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A B S T R A C T

Let j{z) = Yu?-\a}l(z~z))> where z, ^ 0 and ^ " J ^ l / k ^ l < oo. Then / c a n be realized as the complex
conjugate of the gradient of a logarithmic potential or, for integral a}, as the logarithmic derivative of a
meromorphic function. We investigate conditions on a} and zj that guarantee that / has zeros. In the
potential theoretic setting, this asks whether certain logarithmic potentials with discrete mass distribution
have equilibrium points.

1. Introduction

In this paper we will discuss the following problem. Consider the meromorphic
function

z Z1

where z^ ^ 0. Under what conditions on a} and z} can one guarantee that/has zeros?
This question is an extended version of a problem proposed by L. Rubel

[2, Problem 7.78]. We shall suppose that a}sU. Then the problem has the following
physical interpretation: if we imagine particles (really charged wires perpendicular to
the complex plane) placed at each point zi and having the charges a^ then these
generate a logarithmic potential given by

u(z) = \-z-
z.

(1.2)

The gradient of this potential is the complex conjugate of/. Thus the question is
whether such a field must always have an equilibrium point, that is a point upon
which a free electron (or wire) once placed would remain.

This question and the corresponding problem in IRra, n ^ 3 stimulate an interesting
area of research-distribution of critical points of potentials generated by an infinite
discrete distribution of charge. This paper contains some preliminary results in this
area and some new questions.
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2. Formulation of results

If the ai are integers, we may consider the meromorphic function

- (2-1)
Z)J

which is of order at most one, minimal type. (It belongs to the convergence class of
order 1). Then

* > = T S - (2-2)
If the Z) are distinct and a} = 1 for ally then (2.2) implies t ha t / ha s infinitely many
zeros. Indeed in this case the zeros of F' are the zeros of/and since F' is also of order
at most one, minimal type, F' has infinitely many zeros.

THEOREM 2.1. If the a^ are positive integers then f has an infinite set of zeros.

This follows immediately from the following.

THEOREM 2.2. Let F be a transcendental entire function of order at most one,
minimal type. Then F'/F has an infinite set of zeros.

In the opposite direction we have

EXAMPLE 2.3. For every p ^ 1 there exists an entire function F of order p such
that F'/F has no zeros.

A. A. Goldberg and W. K. Hayman brought the following result to our attention.

THEOREM 2.4. If a} = ± 1, then f has an infinite set of zeros.

This is a consequence of a result of F. Nevanlinna [10]. Under the conditions of
Theorem 2.4 the function F defined by (2.1) has only simple zeros and poles. So if/
has a finite set of zeros, then F has only a finite number of critical points. In [10] all
functions of finite order with this property were described. They satisfy differential
equations of the form

F'" 3 (F"V
^ * (2-3)F' 2\F'

where R is a rational function. Asymptotic integration shows that such functions F
have normal type and order n/2, where n is an integer, n ^ 2.

If the a} are only supposed to be integers then/may have no zeros. The simplest
example is the following. Take

F(z) = t a n V * ,
which is a meromorphic function of order 1 /2, normal type. Then

f[2\ = F (z) _ 2 -£ n
F(z) '--•-"> ' - r

a n d / h a s the form (1.1). A similar example was communicated to the authors by
W. K. Hayman. This example has also come up in the work of S. Bank and I. Laine
[1] on ordinary differential equations in the complex domain.
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EXAMPLE 2.5. For every p ^ 1/2 there exists a meromorphic function F of order
p such that F'/F has no zeros.

On the other hand we have the following theorem

THEOREM 2.6. If F is a transcendental meromorphic function of order at most 1/2,
minimal type then its logarithmic derivative f has an infinite set of zeros.

Let us state some conjectures based on the above theorems and examples.

CONJECTURE 2.7. If the aj > 0 then the function (1.1) has zeros. Equivalently,
subharmonic functions of the form (1.2) have critical points.

CONJECTURE 2.8. If the ai are real and

E< W = o(Vr) (2.4)

then the function (1.1) has zeros. Equivalently, ^-subharmonic functions of the form
(1.2) of order at most 1/2, minimal type have critical points.

