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1. Complex numbers are expressions of the form z = a+bi where a and b are
real numbers. These real numbers are called the real part and the imaginary
part of the complex number z. Notation:

a = Re z, b = Im z.

Complex numbers can be added, subtracted and multiplied, so that the usual
rules (commutativity, distributivity and associativity) hold, and i2 is replaced
by −1 everywhere.

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

(a+ bi)(c+ di) = ac+ (ad+ bc)i+ bdi2 = (ac− bd) + (ad+ bc)i.

There formulas define addition and multiplication.
Real numbers can be identified with complex numbers of the form a+0i.

For such numbers the definitions above agree with the usual multiplication
and addition of real numbers. In particular, real number 0 is identified with
0 + 0i and 1 with 1 + 0i.

Moreover we can dispense with those zeros and simply write

a = a+ 0i, bi = 0 + bi.

It is important that division is possible on every non-zero number:

1

a+ bi
=

a− bi

(a+ bi)(a− bi)
=

a− bi

a2 + b2
=

a

a2 + b2
− b

a2 + b2
i. (1)

Here we used that for real a, b, a2 + b2 6= 0 unless a = 0 and b = 0.
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Therefore, all arithmetic operation can be performed on complex numbers
by the same rules as for real (or rational) numbers.

In particular, one can solve systems of linear equations, compute deter-
minants, etc. with complex numbers.

Such collection of objects with two operations is called a field. Other
examples of fields that you know are: rational numbers, real numbers, and
perhaps the field of two elements, which consists of just two “numbers” 0
and 1, and the operations are defined as follows

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

.

Integers do not form a field because division of integers does not always give
an integer. Positive rational numbers also do not (subtraction is not always
possible).

For a complex number z = a+ bi we denote z = a− bi. This is called the
conjugate number. This operation commutes with all algebraic operations:

z1 + z2 = z1 + z2, z1z2 = z1z2.

It follows that whenever you have a true equality, and you conjugate every-
thing in it, you obtain a true equality. Real numbers are characterized as
those complex numbers which satisfy z = z. Also notice that

z = z

for all complex z.
As an important application, consider a polynomial P with real coeffi-

cients. If z is a root, that is P (z) = 0 then P (z) = 0 so z is also a root.
Thus non-real roots of a real polynomial come in complex conjugate pairs
(and members of the pair have the same multiplicity).

Real and imaginary parts of a complex number z can be expressed in
terms of z, z:

Re z = (z + z)/2, Im z = (z − z)/(2i).

If z = a + bi then zz = a2 + b2 ≥ 0, and the positive square root of this
is called the absolute value and is denoted by |z|. This matches the usual
absolute value if z happens to be real.
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Absolute value has the following properties:

max{|Re z|, |Im z|} ≤ |z| ≤ |Re z|+ |Im z|, (2)

|z1z2| = |z1||z2|, (3)

|z1 + z2| ≤ |z1|+ |z2|. (4)

The first two properties easily follow from the definitions; to prove the third
one we compute:

|z1 + z2|2 = (z1 + z2)(z1 + z2) = |z1|2 + |z2|2 + 2Re (z1z2)

≤ |z1|2 + |z2|2 + 2|z1||z2| = (|z1|2 + |z2|2)2.

Taking the square root we obtain (4).
Complex numbers can be visualized as:
a) vectors in the plane, or
b) points in the plane.
To each complex number z = a + bi we can put into correspondence the

vector (a, b)T , or a point with coordinates (a, b). (Here T is the transposition.
The vectors are always column-vectors).

Addition of complex numbers and vectors is performed by the same rule,
so we have a geometric interpretation of addition: it can be visualized as the
“parallelogram rule” of addition of vectors.

With this interpretation, |z| is the length of the vector (or the distance of
a point from the origin if we use interpretation b)). Inequality (4) becomes
the triangle inequality which says that the length of a side is at most the sum
of the lengths of two other sides.

Absolute value permits to define the distance between two complex num-
bers z1 and z2 as |z1−z2|. Once the distance is defined the limits of sequences
can be also defined.

Inequality (2) shows that a sequence of complex numbers converges if and
only if the sequences of real parts and imaginary parts converge separately.

We can introduce polar coordinates in the plane: for a point (x, y) they
are r =

√
a2 + b2, the distance from the origin, and the “polar angle” φ,

counted counterclockwise from the positive direction of the x-axis to the
direction of the vector (x, y)T . Then, as you know from analytic geometry,
or calculus,

x = r cosφ, y = r sinφ.
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Thus every complex number z = x+ yi can be written as

z = r(cosφ+ i sinφ), where r = |z| ≥ 0. (5)

This angle φ is called an argument of z, denoted by arg z. Strictly speaking,
every number z 6= 0 has infinitely many arguments: they differ by multiples
of 2π. That’s why I wrote “an argument”, rather than “the argument”.
Notation arg z means the set of all these numbers, so it is not a usual function;
it takes infinitely many values for each z.

Representation (5) is called the “trigonometric form” of a complex num-
ber. This form is convenient for multiplication. Indeed, multiplying two
numbers of this form, we obtain

r1r2 ((cosφ1 cosφ2 − sinφ1 sinφ2) + i(cosφ1 sinφ2 + sinφ1 cosφ2))

= r1r2 (cos(φ1 + φ2) + i sin(φ2 + φ2)) .

So, when we multiply two numbers, their absolute values are multiplied
(which we already know (3)) and arguments are added.

2. The exponential function can be defined as

ex+iy = ex(cos y + i sin y). (6)

Then
e0 = 1, (7)

ez1+z2 = ez1ez2 . (8)

For example,
i = eiπ/2, −1 = eiπ, 1 = e2iπ.

Now every non-zero complex number can be written as

z = |z|eiφ, (9)

where is a polar angle, φ ∈ arg z. I recall that arg z stands for infinitely many
numbers, adding any multiple of 2πi to φ does not change the expression (9).

We can also write

|ez| = eRe z, arg ez = Im z + 2πn,

where n is any integer.
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With this approach, properties of trigonometric functions are assumed to
be known, and Euler’s formula is simply a definition.

Alternatively, one can define

ez =
∞
∑

n=1

zn

n!
,

then prove that this series is convergent for all z, and derive the main prop-
erties (7) and (8). Then one can define sin and cos by the formula

cos t+ i sin t = eit,

and derive all trigonometric formulas from (7) and (8).

Exercises. All answers must be written in the form a + bi, where a and b
are real numbers.

1. Compute

1/i,
1− i

1 + i
, (1 + i

√
3)10.

2. Solve the system of linear equations

(1 + i)x + 2y = 1
x + 2iy = i.

3. Find all solutions of the quadratic equation

z2 − (1 + i)z + 2 = 0.

4. Show that for every complex w 6= 0 the equation

zn = a

has exactly n distinct solutions and write them explicitly using trigonometric
functions.

5. To each complex number x+ iy one can put into correspondence a real
matrix

(

x −y
y x

)

.
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We obtain a one-to-one correspondence between complex numbers and ma-
trices of this kind. Check that this correspondence agrees with addition
and multiplication (takes sums to sums and product of complex numbers to
products of matrices).

What is the interpretation of |z|2 in terms of this matrix? What is the
geometric meaning of these matrices? Find

(

1 −
√
3√

3 1

)20

.
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