
On Bloch’s “Principle of topological
continuity”

Walter Bergweiler and Alexandre Eremenko

Dedicated to the memory of Larry Zalcman

Abstract

We discuss to what extent certain results about totally ramified
values of entire and meromorphic functions remain valid if one relaxes
the hypothesis that some value is totally ramified by assuming only
that all islands over some Jordan domain are multiple. In particular,
we prove a result suggested by Bloch which says that an entire function
of order less than 1 has a simple island over at least one of two given
Jordan domains with disjoint closures.
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1 Introduction

About one hundred years ago, André Bloch [13] wrote a paper consisting
mainly of heuristic speculations based on two philosophical principles. In
this paper, he anticipated several important results of 20th century geometric
function theory – and even today reading this paper can still be rewarding.

The first of these principles Bloch phrased as “Nihil est in infinito quod
non prius fuerit in finito”. This principle has often been interpreted as mean-
ing that if all entire functions with a certain property are constant, then the
family of functions which are holomorphic in some domain and have this
property is normal. This is an important guideline in the theory of normal
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families; see [9, 34, 35] for a discussion. We will call it Bloch’s normal family
principle in the sequel. Another interpretation of “Nihil est in infinito quod
non prius fuerit in finito” given by Bloch is that features of transcenden-
tal entire and meromorphic functions are in some form already present in
polynomials and rational functions.

The second principle that Bloch discusses he calls the principle of topo-
logical continuity. It says that certain true statements remain true if one
modifies the data from a metric point of view, but not from the topological
point of view.

To illustrate this principle, he quotes the following theorem.

Theorem A. Let D be a domain and let a1, a2, a3 ∈ C be distinct. Let F
be the family of all functions holomorphic in D which do not have a simple
aj-point, for all j ∈ {1, 2, 3}. Then F is normal.

He then argues [13, p. 87] that the principle of topological continuity
should give the following result.

Theorem A′. Let D be a domain and let D1, D2 and D3 be three disks in
C which have pairwise disjoint closures. Let F be the family of all functions
holomorphic in D such that there does not exist a domain U with U ⊂ D such
that U is mapped univalently onto one of the disks Dj. Then F is normal.

Theorem A was known when Bloch wrote this. Theorem A′ was not
known then. It was first proved by Ahlfors six years later, see [1, 2, 3, 4], his
definite account being [5]. Theorem A′, and its generalization Theorem D′

below, are among the principal results of his theory of covering surfaces which
earned him one of the two first Fields medals in 1936.

Ahlfors did not use Theorem A in his proof of Theorem A′, nor do the
more recent proofs in [16, 17, 29]. Ahlfors does, however, give an interesting
discussion of Bloch’s principle of topological continuity in [3, pp. 202–203].
A deduction of Theorem A′ from Theorem A — and thus in some sense a
confirmation of Bloch’s principle of topological continuity — was given in [8].
This deduction was based on a rescaling principle of Zalcman [34].

Zalcman’s lemma has become a major tool in the theory of normal families
by giving a rigorous formulation of Bloch’s normal family principle. For
example, it shows that Theorems A and A′ can be deduced from the following
corresponding results about entire functions.

Theorem B. Let f be entire and let a1, a2, a3 ∈ C be distinct. Suppose that
all aj-points are multiple, for all j ∈ {1, 2, 3}. Then f is constant.
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Theorem B′. Let f be entire and let D1, D2 and D3 be three disks in C which
have pairwise disjoint closures. Suppose that there does not exist j ∈ {1, 2, 3}
and a bounded domain U in C which is mapped univalently onto Dj. Then
f is constant.

As a second example for his principle of topological continuity Bloch
considers the following result.

Theorem C. Let f : C→ C be a non-constant entire function of order less
than 1 and let a1, a2 ∈ C be distinct. Then there exists j ∈ {1, 2} such that
f has a simple aj-point.

This theorem can be proved using Nevanlinna theory, and Bloch was
aware of this proof [12]. We will sketch a proof after Theorem D′ below.

Bloch argues [13, p. 88] that Theorem C together with his principle of
topological continuity should yield the following result.

Theorem C′. Let f : C→ C be a non-constant entire function of order less
than 1 and let D1 and D2 be two disks in C with disjoint closures. Then there
exists j ∈ {1, 2} and a domain U in C which is mapped univalently onto Dj.

So far as we know, there is no proof of Theorem C′ in the literature,
neither by Bloch nor by someone else. We will give a proof of (a generalization
of) Theorem C′ in section 3, using some ideas of Goldberg and Tairova [18].

Theorems B and B′ are actually special cases of more general results. The
generalization of Theorem B (which Bloch also knew) is the following result
due to Nevanlinna [24, Chapitre IV, no. 51].

Theorem D. Let f : C → C := C ∪ {∞} be meromorphic and q ∈ N.
Let a1, . . . , aq ∈ C be distinct and m1, . . . ,mq ∈ N ∪ {∞}. If, for all j ∈
{1, . . . , q}, all aj-points have multiplicity at least mj, then

q∑
j=1

(
1− 1

mj

)
≤ 2 (1.1)

or f is constant.

Here mj =∞ means that f does not take the value aj at all, and we put
1/mj = 1/∞ = 0 in this case.

To state the corresponding generalization of Theorem B′ we introduce
some terminology. Let f : C → C be meromorphic and let D be a Jordan
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domain in C. A connected component U of f−1(D) is called an island of f
over D if it is bounded and simply-connected. Then f : U → D is a proper
mapping. The degree of this proper mapping is called the multiplicity of the
island U . An island of multiplicity 1 is called a simple island.

Our terminology differs slightly from that in the classical literature, as
we require that islands are simply-connected. Of course, this does not make
a difference for islands of entire functions over domains in C, or for simple
islands.

The following generalization of Theorem B′ is due to Ahlfors, who called
it “Scheibensatz” [5, p. 190].

Theorem D′. Let f : C → C be meromorphic and q ∈ N. Let D1, . . . , Dq

be Jordan domains in C with pairwise disjoint closures and let m1, . . . ,mq ∈
N ∪ {∞}. If, for all j ∈ {1, . . . , q}, all islands over Dj have multiplicity at
least mj, then (1.1) holds or f is constant.

As mentioned, Ahlfors did not require that islands are simply-connected,
but his theory yields the above result also with this additional condition; see
[27, Chapter X, §2, Theorem 29] or [30, Theorem VI.5 or VI.13]. Theorems B
and B′ are obtained from Theorems D and D′ by choosing q = 4, m1 = m2 =
m3 = 2, m4 =∞ and a4 =∞.

There are also normal family analogues of Theorems D and D′ according
to Bloch’s normal family principle. These can be obtained from Theorems D
and D′ via Zalcman’s lemma.

Suppose now that we have equality in (1.1); that is,

q∑
j=1

(
1− 1

mj

)
= 2. (1.2)

Then, apart from permutation of the mj, we have one of the following six
cases:

(i) q = 2, (m1,m2) = (∞,∞).

(ii) q = 3, (m1,m2,m3) = (2, 2,∞).

(iii) q = 4, (m1,m2,m3,m4) = (2, 2, 2, 2).

(iv) q = 3, (m1,m2,m3) = (2, 3, 6).
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(v) q = 3, (m1,m2,m3) = (2, 4, 4).

(vi) q = 3, (m1,m2,m3) = (3, 3, 3).

Selberg [26, Satz II] determined all transcendental meromorphic functions f
of finite order such that f has only finitely many aj-points of multiplicity less
than mj, with the mj chosen such that (1.2) holds. He used this to determine
the possible orders of these functions [26, Satz IV–VII]. Let ρ(f) denote the
order of a meromorphic function f ; see [19, Chapter 2, Section 1] for the
definition of the order and other concepts from the theory of meromorphic
functions used in the sequel.