CONJECTURE 2.9. (W. K. Hayman) If the a, are integers and ai ^ - 1 then the
function (1.1) has zeros.

It is fairly easy to see that Conjecture 2.9 is equivalent to the following simply
stated problem: if F is meromorphic of order at most one, convergence class, then F'
has zeros. We remark that by Theorem 2.6 the problem is solved for order at most
1/2, minimal type.

We can partially prove Conjecture 2.7 with the additional assumption (2.4).

THEOREM 2.10.1 Under the conditions a} > 0 and (2.4) the function (1.1) has an
infinite set of zeros.

Theorem 2.10 may be compared with Keldysh's theorem [see 5, Chapter 5,
Theorem 6.2] that if « «

£ \a}\ < co and ^ ai # 0
i - l 3-1

then the function (1.1) has zeros and moreover,

S(0,f) = 0.

Here <^eC and 3(0,f) is the usual Nevanlinna deficiency o f / a t 0.
Our proof of all mentioned results except Theorem 2.10 require some complex

analysis. So in the space IRm, m ^ 3, we are able to prove only the following weak
result.

THEOREM 2.11. Let xke Um, m ^ 3 be distinct, nonzero points, xk -> oo. Then the
function « «,

/ \ y f̂c si ~> \ V k *" O ^

has an infinite set of critical points.

1 Essentially the same theorem was proved independently by J. Miles.
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CONJECTURE 2.12. If xk e Um

£ |*J"1+" < oo,
fc-i

then the function

|m-2 | v lm-2
| l ^ l

has an infinite set of critical points.

3. Preliminaries

Let us begin by recalling some topological properties of a meromorphic function
/[8,11]. Suppose f[z0) = wQ and/'(z0) is nonzero and finite. Then we can analytically
continue the branch of/"1 taking vv0 to z0 in a neighbourhood of w0. There are two
types of obstacles preventing a further continuation of/"1. The first of these arises
from critical points, that is points z where f'(z) = 0. Here the point f{z) is called a
critical value. The second obstacle arises from asymptotic values o f / A point a is
called an asymptotic value if there exists a curve T tending to infinity such that f(z)
tends to a along T. If a domain V contains no critical or asymptotic values then every
branch of/"1 can be analytically continued throughout V.

To classify the singularities of/"1, fix aeC and take a set A of connected neigh-
bourhoods of the point a such that f){N:NeA} = a. Then for every NGA choose
a component VN of the preimage /^(iV) in such a way that Nxc: N2 => KV] c VN .
There are two possibilities:

1. f]{VN:N€A} is a point zeC. This point may be non-critical or critical. In the
latter case we say that /"1 has an algebraic singularity (or algebraic branch point) over
a.

2- f K ^ V ^ 6 ^ ] = 0 - In this case we say that our choice N\-+VN defines a
transcendental singularity of/"1 over a. This transcendental singularity is called direct
if some VN contains no preimages of the point a. (Then VN contains no preimages of
a for all N c JV0). If all VN contain preimages of a then each of them contains an
infinite number of these preimages. Such a singularity is called indirect. Note that
Z"1 has a transcendental singularity over a if and only if a is an asymptotic value.

We need the following theorem.

DENJOY-CARLEMAN-AHLFORS THEOREM. Let f be a meromorphic function and

suppose that f'1 has n^-2 direct transcendental singularities. Then

lim infrn/2T(r,f) > 0. (3.1)
r-» oo

If j is entire (3.1) is equivalent to

lim infr"n/2 log M(r,f) > 0. (3.2)
r-» oo

If an entire function f has n^\ distinct finite asymptotic values then (3.2) holds.
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We need also the following elementary proposition concerning isolated
singularities of/"1 (c.f. [11, p. 283]).

PROPOSITION 3.1. Let f be a meromorphic function in C. Suppose there exists a
point a and a disk N centred at a such that some branch off'1 can be analytically
continued throughout N\{a}. Let Vbe the corresponding component off~\N\{a}). Then
there are two possibilities.

