1 <

Θ1 < 1; (b) 1 ≥ rj ≥ Θj for 2 ≤ j ≤ q; (c)

q∑
j=1

rj = 2; (d) rj −Θj < Θj
Θ1 − r1

2(1−Θ1)

for 2 ≤ j ≤ q. The fact that rj can be chosen in such a way that (a), (b), and
(c) are satisfied, is obvious. The fact that the condition (d) also can be satisfied
follows from the inequality

q∑
j=2

Θj
Θ1 − r1

2(1−Θ1)
=

2− Θ1

2− 2Θ1
(Θ1 − r1) > Θ1 − r1 =

q∑
j=2

(rj −Θj).

We decompose the scheme (8.18) in the following way:

(1 − r1)

(
δ1 . . . δq
ε1 . . . εq

)
= (1 −Θ1)

(
δ1
Θ1
r1 . . .

δq
Θq
rq

ε1
Θ1
r1 . . .

εq
Θq
rq

)

+ (Θ1 − r1)

(
δ′1 δ′2 . . . δ′q
ε′1 ε′2 . . . ε′q

)
,

(8.19)

where δ′1 = δ1/Θ1, ε′1 = ε1/Θ1, and for 2 ≤ j ≤ q we have

δ′j =
δj

Θj

{
Θj −

1−Θ1

Θ1 − r1
(rj −Θj)

}
>
δj

2
> 0,

ε′j =
εj

Θj

{
Θj −

1−Θ1

Θ1 − r1
(rj −Θj)

}
>
εj

2
≥ 0,

by the condition (d). The first scheme in the right-hand side of (8.19) is a β-scheme,
and Θ′1 = δ′1 + ε′1 = 1 in the second scheme. Therefore we may assume that Θ1 = 1
in (8.18).
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Let εν > 0, 2 ≤ ν ≤ q. We represent the scheme (8.18) as a sum of two schemes:

(δν + εν)

(
δ1 . . . δν . . . δq
ε1 . . . εν . . . . . .

)
= δν

(
δ1 . . . δν + εν . . . δq
ε1 . . . 0 . . . . . .

)
+ εν

(
δ1 . . . 0 . . .
ε1 . . . δν + εν . . .

)
.

(8.20)

The second scheme (S) in the right-hand side of the equality (8.19) corresponds
to the case A′′. As we saw, it is possible to solve the scheme (S) constructing a
surface F with weight L. The scheme (S) can be represented as a finite sum of
basic schemes (S1), . . . , (St) with weights L1, . . . , Lt, respectively, where, by (7.25),
L = L1 + · · ·+Lt. We shall write this junction in the form of the following equality:
L(S) = L1(S1) + · · ·+ Lt(St). However, we need to get a scheme (S) with weight
equal to εν , up to a rational factor. We do the following. We solve a basic scheme
(Sj) with weight equal to rjενLj/L, 1 ≤ j ≤ t, where rj is a rational number,
and denote the corresponding surface by Fj . Let rj = mj/n, where n is the least
common denominator of the fractions r1, . . . , rt. Now we join m2m3 . . .mt copies
of the surface F1, m1m3 . . .mt copies of the surface F2, . . . , m1m2 . . .mt−1 copies
of the surface Ft. By (7.25), the weight of the obtained surface F ′ is equal to

m2m3 . . .mt
r1ενL1

L
+m1m3 . . .mt

r2ενL2

L
+ . . .

+m1m2 . . .mt−1
rtενLt

L
= m1m2 . . .mt

εν

nL
(L1 + · · ·+ Lt)

=
m1 . . .mt

n
εν ,

that is, equal to a rational multiple of εν .
Using the formulas (7.26) and (7.27) it is easy to see that the surface F ′ solves

the scheme (S), that is, the second scheme in the right-hand side of (8.20), with
the desired weight.

As for the first scheme in the right-hand side of (8.20), we decompose it again
according to the formula (8.20), but now with another ν. Repeating this operation
finitely many times we get, besides schemes corresponding to the case A′′, a scheme
of the form (8.18) with ε2 = · · · = εq = 0. Next, using successive operations

(δn−1 + δn)

(
δ1 . . . δn−1 δn . . .
ε1 . . . 0 0 . . .

)
= δn−1

(
δ1 . . . δn−1 + δn 0 . . .
ε1 . . . 0 0 . . .

)
+ δn

(
δ1 . . . 0 δn−1 + δn . . .
ε1 . . . 0 0 . . .

)
we reduce the scheme to schemes of the form(

δ1 0 . . . 0 1 0 . . .
ε1 0 . . . 0 0 0 . . .

)
,

which are β-schemes.
This completes the proof of Theorem 8.1.

Remark. We can drop the restriction that there are finitely many numbers εj
and consider the case of infinite sequences ε1, ε2, . . . , 0 ≤ εj ≤ 1 and a1, a2, . . . . In
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such a case the condition (1′) should be replaced by the condition

q∑
j=1

δj +

∞∑
j=1

εj = 2,

and instead of Riemann surfaces with almost periodic ends we consider surfaces
with generalized almost periodic ends (see the remark at the end of Section 6),
which are constructed in the same way as surfaces with almost periodic ends. The
main results of Section 7 can be transferred onto this wider class of surfaces without
substantial changes. In order to get the indicated generalization of Theorem 8.1 it
will be necessary to solve schemes with infinitely many columns:(

δ1 . . . δq 0 0 . . .
ε1 . . . εq εq+1 εq+2 . . .

)
,

where εj > 0 for j ≥ q + 1. These schemes correspond to the case A, and we solve
them, as before, joining to each of the schemes the same set of columns of the form(

0
εj

)
with numbers j ≥ q + 1, including the case of α-, γ-, and δ-schemes. We

cannot join any columns to β-schemes, but β-schemes occur in the case B only.
Now we prove the following theorem.

Theorem 8.2. Let δj , εj, j = 1, . . . , q be non-negative numbers satisfying

(1)

q∑
j=1

{δj + εj} ≤ 2,

(2) 0 < δj + εj ≤ 1, 1 ≤ j ≤ q,

(3) 0 <

q∑
j=1

δj ≤ 2,

moreover, if

q∑
j=1

δj = 2, then all numbers δ1, . . . , δq are rational. Let a1, . . . , aq

be arbitrary distinct complex numbers. Then there exists a meromorphic function
f(z) of finite order, such that δ(aj , f) = δj, ε(aj , f) = εj, 1 ≤ j ≤ q; δ(a, f) = 0,
ε(a, f) = 0 for a 6= aj, 1 ≤ j ≤ q.

The theorem has been already proved in the case when the inequality (1) holds
with equality: in such a case we can take f(z) to be a mapping function of the
Riemann surface F which was mentioned in Theorem 8.1. So now we can assume
that

E = 2−
q∑
j=1

{δj + εj} > 0.

We take unequal numbers aq+1 and aq+2, different from a1, . . . , aq. Let εq+1 =
εq+2 = E/2. Then there exists a meromorphic function w = f1(z), such that

n(r, a, f1) = Krρ + o(rρ) for a 6= a1, . . . , aq,
n(r, aj , f1) = K(1− δj)rρ + o(rρ) for 1 ≤ j ≤ q,
n1(r, aj , f1) = Kεjr

ρ + o(rρ) for 1 ≤ j ≤ q + 2,
n1(r, a, f1) = o(rρ) for a 6= aj, 1 ≤ j ≤ q + 2,

(8.21)
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where K and ρ are some positive constants. This statement follows from Theorem
8.1 and formulas (7.12), (7.13), (7.18), (7.19) (using these formulas we assume, as
we agreed on p. ???, that χ = 1).

The conditions (8.21) imply that

n(r + 1, a, f1)− n(r − 1, a, f1) = o(rρ)(8.22)

for each a. Let {zkν}∞k=1 be the sequence of all multiple aq+ν-points of the function
f1(z), ν = 1, 2. Take pairwise disjoint discs Ckν = {|z − zkν | < rkν}, k = 1, 2, . . . ;
ν = 1, 2, such that rkν < 1 and

2∑
ν=1

∞∑
k=1

∫∫
Ckν∩{|z|>1}

dσ(ln z) <∞.(8.23)

Suppose that the function w1 = f1(z) maps the complex z-plane onto some
Riemann surface F1. We denote the image of the disc Ckν under this mapping by
Dkν , Dkν ⊂ F1. The region Dkν contains one algebraic ramification point W 1

kν

which is projected into aq+ν , that is, into the image of the point zkν . We take
so small circular neighborhood U1

kν of this ramification point, that U1
kν does not

contain other ramification points, and U1
kν ⊂ Dkν . The region U1

kν is the Riemann

surface of the function (w−aq+ν )1/mkν , lying over the disc {|w−aq+ν | < εkν}, where
mkν − 1 is the order of the ramification point W 1

kν , and εkν is a sufficiently small

positive number. Let Ukν be the Riemann surface of the function (w − akν)1/mkν ,
|akν − aq+ν | < 1

2εkν , lying over the disc {|w − aq+ν | < εkν}. We choose the points
akν in such a way that all of them are distinct when k = 1, 2, . . . , ν = 1, 2, and all of
them are different from projections of algebraic ramification points of the Riemann
surface F1.

Let w = ϕkν (w1) be a quasiconformal mapping of U1
kν onto Ukν , such that

points on the boundary of U1
kν are fixed and the ramification point W 1

kν is mapped
onto the ramification point Wkν of the same order mkν −1, which is projected onto
akν . The mapping w = ϕkν (w1) can be chosen in such a way that p(w1, w) < 3
(see Example 8 from Section 2).

Let F0 = F1\
⋃
k,ν

U1
kν . Denote by F the Riemann surface which we get if we

replace regions U1
kν by regions Ukν on the surface F1. It is clear that F0 = F\

⋃
k,ν

Ukν .

Denote the preimages of F0 and U1
kν under the mapping w = f1(z) by G0 and Gkν ,

respectively. Obviously, Gkν ⊂ Ckν . Let w = ϕ(ζ) be a quasiconformal mapping of
the complex ζ-plane onto the Riemann surface F , given by the following formulas

ϕ(ζ) =

{
f1(ζ) for ζ ∈ G0,

ϕkν(f1(ζ)) for ζ ∈ Gkν , k = 1, 2, . . . , ν = 1, 2.

It is clear that for each a the functions f1(ζ) and ϕ(ζ) have the same amount
of a-points in Gkν . Since the diameter of each of the regions Gkν is less than 2, the
relations (8.22) and (8.21) imply that

n(r, a, ϕ) = Krρ + o(rρ) for a 6= a1, . . . , aq,
n(r, aj , ϕ) = K(1− δj)rρ + o(rρ) for 1 ≤ j ≤ q,
n1(r, aj , ϕ) = Kεjr

ρ + o(rρ) for 1 ≤ j ≤ q,
n1(r, a, ϕ) = o(rρ) for a 6= aj , 1 ≤ j ≤ q.

(8.24)
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We can even claim that n1(r, a, ϕ) = n1(r, a, f1) for a 6= a1, . . . , aq+2, k = 1, 2, . . . ,
ν = 1, 2, n1(r, a, ϕ) = 0 for a = aq+1, aq+2, and n1(r, a, ϕ) = O(1) for a = akν .

Taking into account (8.23) we get that the mapping w = ϕ(ζ) satisfies∫∫
|ζ|>1

{p(ζ, w)− 1}dσ(ln ζ) =

2∑
ν=1

∞∑
k=1

∫∫
Gkν∩{|ζ|>1}

{p(ζ, w)− 1}dσ(ln ζ)

≤ 3

2∑
ν=1

∞∑
k=1

∫∫
Gkν∩{|ζ|>1}

dσ(ln ζ) ≤ 3

2∑
ν=1

∞∑
k=1

∫∫
Ckν∩{|ζ|>1}

dσ(ln ζ) <∞.

Using Teichmüller Theorem 3.1 in the same way as we have repeatedly done,
we find that the surface F is of parabolic type, and the relations (8.24) remain true
for the meromorphic function w = f(z) which maps {|z| < ∞} onto F , after an
appropriate normalization of f(z). From here we get that

T (r, f) =
K

ρ
rρ + o(rρ),

N(r, a, f) =
K

ρ
rρ + o(rρ) for a 6= a1, . . . , aq,

N(r, aj , f) =
K

ρ
(1− δj)rρ + o(rρ) for 1 ≤ j ≤ q,

N1(r, aj , f) =
K

ρ
εjr

ρ + o(rρ) for 1 ≤ j ≤ q,

N1(r, a, f) = o(rρ) for a 6= aj, 1 ≤ j ≤ q.
These relations imply that the function w = f(z) is a desired function, whose

existence was claimed in Theorem 8.2. It is clear that our remark to Theorem 8.1
is applicable to Theorem 8.2 also. It is clear from our argument that if δj = 1, then
the function f(z) can be chosen in such a way that f(z) 6= aj .

We can drop the restriction

q∑
j=1

δj > 0 in Theorem 8.2, but in such a case we

have to avoid usage of Riemann surfaces with almost periodic ends, because their
mapping functions necessarily have deficient values.

We prove the following theorem.

Theorem 8.3. Let ε1, ε2, . . . be a sequence of numbers satisfying 0 ≤ εj ≤ 1,
∞∑
j=1

εj ≤ 2, and a1, a2, . . . be a sequence of pairwise distinct complex numbers. There

exists a meromorphic function w = f(z) such that ε(aj , f) = εj for j = 1, 2, . . . ,
ε(a, f) = 0 for a 6= aj , j ≥ 1; δ(a, f) = 0 for all a.

Let b1, b2, . . . be a sequence of distinct complex numbers, bj 6= ak, j, k =
1, 2, . . . . Let ejk, 1 ≤ j ≤ k, be integers satisfying

(1) 0 ≤ ejk ≤ k − 1, 1 ≤ j ≤ k − 1,

(2) 0 ≤
k∑
j=1

ejk ≤ 2(k − 1),
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(3) lim
k→∞

ejk

k
= εj for each j.

It is clear that such numbers ejk can be selected. Let β′k and β′′k be some
integers, such that 0 ≤ β′jk, β′′k ≤ k − 1 and

k∑
j=1

ejk + β′k + β′′k = 2(k − 1).

Let Φk be a Riemann surface from the class

F(k; a1 : e1k; a2 : e2k; . . . ; ak : ekk; b2k−1 : β′k; b2k : β′′k ), k = 1, 2, . . .

By Theorem 4.1 such surface exists.
It is always possible to find a positive number uk and a number rk, 0 < rk < 1/4,

such that |uk−k| < 1/4 and there are no ramification points of the surface Φk over
the disc {|w − uk| ≤ rk}. Denote by Gk a fixed one-sheeted region on Φk lying
over {|w − uk| < rk}. Let Φ0

k = Φk\Gk. Let w1 = ψk(w) be a quasiconformal
mapping of the surface Φ0

k onto the region {|w1−uk| ≥ rk}, under which points on
the boundary of Φ0

k remain fixed. The existence of such a quasiconformal mapping
follows from Example 9 in Section 2. Let the characteristic of this quasiconformal

mapping be bounded by a constant pk. Let r′ = min(rk, p
−1/2
k ). We introduce the

notation G′k = Gk ∩ {|w − uk| < r′k}, Φ′k = Φk\G1
k.

It is easy to see that there exists a quasiconformal mapping of Φ′k onto the disc
{|ζ−uk| ≤ r′k/4} with constant distortion on the boundary and with characteristic
at most pk. In fact, first we map Φ′k onto {|w − uk| ≥ r′k}; to this end we map
Φ0
k ⊂ Φ′k using the function ψk(w), and leave the region Gk\G′k fixed. Then we

map the region {|w − uk| ≥ r′k} onto {|ζ − uk| ≤ r′k/4} using the linear-fractional

transformation ζ = (r′
2
k/4)(w − uk)−1 + uk. In this case the point on ∂Φ′k which

is projected onto w = uk + r′k is mapped onto the point w1 = uk + r′k/4. Denote
the constructed mapping of Φ′k onto {|ζ − uk| ≤ r′k/4} by ζ = ωk(w), denote by
w = Ωk(ζ) the inverse mapping.