We briefly summarize Selberg’s reasoning and results. First, in case (i)
we assume that (a1, a2) = (0,∞) and find that the function f has the form
f = QeP with a rational function Q and a polynomial P . Thus ρ(f) ∈ N in
this case.

In case (ii) we assume that a1 = 1, a2 = −1 and a3 =∞. Then

R(z) =
f ′(z)2

f(z)2 − 1
(1.3)

has poles only at the simple ±1-points of f . Thus R has only finitely many
poles. Since f has finite order, the lemma on the logarithmic derivative [19,
Chapter 3, Section 1] yields that Nevanlinna’s proximity functions m(r, R)
satisfies m(r, R) = O(log r). We conclude that R is a rational function.
Hence f has the form

f(z) = cosh

(∫ √
R(z)dz

)
. (1.4)

This implies that ρ(f) is an integer multiple of 1/2. (Equation (1.4) and its
implication for ρ(f) were actually already obtained by Valiron [31, p. 77],
before Selberg’s work and in fact before Nevanlinna developed his theory.)

If all±1-points are multiple, then R has no poles and is thus a polynomial.
In this case we find that ρ(f) ≥ 1. Note that this proves Theorem C.

In cases (iii)–(vi), assume that all aj are in C and that M is the least
common multiple of the mj. We then find that

R(z) =
f ′(z)M∏q

j=1(f(z)− aj)(mj−1)M/mj
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is a rational function and f has the form

f(z) = E

(∫
M
√
R(z)dz

)
.

where E is an elliptic function.
We only state the conclusions about the order of f that Selberg drew

from this.

Theorem E. Let f : C → C be a transcendental meromorphic function of
finite order, q ∈ N, a1, . . . , aq ∈ C distinct and m1, . . . ,mq ∈ N ∪ {∞}.
Suppose that (1.2) holds so that we have one of the cases (i)–(vi) listed above.

If, for all j ∈ {1, . . . , q}, all but finitely many aj-points of f have mul-
tiplicity at least mj, then ρ(f) ∈ N in case (i), 2ρ(f) ∈ N in case (ii),
ρ(f) ∈ N0 in case (iii), 3ρ(f) ∈ N0 in case (iv), 2ρ(f) ∈ N0 in case (v) and
3ρ(f)/2 ∈ N0 in case (vi).

If all (and not only all but finitely many) aj-points have multiplicity at
least mj, then in addition ρ(f) ≥ 1 in cases (i) and (ii) while ρ(f) ≥ 2 in
cases (iii)–(vi).

The question that motivated this paper is whether there exists a Theo-
rem E′ which corresponds to Theorem E in the same way that Theorems A′,
B′, C′ and D′ correspond to Theorems A, B, C and D. In other words, we ask
to what extent the conclusion of Theorem E remains valid if instead of the
hypotheses of Theorem D we assume the hypotheses of Theorem D′. Note
that Theorem C′, which was envisaged by Bloch using his principle of topo-
logical continuity, says that this holds in case (ii) if f is entire. In contrast,
we will see that the corresponding result does not hold in cases (i) and (iii).

The following result corresponds to case (i) of Theorem D.

Theorem 1.1. Let f be a transcendental entire function and let D be a
Jordan domain in C. If f has only finitely many islands over D, then ρ(f) ≥
1/2.

Conversely, for every ρ ∈ [1/2,∞) and every Jordan domain D there
exists an entire function f of order ρ such that f has no island over D.

Our next result corresponds to case (ii) of Theorem D. It has Theorem C′

as a corollary. Here and in the following we will denote the multiplicity of
an island U over some Jordan domain by µ(U).
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Theorem 1.2. Let f be a transcendental entire function of finite order and
let D1 and D2 be Jordan domains in C with disjoint closures. Suppose that f
has only finitely many simple islands over D1 and D2. Let N be the number
(counting multiplicity) of critical points c of f such that f(c) /∈ D1∪D2. Put

p = 2N + 2 +
∑
U

(µ(U)− 2), (1.5)

where the sum is taken over all islands U over D1 or D2. Then 1 ≤ p < ∞
and there exists c > 0 such that

logM(r, f) ∼ c rp/2 (1.6)

as r →∞. In particular, ρ(f) = p/2.

Remark. In the proof of Theorem 1.2 the hypothesis that f is entire and of
finite order will be used only to conclude that f−1 has finitely many tran-
scendental singularities. So actually we prove a more general theorem:

Let U be a simply-connected domain in C and let f : U → C be holomor-
phic. Suppose that f−1 has only finitely many transcendental singularities
over C and that f has only finitely many simple islands over two Jordan do-
mains in C with disjoint closures. Then U = C, and f is either a polynomial
or an entire function satisfying (1.6).

Under the hypothesis that there exist a1, a2 ∈ C such that f has only
finitely many simple aj-points, the conclusions of Theorem 1.2 and the above
remark were obtained by Goldberg and Tairova [18]. Their proof was based
on topological arguments and it probably can be extended to a proof of The-
orem 1.2.

Note that we have µ(U) ≥ 1 and hence µ(U)− 2 ≥ −1 for all islands U ,
with µ(U)− 2 = −1 only for the at most finitely many simple islands. Thus
p < ∞ implies in particular that N < ∞ and that µ(U) > 2 for at most
finitely many islands U .

Note also that if all islands over D1 and D2 are multiple, then µ(U) ≥ 2
for all islands U and thus p ≥ 2. Thus Theorem C′ follows from Theorem 1.2.

Theorems 1.1 and 1.2 concern entire functions. The analogous results
do not hold if instead of entire functions we consider meromorphic functions
which have no island over a domain containing ∞.

Theorem 1.3. Let D1 and D2 be Jordan domains in C with disjoint closures.
Then, given ρ ∈ [0,∞), there exists a meromorphic function f of order ρ
which has no island over D1 and D2.
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Theorem 1.4. Let D be a Jordan domain in C and let a1, a2 ∈ C \ D be
distinct. Then, given ρ ∈ [0,∞), there exists a meromorphic function f of
order ρ which has no island over D and for which all a1-points and a2-points
are multiple.

The functions f constructed in the proofs of Theorems 1.3 and 1.4 have
the property that

T (r, f) ≥ c (log r)2 (1.7)

for some c > 0 and all large r.

Question 1.1. Do we have (1.7) for every meromorphic function f satisfying
the conditions of Theorems 1.3 or 1.4?

Remark. After submission of this paper, Jim Langley communicated to us the
following argument showing that the answer to Question 1.1 is positive in the
case of Theorem 1.3. Thus suppose that D1 and D2 are as in Theorem 1.3 and
that f is a meromorphic function satisfying lim infr→∞ T (r, f)/(log r)2 = 0.
It is shown in [22, Proof of Theorem 6] that then there exists w ∈ C and a
sequence (tn) tending to∞ such that f(z) tends to w uniformly on the circles
{z : |z| = tn} as n→∞, with respect to the spherical metric. Let j ∈ {1, 2}
such that w /∈ Dj. This implies that for large n the disk {z : |z| < tn}
contains a component of f−1(Dj). This component need not be simply-
connected. If it is multiply-connected, then any bounded complementary
component contains a preimage of f−1(Dk) where k ∈ {1, 2}, k 6= j. We thus
obtain a “nested” chain of alternating preimages of D1 and D2. Such a chain
must be finite, and its terminal member is simply-connected.

The following result says that in case (iii) there is no analogue of The-
orem E if instead of multiple aj-points one considers multiple islands over
certain Jordan domains. In fact, it suffices to replace aj-points by multiple
islands over some Jordan domain for one j.

Theorem 1.5. Let a1, a2, a3 ∈ C be distinct and ρ ∈ (0,∞). Then there
exists a meromorphic function f of order ρ and a Jordan domain D whose
closure is contained in C\{a1, a2, a3} such that all aj-points of f are multiple
for j ∈ {1, 2, 3} and such that f has no simple island over D.