(i) For some z0 withf{z0) = a, V\J {z0} is a bounded Jordan domain, f maps n to 1
from V to N\{a} andf{dV) = dN. (Note that z0 may or may not be a critical point.)

(ii) V is an unbounded, simply connected domain, and dV is a simple curve which
tends to oo in both directions. The point a has no preimages in V.

We note that if (ii) holds then V is a neighbourhood of a special type of direct
transcendental singularity called a logarithmic singularity or logarithmic branch point.

We shall use the notion of line complex [11, 5, 12]. Let us recall the main ideas
here. Suppose that there exists a finite set A = {ax, ...,aq) containing all critical and
asymptotic values of/. It follows from Proposition 3.1 that all possible singularities
of/"1 are algebraic and logarithmic branch points. Consider a Jordan curve /passing
through the points ax, ...,aq. This divides the sphere C into two components. Choose
two points, one in each component and denote them by X and O. The curve / is
divided by the points ax, ...,aq into q open arcs /l9 ...,lg. For every k connect the
points X and O by a simple curve yk such that the only point of intersection of yk with
J lies on lk, and all the yk are disjoint. We get a graph y with two vertices X and O
and q edges yk. In the following picture q = 3 and a3 = oo.

The full preimage T =f \y) c C is called a line complex (Streckenkomplexe) and
has the following properties, which are almost evident.

1. F is connected.
2. F has vertices of two types: X and O. Each edge connects two vertices of

different types.
3. The number of edges adjacent to each vertex is equal to q.
It is known (and easy to prove using the Uniformization Theorem) that every

graph with these properties embedded in the plane arises from some meromorphic
function in the plane or in the unit disk having a finite set of critical and asymptotic
values.

The faces of T (which means connected components of C\F) are mapped to the
neighbourhoods of the points ak (bounded by yk and yk^. So we may mark each face
which is mapped to a neighbourhood of ak by the symbol ak. It is easy to see that two
faces marked by the same symbol have disjoint closures. Each face is bounded by an
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even number of edges. Each 2«-gonal face contains one appoint of multiplicity n. A
logarithmic singularity corresponds to the face bounded by an infinite number of
edges which forms the following simple chain.

-o-x-o-x-o-x-o-x-o-x-

Sometimes we shall consider a reduced line complex which means that we delete all
2-gons. A reduced line complex contains at most one edge connecting a pair of
vertices.

4. Proof of Theorem 2.2

Suppose that F'/F has a finite set of zeros. So F\z) = 0 => F(z) = 0 with at most
a finite number of exceptions. It follows that the set of critical values of Fis finite. By
the Denjoy-Carleman-Ahlfors Theorem, the set of asymptotic values is also finite.
Since Fis transcendental, Proposition 3.1 implies that there is a logarithmic branch
point over oo. Further since there are only finitely many finite singularities off"1, any
finite asymptotic value is also a logarithmic branch point. Consequently by the
Denjoy-Carleman-Ahlfors Theorem and the order restriction on F, F can have no
finite asymptotic value. That this is impossible follows from the following lemma with
a, = 0.

LEMMA 4.1. Let F be transcendental, entire with finitely many critical values
ax, ...,an. Suppose E = {z:F(z) = at, F'(z) = 0, i = 2,...,«} is a finite set. Then F has
a finite asymptotic value.

Proof. If E is empty, we get an immediate contradiction from Proposition 3.1
since it implies that ax is a logarithmic singularity and hence an asymptotic value.
Suppose F has no finite asymptotic value. Then there exists R > 0 such that
U = {z:\z\ < R) contains all the finite singularities of F'1. Since any branch of
F"1 can be continued analytically without restriction in C\U, it follows from Prop-
osition 3.1 that any component V of F'^^U) corresponds to a logarithmic singular-
ity at infinity. Each component ofF~1(dU) is a boundary component of such a domain
V and hence, in this case, coincides with dV. Thus dV is a Jordan curve going to
infinity in both directions. Fix a point b in U and insert n line segments from b to
dU. This divides U into n disjoint regions C15 ...,Cn each bounded by consecutive
rays, R{ and Ri+1 (throughout, n +1 will be identified with 1). By moving b if necessary
we can arrange that at e Ct.

