Radially distributed values and normal families, II

Walter Bergweiler and Alexandre Eremenko*

Dedicated to Larry Zalcman

Abstract

We consider the family of all functions holomorphic in the unit disk for which the zeros lie on one ray while the 1-points lie on two different rays. We prove that for certain configurations of the rays this family is normal outside the origin.

1 Introduction and results

There is an extensive literature on entire functions whose zeros and 1-points are distributed on finitely many rays. One of the first results of this type is the following theorem of Biernacki [5, p. 533] and Milloux [11].

Theorem A. There is no transcendental entire function for which all zeros lie on one ray and all 1-points lie on a different ray.

Biernacki and Milloux proved this under the additional hypothesis that the function considered has finite order, but by a later result of Edrei [6] this is always the case if all zeros and 1-points lie on finitely many rays.

A thorough discussion of the cases in which an entire function can have its zeros on one system of rays and its 1-points on another system of rays, intersecting the first one only at 0 , was given in 4. Special attention was paid to the case where the zeros are on one ray while the 1-points are on two rays. For this case the following result was obtained [4, Theorem 2].

[^0]Theorem B. Let f be a transcendental entire function whose zeros lie on a ray L_{0} and whose 1-points lie on two rays L_{1} and L_{-1}, each of which is distinct from L_{0}. Suppose that the numbers of zeros and 1-points are infinite. Then $\angle\left(L_{0}, L_{1}\right)=\angle\left(L_{0}, L_{-1}\right)<\pi / 2$.

The hypothesis that f has infinitely many zeros excludes the example $f(z)=e^{z}$ in which case we have $\angle\left(L_{1}, L_{-1}\right)=\pi$, and L_{0} can be taken arbitrarily. Without this hypothesis we have the following result.

Theorem B'. Let f be a transcendental entire function whose zeros lie on a ray L_{0} and whose 1-points lie on two rays L_{1} and L_{-1}, each of which is distinct from L_{0}. Then $\angle\left(L_{1}, L_{-1}\right)=\pi$ or $\angle\left(L_{0}, L_{1}\right)=\angle\left(L_{0}, L_{-1}\right)<\pi / 2$.

Bloch's heuristic principle says that the family of all functions holomorphic in some domain which have a certain property is likely to be normal if there does not exist a non-constant entire function with this property. More generally, properties which are satisfied only by "few" entire functions often lead to normality. We refer to [2], [14] and [16] for a thorough discussion of Bloch's principle.

The following normal family analogue of Theorem A was proved in [3, Theorem 1.1]. Here \mathbb{D} denotes the unit disk.

Theorem C. Let L_{0} and L_{1} be two distinct rays emanating from the origin and let \mathcal{F} be the family of all functions holomorphic in \mathbb{D} for which all zeros lie on L_{0} and all 1-points lie on L_{1}. Then \mathcal{F} is normal in $\mathbb{D} \backslash\{0\}$.

The purpose of this paper is to prove a normal family analogue of Theorem B^{\prime}.

Theorem 1.1. Let L_{0}, L_{1} and L_{-1} be three distinct rays emanating from the origin and let \mathcal{F} be the family of all functions holomorphic in \mathbb{D} for which all zeros lie on L_{0} and all 1-points lie on $L_{1} \cup L_{-1}$. Assume that neither $\angle\left(L_{-1}, L_{1}\right)=\pi$ nor $\angle\left(L_{0}, L_{1}\right)=\angle\left(L_{0}, L_{-1}\right)<\pi / 2$. Then \mathcal{F} is normal in $\mathbb{D} \backslash\{0\}$.

It was shown in [4, Theorem 3] that if α is of the form $\alpha=2 \pi / n$ with $n \in$ $\mathbb{N}, n \geq 5$, then there exist rays L_{0} and $L_{ \pm 1}$ with $\angle\left(L_{0}, L_{1}\right)=\angle\left(L_{0}, L_{-1}\right)=\alpha$ and an entire function f with all zeros on L_{0} and all 1-points on L_{1} and L_{-1}. In [7] such an entire function f was constructed for every $\alpha \in(0, \pi / 3]$.

The functions constructed in [4, 7] have the property that $f\left(r e^{i \theta}\right) \rightarrow 0$ as $r \rightarrow \infty$ for $|\theta|<\alpha$ while $f\left(r e^{i \theta}\right) \rightarrow \infty$ as $r \rightarrow \infty$ for $\alpha<|\theta| \leq \pi$. Considering
the family $\{f(k z)\}_{k \in \mathbb{N}}$ we see that the conclusion of Theorem 1.1 does not hold if $\angle\left(L_{0}, L_{1}\right)=\angle\left(L_{0}, L_{-1}\right) \in(0, \pi / 3] \cup\{2 \pi / 5\}$. The example $\left\{e^{k z}\right\}_{k \in \mathbb{N}}$ shows that it does not hold if $\angle\left(L_{-1}, L_{1}\right)=\pi$.

The question whether the conclusion of Theorem 1.1 holds if $\angle\left(L_{0}, L_{1}\right)=$ $\angle\left(L_{0}, L_{-1}\right) \in(\pi / 3, \pi / 2) \backslash\{2 \pi / 5\}$ remains open.

We note that Theorem B^{\prime} follows from Theorem 1.1. To see this we only have to note that if f is a transcendental entire function and $\left(z_{k}\right)$ is a sequence tending to ∞ such that $\left|f\left(z_{k}\right)\right| \leq 1$ for all $k \in \mathbb{N}$, then $\left\{f\left(2\left|z_{k}\right| z\right)\right\}_{k \in \mathbb{N}}$ is not normal at some point of modulus $\frac{1}{2}$; see the remark after Theorem 1.1 in [4].

A key tool in the theory of normal families is Zalcman's lemma [15]; see Lemma 2.1 below. An extension of this result (Lemma 2.2 below) was also crucial in the proof of Theorem C] in [3]. In fact, this extension was used to prove the following result [3, Theorem 1.3] from which Theorem C] can be deduced.