Question 1.2. Does the conclusion of Theorem 1.5 also hold for ρ = 0?

Theorem 1.5 deals with case (iii). We do not know whether there are
analogous results for the cases (iv)–(vi).
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Question 1.3. In cases (iv)–(vi), is there an analogue of Theorem E if instead
of multiple aj-points we consider multiple islands over Jordan domains Dj

with disjoint closures?

The answer may depend on whether we replace multiple aj-points by
multiple islands over the Dj for all j ∈ {1, . . . , q} or only for some j.

There exist functions of order 0 for which all but finitely many islands
over Dj have multiplicity mj. In fact, this is the case already in the situation
of Theorem E. Given aj and mj as there there exists a function of order 0
for which all but finitely many aj-points have multiplicity at least mj. Such
a function f was considered already by Teichmüller [28, p. 734]. It satisfies

T (r, f) ∼ c (log r)2

as r →∞, for some c > 0. This leads to the following question analogous to
Question 1.1.

Question 1.4. Let f : C → C be meromorphic and q ∈ N. Let D1, . . . , Dq

be Jordan domains in C with pairwise disjoint closures and let m1, . . . ,mq ∈
N ∪ {∞} satisfy (1.2). Suppose that, for all j ∈ {1, . . . , q}, all but finitely
many islands over Dj have multiplicity at least mj. Does there exists c > 0
such that (1.7) holds for all large r?

Acknowledgment. We thank Jim Langley and the referee for valuable com-
ments and suggestions.

2 Results used in the proofs

We begin with a classical result of Wiman [19, Chapter 5, Theorem 1.3].

Lemma 2.1. Let f be a non-constant entire function. Suppose that there
exists C > 0 such that min|z|=r |f(z)| < C for all r > 0. Then ρ(f) ≥ 1/2.

The next result [19, Chapter 5, Theorem 1.2] is a version of the Denjoy-
Carleman-Ahlfors theorem.

Lemma 2.2. Let f be an entire function of finite order and let C > 0. Then
{z ∈ C : |f(z)| > C} has at most max{1, 2ρ(f)} connected components.

The following result [19, Chapter 5, Theorem 1.4] is a consequence of
Lemma 2.2 and a result of Lindelöf. It is also called Denjoy-Carleman-Ahlfors
theorem.
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Lemma 2.3. Let f be a non-constant entire function of finite order. Then
f has at most 2ρ(f) finite asymptotic values.

We will use some results about quasiconformal and quasiregular map-
pings. We refer to [23] for the definition and basic properties, noting that
quasiregular mappings are called quasiconformal functions there. Let D be
a domain and f : D → C be quasiregular. We use the notation

µf (z) =
fz(z)

fz(z)
, Kf (z) =

1 + |µf (z)|
1− |µf (z)|

and K(f) = ess sup
z∈D

|Kf (z)|.

The Hölder continuity of quasiconformal mappings [23, § II.4.2] yields the
following result.

Lemma 2.4. Let φ : C→ C be quasiconformal. Then |φ(z)| = O(|z|K(φ)) as
|z| → ∞.

A basic result [23, § V.1] in the theory of quasiconformal mappings says
that there exist quasiconformal mappings with prescribed dilatation. One
consequence of this is the following result.

Lemma 2.5. Let f : C → C be quasiregular. Then there exists a quasicon-
formal mapping φ : C→ C such that f ◦ φ is meromorphic.

The next result is known as the Teichmüller-Wittich-Belinskii theorem
[23, § V.6].

Lemma 2.6. Let φ : C→ C be quasiconformal. Suppose that∫
{z∈C : |z|>1}

Kφ(z)− 1

x2 + y2
dx dy <∞. (2.1)

Then there exists c ∈ C \ {0} such that

φ(z) ∼ cz as z →∞. (2.2)

Remark. The condition (2.1) is satisfied in particular if the set A of all z
satisfying |z| > 1 where φ is not conformal satisfies∫

A

dx dy

|z|2
<∞. (2.3)
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We denote the open and closed disk of radius r around a point a ∈ C by
D(a, r) and D(a, r). We also put D := D(0, 1).

Beurling and Ahlfors [11] characterized the homeomorphisms of ∂D which
admit a quasiconformal extension to D; see [23, § II.7.1]. Such homeomor-
phisms are called quasisymmetric.

We will use the following sufficient condition for quasisymmetry. It is
surely known, but we did not find a reference.

Lemma 2.7. Let h : ∂D→ ∂D be an orientation-preserving homeomorphism.
Suppose that there exists a finite subset A of ∂D such that h is continuously
differentiable with non-zero derivative in ∂D \ A. Suppose also that for all
a ∈ A there exists γa > 0 such that

|h(aeit)− h(a)|
tγa

has one-sided, non-zero limits as t→ 0±. Then h is quasisymmetric.

Sketch of proof. The restriction of h to a closed arc which contains no point of
A is clearly quasisymmetric. To see that h is quasisymmetric on an arc which
has a point of A as one of its endpoints it is convenient to consider quasisym-
metric mappings on R rather than ∂D. Here this claim follows since t 7→ tγ is
quasisymmetric on [0, 1] and since the composition of quasisymmetric map-
pings is again quasisymmetric [20, Theorem 9]. Finally, quasisymmetry in
the union of these intervals (or arcs) follows from [20, Theorem 3].

Let B : D → D be a Blaschke product of degree d ≥ 2 fixing 0. Thus B
has the form

B(z) = eiαz
d−1∏
k=1

z − ak
1− akz

with α ∈ R and a1, . . . , ad−1 ∈ D.
Suppose that r ∈ (0, 1) is such that all zeros of B are in D(0, r). By

a result of Walsh [32, Theorem 1], all critical points of B in D are also
contained in D(0, r). Since B

(
D(0, r)

)
⊂ D(0, r) by Schwarz’s lemma we see

that B−1
(
D(0, r)) \D(0, r)

)
is a ring domain.

Branner and Fagella [15, p. 163] showed that there exists a quasiregular
mapping A : D → D such that A(z) = B(z) for z ∈ D \ B−1(D(0, r)) while
A(z) = zd for z ∈ D(0, r). Moreover, A(z) 6= 0 for z ∈ D \ {0}.
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They state this only for the case d = 2, but their proof extends to the
general case. Note that in order to prove this result one has to define the
mapping in the ring domain B−1(D(0, r))\D(0, r)). The construction of this
mapping is done in [15, Exercise 2.3.3] for arbitrary degree.

Branner and Fagella also note that we may choose A to depend con-
tinuously on B. This implies that the dilatation K(A) of A also depends
continuously on B. Restricting to a compact set of Blaschke products B we
find that the dilatation of the corresponding quasiregular maps A is uniformly
bounded.

We summarize the above discussion in the following result.

Lemma 2.8. Let 0 < r1 < r2 < 1 and let B : D → D be a Blaschke product
of degree d ≥ 2. Suppose that B(0) = 0 and that the zeros of B are contained
in D(0, r1). Then there exists a quasiregular mapping A : D → D and a
neighborhood W of ∂D such that A(z) = zd for z ∈ D(0, r2), A(z) = B(z)
for z ∈ W ∩ D and A(z) 6= 0 for z ∈ D \ {0}.

Moreover, there exists a constant C depending only on r1, r2 and d such
that A may be chosen to satisfy K(A) ≤ C.

We will also need the following result.

Lemma 2.9. Let U be a simply-connected, unbounded domain in C which is
bounded by piecewise analytic curves. Suppose that each disk D(0, t) inter-
sects only finitely many of these boundary curves.