By Proposition 3.1 and the assumption that .Fhas no finite asymptotic value, every
component of F~\Ct) is bounded and consequently, F^iQ) has infinitely many
components for each /, / = 1,...,_«. Since E is finite, there exist components Bt of
F~\C^ such that F' is not zero in B0 i = 2,..., n and dBt n dBi+1 maps into i^+1. Thus,
since there are np_finite asymptotic values of F, the monodromy theorem gives that
F'1 is 1-1 from Q U ... U C^ onto ~B~2 U ... U lfn. Since the singularities of F'1 in Q lie
over ax, we can continue this branch of F'1, to all of C/VaJ. Again by Proposition
3.1, the resulting component Vof F~\U) is a bounded region with F{dV) = dU. But,
as mentioned above, every component of F~\dU) is a simple Jordan curve extending
to infinity in both directions. This gives the desired contradiction. The lemma, and
hence Theorem 2.2, is now proved.
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We present a more elegant (but essentially identical) proof of Lemma 4.1 using the
notion of line complexes. Since our examples depend heavily on this notion, the two
proofs may serve to help the reader better to understand the next section.

Consider the reduced line complex corresponding to F. It contains a face Do

corresponding to the logarithmic singularity over ag = oo which is bounded by a
simple chain. The line complex also may contain a finite number of faces, say
Dv ...,Dn marked by the points a2, ...,aq_x and an infinite set of faces Dpj^n+l,
marked by ax — 0. Take two adjacent edges wl and w2 on dD0 which do not belong
to the boundaries of Dv ...,Dn. One of them, say wlt does not belong to the boundary
of any Dpj ^ n +1 , because the closures ofDpj ^ n +1 are pairwise disjoint. So there
is a face D* adjacent to Do along wx such that D* is not a Dp j ^ 0. Since all faces
corresponding to algebraic branch points are listed in the sequence Dpj ^ 1, D* is a
face corresponding to some finite logarithmic branch point other than that of Do. This
logarithmic branch point gives the required asymptotic value.

5. Examples

Our examples are based on the theory of Riemann surfaces with almost periodic
ends which was developed by A. A. Goldberg [4] toward the solution of the inverse
problem of Nevanlinna theory. An excellent self-contained presentation of the theory
is in [5, Chapter 7].

Construction of Example 2.3. If/? = 1, we may take F(z) = ez; so we suppose now
that p, > 1. Fix a natural number n $s 2 and consider the following two graphs called
Block 1 and Block 2. Block 1 contains 2n vertices.

-X -O-
I I

O X
II II
X O - X = O -
I I
o=x

BLOCK 1 (w=4) BLOCK 2

Then fix a number x, 0 < JC < 1 and find a sequence E of natural numbers with the

property # ( In [l,m]) = mx + <9(l), m - o o . (5.1)

Now construct the line complex T as follows: take the sequence of blocks (Bk),
— oo < k < oo such that . _, , . . . , _

Bk is Block 1 if A: e l ,
Bk is Block 2 if k $ I .

Then connect each Bk to Bk+1 identifying the right free edge of Bk to the left free edge
of Bk+V We get the following line complex when n = 4 and L = {1,4,5,...}.

- X - O - X = O - X = O - X - O - X - O —X—
II I I I I
OX O X O X
II II II II II II
X O X O X O
II I I I I
o=x o=x o=x
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All conditions for this graph to be a line complex are satisfied. The corresponding
function is ramified only over three points which we may choose to be 0, 1 and oo.
Let us mark the upper infinite polygonal face by 1, the lower one by oo and all the
2«-gonal faces by 0.

It follows from the theory of almost periodic ends that the constructed line
complex corresponds to a function F meromorphic in C and having normal type of
order

^((nm+i)-j (52)

[5, Theorem 7.1, (7.17)]. It is easy to see that one can satisfy (5.11) with given p > 1
by choosing a natural number n ^ 2 and a positive x <\.