We make a cut on Φk along the line segment Γk ⊂ G′k, which is projected into

the line segment γk =

{
uk −

r′k
2
≤ u ≤ uk +

r′k
2
, v = 0

}
, w = u + iv. Take the

complex w-plane with cuts along γk, k = 1, 2, . . . , and denote it by P . We paste
to P the surfaces Φk with cuts along Γk pasting the upper (lower) side of the cut
Γk to the lower (upper) side of the cut γk. We get a simply connected Riemann
surface F .

Let G̃′k = G′k\Γk, G′′k = {|w − uk| < r′k} ∩ P . Denote the part of the Riemann

surface F consisting of G̃′k and G′′k by Wk. It is a doubly connected Riemann
surface with two algebraic ramification points of the first order over the points
uk ± r′k/2. We denote the boundary curves of Wk by C1k and C2k, both of them

are projected into {|w−uk| = r′k}, moreover, C1k ⊂ ∂G′′k, C2k ⊂ ∂G̃′k. By Example
10 from Section 2 there exists a quasiconformal mapping of the surface Wk onto
the annulus {r′k/4 < |ζ − uk| < r′k}, such that the point w = uk + r′ke

iθ ∈ C1k is
mapped onto the point ζ = uk + r′ke

iθ, and the point w = uk + r′ke
−iθ ∈ C2k is

mapped onto the point ζ = uk +
r′k
4
eiθ. Denote this quasiconformal mapping by

ζ = sk(w), and its inverse by w = Sk(ζ). As it was shown in Example 10, the
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characteristic of this mapping is bounded by a constant Q, which obviously does
not depend on k.

Let P0 = P\
( ∞⋃
k=1

G′′k

)
. The Riemann surface F can be partitioned into pair-

wise disjoint parts P0, W1,W2, . . . , Φ′1,Φ
′
2, . . . . There exist a quasiconformal map-

ping of the surface F onto the complex ζ-plane which leaves P0 fixed, maps the
surfaces Wk by ζ = sk(w), and the surfaces Φ′k by ζ = ωk(w). It is easy to verify
that such mapping is one-to-one and continuous everywhere on the surface F . We
denote its inverse quasiconformal mapping of {|ζ| <∞} onto F by w = ϕ(ζ):

w = ϕ(ζ) =


ζ for ζ ∈ P0,

Sk(ζ) for r′k/4 < |ζ − uk| < r′k, k = 1, 2, . . .

Ωk(ζ) for |ζ − uk| ≤ r′k/4, k = 1, 2 . . .

It is clear that p(ζ, w) ≡ 1 for ζ ∈ P0, p(ζ, w) ≤ Q for r′k/4 < |ζ − uk| < r′k,
k = 1, 2, . . . ; p(ζ, w) ≤ pk for |ζ − uk| ≤ r′k/4. Hence∫∫

|ζ|>1/2

{p(ζ, w) − 1}dσ(ln ζ) =

∞∑
k=1

∫∫
|ζ−uk|≤r′k

{p(ζ, w)− 1}dσ(ln ζ)

≤
∞∑
k=1

max(Q, pk)

∫∫
|ζ−uk|≤r′k

dσ(ln ζ)

≤
∞∑
k=1

max(Q, pk)O

(
r
′2
k

k2

)
=

∞∑
k=1

O

(
1

k2

)
<∞.

(8.25)

Here we used the condition r
′2
k ≤ 1/pk.

Now we consider the distribution of a-points of the function w = ϕ(z). It is
clear that all a-points except at most one are lying in the discs {|ζ−uk| < r′k < 1/4},
moreover, the number of a-points in each of these discs is equal to k if |a−uk| ≥ r′k,
and is equal to k + 1 if |a− uk| < r′k. Therefore

n(r, a, ϕ) =

[r]∑
k=1

k +O(r) =
r2

2
+O(r)(8.26)

for each a. Similarly we get that

n1(r, a, ϕ) = O(1)(8.27)

for a 6= aj , j = 1, 2, . . . , and

n1(r, aj , ϕ) =

[r]∑
k=1

ejk +O(r)

= εj

[r]∑
k=1

k +

[r]∑
k=1

o(k) +O(r) = εj
r2

2
+ o(r2).

(8.28)

for a = aj .
Using Teichmüller Theorem 3.1, which is applicable by (8.25), in a standard

for this chapter way we find that there exists a meromorphic function w = f(z) for
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which the relations (8.26), (8.27), (8.28) remain true if we replace ϕ by f and O(r)
by o(r2) in them. Now we get that

N(r, a, f) =
r2

4
+ o(r2) for all a,

T (r, f) =
r2

4
+ o(r2),

N1(r, aj , f) = εj
r2

4
+ o(r2), j = 1, 2, . . . ,

N1(r, a, f) = O(ln r) for a 6= aj , j = 1, 2, . . .

It is clear that the function w = f(z) satisfies the conditions of Theorem 8.3.



On the magnitude of type of an entire function

It was proved in Theorem 1.3 from Chapter 2 that for an entire function f(z)
the characteristics T (r, f) and lnM(r, f) have the same growth category. Let ρ(r)
be some proximate order, such that ρ(r)→ ρ as r →∞, where ρ <∞ is the order
of an entire function.

Set

∆T = lim sup
r→∞

T (r, f)

rρ(r)
, ∆M = lim sup

r→∞

lnM(r, f)

rρ(r)
.

Theorem 1.3 from Chapter 2 implies that ∆T and ∆M are equal to 0 or ∞ simul-
taneously, since 0 < ∆T <∞ implies 0 < ∆M < ∞, and vice versa. Now we shall
establish more precise relations between ∆T and ∆M . The inequality ∆T ≤ ∆M is
obvious, because T (r, f) ≤ ln+M(r, f). We shall now prove the following theorem.

Theorem 0.4. The inequalities

∆M ≤ πρ csc(πρ)∆T for 0 ≤ ρ ≤ 1/2,(0.29)

∆M ≤ πρ∆T for 1/2 < ρ <∞.(0.30)

hold.

Observe that the inequalities (0.29) and (0.30) hold with equalities for the
Mittag-Leffler function (5.31) from Chapter 2 for ρ(r) ≡ ρ, 0 < ρ <∞15. If ρ = 0
the equality ∆M = ∆T holds for each entire function (see Remark 1 to Theorem
4.5 from Chapter 2). Therefore we can restrict our attention to the case ρ > 0.

It is relatively easy to prove the inequality (0.29). We may assume without
loss of generality that f(0) = 1. Then N(r, 0, f) ≤ T (r, f). Let {ak} denote the
sequence of zeros. Then (cf. (4.3) from Chapter 2)

lnM(r, f) = lnM

(
r,

∞∏
k=1

E

(
z

ak
, 0

))
≤
∞∑
k=1

ln

(
1 +

r

|ak|

)
=

∫ ∞
0

ln
(

1 +
r

t

)
dn(t, 0, f) = r

∫ ∞
0

n(t, 0, f)

t

dt

r + t

= r

∫ ∞
0

N(t, 0, f)
dt

(r + t)2

≤ r
∫ ∞

0

T (t, f)
dt

(r + t)2
=

∫ ∞
0

T (τr, f)
dτ

(1 + τ)2
.

(0.31)

15Similar examples can be constructed in the case when ρ(r) is not identically equal to ρ.
For example, if 0 < ρ < 1 we can take the function (5.1) from Chapter 2 with l(r) ≡ ρ(r) and use
the formulas (5.4′) and (5.11).

427
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We may assume that ∆T <∞, since for ∆T =∞ the inequality (0.29) is obvious.
Let T (r, f) ≤ (∆T + ε)rρ(r) hold for r ≥ r0(ε). Then (0.31) implies

lnM(r, f) ≤ T (r0, f)

∫ r0/r

0

dτ

(1 + τ)2
+ (∆T + ε)

∫ ∞
r0/r

(rτ)ρ(rτ) dτ

(1 + τ)2
,

∆M = lim sup
r→∞

lnM(r, f)

rρ(r)
≤ (∆T + ε) lim

r→∞

∫ ∞
r0/r

(rτ)ρ(rτ)

rρ(r)
dτ

(1 + τ)2

= (∆T + ε)

∫ ∞
0

τρdτ

(1 + τ)2
= (∆T + ε)

πρ

sinπρ
.

(0.32)

The possibility of passing to the limit under the integral sign is proved in the same
way as in Exercise 1 in Section 2 of Chapter 2; the last integral can be easily
computed by using the residue calculus. Since ε can be chosen arbitrarily small,
the inequality (0.32) implies (0.29).

The inequality (0.30) is proved in a much more complicated way; it was obtained
only recently by N.V. Govorov [Gov69], although it was conjectured long time ago
(see, for example, [Hay64, Ch. 1, 1.8]).

Let f(z) be an entire function of order ρ, 1/2 < ρ < ∞, ρ(r) be a proximate
order, ρ(r)→ ρ as r →∞. We may restrict ourselves to the case when 0 < ∆M <
∞. Besides, without loss of generality, we may assume f(0) = 1.

Let ε0 be an arbitrary number satisfying the condition 0 < ε0 < min

(
2ρ− 1,

2

3
ρ

)
.

Choose ε, 0 < ε < ε0, in such a way that the function f(z) does not have zeros on
the rays arg z = ±π/(2ρ− ε). Set σ = 1/(2ρ− ε), 0 < σ < 1,

T1(r) =
1

2π

∫ πσ

−πσ
ln |f(reiθ)|dθ.

It is clear that

T1(r) ≤ m(r, f) = T (r, f).(0.33)

The function ζ = −z2ρ−ε is a conformal mapping of the angle {| arg z| < πσ} onto
the region D = {0 < arg ζ < 2π}, that is, ζ-plane with a cut along the positive real
half-axis. We consider the function

Φ(ζ) = f{(−ζ)σ}(0.34)

in D, where the single-valued branch of the function (−ζ)σ is chosen in such a way
that (−ζ)σ > 0 for ζ < 0. Let ζ = ξ + iη. We denote the points ζ = ξ > 0 lying on
the upper and lower sides of the cut S by ξ+ and ξ−, respectively. Obviously,

Φ(ξ±) = f(ξσe±iπσ).

Let

G(ξ) = Φ(ξ+)/Φ(ξ−) = f(ξσe−iπσ)/f(ξσeiπσ), ξ > 0, G(0) = 1.

It is clear that the function G(ξ) is analytic on the ray {ξ > 0}, and the function
G(ξ1/σ) is analytic, also, at the point ξ = 0, moreover, G(ξ) 6= 0 for ξ ≥ 0.

We choose a branch of lnG(ξ) which is continuous for ξ ≥ 0 and satisfies the
condition lnG(0) = 0. Let

s(r) =

∫ r

0

lnG(ξ)
dξ

ξ
.
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Let us show that

s(r) = o(r3/4) for r →∞.(0.35)

In fact, let f(z) be without zeros on the ray {arg z = θ0}. We choose a continuous
branch of ln f(z) on this ray, such that ln f(0) = 0. Applying Theorem 2.4 from
Chapter 1 to ln f(z) we get (R = 2r > r > t > 0)

ln f(teiθ0) =
1

2π

∫ 2π

0

ln |f(Reiθ)|Re
iθ + teiθ0

Reiθ − teiθ0
dθ

−
∑
|am|<R

ln

{
|am|
ām

R2 − āmteiθ0

R(am − teiθ0)

}
,

(0.36)

where am are the zeros of the function f(z), and the branches of the logarithms in
the sum are chosen in such a way that Im ln R

|am| = 0. Then∣∣∣∣Im ln

{
|am|
ām

R2 − āmteiθ0

R(am − teiθ0)

}∣∣∣∣ ≤ 2π

for each t, 0 ≤ t <∞. Since

0 < Re ln

{
|am|
ām

R2 − āmteiθ0

R(am − teiθ0)

}
= ln

∣∣∣∣ R2 − āmteiθ0

R(am − teiθ0)

∣∣∣∣ ≤ ln
2R

||am| − t|
,

from (0.36) we get

| ln f(teiθ0)| ≤ R+ t

R− t ·
1

2π

∫ 2π

0

| ln |f(Reiθ)||dθ +
∑
|am|<R

ln
2R

||am| − t|
+ n(R, 0, f)2π

≤ R+ r

R− r

{
m(R, f) +m

(
R,

1

f

)}
+

∑
|am|<R

ln
2R

||am| − t|
+ 2πn(R, 0, f)

≤ 6T (R, f) + 2πn(R, 0, f) +
∑
|am|<R

ln
2R

||am| − t|
.

We integrate this inequality with respect to d ln t from t = 1 to t = r. We get∫ r

1

| ln f(teiθ0)|dt
t
≤ 6T (R, f) lnR+ 2πn(R, 0, f) lnR+

∑
|am|<R

∫ r

1

ln
2R

||am| − t|
dt

t
.

But ∫ r

1

ln
2R

||am| − t|
dt

t
≤
∫ |am|+1

|am|−1

ln
2R

||am| − t|
dt+ ln 2R

∫ r

1

dt

t

= 2

∫ 1

0

ln
2R

τ
dτ + ln 2R · ln r

= 2{ln(2R) + 1}+ ln 2R · ln r < (ln r)2 + 4 ln r + 6.

Therefore∫ r

1

| ln f(teiθ0)|
t

dt ≤ 6T (2r, f) ln 2r + n(2r, 0, f){2π ln(2r) + (ln r)2 + 4 ln r + 6}.
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Since the order of the functions T (r, f) and n(r, 0, f) does not exceed ρ, then the
relations ∫ r

0

| ln f(teiθ0)|
t

dt = O(rρ
′
)

and ∫ r

0

| ln f(tσeiθ0)|
t

dt = O(rρ
′σ) = o(r3/4)

hold for each ρ′, 3/(4σ) > ρ′ > ρ. The relation (0.35) follows.
Denote the number of zeros of the function Φ(ζ) in the region {0 < arg ζ <

2π, |ζ| ≤ r} or, which is the same, the number of zeros of the function f(z) in the

sector {| arg z| < πσ, |z| ≤ rσ}, by n2(r). Then n2(r) = O(rρ
′σ) and

n2(r) = o(r3/4).(0.37)

Suppose that the arc {|ζ| = t, 0 < arg < 2π} does not contain zeros of the
function Φ(ζ). Let

T2(r) =
1

2π

∫ 2π

0

ln |Φ(reiα)|dα.

Then, applying the argument principle and the Cauchy–Riemann equations we find
that

n2(t) =
1

2π

∫ t

0

d argG(ξ) +
1

2π

∫ 2π

α=0

d arg Φ(teiα)

=
1

2π
argG(t) +

1

2π

∫ 2π

0

∂ arg Φ(teiα)

∂α
dα

=
1

2π
argG(t) + t

d

dt

{
1

2π

∫ 2π

0

ln |Φ(teiα)|dα
}

=
1

2π
argG(t) + t

dT2(t)

dt
.

We divide this equality by t and integrate from 0 to r. Taking into account n2(0) =
T2(0) = 0 we get the equality

T2(r) =

∫ r

0

{
n2(t)− 1

2π
argG(t)

}
dt

t
.(0.38)

Now we consider the analytic function

F (ζ) = exp

{
ζ

2πi

∫ ∞
0

s(t)

(t− ζ)2
dt

}
= exp{ζψ(ζ)}(0.39)

in the region D. The relation (0.35) implies the absolute convergence of the integral
in (0.39). Integrating it by parts we get

(A.11′) ψ(ζ) =
1

2πi

∫ ∞
0

s(t)

(t− ζ)2
dt =

1

2πi

∫ ∞
0

lnG(t)

t(t− ζ)dt.