Let f : U → C be a bounded, continuous function which is holomorphic
in U . Suppose that there exist r, R > 0 such that |f(z)| > r for all z ∈ U
while |f(z)| = r for all z ∈ ∂U satisfying |z| > R. Then there exists a curve
γ tending to ∞ in U and a ∈ ∂D(0, r) such that f(z)→ a as z →∞ on γ.

Proof. Let φ : D → U be a conformal mapping. The hypotheses imply that
the boundary of U in C is locally connected. Thus φ has a continuous
extension φ : D→ U ∪ {∞}.

Put E = φ−1(∞). Then E is a compact subset of ∂D. By a result of
Beurling [25, Theorem 9.19], E has logarithmic capacity zero. Put g = f ◦φ.
There exists an open arc A containing E such that |g(z)| = r for z ∈ A \ E.
Noting that |g(z)| > r and thus g(z) 6= 0 for z ∈ D, we deduce from the
Schwarz reflection principle that g can be extended to a function holomorphic
in D ∪ (A \ E) ∪ (C \ D).
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Since E has logarithmic capacity zero, it also has analytic capacity zero;
see, e.g., [33, Proposition 3.5]. Since g is bounded this yields that g has a
holomorphic extension to D ∪ A ∪ (C \ D); see [33, Appendix II].

Next we note that U is unbounded and that ∞ is accessible in U . Thus
E 6= ∅. Taking a point ξ ∈ E we have φ(tξ)→∞ as t→ 1. The conclusion
follows for the curve γ : [0, 1)→ C, γ(t) = φ(tξ), and a = g(ξ).

We will also use the following result about the growth of composite mero-
morphic functions; see [10, Satz 2.3 and Satz 5.7] and [7, Corollary 4].

Lemma 2.10. Let f be a meromorphic function and g be an entire function.
Then

ρ(g) lim inf
r→∞

log T (r, f)

log log r
≤ ρ(f ◦ g) ≤ ρ(g) lim sup

r→∞

log T (r, f)

log log r
. (2.4)

In [10, Satz 5.7] the left inequality in (2.4) is proved only under the
additional hypothesis that

lim sup
r→∞

log T (r, f)

log log r
<∞.

This additional hypothesis is removed in [7, Corollary 4]. It will be satisfied,
however, in our applications. In fact, we will consider only the case where
(log T (r, f))/ log log r tends to a finite limit. In this case we deduce from (2.4)
that

ρ(f ◦ g) = ρ(g) lim
r→∞

log T (r, f)

log log r
. (2.5)

3 Proofs of Theorems 1.1–1.5

Proof of Theorem 1.1. Let f be a transcendental entire function which has
only finitely many islands over some Jordan domain D. Then there ex-
ists a connected component U of f−1(D) which is unbounded. This implies
that the minimum modulus min|z|=r |f(z)| is bounded. Wiman’s theorem
(Lemma 2.1) now yields that ρ(f) ≥ 1/2.

For the converse result, let D be a Jordan domain in C. Without loss of
generality we may assume that 0 ∈ D. Thus there exists ε > 0 such that
D(0, ε) ⊂ D. For ρ ∈ [1/2, 1) we consider the function g defined by

g(z) =
∞∏
n=1

(
1− z

n1/ρ

)
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Then g is a function of order ρ which has only positive zeros and satisfies
g(x) → 0 as x → ∞. For ρ ∈ (1/2, 1) the last statement follows from, e.g.,
[14, Theorem 4.1.8] while for ρ = 1/2 it follows from the explicit representa-
tion

g(z) =
sin(π

√
z)

π
√
z

.

We conclude that for sufficiently small δ > 0 the function f := δg has no
island over D(0, ε) and hence no island over D.

To obtain functions of order ρ ∈ [1,∞) we write ρ = pρ0 with p ∈ N
and ρ0 ∈ [1/2, 1). Choosing g of order ρ0 and δ > 0 as above we find that
the function f given by f(z) = δg(zp) has order ρ and that f has no island
over D.

Proof of Theorem 1.2. Let r > 0 be such that the closures of D1 and D2

and all finite asymptotic values are contained in D(0, r). Note that by the
Denjoy-Carleman-Ahlfors theorem (Lemma 2.3) there are only finitely many
asymptotic values. We also assume that ∂D(0, r) contains no critical value.
This can be achieved since the set of critical values is countable.

We consider the following graph Γ on the sphere C. It has two vertices,
which we denote by × and ◦ and which lie on ∂D(0, r), and three edges, two
of which are arcs on the circle ∂D(0, r) connecting × and ◦, while the third
edge is a crosscut of D(0, r) connecting × and ◦ which separates D1 and D2

and which contains no critical or asymptotic value. The components of the
complement of the set of vertices and edges are called faces. We then have
three faces. The face C \D(0, r) will be denoted by F∞ and, for j ∈ {1, 2},
the face containing Dj will be denoted by Fj.

We consider the preimage Γ∗ = f−1(Γ) of Γ. It yields a partition of
the plane into faces, edges and vertices. It is similar to a line complex ;
see [19, Chapter 7, Section 4]. One difference is that a line complex is always
connected, while Γ∗ need not be connected. We will see, however, that Γ∗ is
connected if r is chosen sufficiently large.

For our purposes only the topology of Γ∗ is relevant. Thus we do not
distinguish between the preimage Γ∗ and its image under a homeomorphism
of the plane. In figures like Figure 1 we usually draw only a homeomorphic
image of Γ∗ = f−1(Γ), not the true preimage. In such figures we use the
labels 1○, 2○ and ∞○ for the faces F1, F2 and F∞ as well as for their preimages
in Γ∗. The same remark applies to the vertices × and ◦.

14



Figure 1 shows Γ and Γ∗ for a function having only islands of multiplicity 2
over D1 and D2, and no critical or finite asymptotic values outside D1 and D2.
An example is given by the sine or cosine function if −1 ∈ D1 and 1 ∈ D2.

×

D1

1○

D2

2○
∞○

· · · · · ·
×

◦

×

◦

×

◦

×

◦

◦

×
2○ 1○

◦

×
2○ 1○

◦

×
2○ 1○

∞○

∞○

Figure 1: The graphs Γ (right) and Γ∗ (left).

Figure 2 shows Γ∗ for a function having one simple island and one island
of multiplicity 4 over D1, one island of multiplicity 3 over D2, while all other
islands over D1 and D2 have multiplicity 2.

Clearly, Γ∗ is a bipartite, properly embedded graph. (Here “properly
embedded” means that it not only lies in the plane, but also that its vertices
and edges do not accumulate to a point in the plane.) We list some properties
of this graph.

(a) Each vertex has degree 3 and lies on the boundaries of three faces with
labels 1○, 2○ and ∞○.

(b) There are only finitely many digons labeled 1○ or 2○. (A digon is a
face with only two boundary vertices and two boundary edges.)

(c) Each face labeled ∞○ is unbounded and there are only finitely many
such faces.

(d) Each face labeled 1○ or 2○ is bounded.

(e) If r is large enough, then Γ∗ is connected.

Property (a) is obvious from the definition of Γ∗. To prove (b) we note that
for a digon V labeled j○ with j ∈ {1, 2} the mapping f : V → Fj is bijective
and hence V contains a simple island over Dj. Thus (b) follows from the
hypothesis that there are only finitely many simple islands over D1 and D2.
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· · ·

...

1○ 1○ 1○2○ 2○

1○

1○

2○

2○

2○
1○1○

2○2○
· · ·· · ·

◦ ×
◦

×
◦

×
×

◦
×

◦

×

◦

×

◦×

◦

×

◦

×

◦

× ◦

× ◦

× ◦

× ◦

×◦

×◦

×◦

∞○

∞○

∞○

∞○

Figure 2: Example of a graph Γ∗.

To prove (c) we note that in a face labeled ∞○ the function f is unbounded.
Thus such a face is unbounded and by the Denjoy-Carleman-Ahlfors theorem
(Lemma 2.2) there are only finitely many such faces.