Theorem D. Let D be a domain and let L be a straight line which divides D into two subdomains D^{+}and D^{-}. Let \mathcal{F} be a family of functions holomorphic in D which do not have zeros in D and for which all 1-points lie on L.

Suppose that \mathcal{F} is not normal at $z_{0} \in D \cap L$ and let $\left(f_{k}\right)$ be a sequence in \mathcal{F} which does not have a subsequence converging in any neighborhood of z_{0}. Suppose that $\left(\left.f_{k}\right|_{D^{+}}\right)$converges. Then either $\left.f_{k}\right|_{D^{+}} \rightarrow 0$ and $\left.f_{k}\right|_{D^{-}} \rightarrow \infty$ or $\left.f_{k}\right|_{D^{+}} \rightarrow \infty$ and $\left.f_{k}\right|_{D^{-}} \rightarrow 0$.

Note that \mathcal{F} is normal in D^{+}by Montel's theorem. So it is no restriction to assume that $\left(\left.f_{k}\right|_{D^{+}}\right)$converges, since this can be achieved by passing to a subsequence.

Theorem D will also play an important role in the proof of Theorem 1.1. However, we will also need the following addendum to Theorem D. Here and in the following $D(a, r)$ and $\bar{D}(a, r)$ denote the open and closed disk of radius r centered at a point $a \in \mathbb{C}$.

Proposition 1.1. Let D, L, \mathcal{F}, z_{0} and $\left(f_{k}\right)$ be as in Theorem D. Let $r>0$ with $\bar{D}\left(z_{0}, r\right) \subset D$. Then for sufficiently large k there exists a 1 -point a_{k} of f_{k} such that $a_{k} \rightarrow z_{0}$ and if M_{k} is the line orthogonal to L which intersects L at a_{k}, then $\left|f_{k}(z)\right| \neq 1$ for $z \in M_{k} \cap \bar{D}\left(z_{0}, r\right) \backslash\left\{a_{k}\right\}$.

For large k this yields that $\left|f_{k}(z)\right|>1$ for $z \in M_{k} \cap D^{+} \cap \bar{D}\left(z_{0}, r\right)$ and $\left|f_{k}(z)\right|<1$ for $z \in M_{k} \cap D^{-} \cap \bar{D}\left(z_{0}, r\right)$, or vice versa.
Acknowledgment. We thank the referee for helpful comments.

2 Preliminaries

The lemma of Zalcman already mentioned in the introduction is the following.
Lemma 2.1. (Zalcman's Lemma) Let \mathcal{F} be a family of functions meromorphic in a domain D in \mathbb{C}. Then \mathcal{F} is not normal at a point $z_{0} \in D$ if and only if there exist
(i) points $z_{k} \in D$ with $z_{k} \rightarrow z_{0}$,
(ii) positive numbers ρ_{k} with $\rho_{k} \rightarrow 0$,
(iii) functions $f_{k} \in \mathcal{F}$
such that

$$
f_{k}\left(z_{k}+\varrho_{k} z\right) \rightarrow g(z)
$$

locally uniformly in \mathbb{C} with respect to the spherical metric, where g is a nonconstant meromorphic function in \mathbb{C}.

In the proof (see also [1, Section 4] or [16, p. 217f] besides [15]) one considers the spherical derivative

$$
g_{k}^{\#}(z)=\frac{\left|g_{k}^{\prime}(z)\right|}{1+\left|g_{k}(z)\right|^{2}}
$$

of the function g_{k} defined by

$$
\begin{equation*}
g_{k}(z)=f_{k}\left(z_{k}+\varrho_{k} z\right) \tag{2.1}
\end{equation*}
$$

and shows that for suitably chosen $f_{k}, z_{k}, \varrho_{k}$ and R_{k} with $R_{k} \rightarrow \infty$ we have $g_{k}^{\#}(0)=1$ as well as

$$
g_{k}^{\#}(z) \leq 1+o(1) \quad \text { for }|z| \leq R_{k} \text { as } k \rightarrow \infty
$$

Marty's theorem then implies that $\left(g_{k}\right)$ has a locally convergent subsequence.
The following addendum to Lemma 2.1 was proved in [3, Lemma 2.2].
Lemma 2.2. Let $t_{0}>0$ and $\varphi:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$ be a non-decreasing function such that $\varphi(t) / t \rightarrow 0$ as $t \rightarrow \infty$ and

$$
\int_{t_{0}}^{\infty} \frac{d t}{t \varphi(t)}<\infty
$$

Then one may choose z_{k}, ϱ_{k} and f_{k} in Zalcman's Lemma 2.1 such that

$$
R_{k}:=\frac{1}{\varrho_{k} \varphi\left(1 / \varrho_{k}\right)} \rightarrow \infty \quad \text { as } k \rightarrow \infty
$$

and the functions g_{k} given by (2.1) are defined in the disks $D\left(0, R_{k}\right)$ and satisfy

$$
\begin{equation*}
g_{k}^{\#}(z) \leq 1+\frac{|z|}{R_{k}} \quad \text { for }|z|<R_{k} \tag{2.2}
\end{equation*}
$$

The next lemma is standard [12, Proposition 1.10].
Lemma 2.3. Let Ω be a convex domain and let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic. If $\operatorname{Re} f^{\prime}(z)>0$ for all $z \in \Omega$, then f is univalent.

The following result can be found in [8, p. 112].
Lemma 2.4. Let $a \in \mathbb{C}, r>0$ and let $f: D(a, r) \rightarrow \mathbb{C}$ be univalent. Then

$$
\left|\arg \left(\frac{f(z)-f(a)}{f^{\prime}(a)(z-a)}\right)\right| \leq \log \frac{1+\frac{|z-a|}{r}}{1-\frac{|z-a|}{r}}
$$

for $z \in D(a, r)$.
The result is stated in [8] for the special case that $a=0, r=1, f(0)=0$ and $f^{\prime}(0)=1$, but the version given above follows directly from this special case.