Let 0 < ξ0 <∞. We show that

ψ(ξ+
0 )− ψ(ξ−0 ) =

lnG(ξ0)

ξ0
.(0.40)

The equality (0.40) is a special case of the well-known formulas due to Yu.V. Sokhot-
skii; we prove only the special case that we need.
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Take a circle γ = {|ζ − ξ0| = r}, where r < ξ0 is chosen so small, that the
function lnG(ζ) is analytic in the disc {|ζ − ξ0| ≤ r}. If Imζ > 0, then by the
Cauchy theorem, we can write the function ψ(ζ) as

ψ(ζ) =
1

2πi

∫
Γ−

lnG(t)

t(t− ζ)dt,(0.41)

where the curve Γ− consists of the positive real half-axis without the interval {|ξ−
ξ0| < r} and the lower semicircle {|ζ − ξ0| = r, Imζ < 0}. It is clear that with the
help of (0.41) the function ψ(ζ) can be continued analytically from {Imζ > 0} into
the half-disc {|ζ − ξ0| < r, Imζ < 0} through the interval {η = 0, |ξ − ξ0| < r}.
Therefore ψ(ξ+

0 ) exists and

ψ(ξ+
0 ) =

1

2πi

∫
Γ−

lnG(t)

t(t− ξ0)
dt.

Similarly we get that

ψ(ξ−0 ) =
1

2πi

∫
Γ+

lnG(t)

t(t− ξ0)
dt,

where the curve Γ+ consists of positive real half-axis without the interval {|ξ−ξ0| <
r} and the upper semicircle {|ζ − ξ0| = r, Imζ > 0}. Since Γ− − Γ+ = γ, we have

ψ(ξ+
0 )− ψ(ξ−0 ) =

1

2πi

∫
γ

lnG(t)

t(t− ξ0)
dt =

lnG(ξ0)

ξ0
.

It is also clear from the preceding argument that the functions ψ(ξ+) and ψ(ξ−)
are continuous for 0 < ξ <∞.

Let us show that

ζψ(ζ)→ 0 as ζ → 0, ζ ∈ D.(0.42)

The function lnG(ζ1/σ) is analytic in a sufficiently small neighborhood of ζ = 0
and

lnG(ζ1/σ) =

∞∑
k=1

ckζ
k,

hence, the function lnG(ζ)/ζ is analytic for {| arg ζ| < π, |ζ| ≤ r0}, and

| lnG(ζ)/ζ| = O(|ζ|σ−1) as ζ → 0.(0.43)

Let Imζ ≤ 0. We write

ψ(ζ) =
1

2πi

∫
S1

lnG(t)

t(t− ζ)dt+
1

2πi

∫
lnG(t)

t(t− ζ)

=
1

2πi

∫
S1

lnG(t)

t(t− ζ)dt+O(1), ζ → 0,

(0.44)

where S1 is the line segment joining 0 and ir0, and S2 is a curve consisting of the
line segment joining the points ir0 and r0, and the ray {ξ ≥ r0, η = 0}. If t ∈ S1

and Imζ ≤ 0, then |t − ζ| > |ζ|. Taking into account (0.43) and (0.44) we obtain
that

|ψ(ζ)| ≤ 1

|ζ|
1

2π

∫ r0

0

O(tσ−1)dt+O(1) =
1

|ζ|O(rσ0 ) +O(1).
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Hence

lim sup
ζ→0, Im≤0

|ζψ(ζ)| ≤ O(rσ0 ).

Since r0 can be chosen to be arbitrarily small, the relation (0.42) follows. Similar
argument works in the case when Imζ ≥ 0. Thus, the relation (0.42) has been
proved.

The formulas (0.39), (0.40), and (0.42) imply that

F (ξ+)

F (ξ−)
= G(ξ) =

Φ(ξ+)

Φ(ξ−)
,

Φ(ξ+)

F (ξ+)
=

Φ(ξ−)

F (ξ−)
.(0.45)

and

1

K
< |F (ζ)| < K <∞

in a neighborhood of ζ = 0, where K is some constant. Therefore the analytic in
D function

Ω(ζ) = Φ(ζ)/F (ζ)

admits an analytic continuation into the whole complex ζ-plane and is an entire
function. Taking into account (0.34) and (0.42) we see that Ω(0) = 1.

The equality (0.39) implies that (0 < ϕ < 2π)

| ln |F (reiϕ)|| ≤ r

2π

∫ ∞
0

|s(t)|dt
|t− reiϕ|2 =

1

2π

∫ ∞
0

|s(rτ)|dτ
|τ − eiϕ|2 .

Since |τ − eiϕ| > (τ + 1) sin ϕ
2 (see Section 5 of Chapter 2), taking into account

(0.35), we get that

| ln |F (reiϕ)|| ≤ 1

sin2 ϕ
2

∫ ∞
0

o{(rt)3/4}
(t+ 1)2

dt = o(r3/4) csc2 ϕ

2
.

Besides, it is obvious that ln |Φ(reiϕ)| ≤ o(r3/4). Therefore

ln |Ω(reiϕ)| ≤ C1r
3/4 csc2 ϕ

2
+ C1,(0.46)

where C1 is some positive constant. Positive constants which do not depend on r
and ϕ will be denoted Cj .

Using the method due to V.I. Matsaev [Mat60] we show that the estimate

ln |Ω(reiϕ)| ≤ C2r
3/4 + C2(0.47)

holds.
Denote the region

{
| arg(ζ − 1)− π| < π

16

}
∩{|ζ| < 1} by G, the boundary of

this region by L, and the part L∩{|ζ| < 1} of the boundary L by L1. Let d = sin
π

16
.

It is clear that {|ζ| < d} ⊂ G. The function µ(ζ) = exp
{
−(ζ − 1)−4

}
is, as it is

easy to show, analytic in G and continuous in Ḡ. For ζ ∈ L1 we have

|µ(ζ)| =
∣∣∣∣exp

{
−e
−4i arg(ζ−1)

|ζ − 1|4

}∣∣∣∣ = exp

{
−

cos π4
|ζ − 1|4

}
.

If ζ ∈ L1, then, by the sine theorem,

1

d
≥ |ζ|

d
=
|ζ − 1|
| sinϕ| , ϕ = arg ζ.
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Therefore (ζ ∈ L1)

|µ(ζ)| ≤ exp

{
− d4

√
2 sin4 ϕ

}
≤ exp

{
−d

42−
9
2

sin4 ϕ
2

}
.(0.48)

For ζ ∈ L\L1 we have

|µ(ζ)| ≤ exp

{
−

cos π4
|ζ − 1|4

}
≤ exp

{
−2−

9
2

}
.(0.49)

Combining the estimates (0.48) and (0.49) we obtain that the inequality

|µ(ζ)| ≤ exp

{
− C3

sin4 ϕ
2

}
(0.50)

holds on L. Let |ζ| < d

2
r, r ≥ 1. Then ζ/r ∈ G, and, by the Cauchy formula, we

get

Ω(ζ) =
1

2πiµ(ζ/r)

∫
L

Ω(rt)µ(t)

t− ζ
r

dt.(0.51)

It is easy to see that

max
|ζ|= d

2

1

|µ(ζ)| = e(1− d2 )−4

= C4,

∫
L

|dt|∣∣∣t− ζ
r

∣∣∣ ≤ 1(
d
2

) ∫
L

|dt| = C5, |ζ| =
d

2
r.

Taking into account (0.46) and (0.50) we conclude that (0.51) implies

M

(
dr

2
,Ω

)
≤ 1

2π
C4C5e

C1 max
0<ϕ<2π

exp

{
C1r

3/4

sin2 ϕ
2

− C3

sin4 ϕ
2

}
.(0.52)

We assume that r is so large that 2C3 ≤ C1r
3/4. Than, finding the maximum in

(0.52) using the standard methods of calculus, we get

M

(
dr

2
,Ω

)
≤ 1

2π
C4C5e

C1 exp

{
C2

1

4C3
r3/2

}
and

M(r,Ω) ≤ C6e
C6r

3/2

, r > 0.(0.53)

Now we consider the auxiliary function

Ωη(ζ) = Ω(ζ) exp

{
−7C1ζ

3/4 sec
3π

16
− ηζ5/3

}
in the angle W =

{
| arg ζ| < π

4

}
, where η is an arbitrary positive number. If

|θ| ≤ π
4 , taking into account (0.53), we obtain the estimate

|Ωη(reiθ)| ≤ C6 exp

{
C6r

3/2 − 7C1 sec
3π

16
r3/4 cos

3θ

4
− ηr5/3 cos

5θ

3

}
≤ C6 exp

{
C6r

3/2 − 7C1r
3/4 − ηr5/3 cos

5π

12

}
.
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Hence Ωη(reiθ) → 0 for r → ∞, |θ| ≤ π
4 . The function Ωη(ζ) is analytic in the

region W and is continuous in W̄ . Now we estimate |Ωη(ζ)| on the boundary of W
using (0.46). We get∣∣Ωη (re±i π4 )∣∣ ≤ eC1 exp

{
7C1r

3/4 − 7C1r
3/4 − ηr5/3 cos

5π

12

}
≤ eC1.

Hence, by the principle of the maximum modulus, the inequality

|Ωη(ζ)| ≤ eC1

holds in W . Letting η tend to 0 in this inequality, we get that the inequalities∣∣∣Ω(ζ)e−7C1ζ
3/4 sec 3π

16

∣∣∣ ≤ eC1

and

|Ω(ζ)| ≤ exp

{
C1 + 7C1|ζ|3/4 sec

3π

16

}
(0.54)

hold in W . The inequality (0.46) implies that the inequality

ln |Ω(ζ)| ≤ 7C1|ζ|3/4 + C1

holds for
π

4
≤ arg ζ ≤ 7π

4
. Thus, the estimate (0.54) holds for |ζ| < ∞. Since the

order of the entire function Ω(ζ) does not exceed 3/4, Ω(ζ) 6= 0 for ζ ≥ 0, and
Ω(0) = 1, we have

Ω(ζ) =
∞∏
n=1

(
1− ζ

ζn

)
, ζn →∞, 0 < arg ζn < 2π.

Since the equality Φ(ζ) = F (ζ)Ω(ζ) holds in D, zeros of the function Φ(ζ) in D
coincide with zeros of Ω(ζ), and n(r, 0,Ω) = n2(r). Therefore (cf. (0.31))

(A.26′) lnM(r,Ω) ≤ r
∫ ∞

0

n2(t)dt

t(t+ r)
.

By (0.39), (A.11′), (A.26′), (0.38), we have that

ln |Φ(−r)| ≤ ln |F (−r)| + lnM(r,Ω)

≤ Re

{
− r

2πi

∫ ∞
0

lnG(t)

t(t+ r)
dt

}
+ r

∫ ∞
0

n2(t)dt

t(t+ r)

= −r
∫ ∞

0

1
2π argG(t)− n2(t)

t

dt

t+ r
= r

∫ ∞
0

dT2(t)

t+ r

= r

∫ ∞
0

T2(t)
dt

(t+ r)2
=

∫ ∞
0

T2(τr)
dτ

(τ + 1)2
.

(0.55)

Taking into account (0.33) and (0.34) it is easy to get that

T2(r) = (2ρ− ε)T1(rσ) < 2ρT (rσ, f).

Then (0.55) implies that

ln |f(rσ)| ≤ 2ρ

∫ ∞
0

T (τσrσ, f)
dτ

(τ + 1)2
,

whence

ln |f(r)| ≤ 2ρ

∫ ∞
0

T (τσr, f)
dτ

(τ + 1)2
=

2ρ

σ

∫ ∞
0

T (tr, f)
t1/σ

(t1/σ + 1)2

dt

t
.(0.56)
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Since the function x(x+ 1)−2 increases on [0, 1] and decreases on [1,∞), we have

t1/σ

(t1/σ + 1)2
≤ t1/σ0

(t1/σ0 + 1)2
, 0 < σ < σ0 =

1

2ρ− ε0
.

Therefore (0.56) implies that

ln |f(r)| ≤ (2ρ)2

∫ ∞
0

T (tr, f)
t1/σ0

(t1/σ0 + 1)2

dt

t
.(0.57)

Applying this inequality to the function f(zeiθ), 0 ≤ θ < 2π we get that ln |f(r)| in
the left-hand side of the inequality (0.57) can be replaced by ln |f(reiθ)| (we cannot
do the same for the inequality (0.56) since σ unlike σ0 depends on θ). Therefore

lnM(r, f) ≤ (2ρ)2

∫ ∞
0

T (tr, f)
t1/σ0

(t1/σ0 + 1)2

dt

t
.

In the same way as we obtained (0.32) from (0.31), we find that for an arbitrary
small ε1 the inequality

∆M ≤ (∆T + ε1)(2ρ)2

∫ ∞
0

tρ−1 t1/σ0

(t1/σ0 + 1)2
dt

= (∆T + ε1)(2ρ)2σ0

∫ ∞
0

τσ0ρ

(τ + 1)2
dτ = (∆T + ε1)(2ρ)2σ0

πσ0ρ

sinπσ0ρ
.

holds. Letting ε1 and ε0 tend to 0 in the right-hand side of this inequality, we get
(0.30). This completes our proof of Theorem 0.4.

Theorem 0.4 immediately implies

Corollary. Let f(z) be an entire function of order ρ, 0 ≤ ρ ≤ ∞. Then

lim sup
r→∞

T (r, f)

lnM(r, f)
≥ sinπρ

πρ
if 0 ≤ ρ ≤ 1

2
,(0.58)

lim sup
r→∞

T (r, f)

lnM(r, f)
≥ 1

πρ
if ρ >

1

2
.(0.59)

In fact, if ρ = ∞, the statement of the corollary is trivial. If ρ < ∞, then let
ρ(r) be a proximate order, such that

lim sup
r→∞

lnM(r, f)

rρ(r)
= 1.

Then

lim sup
r→∞

T (r, f)

lnM(r, f)
≥ lim sup

r→∞

T (r, f)

rρ(r)
,

and (0.58) and (0.59) follow from (0.29) and (0.30), respectively.
The fact that the estimates (0.58) and (0.59) are sharp follows from the same

examples which were used to show that the estimates (0.29) and (0.30) are sharp. If
ρ =∞, we can use the function f(z) = exp(ez), for which T (r, f) = o(lnM(r, f)) =
o(er) as r →∞ (see (6.4) from Chapter 4).

The inequality (0.58) was first proved by G. Valiron [Val30] and A. Wahlund
[Wah29]. The inequality (0.59) was conjectured by R.E.A.C. Paley [Pal32] and
proved only 35 years later by N.V. Govorov [Gov69]. V.P. Petrenko [Pet69] proved
that the inequalities (0.58) and (0.59) remain true for meromorphic functions even
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if we replace the order ρ by the lower order λ. The fact that it is possible to replace
ρ by λ in (0.58) for entire functions and for λ ≤ 1/2 was proved in Section 3 of
Chapter 5 (see the inequality (3.30)).



Notes

Chapter 1

Theorem 2.1 was apparently first proved by F. Nevanlinna and R. Nevanlinna
[NN22]. Formula (2.2) was first obtained by R. Nevanlinna [NevR24] who named
it the Poisson–Jensen formula, since it is an immediate generalization of the clas-
sical formulas due to Poisson and Jensen [Jen99] (Theorem 2.5). Formula (2.4)
was obtained in the same paper of R. Nevanlinna, it is often called the Schwarz–
Jensen formula. Formula (2.3) was also discovered by R. Nevanlinna [NevR25b].
Important generalization of the formulas (2.2), (2.4), and (2.8) were found by
M.M. Dzhrbashyan [Dzh66, Chapter IX]. Theorems equivalent to Theorem 2.6
were independently proved by T. Shimizu [Shi29] and L. Ahlfors [Ahl29].