To prove (d), let V be an unbounded face labeled j○ with j ∈ {1, 2}.
Then ∂V contains an infinite chain · · · − ◦ − × − ◦ − × − · · · . Since every
vertex lies on the boundary of a face labeled ∞○, and since there are only
finitely many faces labeled ∞○, there exist a face V ′ labeled ∞○ such that
that this chain contains infinitely many vertices which lie on both ∂V and
∂V ′. Let v1 and v2 be two such vertices and let v0 be a vertex between them.
Then there exists a face V ′′ labeled ∞○ such that v0 ∈ ∂V ′′. Connecting v1
and v2 by a crosscut in V ′ we see that V ′′ must intersect this crosscut. Thus
V ′′ = V ′. We conclude that there are infinitely many triplets of adjacent
vertices which are on the boundary of both V and V ′. As the middle vertex
of such a triplet has degree 3, it must be connected to one of the other
two vertices of the triplet by a double edge. In other words, such a triplet
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leads to a digon. Since there are only finitely many digons by (b), this is a
contradiction, completing the proof of (d).

As a preparation for the proof of (e), we note that there is a one-to-
one correspondence between the components of Γ∗ and the components of
f−1
(
D(0, r)

)
. In fact, given a component C of Γ∗, the corresponding com-

ponent of f−1
(
D(0, r)

)
is obtained by “filling” those faces labeled 1○ or 2○

whose boundaries are contained in C. Note that these faces are all bounded
by (d). Reversing this process, one obtains a component of Γ∗ from a compo-
nent of f−1

(
D(0, r)

)
. We conclude from this that the number of components

of Γ∗ is a non-increasing function of r.
For the proof of (e), as well as some subsequent arguments, it will be

convenient to consider a graph ∆ which in some sense is dual to Γ∗: To each
bounded face V we associate a point v ∈ V . (Recall that by (c) and (d) the
bounded faces are those labeled 1○ or 2○.) These points v are the vertices
of ∆. Two vertices are connected by an edge if the two faces of Γ∗ that
contain these vertices share a common edge in Γ∗. We take this edge in ∆
to be in the union of the closures of the two faces in Γ∗, crossing the edge
in Γ∗ which separates these faces once. So f is bounded on the set of edges
of ∆. Figure 3 shows the graph ∆ corresponding to the graph Γ∗ in Figure 2.
(Again we only consider a homeomorphic image.)

· · ·

...

· · ·· · ·

Figure 3: The graph ∆ corresponding to the graph Γ∗ in Figure 2.

Similarly as above we see that there is a one-to-one correspondence be-
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tween the components of ∆ and the components of f−1
(
D(0, r)

)
, and hence

to the components of Γ∗. To pass from a component of ∆ to a component
of f−1

(
D(0, r)

)
consider for a vertex v the closure V of the face V that con-

tains v. Taking the union of the closures V over all v in a component of ∆
yields a component of f−1

(
D(0, r)

)
. This process can be reversed, so indeed

there is the one-to-one correspondence mentioned. Bounded components of
Γ∗ correspond to bounded components of ∆ and unbounded components of
Γ∗ correspond to unbounded components of ∆.

Next we show that every component of ∆ is a tree. Otherwise there exists
a closed curve and in fact a Jordan curve in ∆. We thus have a Jordan curve
γ contained in the union of the faces labeled 1○ or 2○ which crosses each
edge of Γ∗ at most once. The interior of γ contains some vertex, and this
vertex is on the boundary of a face V labeled ∞○. Since V is unbounded, it
must intersect γ, which is a contradiction. Thus every component of ∆ is a
tree.

For a face V labeled 1○ or 2○ the degree of the vertex v of ∆ such that
v ∈ V is given by µ(V ). We will also write µ(v) instead of µ(V ). By hypoth-
esis, there are only finitely many vertices of degree 1. Since each bounded
tree contains a vertex of degree 1, we conclude that ∆ has only finitely many
bounded components. This implies that ∆ also has an unbounded compo-
nent.

We connect the finitely many bounded components of ∆ by some paths
to an unbounded component. Then there exists C > 0 such that |f(z)| ≤ C
for z on one of these paths. This implies that r < C and hence shows that
if r is chosen large enough at the beginning, then all components of ∆ are
unbounded. It follows that all components of Γ∗ are unbounded.

To complete the proof of (e), suppose that Γ∗ is disconnected. Then
there exists a face V whose boundary contains two (unbounded) components
of Γ∗. We connect these two components by a crosscut γ in V . This crosscut
separates V into two domains V1 and V2.

Since Γ∗ has no bounded components, V and hence V1 and V2 are simply-
connected. By (c), the face V is labeled ∞○ and hence f is unbounded there.
We claim that f is unbounded in each of the domains V1 and V2. In fact,
suppose that f is bounded in Vj where j ∈ {1, 2}. Lemma 2.9 yields that f
has an asymptotic value of modulus r with asymptotic path contained in Vj.
This contradicts our assumption made at the beginning that all asymptotic
values are contained in D(0, r). Hence f is unbounded in both V1 and V2.
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Again there exists C > 0 such that |f(z)| ≤ C for z on the crosscut γ.
Increasing r to some value greater than C thus increases the number of
components of {z ∈ C : |f(z)| > r}. Since, by Lemma 2.2, the number of
these components is at most max{1, 2ρ(f)} we conclude that if r is large
enough, then Γ∗ has only one component; that is, Γ∗ is connected. This
yields (e) and completes the proof of statements (a)–(e).

As mentioned, a line complex is always connected, while Γ∗ and ∆ need
not be. But (e) says that this holds for large r.

Let p be the number of unbounded faces of Γ∗. Thus p is the number
of components of {z ∈ C : |f(z)| > r}. An argument similar to the one
above about the one-to-one correspondence between the components of Γ∗

and the components of ∆ yields that p equals the number of complementary
components of ∆.

Next we show that

p = 2 +
∑
v

(µ(v)− 2), (3.1)

with the sum taken over all vertices v of ∆. The proof of (3.1) will only use
that ∆ is an infinite properly embedded tree and that ∆ has only finitely
many vertices of degree 1. To prove (3.1) suppose first that the number of
vertices v for which µ(v) 6= 2 is finite. If there are no such vertices, then ∆
is an infinite chain · · · − ◦ −×− ◦−×− · · · . In this case

∑
v(µ(v)− 2) = 0

and thus (3.1) holds.
Let now n ∈ N and suppose that (3.1) has been proved if the number of

vertices v with µ(v) 6= 2 is less than n. Let ∆ be a graph for which there
are n such vertices. If ∆ has a vertex of degree 1, we replace this vertex by
an infinite half-chain ◦ −×− ◦− · · · (or ×− ◦−× · · · ). The new graph ∆′

obtained has only n− 1 vertices v with µ(v) 6= 2 and both left and right side
of (3.1) differ for ∆ and ∆′ by 1. Thus (3.1) holds for ∆ since it holds for ∆′

by induction hypothesis.
If ∆ does not have a vertex of degree 1, then ∆ has a vertex of degree

at least 3, and there exists such a vertex v0 with µ(v0) ≥ 3 such that v0
bounds µ(v0) − 1 half-chains ◦ − × − ◦ − · · · (or × − ◦ − × · · · ), while all
other vertices of ∆ are on the remaining part of ∆. Replacing the µ(v0)− 1
half-chains by only one such half-chain yields a graph ∆′ which has only n−1
vertices v with µ(v) 6= 2. The left and right side of (3.1) differ for ∆ and
∆′ by µ(v0) − 2. Again (3.1) holds for ∆ since it holds for ∆′ by induction
hypothesis.
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This proves (3.1) if the number of vertices v for which µ(v) 6= 2 is finite.
However, minor modifications of the argument show that if the number of
vertices v for which µ(v) 6= 2 is infinite, then the number of complementary
components of ∆ is infinite. Thus we also see that if p is finite, then the
number of vertices v with µ(v) 6= 2 is finite. This means that the sum
in (3.1) is finite.