Proof of Proposition 1.1. We recall some arguments of the proof of Theorem D in [3] and then describe the additional arguments that have to be made.

As in [3] we may assume that $L=\mathbb{R}$ and we use Zalcman's Lemma 2.1 as well as Lemma 2.2, applied with $\varphi(t)=(\log t)^{2}$, to obtain a sequence $\left(z_{k}\right)$ tending to z_{0} and a sequence $\left(\rho_{k}\right)$ tending to 0 such that

$$
R_{k}:=\frac{1}{\varrho_{k}\left(\log \varrho_{k}\right)^{2}} \rightarrow \infty
$$

and the function g_{k} given by (2.1) is defined in the disk $D\left(0, R_{k}\right)$ and satisfies 2.2 and $g_{k}^{\#}(0)=1$.

As in [3, Proof of Theorem 1.3] we find a sequence $\left(b_{k}\right)$ of 1-points of g such that

$$
g_{k}(z)=\exp \left(c_{k}\left(z-b_{k}\right)+\delta_{k}(z)\right),
$$

where (see [3, (3.4) and (3.5)])

$$
\begin{equation*}
\left|c_{k}+2 i\right| \leq \frac{C}{R_{k}} \quad \text { or } \quad\left|c_{k}-2 i\right| \leq \frac{C}{R_{k}} \tag{2.3}
\end{equation*}
$$

with some constant C and (see [3, (2.22)])

$$
\begin{equation*}
\left|\delta_{k}(z)\right| \leq 2^{7} \frac{\left|z-b_{k}\right|^{2}}{R_{k}} \quad \text { for }\left|z-b_{k}\right| \leq \frac{1}{16} R_{k} . \tag{2.4}
\end{equation*}
$$

Without loss of generality we may assume that the first alternative holds in (2.3).

We put

$$
h_{k}(z)=c_{k}\left(z-b_{k}\right)+\delta_{k}(z)
$$

so that $g_{k}(z)=\exp h_{k}(z)$. We will show that h_{k} is univalent in $D\left(b_{k}, 2 s_{k}\right)$ where $s_{k}=2^{-11} R_{k}$. In order to do so we note that for $\left|z-b_{k}\right| \leq 2 s_{k}$ we have

$$
\left|\delta_{k}^{\prime}(z)\right|=\frac{1}{2 \pi}\left|\int_{\left|\zeta-b_{k}\right|=4 s_{k}} \frac{\delta_{k}(\zeta)}{(z-\zeta)^{2}} d \zeta\right| \leq 4 s_{k} \frac{1}{\left(2 s_{k}\right)^{2}} \max _{\left|\zeta-b_{k}\right|=4 s_{k}}\left|\delta_{k}(\zeta)\right|
$$

Since $4 s_{k}=2^{-9} R_{k}<R_{k} / 16$ we may apply (2.4) to estimate the maximum on the right hand side and obtain

$$
\left|\delta_{k}^{\prime}(z)\right| \leq \frac{1}{s_{k}} 2^{7} \frac{\left(4 s_{k}\right)^{2}}{R_{k}}=1 \quad \text { for }\left|z-b_{k}\right| \leq 2 s_{k}
$$

Thus, since we assumed that the first alternative holds in (2.3),

$$
\operatorname{Re}\left(i h_{k}^{\prime}(z)\right)=\operatorname{Re}\left(i c_{k}+i \delta_{k}^{\prime}(z)\right) \geq 2-\frac{C}{R_{k}}-1>0
$$

for $z \in D\left(b_{k}, 2 s_{k}\right)$ if k is sufficiently large. Lemma 2.3 implies that $i h_{k}$ and hence h_{k} are univalent in this disk. Since $h_{k}\left(b_{k}\right)=0$ and, by (2.4), $\delta_{k}^{\prime}\left(b_{k}\right)=0$ and thus $h_{k}^{\prime}\left(b_{k}\right)=c_{k}$, Lemma 2.4 now yields that if $z \in \bar{D}\left(b_{k}, s_{k}\right)$, then

$$
\left|\arg \left(\frac{h_{k}(z)}{c_{k}\left(z-b_{k}\right)}\right)\right| \leq \log 3 .
$$

For $t \in \mathbb{R}$ with $0<|t| \leq s_{k}$ we thus have

$$
\left|\arg \left(\frac{h_{k}\left(b_{k}+i t\right)}{i c_{k} t}\right)\right| \leq \log 3 .
$$

Since we assumed that the first alternative holds in (2.3), this implies for large k that

$$
\left|\arg \left(h_{k}\left(b_{k}+i t\right)\right)\right| \leq \log 3+\arcsin \left(\frac{C}{2 R_{k}}\right)<\frac{1}{2} \pi \quad \text { for } 0<t \leq s_{k}
$$

while

$$
\left|\arg \left(h_{k}\left(b_{k}+i t\right)\right)-\pi\right|<\frac{1}{2} \pi \quad \text { for }-s_{k} \leq t<0 .
$$

Hence

$$
\operatorname{Re}\left(h_{k}\left(b_{k}+i t\right)\right) \begin{cases}>0 & \text { if } 0<t \leq s_{k} \\ <0 & \text { if }-s_{k} \leq t<0\end{cases}
$$

so that

$$
\left|g_{k}\left(b_{k}+i t\right)\right|=\exp \left(\operatorname{Re}\left(h_{k}\left(b_{k}+i t\right)\right)\right) \begin{cases}>1 & \text { if } 0<t \leq s_{k} \tag{2.5}\\ <1 & \text { if }-s_{k} \leq t<0\end{cases}
$$

As in [3, (3.2), (3.6) and (3.7)] we put

$$
a_{k}=z_{k}+\rho_{k} b_{k}, \quad u_{k}=b_{k}+i s_{k}=b_{k}+i 2^{-11} R_{k} \quad \text { and } \quad \alpha_{k}=z_{k}+\rho_{k} u_{k}
$$