Theorem 3.1 was first proved by F. Nevanlinna [NevF22a] (see, also, [NevF22b]),
and somewhat later by T. Carleman [Carl23]. Following the existing tradition we
use the name “Carleman formula” for (3.1). Theorem 3.4 was proved by B.Ya. Levin
[Lev41], and later independently by M. Tsuji [Tsu50].

Theorem 4.1 is due to R. Nevanlinna [NevR25a]. Theorems 4.2 and 4.4 were
obtained by T. Shimizu [Shi29] and L. Ahlfors [Ahl29]. Formulas (4.8) and (4.13)
were obtained by H. Cartan [Cart29b], [Cart29a], [Cart33].

Theorems 5.1 and 5.2 were proved by R. Nevanlinna [NevR25b]. Theorem 5.3
was proved by M. Tsuji [Tsu50].

Relations (6.1)–(6.15) are well known. Inequalities (6.16)–(6.18) were proved
by S. Hellerstein and L. Rubel [HR64]. G. Valiron [Val31] proved the following
theorem containing Theorem 6.2 and the equality (6.29).

Let R(u, v) be a rational function of u and v, of degree d in v. If f(z) is a
meromorphic function, then T (r,R(z, f(z))) = dT (r, f) + O(ln r). Theorem 6.4 is
due to R. Nevanlinna [NevR29], [NevR74, Ch. X, sect. 214].

Theorems 7.1 and 7.2 were proved by R. Nevanlinna [NevR29, pp. 24–27].
Theorem 7.3 was proved by A. Edrei and W.H.J. Fuchs [EF62a].

Chapter 2

Section 1 contains well-known facts presented in many texts. In using the term
“growth category” we follow B.Ya. Levin [Lev80]. The term “magnitude of type” is
not standard and apparently is introduced for the first time here. Usually they call
the number σ[α] simply the “type”. We find this inconvenient. We note also that
the well-known Cauchy-Hadamard formulas allow to determine the order and the
type of the function lnM(r, f) in terms of Taylor coefficients of an entire function
f(z) (see, for example, B.Ya. Levin [Lev80, Chapter I, §2]). Sometimes Picard
exceptional values are defined as values which are never taken by a function f(z)
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and Borel exceptional values are defined as values for which the order of n(r, a) is
less than the order of the function.

Various comparison functions for building the scale of growth, different from
the function exp(rρ) were introduced at the beginning of the 20th century by E. Lin-
delöf, P. Boutroux, O. Blumenthal, G. Valiron, and others. G. Valiron in [Val23]
calls the proximate order, defined as in our Section 2 a proximate order of Lindelöf
(although Lindelöf considered much more narrow class of comparison functions),
and he calls the function l(r) which we introduce in Section 5 a proximate order of
Boutroux. Today the definition of a proximate order, as we introduce it in Section
2, is standard, and the results proved in Section 2 are well known (see, for exam-
ple, [Lev80]). Theorem 2.1 is due to G. Valiron [Val23] (in a bit weaker form
it was proved already in [Val14, p. 213]), who, however, did not consider a lower
proximate order. The presented proof of Theorem 2.1 is mostly due to S.M. Shah
[Sha46b], he also introduced [Sha48] a lower proximate order. In the definition of
a slowly varying function one can omit the condition of the uniform convergence of
L(kr)/L(r) to 1. In fact, J. Karamata [Kar30] proved that if lim

r→∞
L(kr)/L(r) = 1

for all k, 0 < k < ∞, then the convergence of L(kr)/L(r) to 1 is uniform in k
for 0 < a ≤ k ≤ b < ∞. See, also, J. Korevaar, T. Aardenne-Ehrenfest and
N.G. de Bruijn [KAB49].

Theorems 3.2 and 3.3 in this generality are apparently published here for the
first time, although some of their corollaries, for example, the inequality (3.6) are
well known (see, for example, B.Ya. Levin [Lev80]). Theorem 3.4 is due to E. Borel
[Bor97] and is contained in all standard courses of the theory of entire functions.

Theorem 4.1 was proved by J. Hadamard [Had93] for entire functions. The-
orem 4.2, essentially, goes back to E. Borel [Bor00], who however did not use
proximate orders. The corollary of Theorem 4.2 was proved by R. Nevanlinna
[NevR29] in a different way.

Theorem 4.4 was proved by E. Lindelöf [Lin05] for entire functions without
using proximate orders. The generalization of the Lindelöf theorem consisting in
the usage of proximate orders apparently was first done by B.Ya. Levin [Lev80,
Chapter I, §13]. The Lindelöf theorem was carried over to meromorphic functions
by G. Valiron [Val33]. Our proofs of Theorems 4.3, 4.4, and 4.5 are close to the
presentation of S.M. Shah [Sha60]. Theorem 4.6 was proved by G. Valiron [Val50],
our proof is different from the original one, although it uses the same idea.

The asymptotics of functions (5.1) was found by G. Valiron [Val14], however
in some particular cases, for example, when n(r, 0) ∼ ∆rρ(ln r)α, it was known al-
ready to E. Lindelöf [Lin02]. Our presentation is different from Valiron’s method.
Stronger results than those presented here are known in the case when l(r) = ρ(r)
is a proximate order (B.Ya. Levin [Lev80]). Examples 1, 2 and 1′ are due to
A.A. Goldberg [Gol63]. The asymptotics of the functions considered in 2◦ in the
case n(r, 0) ∼ ∆rρ(ln r)α, ρ > 0 was studied already by E. Lindelöf [Lin02]. For
an arbitrary proximate order ρ(r) the results from Section 5, 2◦ follow from more
general results of A.A. Goldberg [Gol64a]. The function Eρ(z) (5.31) was intro-
duced (including the case of complex ρ) by G. Mittag-Leffler [Mit05], estimates
(5.40), (5.43) are due to him. Asymptotic properties of functions Eρ(z) have been
studied in detail, including the case of imaginary values of the parameter ρ. A
series of papers by different authors devoted to this function was published in Acta
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Mathematica, 29 (1905); from recent works we would like to mention the work of
M.M. Dzhrbashyan (see [Dzh66]) and a paper by M.N. Sheremeta [She69].

Chapter 3

The main in Section 1 Theorem 1.3 (the lemma on the logarithmic derivative)
was first proved by R. Nevanlinna [NevR25a], [NevR29]. Theorem 1.1, giving
the sharpest known estimate of m(r, f ′/f), and the inequality (1.17) following from
it, are due to Vu Ngoan and I.V. Ostrovskii [NO65]. Theorem 1.2 was proved by
R. Nevanlinna [NevR31], who generalized an earlier result (Exercise 1) of E. Borel
[Bor97].

Theorem 2.1 - the second fundamental theorem - was proved by R. Nevanlinna
[NevR25a], [NevR29]. We would like to mention that, as it was discovered later,
there are proofs of the second fundamental theorem which do not use the lemma
on the logarithmic derivative. We refer only to proofs due to L. Ahlfors, which
can be found in M.A. Evgrafov [Evg68, Chapter X, §6], R. Nevanlinna [NevR74,
Chapter XIII], L. Ahlfors [Ahl35], S. Stoilow [Sto62, Vol. II, Chapter X]. Remark
1 to Theorem 2.1 is due to K. Yosida [Yos34].

Theorem 2.4 is due to H. Milloux [Mil40], [Mil47]. We present the proof
given by K.-L. Hiong [Hio55]. He also proved Theorem 2.5 (K.-L. Hiong [Hio56]).
Theorems 2.6 and 2.7 are due to W.K. Hayman [Hay59], [Hay64, §3.3].

Theorem 3.1 for meromorphic functions of finite order was proved by R. Nevan-
linna [NevR25b], in the stated form it was proved by I.V. Ostrovskii [Ost60c],
[Ost61]. Note that J. Dufresnoy [Duf39] gave an estimate of the sumAαβ(r, f ′/f)+
Bαβ(r, f ′/f) in terms of Sα1β1(r, f), α1 < α < β < β1; some estimates of different
character were given by K. Habetha [Hab61a], [Hab61b].

Theorem 3.2 is due to M. Tsuji [Tsu50]. Our presentation follows the paper
B.Ya. Levin and I.V. Ostrovskii [LO60].

Chapter 4

The notions of deficient values were introduced by R. Nevanlinna [NevR25a]
and G. Valiron [Val26] in 1925–1926. A stronger result than Theorem 2.1 was
obtained by G. Valiron [Val26]. In our proof of Theorem 2.1 we follow [Val60].
The strongest result showing ‘sparseness’ of the set EV (f) can be found in R. Na-
vanlinna’s book [NevR74, Chapter X, §3]. We state a weaker result: for each
ε > 0 and each continuous strictly monotone increasing function h(r), 0 ≤ r ≤ 1,

h(0) = 0, such that

∫ 1

0

h(r)d ln r <∞, the set EV (f) can be covered by a sequence

of discs with radii rν , such that
∑
ν

h(rν) < ε. Theorem 2.1 corresponds to the

case h(r) = πr2. Example 1 from Section 2 is due to G. Valiron [Val19] (in our
presentation we have changed some details). D. Drasin and D.F. Shea [DS69] con-

structed a similar example of an entire function f(z) with T (r, f) = O(ψ(r) ln2 r),
where ψ(r) → ∞ is an arbitrary preassigned function. On the other hand, if an

entire function f(z) satisfies T (r, f) = O(ln2 r), then EV (f)\{∞} = ∅ (G. Valiron
[Val14]).

For 0 < ρ < ∞ examples of meromorphic functions without deficient values
were found by S.K. Singh [Sin61] (the idea of his construction can be easily ex-
tended to the cases ρ = 0 and ρ =∞). Our construction uses a different idea.
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Examples of meromorphic functions of order ρ > 0 with preassigned at most
countable set of deficient values were first constructed by A.A. Goldberg [Gol54a],
[Gol59a]. W.K. Hayman [Hay64, §4.3] using A.A. Goldberg’s idea, significantly
simplified the construction. Our presentation in §4 is close to the presentation
of W.K. Hayman, here we used also some of his observations made during our
meeting in 1965. Lemma 4.1 (with a slightly different statement) was proved by
W.H.J. Fuchs and W.K. Hayman [FH62] (see, also, [Hay64, §4.1.3]).

In our presentation of N.U. Arakelyan’s example we, in addition to his paper
[Ara66] used notes of his lectures at the Kharkov university in April 1967. Theo-
rems 5.2 and 5.3 are special cases of certain results of M.V. Keldysh presented in
S.N. Mergelyan’s papers [Mer52], [Mer53].

Example 1 from Section 6 is due to D. Dugué [Dug47], Example 6 from Section
6 is due to W.K. Hayman [Hay53]. Result which we obtained as a corollary
of Theorem 6.5 was first obtained (but under somewhat stronger restriction ρ −
λ < 1) by G. Valiron [Val47]. The remaining results of Section 6 are due to
A.A. Goldberg (see §2 of the paper P.P. Belinskĭı and A.A. Goldberg [BG54]).
Originally one of the essential steps of the construction of Example 2 was based on
P.P. Belinskĭı’s theorem on univalent conformal mappings (see §1 of [BG54]), but
later B.Ya. Levin pointed out that it is possible to construct such an example using
the same idea, but not the theorem of P.P. Belinskĭı. This construction was carried
out by A.A. Goldberg [Gol60b]. In Section 6 these results are presented in more
detail than in the paper, some of them are published for the first time.

W.K. Hayman [Hay52] considered more general functions than in Example 6.
His purpose was to establish the possibility of realization of (6.61) and to get more
precise statements about the speed of convergence to −∞ in (6.61).

Chapter 5

To Section 1. The notion of an asymptotic spot is essentially present already
in the work of P. Boutroux [Bou08]. The term “asymptotic spot” was introduced
by M. Heins [Hei57]. Another term used for the same notion is “asymptotic tract”
(see, for example, G.R. MacLane [Mac63]). Theorem 1.1 is due to F. Iversen
[Ive14] (see, also [NevR74, n◦.239]). Lemma 6.1 is due to E. Phragmén and
E. Lindelöf (see, for example, B.Ya. Levin [Lev80, Chapter 1, §14]).

Theorem 1.2 is a weakened version of L. Ahlfors’s theorem [Ahl32a] (see,
also, R. Nevanlinna [NevR74, n◦.258]). In our proof we use the method due to
T. Carleman [Carl33] (see, also, A. Dinghas [Din36]).

Theorem 1.3 was proved by A. Wiman [Wim05] under the assumption that
ρ < 1

2 , we state this theorem in the form in which it was first stated in M. Heins
[Hei48]. Corollary 1 of Theorem 1.3 was first found by A. Edrei and W.H.J. Fuchs
[EF56], Corollary 3 (in which the order ρ appears instead of the lower order λ)
was proved by J.E. Littlewood [Lit08]. W.K. Hayman [Hay52] proved that the
quantity

C(ρ) = inf lim sup
r→∞

lnµ(r, f)

lnM(r, f)
,

where the infimum is taken over all entire functions of order ρ, satisfies the inequality

−K1(ln ρ+ 1) ≤ C(ρ) ≤ −K2(ln ρ+ 1), ρ ≥ 1,

where 0 < K2 < K1 <∞ are absolute constants.
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Theorem 1.3′ was proved by K. Arima [Ari52]. V.P. Petrenko [Pet67] proved
that if f(z) is a meromorphic function of finite lower order λ, and l is a number
satisfying the conditions

0 ≤ l ≤ 2π, l < Kλ−1δ
1
2 (a, f)/ ln

e

δ(a, f)
,

whereK is an absolute constant, then there exists a sequence of arcs {|z| = rk, θk ≤
arg z ≤ θk + l}, rk →∞, on which f(z) tends to a uniformly in arg z.

Theorem 1.4 was conjectured by A. Denjoy [Den07], who proved it under the
additional assumption that Cj are rays going out of z = 0. T. Carleman [Carl21]
proved Theorem 1.4 with a weaker estimate than (1.1). Theorem 1.4 in its full
extent was first proved by L. Ahlfors [Ahl30]. Proving E. Lindelöf’s Lemma 1.2 we
used the presentations in G. Valiron [Val23, Chapter V, §4] and in N.G. Chebotarev
and N.N. Mĕıman [CM49, Chapter II, §7].

To Section 2. The first example of an entire function (of order ρ = ∞) with
deficient nonasymptotic value was constructed by W.K. Hayman [Hay53]; later
A.A. Goldberg [Gol57b] constructed an analogous example in the case when 1 <
ρ <∞, and, finally, N.U. Arakelyan [Ara66] in the case when 1/2 < ρ <∞.

J.M. Anderson and J. Clunie [AC66] proved that if a meromorphic function

f(z) satisfies T (r, f) = O(ln2 r), then each deficient value of f(z) should be asymp-
totic (by Theorem 4.6 the function f(z) has at most one deficient value).

Example 1 is due to O. Teichmüller [Tei39]. He considered the case ρ = 1/2
only, but his construction can be easily carried over to the case 0 < ρ <∞. Example
2 was constructed by A.A. Goldberg [Gol66]. Using the idea of Example 2 it is
possible to construct an analogous example of a meromorphic function of the first
order and of the maximal type (F.A. Baraket and A.A. Goldberg [BG69]). Such
examples are not known for lower growth categories. The statement of Lemma 2.1
was first published in A. Wiman [Wim15]. Today much more general results are
known (B.Ya. Levin [Lev80, Chapter II]).

Theorem 2.1 is well known, however, we did not succeed to find out the corre-
sponding reference. In any case, all estimates needed for its prove were known to
E. Borel [Bor00].

Examples 3 and 4 are published here for the first time. The observation that
there are Borel exceptional values which are not deficient is due to G. Valiron
[Val33]. Example 5 is due to A.A. Goldberg [Gol67].