To pass from (3.1) to (1.5), let v be a vertex of ∆ and let V be the face
of Γ∗ containing v. Then V is labeled j○ with j ∈ {1, 2} and it is an island
over Fj. Its boundary contains µ(V ) vertices × and µ(V ) vertices ◦. So it is
an n-gon with n = 2µ(V ).

Also, V contains at least one island over Dj. Let U1, . . . , Um be the islands
over Dj that are contained in V . Then

µ(V ) =
m∑
k=1

µ(Uk). (3.2)

Let N(V ) be the number of critical points of f contained in V that are not
mapped to Dj. Since V contains µ(V )−1 critical points and each Uk contains
contains µ(Uk)− 1 critical points, we deduce from (3.2) that

N(V ) = µ(V )− 1−
m∑
k=1

(µ(Uk)− 1) = m− 1.

This allows to rewrite (3.2) in the form

µ(V )− 2 = 2m− 2 +
m∑
k=1

(µ(Uk)− 2) = 2N(V ) +
m∑
k=1

(µ(Uk)− 2). (3.3)

To obtain (1.5) we want to sum this over all V . Note that there may be
(finitely many) vertices v in ∆ of degree 2 for which the corresponding face
V contains one critical point and two simple islands over Dj. For such a
face V both the left and right hand side of (3.3) are equal to 0. Whether we
include such a face or not will not affect the sum. Similarly, the sum in (1.5)
is unchanged if we remove this critical point and the two simple islands.

Summing (3.3) over all bounded faces V and combining this with (3.1)
thus yields (1.5) with

∑
V N(V ) instead of N , where the sum is taken over

all bounded faces V of Γ∗.
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To complete the proof of (1.5) we thus need to show that

N =
∑
V

N(V ). (3.4)

In other words, we have to show that the unbounded faces of Γ∗ contain no
critical points of f . In order to do so, let V be an unbounded face of Γ∗.
Since V is simply-connected and bounded by a single curve, unbounded in
both directions, there exists a conformal mapping φ from D to V such that φ
has a continuous extension to D\{1}, mapping ∂D\{1} to ∂V and satisfying
φ(z)→∞ as z → 1. Then

u(z) = log
|f(φ(z))|

r

defines a positive harmonic function in D which extends continuously to
D \ {1}, with u(z) = 0 for z ∈ ∂D \ {1}. This yields that u is a constant
multiple of the Poisson kernel; see, e.g., [6, Theorem 6.19]. But this implies
that log f ◦ φ has no critical points in D. Hence f has no critical point in V .
This completes the proof of (3.4) and hence of (1.5).

For j ∈ {1, 2} we choose aj ∈ Dj and a conformal mapping ψj : Fj → D
satisfying ψj(aj) = 0. For a face V labeled j○ we choose a conformal mapping
τV : D→ V with τV (0) ∈ f−1(aj). Then B := ψj◦f ◦τV is a Blaschke product
and B(0) = 0. The zeros of B are contained in τ−1V (f−1(Dj)). We will show
that there exists r1 ∈ (0, 1), depending only on the choice of the Fj but not
on V , such τ−1V (f−1(Dj)) and hence the zeros of B are contained in D(0, r1).

In order to do so we note that since p <∞, for all but finitely many faces
V labeled j○ there is exactly one island U of multiplicity 2 over Dj contained
in V , but there are no further islands over Dj contained in V , and there are
no critical points in V \ U . For such a face V and island U we then have
f−1(Dj)∩ V = U and the mapping f : V \U → Fj \Dj is a covering map of
degree 2. Denoting by mod(Ω) the modulus of a ring domain Ω we find that

mod
(
D \ τ−1V (f−1(Dj))

)
= mod

(
V \ f−1(Dj)

)
= mod

(
V \ U

)
=

1

2
mod

(
Fj \Dj

)
.

Thus the modulus of D \ τ−1V (f−1(Dj)) is bounded below. This implies that
there exists r1 ∈ (0, 1) such that τ−1V (f−1(Dj)) ⊂ D(0, r1) for all such faces V .
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Increasing r1 if necessary we may assume that this inclusion also holds for
the finitely many faces V where f : V \ f−1(Dj)→ Fj \Dj is not a covering
of degree 2.

We now choose r2 ∈ (r1, 1) and apply Lemma 2.8 to B. With the function
A obtained from this lemma we define fV : V → Fj by fV = ψ−1j ◦ A ◦ τ−1V .
Thus fV is a quasiregular mapping having one aj-point of multiplicity µ(V )
and no other aj-point in V , and there exists a neighborhood W of ∂V with
fV (z) = f(z) for z ∈ V ∩ W . Since there are only finitely many faces V
labeled j○ with j ∈ {1, 2} for which the degree of the mapping fV : V → Fj
is greater than 2, Lemma 2.8 also yields that we may choose the mappings
fV with uniformly bounded dilatation.

We now define a mapping g : C → C by putting g(z) = fV (z) if z ∈ V
for such a face V , and g(z) = f(z) otherwise. Then g is quasiregular. By
Lemma 2.5 there exists a quasiconformal homeomorphism φ : C → C such
that the mapping h := g ◦ φ is entire. It follows that all except possibly
finitely many aj-points are multiple, for j ∈ {1, 2}. Moreover, Lemma 2.4
yields that ρ(h) ≤ K(φ)ρ(f) <∞.

As in (1.3) we now consider

R(z) =
h′(z)2

(h(z)− a1)(h(z)− a2)

and deduce from the lemma on the logarithmic derivative that R is a rational
function. Assuming without loss of generality that a1,2 = ±1 we find as
in (1.4) that h has the form

h(z) = cosh

(∫ √
R(z)dz

)
. (3.5)

We saw above that {z ∈ C : |f(z)| > r} has p components if r is sufficiently
large. This implies that {z ∈ C : |h(z)| > r} has p components for large r.
Together with (3.5) this yields that∫ √

R(z)dz ∼ αzp/2 and hence R(z) ∼ βzp−2

as z →∞, for certain α, β ∈ C \ {0}. It follows that

logM(r, h) ∼ γrp/2 (3.6)
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for some γ > 0.
The function g agrees with f in C \ f−1(F1 ∪F2). Thus g is holomorphic

in a neighborhood of any point z ∈ C for which |g(z)| > r. Hence for large r
the function φ is conformal in a neighborhood of z if |h(z)| = |g(φ(z))| > r.
Thus the set of points in C \ D where φ is not conformal is contained in

A := {z ∈ C : |z| > 1 and |h(z)| < r},

provided r is sufficiently large. It can be deduced from (3.5) that A satis-
fies (2.3). Lemma 2.6 and the remark following it now imply that that there
exists a ∈ C such that φ(z) ∼ az as z →∞. Now (1.6) follows from (3.6).

Proof of Theorem 1.3. Without loss of generality we may assume that 0 ∈
D1 and ∞ ∈ D2. Then there exists ε > 0 such that D(0, ε) ⊂ D1 and
{z ∈ C : |z| > 1/ε} ∪ {∞} ⊂ D2. We put a = 1 + ε and

f(z) =
∞∏
k=1

1− z
ak

1 + z
ak

. (3.7)

It is easy to see that the infinite product converges and thus defines a function
f meromorphic in C.

For x ≥ a there exists n ∈ N and η ∈ [0, 1) such that x = an+η. Hence

|f(x)| ≤
∣∣∣∣1− x

an

1 + x
an

∣∣∣∣ =
aη − 1

aη + 1
≤ a− 1

a+ 1
< ε.