By (2.1) and (2.5) we have $\left|f_{k}(z)\right|>1$ for z in the line segment $\left(a_{k}, \alpha_{k}\right]$. Choose $d>r$ such that $\bar{D}\left(z_{0}, d\right) \in D$. We put $\beta_{k}=z_{k}+i d$. Then $\beta_{k} \in D^{+}$ for large k and as in [3] we can use Landau's theorem to show that we also have $\left|f_{k}(z)\right|>1$ for $z \in\left[\alpha_{k}, \beta_{k}\right]$. Altogether thus $\left|f_{k}(z)\right|>1$ for $z \in\left(a_{k}, \beta_{k}\right]$ and hence for $z \in M_{k} \cap D^{+} \cap \bar{D}\left(z_{0}, r\right)$ and large k. Analogously, $\left|f_{k}(z)\right|<1$ for $z \in M_{k} \cap D^{-} \cap \bar{D}\left(z_{0}, r\right)$ and large k.

Lemma 2.5. Let $0<\alpha<\pi$ and $\alpha<\beta<2 \pi-\alpha$. Let $u: \mathbb{D} \rightarrow[-\infty, \infty)$ be a subharmonic function which is harmonic in $\mathbb{D} \backslash\left\{r e^{i \beta}: 0 \leq r<1\right\}$. Suppose that $u(z)>0$ for $|\arg z|<\alpha$ while $u(z) \leq 0$ for $\alpha \leq|\arg z| \leq \pi$. Then $\alpha \geq \pi / 2$. Moreover, if $\alpha>\pi / 2$, then $\beta=\pi$. In addition, if u is harmonic in $\mathbb{D} \backslash\{0\}$, then $\alpha=\pi / 2$.

Proof. Let $\gamma=2 \alpha / \pi$ and define $v:\{z \in \mathbb{D}: \operatorname{Re} z \geq 0\} \rightarrow[-\infty, \infty)$ by $v(z)=u\left(z^{\gamma}\right)$. Then $v(z)>0$ for $\operatorname{Re} z>0$ while $v(z) \leq 0$ for $\operatorname{Re} z=0$. In fact, $v(z)=0$ for $\operatorname{Re} z=0$ by upper semicontinuity. We have $v=\operatorname{Re} f$ for some function f holomorphic in $\{z \in \mathbb{D}: \operatorname{Re} z>0\}$. By the Schwarz reflection principle f extends to a function holomorphic in \mathbb{D}. Hence f has a power series expansion $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ convergent in \mathbb{D}. With $\delta=1 / \gamma$ we thus have

$$
u(z)=v\left(z^{1 / \gamma}\right)=\operatorname{Re} f\left(z^{\delta}\right)=\operatorname{Re}\left(\sum_{k=0}^{\infty} a_{k} z^{k \delta}\right)
$$

for $z \in \mathbb{D} \backslash\left\{r e^{i \beta}: 0 \leq r<1\right\}$, meaning that

$$
u\left(r e^{i \theta}\right)=\operatorname{Re}\left(\sum_{k=0}^{\infty} a_{k} r^{\delta} e^{i k \delta \theta}\right)
$$

for $0<r<1$ and $\beta-2 \pi<\theta<\beta$.
Since $\operatorname{Re} f(z)=v(z)>0$ for $\operatorname{Re} z>0$ and $\operatorname{Re} f(z)=0$ for $\operatorname{Re} z=0$ we find that $\operatorname{Re} a_{0}=0$ and $a_{1}>0$. It follows that

$$
u\left(r e^{i \theta}\right)=a_{1} r^{\delta} \cos (\delta \theta)+\mathcal{O}\left(r^{2 \delta}\right)
$$

as $r \rightarrow 0$, uniformly for $\beta-2 \pi<\theta<\beta$. We may assume that $\beta \geq \pi$. The condition that $u\left(r e^{i \theta}\right) \leq 0$ for $\alpha \leq \theta<\beta$ then implies that $\delta \pi \leq \delta \beta \leq$ $3 \pi / 2$ so that $\delta \leq 3 / 2$. Suppose that $\delta \neq 1$. Since u is subharmonic and a connected set containing more than one point is non-thin at every point of its closure [13, Theorem 3.8.3], we have $u\left(r e^{i \beta}\right)=u\left(r e^{i(\beta-2 \pi)}\right)$ and thus $\cos (\delta \beta)=\cos (\delta(\beta-2 \pi))$. This yields that $\beta=\pi$. Since u is subharmonic, we also have

$$
\begin{aligned}
0=u(0) & \leq \frac{1}{2 \pi} \int_{\beta-2 \pi}^{\beta} u\left(r e^{i \theta}\right) d \theta \\
& =a_{1} r^{\delta} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos (\delta \theta) d \theta+\mathcal{O}\left(r^{2 \delta}\right) \\
& =a_{1} r^{\delta} \frac{1}{\delta \pi} \sin (\delta \pi)+\mathcal{O}\left(r^{2 \delta}\right)
\end{aligned}
$$

Hence $\sin (\delta \pi) \geq 0$. Since $\delta \leq 3 / 2$ and since we assumed that $\delta \neq 1$ this implies that $\delta<1$. Overall thus $\delta \leq 1$ so that $\alpha=\gamma \pi / 2=\pi /(2 \delta) \geq \pi / 2$, and if $\alpha>\pi / 2$ so that $\delta<1$, then $\beta=\pi$. Finally, u can be harmonic only if $\delta=1$, which means that $\alpha=\pi / 2$.

For a bounded domain G, a point $z \in G$ and a compact subset A of ∂G let $\omega(z, A, G)$ denote the harmonic measure of A at a point $z \in G$; see, e.g., [13, §4.3]. It is the solution of the Dirichlet problem for the characteristic function χ_{A} of A on the boundary of G. Thus

$$
\begin{equation*}
\omega(z, A, G)=\sup _{u} u(z), \tag{2.6}
\end{equation*}
$$

where the supremum is taken over all functions u subharmonic in G which satisfy $\lim \sup _{z \rightarrow \zeta} u(z) \leq \chi_{A}(\zeta)$ for all $\zeta \in \partial G$.