In examples of meromorphic functions of order ρ > 0 constructed in Section 3
of Chapter 4, each deficient value was asymptotic, in particular, these functions can
have a countable set of asymptotic values. G. Valiron [Val25] proved that for each
function ψ(r) → ∞ as r → ∞ there exists a meromorphic function f(z) such that

T (r, f) < ψ(r) ln2 r, r > r0, and the set of asymptotic values of f(z) has the cardi-
nality of continuum. As was shown by G. Valiron [Val35b], if T (r, f) = O(ln2 r),
then f(z) cannot have more than one asymptotic value. Y. Tumura [Tum43a]
showed that the last condition can be replaced by the condition

lim inf
r→∞

T (r, f)/ ln2 r <∞.

If we do not impose any restrictions onto T (r, f), the structure of the set of as-
ymptotic values is known. Namely, M. Heins [Hei53], [Hei55] proved that if a
set M , ∞ ∈ M is analytic (Suslin), then it is a set of asymptotic values of an en-
tire function; the necessity of this condition was proved earlier by S. Mazurkiewicz
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[Maz31]. For meromorphic functions a result, similar to Heins’s was proved earlier
by D.B. Potyagailo [Pot51], but his result was not published. We do not have an
opportunity to present here these interesting results.

To Section 3. Theorem 3.1 sums up works of several authors. First O. Te-
ichmüller [Tei39] proved that under the condition δ(∞, f) > 1 − cosπρ, where
ρ < 1/2 is the order of the function f(z), the equality lim supr→∞ |f(reiθ)| = ∞
holds for all θ, 0 ≤ θ < 2π, and proved the statement of Theorem 3.1 under a
stronger assumption δ(∞, f) > 1−cos πρ

1−ε cosπρ , where ε ≥ 0 is an absolute constant. Un-

der the condition δ(∞, f) > 1 − cosπρ the statement of Theorem 3.1 was proved
by A.A. Goldberg [Gol54a], [Gol56].

The mentioned works of O. Teichmüller and A.A. Goldberg relied on the
Hadamard theorem on canonical representation of meromorphic functions of fi-
nite order. The Hadamard theorem is inapplicable in the study of functions of
finite lower order. A generalization of the results to the case of functions of finite
lower order became possible due to the idea of B. Kjellberg [Kje60], which can be
described in the following way: a function of finite lower order for some sequence
R = Rk → ∞ can be represented as a product of two factors, one of which is
a quotient of two canonical products, and the second is very close to one in the
disc {|z| ≤ Rk}. A precise statement, somewhat more general than the one due
to B. Kjellberg, is contained in Lemma 3.1, which was essentially proved already
in the paper by F. Nevanlinna [NevF23] (see, also, R. Nevanlinna [NevR74, Ch.
VIII, sect. 177]).

Theorem 3.1, its corollary, Theorems 3.2, 3.3, and the inequality (3.29) were ob-
tained by A.A. Goldberg and I.V. Ostrovskii (published in I.V. Ostrovskii [Ost63a]).
See, also, the preceding paper A.A. Goldberg and I.V. Ostrovskii [GO61a], contain-
ing a somewhat weaker result. Theorem 3.1 and its corollary were independently
obtained by A. Edrei [Edr64]. The statement of the corollary for λ = 0 was
obtained significantly earlier by A. Edrei, W.H.J. Fuchs [EF59b].

The inequality lim sup
r→∞

N(r, 0, f)

lnM(r, f)
≥ sinπρ

πρ
for entire functions of order ρ < 1

is due to A. Wahlund [Wah29] and G. Valiron [Val30] (a simple proof was shown
by G. Valiron [Val35a]).

Theorem 3.4 is due to B. Kjellberg [Kje60] (see, also, B. Kjellberg [Kje63],
where its refinement is presented). It is a generalization of the classical theorem
proved independently by A. Wiman [Wim15] and G. Valiron [Val14]: each entire
function f(z) of order ρ < 1 satisfies

lim sup
r→∞

lnµ(r, f)

lnM(r, f)
≥ cosπρ.

Different problems related to the Wiman–Valiron theorem are treated in many
papers. A survey of these papers is given in A.A. Goldberg and I.V. Ostrovskii
[GO61b].

The main idea of the method used in the proofs of Theorems 3.2–3.4 is due
to A. Denjoy [Den30]. This method was later developed in G. Valiron [Val35a],
B. Kjellberg [Kje54], [Kje60], A.A. Goldberg and I.V. Ostrovskii [GO61a]. The
last paper contains a general formulation of the method, using it one can imme-
diately get Theorems 3.2, 3.3, and several other relations. We decided not to give
here this general formulation because of its complexity.
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The construction of the examples showing how sharp are Theorems 3.2–3.4 in
the case λ = ρ is due to A. Edrei and W.H.J. Fuchs [EF60], and of the example
showing how sharp is Theorem 3.1 is due to O. Teichmüller [Tei39]. These authors
considered functions with positive zeros and n(r, 0) ∼ αrρ instead of the functions
f(z, α).

To Section 4. The estimate (4.1) with d(ρ) = | sinπρ|/C1([ρ]) was obtained by
R. Nevanlinna [NevR29] and later sharpened by S.M. Shah [Sha44] and A.A. Gold-
berg [Gol57a]. The parameter κ(f) was introduced by R. Nevanlinna [NevR29],
who conjectured that the best estimate of this parameter from below in terms of ρ
is κ(f) ≥ ν1(ρ).

The estimate (4.4) confirming R. Nevanlinna’s conjecture for ρ < 1 and close to
the best possible for ρ > 1 is due to A. Edrei and W.H.J. Fuchs [EF59a], [EF60].
The estimate (4.3) is due to I.V. Ostrovskii [Ost63b]; close but somewhat weaker
estimate was obtained independently by A. Edrei [Edr64]. The method consists
in extension of the method of works A. Edrei and W.H.J. Fuchs [EF59a], [EF60]
with the help of the idea of B. Kjellberg mentioned in our notes to Section 3.

Lemmas 4.2 and 4.5 are due to A. Edrei and W.H.J. Fuchs [EF59a], [EF60].
Lemma 4.4 is due to A.A. Goldberg [Gol54a], [Gol56], who also found its

generalizations [Gol57c]. The presented proof of Lemma 4.4 is taken from A. Edrei
[Edr64]. Lemma 4.6, part B is an analogue of G. Pólya’s theorem on sequences
(G. Pólya, G. Szegö [PS98, Vol. 1, Ch. 3, probl. 107-110], it was obtained in a
more general form by S.M. Shah [Sha40], [Sha41]. Lemma 4.6, part A is due to
I.V. Ostrovskii [Ost63b].

A version of Theorem 4.4 with the lower order λ replaced by the order ρ is due
to A. Edrei and W.H.J. Fuchs [EF60]. Theorem 4.4 was proved independently by
A. Edrei [Edr62] and I.V. Ostrovskii [Ost63a]. The method is an extension of the
method from A. Edrei and W.H.J. Fuchs [EF60].

To Section 5. Examples similar to Examples 1–5 can be constructed in a
uniform manner using a result from S.M. Shah [Sha46a]. In this paper entire

functions f(z) =

∞∑
k=0

akz
k, such that the sequence |ak/ak+1| is non-decreasing, are

considered, and the formulas

ρ[f ] = lim sup
k→∞

ln k

ln |ak/ak+1|
, λ[f ] = lim inf

k→∞

ln k

ln |ak/ak+1|

are obtained.
Theorem 5.2 with less sharp estimate than (5.5) was in a different way obtained

by A. Edrei and W.H.J. Fuchs [EF59b]. Our presentation follows I.V. Ostrovskii
[Ost63b]. The corollary of Theorem 5.2 and Theorem 5.3 with somewhat less sharp
estimates were obtained by A. Edrei and W.H.J. Fuchs [EF59b], they also proved
Lemma 5.1. Much earlier A. Pfluger [Pfl46] established that for an entire function
f(z) of finite order ρ with

∑
a6=∞ δ(a, f) = 1 the number ρ is a positive integer, and

all deficiencies are of the form k/ρ, where k is an integer; thus the number of finite
deficient values in this case does not exceed ρ. A. Edrei and W.H.J. Fuchs [EF59a]
complemented this result of A. Pfluger by showing that all deficient values are
asymptotic. They established an analogous result for “almost all” deficient values
of meromorphic functions satisfying the condition (5.7) with sufficiently small value
of γ.
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Example 8 is a representative of a wide class of similar examples considered
by F. Nevanlinna [NevF29].16 F. Nevanlinna [NevF29] conjectured that if a

meromorphic function f(z) satisfies
∑
a

δ(a, f) = 2, then ρ[f ] = q/2, where q is a

positive integer. This conjecture is still unproved.17

Example 9 was constructed by A.A. Goldberg [Gol64b], however his construc-
tion of the auxiliary function g(z) is different. Presented construction of the function
g(z) is due to B.Ya. Levin and I.V. Ostrovskii.

To Section 6. The relation m(r, f) = O(1) for functions of the form (6.1) was
proved by M.V. Keldysh [Kel54]. Theorem 6.1 representing a strengthening of
this result was obtained by I.V. Ostrovskii (published in A.A. Goldberg [Gol60b]).
Lemma 6.1, making possible the sharpening of the method of M.V. Keldysh, is due
to V.I. Smirnov [Smi28].

Theorem 6.2 is due to M.V. Keldysh [Kel54], the relation (6.4) makes it pos-
sible to simplify the original proof.

Theorem 6.3 is due to I.V. Ostrovskii [Ost61].

Chapter 6

To Section 1. Functions with (ρ, η)-separated zeros and poles were introduced
by A.A. Goldberg [Gol60a], he also proved ([Gol60a], [Gol61]) Theorems 1.1, 1.2,
1.4, the corollaries of Theorem 1.1, constructed Examples 1 and 3. All other results
of this section are due to A. Edrei and W.H.J. Fuchs, S. Hellerstein [EFH61]. In
the case when f(z) is an entire function, Corollary 3 of Theorem 1.5 was proved by
A. Edrei and W.H.J. Fuchs [EF59b]. The same paper contains the first proof of
Corollary 1 under the a priori assumption ρ[f ] <∞.

The papers A. Edrei, W.H.J. Fuchs and S. Hellerstein [EFH61] and [Hel63]
contain results showing that under certain condition of arithmetic character im-
posed onto arguments of zeros and poles of a meromorphic function f(z) for which
ρ[N(r, 0,∞)] is finite but sufficiently large, the inequalities δ(0, f) > 0, δ(∞, f) > 0
hold.

To Section 2. The first results on connections between the growth of a mero-
morphic function and the distribution of its values with respect to the arguments
are due to L. Bieberbach [Bie19] and R. Nevanlinna [NevR25b].

The paper of L. Bieberbach [Bie19] contains in implicit form the following
statement. Let f(z) be an entire function of finite order such that all of its a- and
b-points (a 6= b; a, b 6=∞) belong to the system of rays D = D(α1, . . . , αn). Then
the growth of the function f(z) is does not exceed the normal type of order ω(D).
R. Nevanlinna [NevR25b] showed that this estimate is valid also in the case when
a- and b-points satisfy the condition

n∑
j=1

{
Cαjαj+1(r, a) + Cαjαj+1(r, b)

}
= O(1).

16In fact, the function from example 8 belongs to the class of functions constructed in The-
orem 5.1, Chapter VII. (Editor).

17It is proved now in [A44], see the Editor’s comments.
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Besides, R. Nevanlinna [NevR25b] proved that this growth estimate holds for a
meromorphic function f(z) of finite order, if

n∑
j=1

{
Cαjαj+1(r, a) + Cαjαj+1(r, b) + Cαjαj+1(r, c)

}
= O(1)

(a, b, and c are three different points from the extended complex plane) and the
growth categories of at least two of the functions N(r, a), N(r, b), N(r, c) do not
exceed the convergence class of order ω(D).

Note that these results are contained in Corollary 3 from Theorem 2.1 and in
Theorem 2.4.

In the cited above results of L. Bieberbach and R. Nevanlinna finiteness of the
order of f(z) is an a priori assumption. M.G. Krein [Kre47] considered entire
functions f(z) with zeros close to the real line, such that 1/f(z) can be represented
in the form (2.29), and found growth estimates without an a priori assumption
of finiteness of the order. We stated the result of M.G. Krein as Corollary 2 of
Theorem 2.10. Theorems 2.9 and 2.10 can be considered as generalizations of this
result.

A. Edrei [Edr55] proved the following theorem. Let D = D(α1, . . . , αn) be a
system of rays, f(z) be a meromorphic function, such that for some a 6= 0,∞ and
some integer l ≥ 0 all solutions of the equations

(K.1) f(z) = 0, f(z) =∞, f (l)(z) = a

except, possibly, finitely many of them lie on the rays of the system D. If δ(0, f) +
δ(∞, f) + δ(a, f (l)) > 0, then the order of the function f(z) does not exceed ω(D).
In the case when δ(a, f (l)) > 0, this theorem of A. Edrei is contained in the corollary
of Theorem 2.5; the growth estimate in the Edrei theorem is less precise, and the
argument constraints are more restrictive. It is essential that in the corollary of
Theorem 2.5 the argument restrictions are imposed onto solutions of only two of the
equations (K.1). In the case that δ(a, f (l)) > 0, Edrei’s theorem cannot be derived
from Theorem 2.5. However, using the method of the proof of Theorem 2.5, it is
not difficult to prove (see I.V. Ostrovskii [Ost61]) a generalization of Theorem 2.5,
also containing these cases of the Edrei theorem.

All results of the present section, except Theorems 2.7, 2.8, Corollary 2 of
Theorem 2.10, and Examples 2 and 4 are due to I.V. Ostrovskii [Ost57], [Ost58],
[Ost60a], [Ost61].

Using a method, similar to the method of I.V. Ostrovskii [Ost58], [Ost61],
A. Edrei and W.H.J. Fuchs [EF62b] proved the following theorem:

Let

Lj =
{
z = reiαj(r), r0 ≤ r <∞

}
, j = 1, 2, . . . , n,

be a system of n rectifiable curves in the plane, where αj(r), r ≥ r0, j = 1, . . . , n,
are continuous functions, and

α1(r) < α2(r) < · · · < αn(r) < α1(r) + 2π = αn+1(r), r ≥ r0.

Suppose that the length sj(r1, r2) of the curve Lj ∩ {r1 ≤ |z| ≤ r2} admits the
estimate

sj(r1, r2) ≤ B(r2 − r1),

where B is a constant. If all zeros and poles of the meromorphic function f(z)
except, possibly, finitely many lie on the indicated system of curves, and for some
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a 6= 0,∞ and integer l ≥ 0 the inequality δ(a, f (l)) > 0 holds, then the order of the
function f(z) does not exceed

max
1≤j≤n

lim sup
r→∞

9πB2

αj+1(r)− αj(r)
.

Theorem 2.7 is a simple corollary of results of R. Nevanlinna [NevR25b] (The-
orem 3.1 in Section 3) and W.K. Hayman [Hay56] (the corollary of Theorem 3.2
in Section 3).

Theorem 2.8 somewhat complements the following result due to A. Edrei and
W.H.J. Fuchs [EF62a] (some other results of the same character can be found in
A. Edrei and W.H.J. Fuchs [EF62b], A. Edrei [Edr62]).