From the line complex we see that the function F is entire since there are no faces
with a finite number of edges marked by oo. All critical points (which correspond to
2«-gonal faces) are mapped by F to 0. So our example has all the desired properties.

Construction of Example 2.5. Fix a natural number n ^ 5 and consider the
following three blocks:

X -
IIII
0-

.OCK 0

-o-x=o-x-
1 1-X-O-X-0-

1 11 1
X 0

II IIII II
0 X
1 11 1

X 0
II IIII II
0-X

BLOCK 1 («=8)

-0-X-
1 11 1

-x-o-
BLOCK 2

Block 1 has two faces: one of them is an 8-gon (above) and the other is a 2(n — 3)-gon
(below).

Fix a number x, 0 < JC < 1 and choose a sequence of natural numbers £ satisfying
(5.1). Then construct the line complex F as follows: take a sequence of blocks (Bk),
A: = 0,1,2,... such that

Bo is Block 0,

Bk is Block 2 in all other cases.

Connect Bk to Bk+1 by identifying the right pair of free edges of Bk to the left pair
of free edges of Bk+1. We get a line complex like this:

X - O - X = O - X - O - X - O - X = O - X -
II I I I I I I
O—X—O—X—O—X—O—X—O—X—O —

II II
X O X O
II II II II
o - x o - x
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In the picture n = 6 and I = {1,3,...}. Mark all faces of F which are polygons with
a finite number of sides by 0 and oo such that adjacent faces have different markers.
The only infinite face will be marked by 1. It follows from the theory of almost
periodic ends that there is a function F meromorphic in C which corresponds to F.
The only ramified values of /a re 0 and oo. The order of Fis given by [5, Chapter 7,
(7-17)]:

1 / / I / ( / I - 3 ) J C + 1 Y \ 2 \it^))\ (5-3)
It is easy to see that one can get an arbitrary order p > 1/2 by choosing appropriate
n and x.

6. Proof of Theorem 2.6

We use a theorem by A. Huber [7] (see also [9] for another proof).

HUBER'S THEOREM. Let g be a transcendental entire function. Then there exists a
curve F tending to infinity such that

l \g(z)\-1\dz\< oo.

Let us suppose that Theorem 2.6 is false and hence that F'/F has finitely many
zeros. We write

F g

where P is a polynomial and g is a transcendental entire function of order at most \,
minimal type. We write g = P1g1 where Px is a polynomial of the same degree as P
and g1 is entire. By Huber's Theorem applied to glt there exists a path F from zero
to infinity such that F approaches a finite asymptotic value a as z -> oo along F.

By the cos ^-theorem [3] there exists a sequence of circles {z: \z\ = rra}, rn -»• oo
such that

y{rne
ie) = ~{rne

ie) -* O(r^) (6.1)

uniformly in 9 as « -> oo. By (6.1) and the fact that F(z) -> a as z -> oo, z e F , we have
that

F(rn^a (6.2)

uniformly in # as rn -* oo. Hence Fcan have no other asymptotic value. Clearly then,
we can find a Jordan neighbourhood U of a such that F~* has no singularities
in U\{a}. Thus F has a logarithmic singularity over a. By (6.2) we have that
{z:|z| = rn} is mapped into U for large n. But Proposition 3.1 states that F~1(dU) is
a curve tending to infinity in both directions, so we have a contradiction, which
proves the theorem.

7. Proof of Theorem 2.10

The conditions of the theorem imply that the function u given by (1.2) is
subharmonic in C and has at most order \, minimal type. It follows from the
cos 7r/?-theorem [3] that there exists a sequence rk -*• oo such that

m(rk) ••= inf {u(z): \z\ = rk}-+co.
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Take an arbitrary natural number N and fix r0 such that at least AT of the points z} are
contained in the disk \z\ < r0. Let

M(r):=max{«(z):|z| = r}.

Fix k so large that

m(rk)>M(r0) (7.1)

and consider the level set

L{i) = {z:u{z)<i), -co <t^M(r0).