Lemma 2.6. Let G and H be bounded domains and let $A \subset \partial G$ and $B \subset \partial H$ be compact. If $G \subset H$ and $A \supset \partial G \cap(H \cup B)$, then $\omega(z, A, G) \geq \omega(z, B, H)$ for all $z \in G$.

Proof. Let $\zeta \in \partial G \backslash A$. Then $\zeta \in \partial G \backslash(H \cup B)$ and thus $\zeta \in \partial H \backslash B$. Hence $\lim _{z \rightarrow \zeta} \omega(z, B, H)=0$. We conclude that $\lim \sup _{z \rightarrow \zeta} \omega(z, B, H) \leq \chi_{A}(\zeta)$ for all $\zeta \in \partial G$. Since $u(z)=\omega(z, B, H)$ is an admissible choice in (2.6), the conclusion follows.

3 Proof of Theorem 1.1

Without loss of generality we may assume that L_{1} and L_{-1} are symmetric with respect to the real axis and that L_{1} is in the upper half-plane. Thus $L_{ \pm 1}=\left\{r e^{ \pm i \alpha}: r \geq 0\right\}$ for some $\alpha \in(0, \pi)$. We may also assume that $L_{0}=\left\{r e^{i \beta}: r \geq 0\right\}$ where $\alpha<\beta<2 \pi-\alpha$. We define

$$
\begin{aligned}
S & =\left\{r e^{i \theta}: 0<r<1,|\theta|<\alpha\right\} \\
S^{+} & =\left\{r e^{i \theta}: 0<r<1, \alpha<\theta<\beta\right\} \\
S^{-} & =\left\{r e^{i \theta}: 0<r<1, \beta<\theta<2 \pi-\alpha\right\} .
\end{aligned}
$$

By Montel's theorem, \mathcal{F} is normal in $\mathbb{D} \backslash\left(L_{1} \cup L_{0} \cup L_{-1}\right)$. Thus we only have to prove that \mathcal{F} is normal on $\mathbb{D} \cap L_{j} \backslash\{0\}$ for $j \in\{0, \pm 1\}$.

First we prove that \mathcal{F} is normal on $\mathbb{D} \cap L_{0} \backslash\{0\}$. In order to do so, suppose that \mathcal{F} is not normal at some point $z_{0} \in L_{0} \backslash\{0\}$. Applying Theorem D to the family $\{1-f: f \in \mathcal{F}\}$ we see that there exists a sequence $\left(f_{k}\right)$ in \mathcal{F} such that either $\left.f_{k}\right|_{S^{+}} \rightarrow 1$ and $\left.f_{k}\right|_{S^{-}} \rightarrow \infty$ or $\left.f_{k}\right|_{S^{+}} \rightarrow \infty$ and $\left.f_{k}\right|_{S^{-}} \rightarrow 1$. Without loss of generality we may assume that the first alternative holds. If $\left(f_{k}\right)$ is not normal at some $z_{1} \in L_{1} \backslash\{0\}$, then - again by Theorem D-
there exists a subsequence of $\left(f_{k}\right)$ which tends to 0 or to ∞ in S^{+}. This is incompatible with our previous assumption that $\left.f_{k}\right|_{S^{+}} \rightarrow 1$. Hence $\left(f_{k}\right)$ is normal on $\mathbb{D} \cap L_{1} \backslash\{0\}$. We conclude that $\left(f_{k}\right)$ is normal in $S^{+} \cup S \cup L_{1} \backslash\{0\}$ and hence that $\left.f_{k}\right|_{S+\cup S \cup L_{1} \backslash\{0\}} \rightarrow 1$. In particular, $\left.f_{k}\right|_{S} \rightarrow 1$. On the other hand, $\left.f_{k}\right|_{S^{-}} \rightarrow \infty$. Hence $\left(f_{k}\right)$ is not normal at any point of L_{-1}. Since $\left.f_{k}\right|_{S^{-}} \rightarrow \infty$ we can now deduce from Theorem D that $\left.f_{k}\right|_{S} \rightarrow 0$. This contradicts our previous finding that $\left.f_{k}\right|_{S} \rightarrow 1$. Thus \mathcal{F} is normal on $L_{0} \backslash\{0\}$. Putting $T=S^{+} \cup S^{-} \cup L_{0} \backslash\{0\}$ we conclude that \mathcal{F} is normal in T.

Suppose now that \mathcal{F} is not normal at some point $z_{0} \in \mathbb{D} \backslash\{0\}$. It follows that $z_{0} \in\left(L_{1} \cup L_{-1}\right) \backslash\{0\}$. Without loss of generality we may assume that $z_{0} \in L_{1} \backslash\{0\}$. Theorem Dimplies that there exists a sequence $\left(f_{k}\right)$ in \mathcal{F} such that either $\left.f_{k}\right|_{S} \rightarrow \infty$ and $\left.f_{k}\right|_{T} \rightarrow 0$ or $\left.f_{k}\right|_{S} \rightarrow 0$ and $\left.f_{k}\right|_{T} \rightarrow \infty$. In particular we see that the sequence $\left(f_{k}\right)$ is not normal at any point of $L_{1} \cup L_{-1}$. We begin by considering the case that the first of the two above possibilities holds; that is, $\left.f_{k}\right|_{S} \rightarrow \infty$ and $\left.f_{k}\right|_{T} \rightarrow 0$.