Let f(z) be a meromorphic function. Suppose that there exists a number δ,
0 ≤ δ < 1, and a sequence {rk}, rk ↑ ∞, such that the annuli

Sk =

{
rk

σk
≤ |z| ≤ σkrk

}
, k = 1, 2, . . . ,

where σk = 1 + {lnT (rk, f)}−δ have the following property: to each Sk there
correspond n ≥ 1 numbers

αk1, αk2, . . . , αkn; αk1 < αk2 < . . . αkn < αk1 + 2π

in such a way that the number of zeros and poles of the function f(z) lying in

Sk\
n⋃
j=1

{
| arg z − αkj | ≤ {lnT (σkrk, f)}−1−η}

does not exceed

O(T c(rk))

(η > δ, c < 1 are constants).
Then the function f(z) has at most n+ 1 deficient values. If the function f(z)

has n+ 1 deficient values, then 0 and ∞ are among deficient values.
Example 2 is taken from A. Edrei [Edr55] and Example 4 is taken from A. Edrei

and W.H.J. Fuchs [EF62a].
To Section 3. Theorem 3.1 is due to R. Nevanlinna [NevR25b]. We prove The-

orem 3.2 using the Cartan–Ahlfors method (see R. Nevanlinna [NevR74, Chapter
V, §5]), which W.K. Hayman [Hay56] used to prove the result which we state as
a corollary of Theorem 3.2. Our presentation follows this paper of W.K. Hayman.
Theorem 3.3 is published here for the first time. Theorem 2.3 which is an immedi-
ate corollary of Theorem 3.3 originally was obtained (I.V. Ostrovskii [Ost61]) in a
different way.

To Section 4. Theorem 4.1 (I.V. Ostrovskii [Ost60b]) is a generalization of
L. Bieberbach’s [Bie19] theorem, which we state as Corollary 2 of Theorem 4.1.
Example 1 is due to L. Bieberbach [Bie19], Lemma 4.1 is due to O. Teichmüller
[Tei39], Example 2 is due to I.V. Ostrovskii [Ost60b].

To Section 5. Theorem 5.2 was obtained by I.V. Ostrovskii [Ost60c]. Theorems
5.3, 5.4, and 5.5 are due to B.Ya. Levin and I.V. Ostrovskii [LO60]. Lemma 5.3
is a classical result due to C. Carathéodory. Theorem 5.3 is a strengthening of the
following result of A. Edrei [Edr55]: If an entire function f(z) is representable
in the form f(z) = eg(z)h(z), where g(z) is an entire function, h(z) is an entire
function of finite order, and all zeros of the function f(z)f ′(z)f ′′(z) except, possibly,
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finitely many are real, then ρ[g] ≤ 1. S. Hellerstein [Hel66] found a generalization
of Theorem 5.3. An extensive bibliography of works devoted to the question of
G. Pólya and A. Wiman can be found in B.Ya. Levin and I.V. Ostrovskii [LO60].18

Chapter 7

We present Theorem 1.2 following S. Kakutani [Kak35], who stated it in a
somewhat more general form and made a small error. Theorem 1.2 is contained
in a stronger result of Y. Tumura [Tum43b] and H.L. Selberg [Sel44], [Sel46],
who, in particular, proved that under the conditions of Theorem 1.2 the relation
m(r, a) = O(ln r) holds. Under the additional restriction that all algebraic branch
points of P are projected to a (each region Fν can have at most one branch point),
Theorem 1.2 was proved by E.F. Collingwood [Col24] and H. Cartan [Cart30].

In Section 2 we present the necessary preliminaries from the theory of qua-
siconformal mappings. The theory of quasiconformal mappings is presented in
L.I. Volkovyskĭı [Vol54] and L. Ahlfors [Ahl66].

Most of the examples is contained (sometimes implicitly) in the monograph
L.I. Volkovyskĭı [Vol50]. O. Teichmüller [Tei44] considered a class of quasicon-
formal mappings solving the problem from Example 7, and found a mapping for
which max

|z|≤R
p(z, w) attains its minimum. Comparison with Teichmüller’s result

shows that the estimate (2.17) (see L.I. Volkovyskĭı [Vol50, p. 110]) approaches
the best possible as x0 → 0.

Theorem 3.1 was obtained by O. Teichmüller ([Tei38], see, also, H. Wittich
[Wit68, Chapter VI]) as a corollary of his theorem on moduli of ring domains.
H. Wittich [Wit48a] gave another proof of the Teichmüller theorem, using a
method of L. Ahlfors [Ahl32b] (Step III of our proof). We present H. Wittich’s
proof with significant simplifications. P.P. Belinskĭı [Bel53], [Bel54] proved that
under the conditions of Theorem 3.1 the limit limz→∞w(z)/z exists.

The class Fq of Riemann surfaces, as well as the notion of a line complex, were
introduced by R. Nevanlinna [NevR32a], [NevR32b]. A detailed theory of line
complexes was developed by G. Elfving [Elf34]. Our presentation differs of that of
G. Elfving. The dependence of the line complex on the choice of the base curve was
studied by E. Drape [Dra36], H. Habsch [Hab52], V.G. Tairova [Tai62], [Tai64].
F. Huckemann [Huc56a] extended the class Fq and the notion of a line complex.

Theorem 4.1 should follow from a more general result of H. Weyl [Wey31], but
this result, in author’s own words, is stated in a so inefficient form, that it is not
clear how to get any specific corollaries of it.

Our proof, which is close to certain argument of V.G. Tairova [Tai64] allows us
to make an important for our purposes remark at the end of the proof. The corol-
lary of Theorem 4.1 was proved, using line complexes, by Le-Van-Thiem [LeV50].
In familiar sources (A. Hurwitz [Hur91], [Hur02], H. Weyl [Wey31], H. Röhrl
[Röh63]) we have not found anything indicating that the problem posed in Section
4 before Example 1 is not always solvable. Theorems 4.2 and 4.3 are published here
for the first time.

The statement of the inverse value distribution problem is due to R. Nevanlinna
(see, for example, [NevR74, Sect. 220]).

18This question is now completely solved. See the Editor’s comments at the end of the book.



448 NOTES

The hypothesis that the deficiencies of a meromorphic function of a finite order

should satisfy some other relations besides
∑
a

δ(a, f) ≤ 2 was stated by O. Te-

ichmüller [Tei39]. W.H.J. Fuchs [Fuc58] proved that for functions of finite order

the relation
∑
a

√
δ(a, f) <∞ holds. This result was strengthened by W.K. Hay-

man [Hay64], who established that for functions of finite lower order and for

α > 1/3 the series
∑
a

δα(a, f) is convergent, and observed that for α < 1/3 such se-

ries can diverge. The behavior of this series for α = 1/3 has not been studied,19 but

V.P. Petrenko [Pet67] proved that for β > 1/3 the series
∑
a

δ1/3(a, f) ln−β
e

δ(a, f)
converges.

W.H.J. Fuchs [Fuc58] and W.K. Hayman [Hay64] obtained also estimates for

the sum of the series
∑
a

δα(a, f) in terms of λ[f ]; the sharpest estimates are due

to V.P. Petrenko [Pet66], [Pet67].
R. Nevanlinna [NevR32b] proved Theorem 5.1 using Riemann surfaces with

finitely many logarithmic ends and without any algebraic branch points. To study
the value distribution of the uniformizing functions he used some results of the an-
alytic theory of differential equations. Using the same method G. Elfving [Elf34]
studied uniformizing functions of surfaces with finitely many logarithmic ends, de-
fined as in our Section 5. L. Ahlfors [Ahl32b] proved the results of R. Nevanlinna
[NevR32b] without using differential equations.

Results of Sections 6, 7, 8 are due to A.A. Goldberg [Gol54b] (this paper
contains some errors). However various particular cases of these results were known
before. A detailed survey of previous results can be found in Chapter VIII of the
book H. Wittich [Wit68]. Here we mention the most important papers. The
class of Riemann surfaces with periodic ends was introduced by E. Ullrich [Ull36].
H. Wittich [Wit47], [Wit48b] used quasiconformal mappings for the study of
the value distribution of the uniformizing functions of such surfaces, and obtained
the formulas (7.17), (7.18), (7.19) for surfaces with periodic ends. Note that for
surfaces Φ with periodic ends it is not necessary to construct a quasiconformal
mapping onto the complex plane, the problem we were concerned with in Section
6, since the uniformizing meromorphic function can be easily written in an explicit
form (see the exercise after Theorem 6.1). Le-Van-Thiem [LeV49], [LeV50] solved
the inverse problem under the following restrictions: 1) The number of deficient and
index values is finite; 2) The deficiencies and indexes are rational numbers; 3) If

ε(a) > 0, then δ(a) + ε(a) < 1. In the case when
∑
a

δ(a) = 0 Le-Van-Thiem solved

the problem using elliptic functions; in the case
∑
a

δ(a) > 0 he used Riemann

surfaces with finitely many periodic ends and characteristic χ = 1. K. Pöschl
[Pös51] noticed that if drop the restriction χ = 1, then, with the help of Riemann
surfaces with finitely many periodic ends, the inverse problem can be solved, at

best (for 0 <
∑
a

δ(a) < 2), if the deficiencies and indexes belong to a very narrow

subclass of the set of algebraic numbers.

19Weitsman [A157] proved the convergence for α = 1/3.
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Le-Van-Thiem [LeV49], [LeV50] introduced the notion of a conjunction of sur-
faces with periodic ends and obtained the formulas (7.23)–(7.27) for them. However
he did not take into consideration the conditions under which conjunction is pos-
sible and the conditions under which the formulas (7.25)–(7.27) are valid, for this
reason some parts of his argument are not convincing. The idea to use the calculus
of diagrams (see Section 8) is also due to Le-Van-Thiem.

It was conjectured that, if in Theorem 5.1 we restrict our attention to functions
of finite order, then the requirements of rationality of deficiencies and of the finite-
ness of the number of deficient values become necessary.20 For entire functions this
conjecture has been proved (A. Pfluger [Pfl46]).

In connection with Theorem 8.3 we note that the first example of a meromor-
phic function with infinitely many index values was constructed by G. af Hällström
[Häl52], but in his construction severe restrictions were imposed both on the lo-
cation of index values and on the values of indexes. G. af Hällström [Häl41] also
found the first example of a function with ε(a) = 1 (see, also, H. Wittich [Wit68,
Chapter VIII, §5]).

The class of Riemann surfaces with almost periodic ends is, as it was mentioned,
a generalization of a class of Riemann surfaces with periodic ends. The class of
Riemann surfaces with periodic ends was generalized also in other directions. We
mention in this connection the papers of F. Huckemann [Huc56b], A.A. Goldberg
[Gol59b], H.P. Künzi and H. Wittich [KW59], where the reader can find further
references.

20This is proved in [A44].
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d’une fonction monogène et la croissance de son module. C. r. Acad. sci., 175, 676–679
(1922)

[NevF23] Nevanlinna, F.: Bemerkungen zur Theorie der ganzen Funktionen endlicher Ordnung.
Soc. Sci. Fenn. Comment. Phys.-math., 2, no. 4, 1–7 (1923)
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Mathematica, 11, 264–269 (1935)



458 BIBLIOGRAPHY

[Val35b] Valiron, G.: Sur le nombre des singularités transcendantes des fonctions inverses d’une
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Lindelöf E., 80, 85, 234, 388, 566, 667, 569,

584
Littlewood J. E., 569, 584
Lunts G. L., 446. 578

MacLane G. R., 569, 579
Markushevich A. I., 459, 579
Mascheroni L., 108, 291
Matsaev V. I., 561, 579
Mazurkiewicz S., 570, 584
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APPENDIX A

A survey of some results after 1970 (by A.

Eremenko and J. K. Langley)

The literature on meromorphic functions1 is very large. There is a compre-
hensive survey [62] that contains everything that was reviewed on the topic in the
Soviet “Referativnyi Zhurnal” in 1953–1970, and a later large survey [67]. More
recent surveys [30], [80] and [48] are shorter and have narrower scope.

Some books on specific topics in the theory of meromorphic functions published
after 1970 are [18], [20], [79], [100], [136], [133], [137], [162]. A survey of the fast
developing subject of iteration of meromorphic functions is [7].

Here we give a short survey of some results which are closely related to the
problems considered in this book. Thus we do not include many important topics,
like geometric theory of meromorphic functions, iteration, composition, differential
and functional equations, normal families, Borel and Julia directions, uniqueness
theorems, and most regrettably, holomorphic curves and quasiregular mappings.

Chapter II.

Mokhon’ko [121] proved the following generalization of (6.29), Ch. I. Let R(w, z)
be a rational function of w whose coefficients are meromorphic functions h(z) sat-
isfying T (r, h) = O(φ(r)), where φ is a fixed positive increasing function on [0,∞).
Then for every meromorphic function f we have

T (r,R(f(z), z)) = degw RT (r, f) +O(φ(r)).

This is a purely algebraic result; its proof uses only properties (6.5), (6.6), (6.8′)
and the property T (r, f2) = 2T (r, f).

Another result in the same direction is due to Eremenko [39]. Let F (u, v, z)
be a polynomial in u and v whose coefficients are meromorphic functions h of z
satisfying T (r, h) = O(φ(r)), where φ is a function as above, and assume that F
is irreducible over the algebraic closure of the field of meromorphic functions. If f
and g are meromorphic functions satisfying

F (f(z), g(z), z) ≡ 0,(0.60)

then

degu F T (r, f) = (degv F + o(1))T (r, g) +O(φ(r)).

Both theorems have applications in the analytic theory of differential equations.
Vojta [153] noticed a formal analogy between the definition of the Nevanlinna

characteristic and the definition of height in number theory. This analogy extends
quite far, and it has been a source of many interesting results and conjectures in
the recent years. For example, under Vojta’s analogy, Jensen’s formula corresponds

1If the domain is not specified explicitly, we mean meromorphic functions in C.

465
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to the fundamental theorem of arithmetic, while the second main theorem without
the ramification term corresponds to the Thue–Siegel–Roth theorem on Diophantine
approximation. The full second main Theorem corresponds to the famous unproved
conjecture in number theory which is known as the “abc-conjecture”. The analogy
extends to the multi-dimensional generalizations of Nevanlinna theory, where it
has been especially fruitful [136, 101]. As an example of the influence of Vojta’s
analogy on the one-dimensional value distribution theory, we mention the recent
precise results on the error term in the second main theorem (see comments to
Chapter III).

Analogies between function theory and number theory were noticed before Vo-
jta. Osgood was the first to view the second main theorem as an analogue of the
Thue–Siegel Roth theorem [128, 129, 130]. See also [69, 77].

Formula (2.6), Ch. I is the basis of the so-called “Fourier method” in the theory
of entire and meromorphic functions, which was developed in the work of Rubel
[137], Taylor, Miles and others. The Fourier method is considered as a substitute
for the Weierstrass representation, which is more effective in certain cases. One of
the main results achieved with this technique is the theorem of Miles [114] on the
quotient representation of meromorphic functions: Every meromorphic function f
can be written as f = g1/g0, where gj are entire functions, possibly with common
zeros, satisfying

T (r, gj) ≤ AT (Br, f), j = 0, 1,

where A and B are absolute constants (independent of f). Moreover, for every
B > 1 there exists A such that the above statement holds for every f . Simple
examples show that one cannot in general take B = 1. This result was improved
by Khabibullin [97]: Let f be a meromorphic function and ε > 0 a non-increasing
convex function on [0,∞). Then there esists a representation f = g1/g0 such that
gj are entire functions, and

ln(|g1(z)|+ |g0(z)|) ≤ Aε

ε(|z|)T ((1 + ε(|z|))|z|, f) +Bε.

Khabibullin also extended Miles’s theorem to meromorphic functions in Cn. A
survey of his results is [98].

The Fourier method is also one of the main tools for the study of functions
which satisfy various restrictions on the arguments of a-points (see comments to
Chapter VI). A recent book on the Fourier method is [99].

Chapter II.

Various properties of increasing functions on [0,∞) play an important role in
the theory of meromorphic functions. By 1970 it became clear that the lower order
λ is at least as important as the order ρ. The main development since 1970 was
“localizing” the notion of order.