This implies that f has no island overD(0, ε) and hence no island overD1. An
analogous argument shows that f has no island over {z ∈ C : |z| > 1/ε}∪{∞}
and hence no island over D2.

Standard arguments show that the function f defined by (3.7) has order 0
and in fact that

T (r, f) ∼ c (log r)2 (3.8)

for some c > 0 as r →∞.
This completes the proof for the case that ρ = 0. To deal with the general

case we note that if g is any entire function, then f ◦ g has no island over D1

and D2. Since

lim
r→∞

log T (r, f)

log log r
= 2 (3.9)

by (3.8) we deduce from (2.5) that ρ(f ◦ g) = 2ρ(g). Thus we can achieve
that f ◦ g has the preassigned order ρ by choosing g with ρ(g) = ρ/2.
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Proof of Theorem 1.4. Without loss of generality we may assume that a1,2 =
±2i and that∞ ∈ D. Let δ ∈ (0, 1) and β ∈ (0, 1/2) and let U be the domain
which contains the imaginary axis and which is bounded by the curve

γ : [0,∞)→ C, γ(t) = δ + eiβπt,

and the curves −γ, γ and −γ obtained from γ by reflections. The idea is to
glue the restriction (of a modification) of 2 sinh(arcsin z) to the domain U
and the restriction of the function given by (3.7) to a half-plane.

In order to do so we note that arcsin γ is an injective curve in the first
quadrant which connects arcsin δ with ∞. A computation shows that

arcsin γ(t) =

(
1

2
+ β

)
π − i(log t+ log 2) +O

(
1

t

)
(3.10)

as t→∞.
Next we consider G(z) = f(−z), with the function f from (3.7); that is,

G(z) =
∞∏
k=1

1 + z
ak

1− z
ak

, (3.11)

with some a > 1 to be determined later. Denoting by logG the branch of
the logarithm with logG(0) = 1 we find that

logG(it) =
∞∑
k=1

log
1 + it

ak

1− it
ak

= 2i
∞∑
k=1

arg

(
1 +

it

ak

)
= 2ih(t) (3.12)

with

h(t) :=
∞∑
k=1

arctan

(
t

ak

)
. (3.13)

We have ∫ ∞
1

arctan

(
t

as

)
ds ≤ h(t) ≤

∫ ∞
0

arctan

(
t

as

)
ds. (3.14)

Now ∫ ∞
0

arctan

(
t

as

)
ds =

1

log a

∫ t

0

arctanu

u
du ∼ π

2 log a
log t

as t→∞. Together with (3.14) this yields that

h(t) =
π

2 log a
log t+O(1) (3.15)
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as t → ∞. It follows easily from (3.13) that h is increasing and concave.
This implies that (3.15) can be improved to

h(t) =
π

2 log a
log t+ η + o(1)

for some η ∈ R as t→∞. Hence

logG(it) = i
π

log a
log t+ 2iη + o(1) (3.16)

as t→∞ by (3.12).
Let now V be the domain bounded by the curves γ and γ which contains

the interval (δ,∞). Thus

V = {z ∈ C : | arg(z − δ)| < βπ}.

Let b > 0 and define

H : V → C, H(z) = ebG((z − δ)1/(2β)).

It follows from (3.16) that

logH(γ(t)) = b+ logG(it1/(2β)) = b+ i

(
π

2β log a
log t+ 2η

)
+ o(1) (3.17)

as t→∞. This holds for any choice of a, b and β. We choose β = π/(2 log a)
and b = (1/2+β)π. Note that this still leaves the possibility to choose a later.
Then the right hand sides of (3.10) and (3.17) have the same asymptotics as
t→∞, apart from an additive constant.

Using interpolation it can now be shown that there exists an odd quasi-
conformal mapping ψ : U → C, symmetric with respect to R, which agrees
with the arcsine in a neighborhood of the imaginary axis and which satisfies

ψ(γ(t)) = logH(γ(t)) for all t ≥ 0. (3.18)

Note that logH and hence ψ map the curve γ, and hence the boundary of V ,
to the line {z ∈ C : Re z = b}.

Next we consider the function S : {z ∈ C : |Re z| ≤ b} → C,

S(z) =



2

b
(Re z + b)ez − e−z if − b ≤ Re z ≤ − b

2
,

2 sinh z if |Re z| < b

2
,

ez +
2

b
(Re z − b)e−z if

b

2
≤ Re z ≤ b.

(3.19)
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Thus S(z) = ±e±z if Re z = ±b. It is easy to see that S is quasiregular.
Finally we define F : C→ C by

F (z) =


S(ψ(z)) if z ∈ U,
H(z) if z ∈ V,
−H(−z) if z ∈ −V.

Note that by (3.18) and (3.19) we S(ψ(z)) = expψ(z) = H(z) for z ∈
∂V . Thus F defines a quasiregular mapping. Lemma 2.5 yields that there
exists a quasiconformal homeomorphism φ : C → C such that f := F ◦ φ is
meromorphic.

Noting that the hyperbolic sine has the totally ramified values ±i and
recalling that we have assumed that a1,2 = ±2i we see that all aj-points are
multiple for j ∈ {1, 2}. A similar argument as in the proof of Theorem 1.3
shows that given ε > 0, we can choose a in (3.11) such that f has no island
over {z ∈ C : |z| > 1/ε} ∪ {∞}. Choosing ε sufficiently small we conclude
that f has no island over D.

Finally, we have

n(r, F ) ∼ 1

β log a
log r =

2

π
log r and n

(
r,

1

F − aj

)
∼ 2

π
log r

as r →∞, for j ∈ {1, 2}. Lemma 2.4 together with standard arguments now
shows that f has order 0 and in fact that (3.9) holds.

This proves the theorem for ρ = 0. As at the end of the proof of The-
orem 1.3 we can use this to obtain the result for any preassigned order
ρ ∈ (0,∞) by considering f ◦ g instead of f for an entire function g sat-
isfying ρ(g) = ρ/2.

Proof of Theorem 1.5. The idea behind the construction is due to Künzi [21].
The details are somewhat different though.

An outline of the construction is as follows. We consider two elliptic
functions g1 and g2, both having periods 2 and 2iτ , where τ > 0. We restrict
g1 and g2 to the sectors

S1 := {z ∈ C : | Im z| ≤ τ Re z} and S2 := {z ∈ C : | Im z| ≤ −τ Re z}.

We will modify the gj near ∂Sj to obtain quasiregular mappings fj : Sj → C
satisfying

f1(t(1± iτ)) = f2(t(−1± iτ)). (3.20)
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With α := arctan τ this yields that

f0(z) =

{
f1(z

2α/π) if Re z ≥ 0,

f2(−(−z)2α/π) if Re z ≤ 0,
(3.21)

defines a quasiregular mapping f0 : C → C. By Lemma 2.5 there exists a
quasiconformal mapping φ : C → C such that F := f0 ◦ φ is meromorphic.
The mapping f we want to construct is then given by f(z) = F (zp) for some
p ≥ 2. Using Lemma 2.6 we will see that ρ(f) = 4pα/π so that we can
achieve any preassigned positive order for f .

Moreover, both f1 and f2 will have the critical values a1, a2 and a3. The
fourth critical value of f1 will be different from that of f2. The domain D
will be such that it contains these fourth critical values.

We now come to the details of the construction. Without loss of generality
we may assume that {a1, a2, a3} = {0, 1,∞}. Let

R = {x+ iy : 0 ≤ x ≤ 1, 0 ≤ y ≤ τ}

and let g1 be a conformal mapping from the interior of R onto the upper
half-plane. The mapping g1 extends continuously to the boundary of R and
we may normalize it to satisfy g1(0) = 1, g1(1) = ∞ and g1(1 + iτ) = −1.
Then a := g1(iτ) ∈ (−1, 1). The mapping g1 can be extended by reflections
to an elliptic function with periods 2 and 2iτ .