We define $u_{k}: \mathbb{D} \rightarrow[-\infty, \infty)$,

$$
u_{k}(z)=\frac{\log \left|f_{k}(z)\right|}{\log \left|f_{k}\left(\frac{1}{2}\right)\right|}
$$

We will prove that the sequence $\left(u_{k}\right)$ is locally bounded in \mathbb{D}. Once this is known, we can deduce (see, for example, [9, Theorems 4.1.8, 4.1.9] or [10, Theorems 3.2.12, 3.2.13]) that some subsequence of $\left(u_{k}\right)$ converges to a limit function u which is subharmonic in \mathbb{D} and harmonic in $\mathbb{D} \backslash L_{0}$. Moreover, $u(z)>0$ for $z \in S$ while $u(z) \leq 0$ for $z \in \mathbb{D} \backslash S$.

Lemma 2.5 now implies that $\alpha \geq \pi / 2$ and that $\beta=\pi$ if $\alpha>\pi / 2$. The conclusion then follows since if $\alpha=\pi / 2$, then $\angle\left(L_{-1}, L_{1}\right)=2 \alpha=\pi$, while if $\alpha>\pi / 2$ and thus $\beta=\pi$, then $\angle\left(L_{0}, L_{1}\right)=\beta-\alpha=\pi-\alpha<\pi / 2$ and $\angle\left(L_{0}, L_{-1}\right)=2 \pi-\alpha-\beta=\pi-\alpha=\angle\left(L_{0}, L_{1}\right)$.

In order to prove that $\left(u_{k}\right)$ is locally bounded, let $0<\varepsilon<1 / 8$. Proposition 1.1 yields that, for sufficiently large k, there exist simple closed curves Γ_{k} in $\{z: 1-\varepsilon / 2<|z|<1-\varepsilon / 4\}$ and γ_{k} in $\{z: \varepsilon / 2<|z|<\varepsilon\}$ such that $\left|f_{k}(z)\right|>1$ for $z \in\left(\Gamma_{k} \cup \gamma_{k}\right) \cap S$ while $\left|f_{k}(z)\right|<1$ for $z \in\left(\Gamma_{k} \cup \gamma_{k}\right) \cap T$. Moreover, both Γ_{k} and γ_{k} surround 0 and they intersect L_{1} and L_{-1} only once, at 1-points of f_{k}. In fact, these curves can be constructed by taking small segments orthogonal to L_{1} and L_{-1}, and connecting the endpoints of these segments within the intersection of S and T with the corresponding annuli.

Let D_{k} be the domain between γ_{k} and Γ_{k} and let X_{k} be the set of all
$z \in \overline{D_{k}}$ for which $\left|f_{k}(z)\right|=1$. Then both $X_{k} \cap \Gamma_{k}$ and $X_{k} \cap \gamma_{k}$ consist of two 1-points of f_{k}. Let U_{k} be the component of $D_{k} \backslash X_{k}$ which contains $\frac{1}{2}$. Next, for large k we have $\left|f_{k}(z)\right|<1$ for $z \in L_{0}$ with $\varepsilon / 2 \leq|z| \leq 1-\varepsilon / 4$ and hence in particular for $z \in L_{0} \cap D_{k}$. Let V_{k} be the component of $D_{k} \backslash X_{k}$ which contains $L_{0} \cap D_{k}$. Then, for large k, we have $\left|f_{k}(z)\right|>1$ for $z \in U_{k}$ while $\left|f_{k}(z)\right|<1$ for $z \in V_{k}$.

We claim that $D_{k} \backslash X_{k}=U_{k} \cup V_{k}$. Indeed, let W be a component of $D_{k} \backslash X_{k}$ which is different from U_{k} and V_{k}. Since $\left(\Gamma_{k} \cup \gamma_{k}\right) \cap S \subset \partial U_{k}$ and $\left(\Gamma_{k} \cup \gamma_{k}\right) \cap T \subset \partial V_{k}$ we have $\partial W \subset X_{k}$ for large k. By the maximum principle, we thus have $\left|f_{k}(z)\right|<1$ for $z \in W$. The minimum principle now yields that W contains a zero of f_{k}. Hence W and thus ∂W intersect $L_{0} \cap \overline{D_{k}}$, which is a contradiction for large k, since $\partial W \subset X_{k}$ and thus $\left|f_{k}(z)\right|=1$ for $z \in \partial W$, but $\left.f_{k}\right|_{L_{0} \cap \overline{D_{k}}} \rightarrow 0$. Thus $D_{k} \backslash X_{k}=U_{k} \cup V_{k}$ as claimed. We also conclude that X_{k} consists of two analytic curves $\sigma_{1, k}$ and $\sigma_{-1, k}$, which are close to the rays L_{1} and L_{-1}.

We now prove that $\left(u_{k}\right)$ is bounded in $\bar{D}(0,1-\varepsilon)$. In order to do so we choose $c_{k} \in \partial D(0,1-\varepsilon)$ such that

$$
u_{k}\left(c_{k}\right)=\max _{|z|=1-\varepsilon} u_{k}(z)
$$

Clearly, $c_{k} \in U_{k}$ for large k. For $j \in\{1,2,3,4\}$, we put $r_{j}=1-\varepsilon j / 4$. Thus $\left|c_{k}\right|=1-\varepsilon=r_{4}$. Similar to the curve Γ_{k} in $\left\{z: r_{2}<|z|<r_{1}\right\}$ there exists a closed curve Γ_{k}^{\prime} in $\left\{z: r_{4}<|z|<r_{3}\right\}$ which surrounds 0 such that $\left|f_{k}(z)\right|>1$ for $z \in \Gamma_{k}^{\prime} \cap S$ while $\left|f_{k}(z)\right|<1$ for $z \in \Gamma_{k}^{\prime} \cap T$. Thus $\Gamma_{k}^{\prime} \cap S \subset U_{k}$ and $\Gamma_{k}^{\prime} \cap T \subset V_{k}$.