If t = M(r0) then there is a component Lo of the set L{t) such that

D(0,ro)<zLoczD(0,rk).

Here D(0, r) is the disk of radius r centred at 0. If t is very small, the intersection
L(t) n Lo consists of at least N simply connected components containing the points zr

As t increases these components may collide only at critical points of u. So u has at
least JV— 1 critical points in D(0, rk) counting multiplicity. As N was chosen arbitrary
large, the theorem is proved.

REMARK. Both Theorem 2.2 and Theorem 2.10 could have been proved a little
more concisely (but with less of an elementary flavour) by using Huber's theorem.
Indeed, we could obtain an alternate and immediate proof of Lemma 4.1 (with entire
replaced by meromorphic!) giving a finite asymptotic value for F in Theorem 2.2
which would lead to the same contradiction. In Theorem 2.10 Huber's Theorem gives
a path F on which the logarithmic potential u is bounded. Since u is subharmonic, a
variant of the Denjoy-Carleman-Ahlfors Theorem shows that u has order at least \,
normal type, contradicting (2.4).

8. Subharmonic functions in space. Proof of Theorem 2.11

Under the conditions of this theorem u is a non-negative superharmonic function.
We shall essentially repeat the arguments of Section 7 based on (7.1). The only thing
we need is a replacement of the cos np-theorem. We shall prove that the conditions
of Theorem 2.11 imply that

B(r) := max {u(x): \x\ = r} > 0 (8.1)

on a sequence of r tending to co.

R E M A R K . It is known [6] tha t positive superharmonic functions tend to zero
outside a small exceptional set. But this does not imply (8.1). Indeed (8.1) may fail
for a general positive superharmonic function, because the function may be equal to
co on a ray. As we shall see the crucial condi t ion is ak ^ 1.

We have

*r)<J.iM-wr-
So all we need is the following lemma.
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LEMMA 8.1. Suppose that 0 < xx < JC2 < ..., m ^ 3 is an integer, ak ^ 1 for all k
and ^

Eafcxrm<a). (8.2)

Set

fc1

Then
lim inf V(x) = 0.

X - » + OO

Proof. We shall take m = 3 for simplicity; the case m > 3 can be treated
similarly. Set

"(r) = E ak

Then
dn{i)_n{r) [rn(t)dt

t ~ \ t2

0 l

It follows from (8.2) that
n\t)
t2 dt < oo.

0

So there exists a sequence r} -* oo such that

n(r,) = ofy/logr,), j >oo. (8.3)
Set

0(x) = min{l,l/W}
and

00

o(*) = E«fc^-^)-
fc-1

Suppose that the lemma is not true. Then
lim inf ¥(x) ^ c (8.4)

X -> + 00

for some c, 0 < c < 1. We deduce from (8.4) that

lim inf O(x) ^ c. (8.5)

Indeed, ifdist(jt,{xfc:A:eN}) ^ 1 thenO(jc) ^ 1 > c, a n d i f d i s t ^ l ^ ^ e N } ) > 1 then
O(x) = *F(JC) so in either case we have O(JC)

It follows from (8.5) that

\ <&{x)dx^\cr (8.6)
Jo

for all sufficiently large r.
To obtain the desired contradiction we estimate this integral from above

Cr oo fr oo Cr~xk

O( .x ) dx = E a k \ 0 ( x ~~ xk) dx = E a k \ 0 ( 0 dt
JO fc=l J o fc=l J-xk

= E «»rXV(O*+ E aS*kW)dt
xt^2r J -xk xt> 2r J -xt

(8.7)
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For Ex and E2 we have

Zi ^ E «*0og *fc + log+(r - xfc) + 2) < 2/i(2r) (log 2r + 2),

xk > 1r xk > 2r

< £ ? ^ = 0(r)5 r ,oo. (8.8)

Putting this together and substituting 2r = r} where ^ satisfies (8.3), we get

P <D(x) dx ^ 2«(/^) (log r} + 2) + o(^) = o(^) = o{r),

Jo

which contradicts (8.6).
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