The mapping g1 can be expressed in terms of the Weierstrass ℘-function
with these periods. In fact, if L is the fractional linear transformation satis-
fying L(∞) = 1, L(e1) =∞ and L(e3) = −1, then g1 = L ◦ ℘.

To define the quasiregular mapping f1 : S1 → C we put, for m,n ∈ Z,

Rm,n = m+ inτ +R = {x+ iy : m ≤ x ≤ m+ 1, nτ ≤ y ≤ (n+ 1)τ}.

If Rm,n ⊂ S1, we put f1(z) = g1(z) for z ∈ Rm,n. We also put f1(x) = g1(x)
for 0 ≤ x < 1.

It remains to define f1 in ∆m,n := S1 ∩Rm,n for those m,n ∈ Z for which
Rm,n 6⊂ S1, but the interior of Rm,n intersects S1. (This is the case if m ≥ 0
and n = m or n = −m− 1.) Note that ∆m,n is a triangle for such m and n.
We begin by defining f1 on ∆ := ∆0,0. In fact, we will first define f1 on ∂∆.
This will be done in such a way that it can be extended quasiconformally to
the interior of ∆ using Lemma 2.7.
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Given that f1 is defined already on ∂∆ ∩ S1, it remains to define f1 on
∂∆ ∩ ∂S1 = {t(1 + iτ) : 0 ≤ t ≤ 1}. To motivate the definition we note
that g1 maps ∂∆ ∩ ∂S1 to a curve in the upper half-plane which connects 1
to −1. We want to define f1 such that it maps ∂∆ ∩ ∂S1 to the semicircle
{eit : 0 ≤ t ≤ π} which also connects 1 and−1. The quasiconformal extension
of f1 will then map ∆ to the domain Ω1 := {z ∈ C : Im z > 0, |z| > 1}. Thus
we make the ansatz

f1(t(1 + iτ)) = exp(iπH(t)) (3.22)

with a homeomorphism H : [0, 1]→ [0, 1] satisfying H(0) = 0 and H(1) = 1.
We want to choose H such that the resulting mapping f1 : ∂∆ → ∂Ω1

can be extended quasiconformally to ∆. Let σ : D → ∆ and τ : Ω1 → D
be conformal mappings. These mappings have continuous extensions to the
boundaries so that we have a mapping h := τ ◦ f1 ◦ σ : ∂D → ∂D. We thus
want to choose H such that h satisfies the hypotheses of Lemma 2.7.

Since g1 has (simple) critical points at 0 and 1 + iτ and f1(z) = g1(z)
for z ∈ ∂∆ ∩ S1, we find that this is the case if H ∈ C2[0, 1] with H ′(0) =
H ′(1) = 0, H ′′(0) 6= 0, H ′′(1) 6= 0, and H ′(x) > 0 for 0 < x < 1. So we fix
any such mapping H. We extend the mapping h to a quasiconformal self-
mapping of D. The corresponding extension of the mapping f1 : ∂∆ → ∂Ω1

is then given by f1 := τ−1 ◦ h ◦ σ−1 : ∆→ Ω1.
Next we define f1 on ∆1,1. Again we define it first on ∂∆1,1. As f1 is

defined on ∂∆1,1 ∩ S1 already, we have to define it only on ∂∆1,1 ∩ ∂S1 =
{t(1+ iτ) : 1 ≤ t ≤ 2}. We do so by putting f1(t(1+ iτ)) = f1((2− t)(1+ iτ))
for 1 ≤ t ≤ 2. As before the mapping f1 : ∂∆1,1 → C can be extended
quasiconformally to the interior of ∆1,1.

We have thus defined f1 on ∆0,0∪∆1,1. We extend the definition to ∆m,m

with m ≥ 2 by periodicity; that is, we put f1(z) = f1(z − 2bm/2c(1 + iτ))
for z ∈ ∆m,m.

It remains to define f1 in the still missing triangles in the lower half-plane,
which are of the form ∆m,−m−1 with m ∈ N0. This we do by reflection in the

real axis; that is, we put f1(z) = f1(z) for z in such a triangle.
We have thus defined the quasiregular mapping f1 : S1 → C. To define

the quasiregular mapping f2 : S2 → C, we put

g2(z) = −g1(z + 1 + iτ).

Note that g2 maps the rectangle R−1,0 onto the upper half-plane and satisfies

g2(0) = 1, g2(iτ) =∞, g2(−1 + iτ) = −1 and g2(−1) = −g1(iτ) = −a.

28



For m,n ∈ Z such that Rm,n ⊂ S2 and z ∈ Rm,n we put f2(z) = g2(z). We
also put f2(x) = g2(x) for −1 < x ≤ 0 and define f2 on ∂S2 by (3.20). This
defines f2 on the sector S2 except for the interior of the triangles R−m,m−1∩S2

and R−m,−m ∩ S2 with m ∈ N. As before we can extend f2 quasiconformally
to these triangles. Here the triangle R−m,m−1 is mapped onto the half-disk
Ω2 := {z ∈ C : Im z > 0, |z| < 1} while R−m,−m is mapped onto Ω2.

Thus for j ∈ {1, 2} we have defined a quasiregular mapping fj : Sj → C
such that (3.20) holds. This implies that the mapping f0 defined by (3.21)
is quasiregular.

By construction, all (−1)-points and all poles of f0 are multiple, and
except for the origin all 1-points of f0 are also multiple. Moreover, all a-
points in the right half-plane are multiple and all (−a)-points in the left
half-plane are multiple. It follows from (3.20) and (3.22) that f0 maps the
imaginary axis to ∂D.

Let D be a Jordan domain which contains a and −a and whose closure
is contained in D. Then an island over D cannot intersect the imaginary
axis. Thus all islands over D are contained in the right or left half-plane.
Those contained in the right half-plane contain a multiple a-point while those
contained in the left half-plane contain a multiple (−a)-point. We deduce
that there are no simple islands over D.

As mentioned above, Lemma 2.5 yields that there exists a quasiconformal
mapping φ : C → C such that F := f0 ◦ φ is meromorphic. It is easy to see
that the set A of all z satisfying |z| > 1 where f1 and f2 are not meromorphic
satisfies (2.3). Lemma 2.6 now yields that φ satisfies (2.2). Since an elliptic
function has order 2 this implies that ρ(F ) = 4α/π.

As it is the case for f0, the function F has no simple island over D and all
poles and all (±1)-points of F are multiple, except for the simple 1-point at
the origin. We finally put f(z) = F (zp) for some p ∈ N with p ≥ 2. Then the
origin is a multiple 1-point of f and we conclude that f has no simple island
over D and that all poles and all (±1)-points of f are multiple. Moreover,
ρ(f) = 4pα/π.

Since α = arctan τ we can achieve ρ(f) = ρ for any given ρ ∈ (0,∞) by
a suitable choice of τ and p.
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[17] Julien Duval, Sur la théorie d’Ahlfors des surfaces. Enseign. Math. (2)
60 (2014), no. 3–4, 417–420.

[18] A. A. Goldberg and V. G. Tairova, On entire functions with two fi-
nite completely ramified values (in Russian). Zapiski Meh-mat. fakulteta
Kharkovskogo gos. universiteta i Harkovskogo mat. obshchestva, 29, Ser.
4 (1963) 67–78.

[19] Anatoly A. Goldberg and Iossif V. Ostrovskii, Value distribution of
meromorphic functions. Translations of Mathematical Monographs, 236.
American Mathematical Society, Providence, RI, 2008.

[20] J. A. Kelingos, Boundary correspondence under quasiconformal map-
pings. Michigan Math. J. 13 (1966), 235–249.

[21] Hans Künzi, Zur Theorie der Viertelsenden Riemannscher Flächen.
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