By the maximum principle, there exists a curve ξ_{k} in U_{k} which connects c_{k} with $\partial \mathbb{D}$ and on which u_{k} is bigger than $u_{k}\left(c_{k}\right)$. Let τ_{k} be a part of ξ_{k} which connects $\partial D\left(0, r_{3}\right)$ with $\partial D\left(0, r_{2}\right)$ and, except for its endpoints, is contained in $\left\{z: r_{3}<|z|<r_{2}\right\}$; see Figure 1. Then $\left|u_{k}(z)\right| \geq u_{k}\left(c_{k}\right)$ for $z \in \tau_{k}$. Let $e_{k, j}$ be the endpoint of τ_{k} on $\partial D\left(0, r_{j}\right)$, for $j \in\{2,3\}$. Without loss of generality we may assume that the distance of $e_{k, 3}$ to L_{-1} is less than or equal to the distance to L_{1}, which means that $\operatorname{Im} e_{k, 3} \leq 0$.

We define a domain G_{k} as follows; cf. Figure 1. If τ_{k} does not intersect the segment $\left\{r e^{i(\alpha-\varepsilon)}: r_{3} \leq r \leq r_{2}\right\}$, let G_{k} be the domain bounded by the segments $\left\{r e^{-i(\alpha-\varepsilon)}: \frac{1}{4} \leq r \leq r_{3}\right\}$ and $\left\{r e^{i(\alpha-\varepsilon)}: \frac{1}{4} \leq r \leq r_{2}\right\}$, the arc $\left\{\frac{1}{4} e^{i \theta}:|\theta| \leq \alpha-\varepsilon\right\}$, the arc of $\partial D\left(0, r_{3}\right)$ that connects $e_{k, 3}$ and $r_{3} e^{-i(\alpha-\varepsilon)}$ in $\left\{r_{3} e^{i \theta}:|\theta| \leq \alpha+\varepsilon\right\}$, the arc of $\partial D\left(0, r_{2}\right)$ that connects $e_{k, 2}$ and $r_{2} e^{i(\alpha-\varepsilon)}$ in $\left\{r_{2} e^{i \theta}:|\theta| \leq \alpha+\varepsilon\right\}$, and the curve τ_{k}.

Figure 1: The curves ξ_{k}, τ_{k} and Γ_{k}^{\prime} and the domains G_{k} (left) and H (right).

If τ_{k} intersects the segment $\left\{r e^{i(\alpha-\varepsilon)}: r_{3} \leq r \leq r_{2}\right\}$, let d_{k} denote the first point of intersection so that the part τ_{k}^{\prime} of τ_{k} which is between $e_{k, 3}$ and d_{k} is contained in $\left\{r e^{i \theta}: r_{3}<r<r_{2},-\alpha-\varepsilon<\theta<\alpha-\varepsilon\right\}$. We then define G_{k} as the domain bounded by the the curve τ_{k}^{\prime}, the segment $\left\{r e^{i(\alpha-\varepsilon)}: \frac{1}{4} \leq r \leq\left|d_{k}\right|\right\}$ and - as before - the arc $\left\{\frac{1}{4} e^{i \theta}:|\theta| \leq \alpha-\varepsilon\right\}$, the segment $\left\{r e^{-i(\alpha-\varepsilon)}: \frac{1}{4} \leq r \leq r_{3}\right\}$ and the arc of $\partial D\left(0, r_{3}\right)$ that connects $e_{k, 3}$ and $r_{3} e^{-i(\alpha-\varepsilon)}$ in $\left\{r_{3} e^{i \theta}:|\theta| \leq \alpha+\varepsilon\right\}$.

We claim that $G_{k} \subset U_{k}$ for large k. In order to prove this it suffices to prove that $\partial G_{k} \subset U_{k}$. We restrict to the case that τ_{k} does not intersect the segment $\left\{r e^{i(\alpha-\varepsilon)}: r_{3} \leq r \leq r_{2}\right\}$, since the other case is similar. First we note that the segments $\left\{r e^{-i(\alpha-\varepsilon)}: \frac{1}{4} \leq r \leq r_{3}\right\}$ and $\left\{r e^{i(\alpha-\varepsilon)}: \frac{1}{4} \leq r \leq r_{2}\right\}$ as well as the $\operatorname{arc}\left\{\frac{1}{4} e^{i \theta}:|\theta| \leq \alpha-\varepsilon\right\}$ are clearly in U_{k} for large k, since $\left.f_{k}\right|_{S} \rightarrow \infty$ as $k \rightarrow \infty$. Since ξ_{k} is in U_{k} and τ_{k} is a subcurve of ξ_{k}, the curve τ_{k} is also
in U_{k}.
It remains to show that the arc of $\partial D\left(0, r_{3}\right)$ that connects $e_{k, 3}$ and $r_{3} e^{-i(\alpha-\varepsilon)}$ is in U_{k}. If this is not the case, then this arc must intersect ∂U_{k} and thus must intersect the curve $\sigma_{-1, k}$, which constitutes the part of ∂U_{k} that is near L_{-1}. Since ξ_{k} is in U_{k} this means that $\sigma_{-1, k}$ must also intersect Γ_{k}^{\prime}, at a point between the intersections of Γ_{k}^{\prime} with ξ_{k} and with the positive real axis. But this part of Γ_{k}^{\prime} is in U_{k}, since $\Gamma_{k}^{\prime} \cap S \subset U_{k}$ and $\Gamma_{k}^{\prime} \cap T \subset V_{k}$. Hence $\sigma_{-1, k}$ does not intersect the arc connecting $e_{k, 3}$ and $r_{3} e^{-i(\alpha-\varepsilon)}$ and thus this arc is in U_{k}. Similarly, we see that the arc of $\partial D\left(0, r_{2}\right)$ that connects $e_{k, 2}$ and $r_{2} e^{i(\alpha-\varepsilon)}$ is in U_{k}. Altogether thus $G_{k} \subset U_{k}$ for large k.