Let Φ be an unbounded increasing function. A sequence rk → ∞ is called a
sequence of Pólya peaks (of the first kind) of order µ if the inequalities

Φ(rrk) ≤ (1 + εk)rµΦ(rk), εk < r < ε−1
k

hold with some εk → 0. Pólya peaks were formally introduced by Edrei [33], though
they were used by Edrei and Fuchs already in 1963. Pólya peaks of order µ exist for
all µ in certain interval [λ∗, ρ∗], which contains the interval [λ, ρ]. The endpoints
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λ∗ and ρ∗ of this interval are called the order and lower order in the sense of Pólya,
respectively. The following formulas were given in [31]:

ρ∗ = sup{p : lim sup
x,A→∞

g(Ax)/Apg(x) =∞}

and

λ∗ = inf{p : lim inf
x,A→∞

g(Ax)/Apg(x) = 0}.

Most contemporary results on functions of finite lower order use Pólya peaks.

Chapter III.

Milloux’ inequality (Ch. III, Theorem 2.4) has led to a rich vein of results
developing the value distribution properties of meromorphic functions and their
derivatives, in which a decisive role has been played by the paper [71] of Hayman.

Perhaps the most striking of the many results from [71] is Hayman’s alternative
(Ch. III, Theorem 2.6): if a function f meromorphic in the plane omits a finite
value a, and its kth derivative f (k), for some k ≥ 1, omits a finite non-zero value b,
then f is constant. Two principal questions arising in connection with Hayman’s
alternative are: (i) whether a version of Hayman’s main inequality (Ch. III, (2.23))
holds with N(r, 1/(f − a)) replaced by N(r, 1/(f − a)); (ii) whether f (k) can be
replaced by a more general term, such as a linear differential polynomial

F = L[f ] = f (k) + ak−1f
(k−1) + . . .+ a0f,(0.61)

with suitable coefficients aj of small growth compared to f . A positive answer
to (i) was given by Chen [17]. Question (ii) was answered affirmatively in [102],
although there do exist exceptional functions f , which may be determined from the
aj, for which f and F − 1 have no zeros. A unified approach to the questions from
[17, 102] may be found in [14]. It was shown further in [19, 82] that if P is a
non-constant differential polynomial in f , all of whose terms have degree at least
2 in f and its derivatives, then a version of Hayman’s inequality holds with f (k)

replaced by P , and with N counting functions.
Question (i) is related to the issue of whether f − a and f (k) − b (k ≥ 1, b 6=

0) can both fail to have simple zeros, in analogy with the sharp result that a
nonconstant meromorphic function cannot be completely branched over five distinct
values. It has recently been shown [127] using normal family methods that if f
is transcendental and meromorphic in the plane with only multiple zeros then f ′

takes every finite non-zero value infinitely often (see also [14, 155]).
The obvious example f(z) = ez shows that a transcendental entire function f

may have the property that f and all its derivatives omit 0: thus the condition
b 6= 0 is necessary in Hayman’s alternative. However, Hayman showed in [71] (see
Ch. III, Theorem 2.7) that if f is an entire function such that ff ′′ has no zeros
then f(z) = exp(Az +B) with A,B constants: this follows from applying (Ch. III,
Theorem 2.6) to f/f ′. Clunie [21] established the corresponding result with f ′′

replaced by a higher derivative f (k), which on combination with Hayman’s theorem
on ff ′′ significantly improved earlier results of Pólya and others on the zeros of
entire functions and their derivatives [24, 134, 139, 140]. The Tumura-Clunie
method, as developed in [21], shows that if Ψk[g] is a differential polynomial of
form Ψk[g] = gk + Pk−1[g], where Pk−1[g] is a polynomial in g and its derivatives
of total degree at most k − 1, and with coefficients of small growth compared to
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g, and if g has few poles and Ψk[g] has few zeros, then Ψk[g] admits a simple
factorisation. The application to zeros of ff (k) then follows by writing f (k)/f in
the form Ψk[f ′/f ]. Variants and generalisations of the Tumura-Clunie method,
allowing functions g with unrestricted poles, appear in a large number of papers
including notably [125, 151, 164].

It was conjectured by Hayman in [71] that if f is meromorphic in the plane and
ff (k) has no zeros, for some k ≥ 2, then f(z) = exp(Az+B) or f(z) = (Az+B)−m,
with A,B constants and m ∈ N. This was proved by Frank [52] for k ≥ 3 and by
Langley [103] for k = 2 (see also [9, 105]), while simple examples show that no such
result holds for k = 1. Generalisations include replacing ff (k) by fF , where F is

given by (0.61) with rational coefficients [15, 54, 104, 147], and by ff ′′−αf ′2, α ∈
C [8, 105, 123]. Closely linked to Milloux’ inequality and Hayman’s alternative
is the question of whether G = fnf ′ must take every finite non-zero value, when
f is non-constant meromorphic and n ∈ N, the connection being that (n+ 1)G is
the derivative of fn+1, which has only multiple zeros and poles. Hayman proved in
[71] that this is the case for n ≥ 2 and f entire, and for n ≥ 3 when f has poles.
Following incremental results by a number of authors [22, 81, 124], the definitive
theorem in this direction was proved in [11]: if f is a transcendental meromorphic
function in the plane and m > k ≥ 1 then (fm)(k) has infinitely many zeros. Here
the result is proved first for finite order, and the infinite order case is then deduced
by applying a renormalisation method from normal families [131, 132, 163]. The
closely related question of whether f ′ + fn may omit a finite value, which in turn
is related to the Tumura-Clunie method, is resolved in [11, 71, 124, 145]. A more
recent conjecture [156] asserts that if f is a transcendental meromorphic function
then ff (k) takes every finite, non-zero value infinitely often: this is known to be
true for k = 1 [11], and for k = 2 and f entire [107].

A further development from [71] leads to two conjectures which remain open.
Hayman observed in [71] that since the derivative f ′ of a transcendental meromor-
phic function f has only multiple poles, it follows that f ′ has at most one finite
Picard value. It was subsequently conjectured by Mues [122] that the Nevanlinna
deficiencies of f (m) satisfy, for m ≥ 1,∑

a∈C

δ(a, f (m)) ≤ 1.(0.62)

This was proved by Mues [122] for m ≥ 2, provided all poles of f are simple. In
the general case the best known upper bound for the sum in (0.62) appears to be
4/3 [84, 161].

The Mues conjecture (0.62) would follow from a positive resolution of the
Gol’dberg conjecture that, for a transcendental meromorphic function f and k ≥ 2,

N(r, f) ≤ N(r, 1/f (k)) + o(T (r, f))(0.63)

as r →∞, possibly outside an exceptional set. This is in turn linked to a classical
result of Pólya [134] that if f has at least two distinct poles then f (k) has at least
one zero, for all sufficiently large k. When f has poles of multiplicity at most k− 1
the inequality (0.63) follows from a lemma of Frank and Weissenborn [55] (see also
[154]), so that in particular if f has only simple poles then (0.62) is true for every
positive m. A related inequality was proved in [53, 148]: if F = L[f ] as in (0.61),
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where the aj are small functions compared to f , then either

N(r, F ) ≤ N(r, 1/F ) + 2N(r, f) + o(T (r, f))

outside a set of finite measure or f is a rational function in solutions of the homo-
geneous equation L[w] = 0. This method is connected to Steinmetz’ proof [146] of
the second main theorem for small functions discussed below. No further results
in the direction of (0.63) appear to be known, although it was proved by Langley
in [106] that if f is meromorphic of finite order in the plane and f (k) has finitely
many zeros, for some k ≥ 2, then f has finitely many poles.

Examples abound of meromorphic functions with infinitely many poles such
that the first derivative has no zeros, but it was proved in [50] (see also [11]) that
if f is transcendental and meromorphic with lim supr→∞ T (r, f)/r = 0 then f ′ has
infinitely many zeros: the corresponding result with lim sup replaced by lim inf may
be found in [83].

We remark that the above results have all been stated for functions meromor-
phic in the plane. Those which are proved only using properties of the Nevanlinna
characteristic admit in some cases generalisation to functions of sufficiently rapid
growth in a disk [71] or a half-plane [110]. Some related results for functions of
slower growth in the disc appear in [142, 144].

An old conjecture of Nevanlinna was that one can replace constants ak in the
second main theorem by meromorphic functions ak(z) with the property T (r, ak) =
o(T (r, f)). Such functions ak are usually called “small targets”. For the case of
an entire function f such a generalization was obtained by Chuang Chi Tai in
1964. Much later, the second main theorem without the ramification term, was
proved for meromorphic functions by Osgood, who used methods from number
theory [128, 129, 130]. A substantial simplification of Osgood’s proof was made
by Steinmetz [146], who also used a beautiful idea of Frank and Weissenborn [55].
Osgood and Steinmetz proved that

q∑
k=1

N(r, (f − ak)−1) ≥ (q − 2 + o(1))T (r, f),

outside of the usual exceptional set. The proof in [146] is simple and elegant; and
uses only manipulations with Wronski determinants and the classical lemma on the
logarithmic derivative. This makes it suitable for generalizations to holomorphic
curves [129, 130, 136]. However, this version of the second main theorem does
not take ramification into account. Simple examples like f(z) = ez + z where
δ(∞, f) = δ(z, f) = 1 and N1(r, f) ∼ T (r, f) show that one cannot include the
term N1. However, the following form of the second main theorem holds with small
targets:

q∑
k=1

N(r, (f − ak)−1) ≥ (q − 2 + o(1))T (r, f),

where N(r, (f − ak)−1) is the usual function counting zeros of f − a disregarding
multiplicity. This result was recently obtained by Yamanoi [160]. In [159] he
separately treats the case of rational functions ak when the proof is technically
simpler. Yamanoi’s proof is very complicated, and it will be hard to generalize to
holomorphic curves. Surprisingly, it uses Ahlfors’s theory of covering surfaces (and
also algebraic geometry, moduli spaces of curves, and combinatorics). The idea to
bring Ahlfors’s theory to this context has its origin in the work of Sauer [138] who
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obtained a partial result for rational small targets. One application of Yamanoi’s
generalization of the second main theorem is the following. Suppose that f and g are
meromorphic functions in C satisfying a relation of the form (0.60). If the genus of
the curve F (u, v) = 0 is greater than 1, then T (r, f) + T (r, g) = O(φ(r)). This was
conjectured by Eremenko in 1982, and the important special case that φ(r) = ln r,
that is F is a polynomial in all three variables, was proved by Zaidenberg in 1990.

Now we turn to the classic setting. The estimate in the lemma on the logarith-
mic derivative was improved by Gol’dberg and Grinstein [66]:

m(r, f ′/f) ≤ ln+{T (ρ, f)(1− (r/ρ))−1}+ const,

where the constant depends on f . Vojta’s analogy (see comments to Chapter I)
stimulated new interest in refined estimates for the logarithmic derivative, as well
as for the error term

S(r, f) =

q∑
j=1

m(r, aj , f) +N1(r, f)− 2T (r, f)

in the second main theorem. Miles [118] derived from Gol’dberg’s and Grinstein’s
estimate the following. Let ψ be a continuous non-decreasing function such that∫ ∞

1

dt

tψ(t)
<∞.

Then for every meromorphic function f we have

m(r, f ′/f) ≤ ln+ ψ(T (r, f)) +O(1),

outside an exceptional set of finite logarithmic measure. The strongest results on
the error term S(r, f) belong to Hinkkanen [85], for example:

S(r, f) ≤ ln+ ψ(T (r, f)) +O(1),

outside an exceptional set of finite logarithmic measure, where φ is as before. If
one replaces ψ by tψ(t), then both results will hold outside an exceptional set of
finite measure. All presently known results on the error terms in one-dimensional
Nevanlinna theory are collected in the book [18].

No analog of the second main theorem holds without an exceptional set of r’s.
This can be seen from the result of Hayman [72]: Let {Ek} be closed sets of zero
logarithmic capacity, and φ and ψ arbitrary unbounded increasing functions. Then
there exist an entire function f and a sequence rk → ∞ such that N(rk, a, f) ≤
φ(rk) ln rk for all a ∈ Ek, while T (rk, f) > ψ(rk).

Chapter IV.

The result of Hayman we just cited shows that the set EV (f) of Valiron ex-
ceptional values, which always has zero capacity, can contain any Fσ set of zero
capacity, but a complete description of possible sets EV (f) is not known.

For meromorphic functions f of finite order, Hyllengren [96] obtained a very
precise description of the sets EV (f). Let us say that a set E satisfies the H-
condition if there exist a sequence (an) of complex numbers and η > 0 such that
every point of E belongs to infinitely many discs {w : |w− an| < exp(− exp(ηn))}.
For every meromorphic function f of finite order, and every x ∈ (0, 1), the set
EV (x, f) of those a ∈ C for which ∆(a, f) > x satisfies the H-condition, and vise
versa, for every set E satisfying the H-condition, there exist an entire function f
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and a number x ∈ (0, 1) such that ∆(a, f) > x, for all a ∈ E. Notice that the
H-condition is much stronger than the condition of zero capacity.

The first example of an entire function of finite order whose deficiency depends
on the choice of the origin was constructed by Miles [116]. The order of this
function was very large. Then Gol’dberg, Eremenko and Sodin [65] constructed
such examples with any given order greater than 5. (For entire functions of order
less than 3/2, deficiencies are independent of the choice of the origin.)

Chapter V.

Put L(r, f) = lnµ(r, f)/ lnM(r, f), where µ(r, f) = min{|f(z) : |z| = r}.
Corollary 3 on p. 232 says that lim supr→∞ L(r, f) ≥ −[2λ]. Hayman [70] showed
that the same holds with −2[λ] replaced by −2.19 lnρ when ρ is large enough. For
functions of infinite order, he proved

lim sup
r→∞

L(r, f)

ln ln lnM(r, f)
≥ −2.19.

He also constructed examples of entire functions of large finite order for which
lim supr→∞ L(r, f) < −1. Then Fryntov [56], answering a question of Hayman,
constructed entire functions of any given order ρ > 1 with the same property. Drasin
[29] constructed entire functions of order one, maximal type, with the property
M(r, f)µ(r, f)→ 0. This may be contrasted with a remarkable theorem of Hayman
[73] which says that if f is an entire function of order one and normal type, and
M(r, f)µ(r, f) is bounded, then f(z) = c exp(az) for some constants c and a.

Thus for an entire function of order at least one, µ(r, f) can decrease at a
higher rate than that of increase of M(r, f). The situation changes dramatically if
we consider the rate of decrease of |f(z)| on an unbounded connected set. Hayman
and Kjellberg [78] proved that for every entire function f and every K > 1 all
components of the set {z : ln |f(z)|+K lnM(|z|, f) < 0} are bounded.

Theorem 1.3′ has been the subject of many deep generalizations. First we
mention the famous “spread relation” of Baernstein [2] [4] conjectured by Edrei in
[34]: If f is a meromorphic function of lower order λ, then for every ε > 0 there
are arbitrary large values of r such that the set of arguments θ where |f(reiθ)| > 1
has measure at least

min

{
4

λ
arcsin

√
δ(∞, f)

2
, 2π

}
− ε.(0.64)

Similar sharp estimates of the measure of the set where

ln |f(reiθ)| > αT (r, f)

were given in [1].
Fryntov, Rossi and Weitsman [57, 58] proved that under the assumptions of

the spread conjecture, the set |f(reiθ)| > 1 must contain an arc of length (0.64).
See also [3] for the sharp lower estimate of the length of the arcs in the set {θ :
ln |f(reiθ| > α lnM(r, f)}.

Extremal functions for the spread relation and its generalizations were studied
extensively, [5, 36, 37, 141].
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The new methods introduced by Baernstein [2], [4] are based on the use of
subharmonic functions, and especially, on a new type of maximal function, the so-
called “star-function”, which turned out to be very useful in solving a wide variety
of extremal problems of function theory. An account of Baernstein’s star function
and its main applications is contained in the monograph [79].

One important application of the spread relation is the sharp estimate of the
sum of deficiencies of a meromorphic function of lower order λ ≤ 1 [35]. If a
meromorphic function f of lower order λ has at least two deficient values, then∑

a∈C

δ(a, f) ≤
{

1− cosπλ, 0 < λ ≤ 1/2
2− sinπλ, 1/2 < λ ≤ 1.