Let

$$
\begin{aligned}
H= & \left\{r e^{i \theta}: \frac{1}{4}<r<r_{3},|\theta|<\alpha-\varepsilon\right\} \cup\left\{r_{3} e^{i \theta}: 0<\theta<\alpha-\varepsilon\right\} \\
& \cup\left\{r e^{i \theta}: r_{3}<r<r_{2},-\alpha-\varepsilon<\theta<\alpha-\varepsilon\right\}
\end{aligned}
$$

and let $K=\left\{r e^{i(-\alpha-\varepsilon)}: r_{3} \leq r \leq r_{2}\right\} \subset \partial H$; see Figure 1. Then $G_{k} \subset H$.
It follows from Lemma 2.6 and the configuration of the domains G_{k} and H that $\omega(z, K, H) \leq \omega\left(z, \tau_{k}, G_{k}\right)$ for $z \in G_{k}$. In particular, $\omega\left(\frac{1}{2}, K, H\right) \leq$ $\omega\left(\frac{1}{2}, \tau_{k}, G_{k}\right)$. On the other hand, since $G_{k} \subset U_{k}$ and thus $u_{k}(z) \geq 0$ for $z \in$ ∂G_{k} while $u_{k}(z) \geq u_{k}\left(c_{k}\right)$ for $z \in \tau_{k}$ it follows that $u_{k}(z) \geq u_{k}\left(c_{k}\right) \omega\left(z, \tau_{k}, G_{k}\right)$ for $z \in G_{k}$. Altogether we thus have

$$
1=u_{k}\left(\frac{1}{2}\right) \geq u_{k}\left(c_{k}\right) \omega\left(\frac{1}{2}, \tau_{k}, G_{k}\right) \geq u_{k}\left(c_{k}\right) \omega\left(\frac{1}{2}, K, H\right)
$$

It follows that

$$
\max _{|z|=1-\varepsilon} u_{k}(z)=u_{k}\left(c_{k}\right) \leq \frac{1}{\omega\left(\frac{1}{2}, K, H\right)}
$$

so that $\left(u_{k}\right)$ is bounded in $\bar{D}(0,1-\varepsilon)$. Since $\varepsilon>0$ can be taken arbitrarily small, we conclude that $\left(u_{k}\right)$ is locally bounded in \mathbb{D}. This completes the proof in the case that $\left.f_{k}\right|_{S} \rightarrow \infty$ and $\left.f_{k}\right|_{T} \rightarrow 0$.

It remains to consider the case that $\left.f_{k}\right|_{S} \rightarrow 0$ and $\left.f_{k}\right|_{T} \rightarrow \infty$. Since $L_{0} \backslash\{0\} \subset T$ we conclude that if $\varepsilon>0$, then, for large k, the function f_{k} has no zeros in $\{z: \varepsilon<|z|<1-\varepsilon\}$. Thus u_{k} is harmonic there. As before we see that the sequence $\left(u_{k}\right)$ is locally bounded so that some subsequence of it converges to a limit u which is subharmonic in \mathbb{D}. But now u is actually harmonic in $\mathbb{D} \backslash\{0\}$. The conclusion follows again from Lemma 2.5 which yields that $\alpha=\pi / 2$ and hence $\angle\left(L_{-1}, L_{1}\right)=2 \alpha=\pi$.

References

[1] Walter Bergweiler, A new proof of the Ahlfors five islands theorem. J. Anal. Math. 76 (1998), 337-347.
[2] Walter Bergweiler, Bloch's principle. Comput. Methods Funct. Theory 6 (2006), 77-108.
[3] Walter Bergweiler and Alexandre Eremenko, Radially distributed values and normal families. Int. Math. Res. Not. IMRN, https://doi.org/10. 1093/imrn/rny005
[4] Walter Bergweiler, Alexandre Eremenko and Aimo Hinkkanen, Entire functions with two radially distributed values. Math. Proc. Cambridge Philos. Soc. 165 (2018), 93-108.
[5] M. Biernacki, Sur la théorie des fonctions entières. Bulletin de l'Académie polonaise des sciences et des lettres, Classe des sciences mathématiques et naturelles, Série A (1929), 529-590.
[6] Albert Edrei, Meromorphic functions with three radially distributed values. Trans. Amer. Math. Soc. 78 (1955), 276-293.
[7] Alexandre Eremenko, Entire functions, PT-symmetry and Voros's quantization scheme. Preprint, arXiv: 1510.02504.
[8] G. M. Goluzin, Geometric theory of functions of a complex variable. Translations of Mathematical Monographs, Vol. 26. American Mathematical Society, 1969.
[9] Lars Hörmander, The analysis of linear partial differential operators I. 2nd ed., Springer, Berlin, 1990.
[10] Lars Hörmander, Notions of convexity. Birkhäuser, Boston, 1994.
[11] H. Milloux, Sur la distribution des valeurs des fonctions entières d'ordre fini, à zéros reels. Bull. Sci. Math. (2) 51 (1927), 303-319.
[12] Ch. Pommerenke, Boundary behaviour of conformal maps. Grundlehren der Mathematischen Wissenschaften, 299. Springer-Verlag, Berlin, 1992.
[13] Thomas Ransford, Potential theory in the complex plane. London Mathematical Society Student Texts, 28. Cambridge University Press, Cambridge, 1995.
[14] Norbert Steinmetz, Nevanlinna theory, normal families, and algebraic differential equations. Springer, Cham, 2017.
[15] Lawrence Zalcman, A heuristic principle in complex function theory. Amer. Math. Monthly 82 (1975), 813-817.
[16] Lawrence Zalcman, Normal families: new perspectives. Bull. Amer. Math. Soc. (N. S.) 35 (1998), 215-230.

Walter Bergweiler
Mathematisches Seminar
Christian-Albrechts-Universität zu Kiel
Ludewig-Meyn-Str. 4
24098 KIEL
Germany
Email: bergweiler@math.uni-kiel.de
Alexandre Eremenko
Department of Mathematics
Purdue University
West Lafayette, IN 47907
USA
Email: eremenko@math.purdue.edu

[^0]: *Supported by NSF grant DMS-1665115.