,

The sharp estimate of the sum of deficiencies of a meromorphic function in terms
of its order or lower order λ is still not established for λ > 1. The conjectured
extremal functions are described in [32].

The results of §2 show that neither Nevanlinna nor Borel exceptional values
need be asymptotic values. On the other hand, Picard exceptional values are asymp-
totic. A natural question arises, whether any condition of smallness of N(r, a, f)
in comparison with T (r, f) will imply that a is an asymptotic value. The basic
result belongs to the intersection of the papers [16], [74], and [38]. Let f be a
meromorphic function of lower order λ ≤ ∞. If the order of N(r, a, f) is strictly
less than min{1/2, λ} then a is an asymptotic value. Example 3 on p. 249 shows
that this condition is sharp, if only the lower order of f is taken into account. In
[38], a weaker sufficient condition for a to be an asymptotic value is given, that
uses both the order and lower order of f . Hayman [74] gives the following refined
condition: if

T (r, f)− 1

2
r1/2

∫ ∞
r

t−3/2N(t, a, f)dt→∞,

then a is an asymptotic value.

The problem on p. 285 of optimal estimation of κ(f) for functions of lower
order greater than 1 is still open, even for entire functions. It has been solved only
for entire functions with zeros on a ray [94].

The best estimates known at this time for entire and meromorphic functions
with fixed λ > 1 are contained in [119, 120]. They are derived from the following
sharp inequality which is obtained by the Fourier method:

lim sup
N(r, 0) +N(r,∞)

m2(r, f)
≥ sup

λ∗≤λ≤ρ∗

√
2
| sinπλ|
πλ

{
1 +

sin 2πλ

2πλ

}−1/2

,

where m2 is the L2-norm,

m2
2(r, f) =

1

2π

∫ 2π

0

(ln |f(reiθ)|)2dθ,

and λ∗ and ρ∗ are the order and lower order in the sense of Pólya, [31] (see also
comments to Chapter II).

In 1929, F. Nevanlinna [126] found that meromorphic functions of finite order
satisfying N1(r, f) ≡ 0 have the following properties:

a) 2ρ is an integer, 2ρ ≥ 2,
b) all deficient values are asymptotic, and
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c) all deficiencies are rational numbers with denominators at most 2ρ, and their
sum equals 2.

It was natural to conjecture that one of the conditions

N1(r, f) = o(T (r, f)),(0.65)

or ∑
a∈C

δ(a, f) = 2(0.66)

implies the properties a), b) and c). Notice, that by the second main theorem,
(0.66) implies (0.65) for functions of finite order.

It turns out that a strong form of this conjecture holds:

Small Ramification Theorem. If f is a meromorphic function of finite
lower order with the property (0.65) then a), b) and c) hold, and:

T (r, f) = rρ`(r),(0.67)

where ` is a slowly varying function in the sense of Karamata.2

As a corollary we obtain that conditions (0.65) and (0.66) for functions of finite
lower order are equivalent.

This result has a long history which begins with theorems of Pfluger and Edrei
and Fuchs establishing the case of entire functions (see Corollary 2 on p. 315).
Weitsman [158] proved that (0.66) implies that the number of deficient values is
at most 2ρ. Then Drasin [27], [28] proved that for functions of finite order (0.66)
implies a), b) and c) and the regularity condition (0.67). Eremenko proposed a new
potential-theoretic method (see, for example, [48]) which finally led to a proof of
a simpler proof of Drasin’s theorem. The small ramification theorem in its present
form stated above is proved in [44].

These results show that besides the defect relation, there is an additional re-
striction on defects of functions of finite order: (0.66) implies that the number of
deficient values is finite and all defects are rational.

There are other restrictions as well. Weitsman’s theorem [157] says that for
functions f of finite lower order∑

a∈C

δ(a, f)1/3 <∞.(0.68)

The story of this theorem is described in Comments to Chapter VII (see p. 576).
Weitsman’s proof can actually be modified to produce an upper bound depending
only on the lower order of f .

The second restriction concerns functions of finite order having a defect equal
to 1. Lewis and Wu proved that such functions satisfy∑

a∈C

δ(a, f)1/3−α <∞,

with some absolute constant α > 0. Their proof gives α = 2−264, which is far from
what is expected. (Lewis and Wu state their result for entire functions but their
proof applies to all functions with δ(a, f) = 1 for some a.)

2That is `(cr)/`(r)→ 1, as r →=∞, uniformly with respect to c ∈ [1, 2].
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Examples of entire functions of finite order with the property δ(an, f) ≥ cn

for some c ∈ (0, 1) are constructed in [45], but a large gap remains between these
examples and the result of Lewis and Wu.

Recent research on value distribution meromorphic functions of the form∑ ck

z − zk
,
∑ |ck|
|zk|

<∞(0.69)

was mainly concentrated on the functions with ck > 0. Such functions are (complex
conjugate to) gradients of subharmonic functions of genus zero with discrete mass.
The main conjecture is that every function of the form (0.69) has zeros. This was
proved in [50] under the additional assumption that inf ck > 0.

Chapter VI

Entire functions whose zeros lie on (or are close to) finitely many rays were
intensively studied. Under certain conditions, one can estimate δ(0, f) from below,
as in Corollary 4 on p. 350. The strongest results in this direction belong to
Hellerstein and Shea [91] and Miles [115]. One of the results of [91] says that
δ(0, f) > Bq(θ1, ..., θn) for all entire functions of genus q with zeros on the rays
arg z ∈ {θ1, ..., θq), and Bq → 1 when q → ∞ while the rays remain fixed. In
the case of one ray, they obtained Bq(θ) = 1 − (π2e−1 + o(1))/ ln q, q → ∞.
For entire functions of infinite order with zeros on a ray, Miles [115] proved that
N(r, 0, f)/T (r, f) → 0 as r → ∞ avoiding an exceptional set of zero logarithmic
density. However, it may happen that δ(0, f) = 0 for such functions, as Miles shows
by an example constructed in the same paper.

Hellerstein and Shea [91] also considered meromorphic functions of finite order
whose zeros {zn} and poles {wn} lie in opposite sectors | arg zn| ≤ η and | argwn−
π| ≤ η, where 0 ≤ η < π/6. For such functions, they obtained a sharp estimate of
κ(f) (definition on p. 285) from above.

For entire functions with zeros on finitely many rays, there are relations between
the order and lower order (see p. 344). There relations were further investigated
in [117, 60] and [135].

Miles [117] considers the class of meromorphic functions f whose zeros belong
to a finite union of rays X and poles belong to a finite union of rays Y , where
X ∩ Y = ∅, and such that the exponent of convergence of the union of zeros and
poles is a given number q. He then produces a non-negative integer p = p(q,X, Y )
such that

lim
r→∞

T (r, f)

rp
=∞ if p > 0 and lim

r→∞

T (r, f)

ln r
=∞ if p = 0,

and these growth estimates are sharp in the considered class. The integer p depends
in a subtle way on the arithmetical properties of the arguments of the rays X and
Y , and this integer is in general hard to compute or estimate.

Gleizer [60] considers entire functions with zeros on n rays. If n = 1 or n = 2,
we have ρ ≤ [λ] + n, where [ ] is the integer part. This follows from Theorem 1.1,
Chapter VI. However, if n = 3, then the difference ρ−λ can be arbitrarily large. In
this case, Gleizer proved that [ρ] ≤ 3([λ] + 1). For arbitrary n, Qiao [135] proved
that ρ ≤ 4q−1([λ] + 1).
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In [59, 61], Gleizer extended Theorem 4.1 by taking into account not only the
order but the lower order in the sense of Pólya. He used Baernstein’s star-function.

There has been remarkable progress in the problems considered in §5. The
conjecture of Pólya and Wiman stated on p. 417 was proved by Hellerstein and
Williamson [92, 93]. If f is a real entire function such that all zeros of ff ′f ′′

are real then f belongs to the Laguerre–Pólya class. In [95] the same authors with
Shen classified all entire functions (not necessarily real) with the property that
ff ′f ′′ has only real zeros. The classification of meromorphic functions with the
property that all their derivatives have only real zeros was achieved by Hinkkanen
[86, 87, 88, 89, 90].

Sheil-Small [143] proved a conjecture of Wiman (1911), that every real entire
function of finite order with the property that ff ′′ has only real zeros belongs to
the Laguerre–Pólya class. Bergweiler, Eremenko and Langley [13] extended Sheil-
Small’s result to functions of infinite order. Then Langley [109] extended this result
to the derivatives of higher orders: If f is a real entire function of infinite order,
with finitely many non-real zeros, then f (k) has infinitely many non-real zeros for
every k ≥ 2.

For real entire functions of finite order with finitely many non-real zeros, that
do not belong to the Laguerre–Pólya class, Bergweiler and Eremenko [12] proved
that the number of non-real zeros of f (k) tends to infinity as k → ∞. Together
with Langley’s result, this confirms another conjecture of Pólya (1943).

Chapter VII

The inverse problem (as stated on p. 487) was completely solved by Drasin [25].
A simplified proof is given in [26]. The general idea is the same as in Chapter VII:
quasiconformal surgery and a version of the theorem of Belinskii and Teichmüller are
involved. However, unlike in Chapter VII, Drasin does not construct the Riemann
surface spread over the sphere explicitly but uses a more flexible technique.

Theorem 8.1 in Chapter VII actually gives a complete solution of the inverse
problem for finitely many deficient values in the class of meromorphic functions
of finite order. (This was not known in 1970 when the book was written. That
condition 3 of this Theorem 8.1 is necessary follows from the small ramification
theorem above).

On the narrow inverse problem in the class of meromorphic functions of finite
order with infinitely many deficiencies, there is the following result [42]:

Let {a} be an arbitrary infinite countable subset of C, and {δn} positive numbers
satisfying the following conditions:

(i) δn < 1,
(ii)

∑
n δn < 2, and

(iii)
∑

n δ
1/3
n <∞.

Then there exists a meromorphic function f of (large) finite order such that
δ(an, f) = δn, and f has no other deficient values.

The order of this function depends on the quantities in the right hand sides of
(i), (ii) and (iii).



476 A. RESULTS AFTER 1970

Conditions (ii) and (iii) are necessary because of the small ramification theorem,
and Weitsman’s theorem (see comments to Chapter V above). Condition (i) cannot
be removed because of the Lewis and Wu theorem stated above, but it is not known
what the precise condition on δn is, if δ1 = 1.

The class of meromorphic functions with finitely many critical and asymptotic
values which was used in Chapter VII to investigate the inverse problem is inter-
esting independently of this application. Let us call this class S. The first general
result on functions of this class belongs to Teichmüller [149], who proved that the
second main theorem becomes an asymptotic equality for functions of this class:

q∑
j=1

m(r, aj , f) +N1(r, f) = 2T (r, f) +Q(r, f),

where aj are all critical and asymptotic values.
Langley [108] found that the growth of a function f ∈ S cannot be arbitrary:

c(f) := lim inf
r→∞

T (r, f)

ln2 r
> 0.

This constant c(f) can be arbitrarily small, but in the case that f has only three

critical and asymptotic values, we have [49] c(f) ≥
√

3/(2π) and this is best pos-
sible. On the other hand, there are no restrictions from above on the growth of
functions of class S [113].

Class S plays an important role in holomorphic dynamics (iteration of entire
and meromorphic functions), see, for example, the survey [7]. In [23] an application
of almost periodic ends is given. In [32] the method of Chapter VII is extended
to a new class of Riemann surfaces which the authors call “Lindelöfian ends”. The
corresponding functions have infinitely many critical values and thus do not belong
to the class S.

Appendix.

Govorov’s original proof of the Paley conjecture was a byproduct of his research
on the Riemann Boundary problem with infinite index [68]. His theorem was
generalized to meromorphic functions by Petrenko, to subharmonic functions in Rn

by Dahlberg, and to entire functions of several complex variables by Khabubullin,
see his survey [98].

Petrenko introduced the following quantity which he called the “deviation of f
from the point a”.

β(a, f) = lim inf
r→∞

ln+M(r, (f − a)−1)

T (r, f)
.(0.70)

This differs from the defect in one respect: the uniform norm of ln+ |f(reiθ) −
a|−1 stands in the numerator instead of the L1 norm. Petrenko’s generalization of
Govorov’s theorem proved in the Appendix can be restated as:

β(a, f) ≤ πλ(0.71)

for all meromorphic functions of lower order λ and all a ∈ C. This was the starting
point of a study of deviations β(a, f) by Petrenko and others. The results obtained
before 1978 are summarized in his book [133]. The main difference between the
theory of deviations and the theory of defects is the absence of a first main theorem:
there is no simple relation between β(a, f) and solutions of the equation f(z) = a.
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We only present a sample of the results. By analogy with defects, one can
expect that the set of exceptional values in the sense of Petrenko

P (f) := {a ∈ C : β(a, f) > 0}

is small. This is indeed the case: for every meromorphic function f , the set P (f)
has zero logarithmic capacity; for functions of finite lower order it is at most count-
able (but may have the power of continuum for functions of infinite lower order).
The following analog of the Defect relation for functions of finite lower order was
established by Marchenko and Shcherba [112]:∑

a∈C

β(a, f) ≤
{

2πλ, λ ≥ 1/2,
πλ csc πλ, λ < 1/2.

Moreover, an analog of Weitsman’s theorem (see comments to Chapter V) holds:
for functions f of finite lower order we have∑

a∈C

β(a, f)1/2 <∞,

and the exponent 1/2 is best possible. A version Baernstein’s spread relation also
holds with deviations instead of deficiencies [133]. It is worth mentioning here that,
according to Baernstein [4], the idea of introducing the star function that led to
the proof of the spread relation occurred under the influence of Petrenko’s proof of
(0.71).

The inverse problem for deviations turned out to be simpler than the inverse
problem for deficiencies. A complete solution for functions of finite order is given
in [42]: For every at most countable set {an} of points and every sequence of posi-

tive numbers βn satisfying the condition
∑
β

1/2
n < ∞, there exists a meromorphic

function f of finite order such that β(an, f) = βn and β(a, f) = 0 for a /∈ {an}.
In general, there is no relation between the sets EN (f) and P (f): for every

pair (A,B) of at most countable subsets of C, there exists a meromorphic function
f of any given non-zero order such that EN (f) = A and P (f) = B [64, 65]. On
the other hand, if T (2r, f) = O(T (r, f)) then P (f) = EV (f) [41].

Bergweiler and Bock [10] found an analog of (0.71) for functions of infinite lower
order. The idea was to replace T (r, f) in the denominator of (0.70) by A(r, f). No-
tice that if one uses the Ahlfors definition of T (r, f) then A(r, f) = dT (r, f)/d ln r,
for example, if T (r, f) = rλ then A(r, f) = λT (r, f). Bergweiler and Bock proved
that for every meromorphic function f of order at least 1/2 and every a ∈ C we
have

b(a, f) := lim inf
r→∞

ln+M(r, (f − a)−1)

A(r, f)
≤ π,

and then Eremenko [46] established the following analog of the Defect Relation:∑
a∈C

b(a, f) ≤
{

2π, λ > 1/2,
2π sinπλ, λ ≤ 1/2

,

assuming that there are at least two values a with b(a, f) > 0. It follows that for
every meromorphic function the set {a ∈ C : b(a, f) > 0} is at most countable.

Even Drasin’s theorem on the extremal functions for the defect relation (see
Comments to Chapter V) has its analog for b(a, f) [47]:
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If f is of finite lower order and∑
a∈C

b(a, f) = 2π

then the following limit exists

lim
r→∞

lnT (r, f)

ln r
=
n

2
,

where n is an integer, and b(a, f) = π/n or 0 for every a ∈ C.
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