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Parametrization of various classes of entire and meromorphic functions
by critical values is interesting from the point of view of geometric theory of
meromorphic functions [5, 10, 16] and is also useful in several questions of
analysis [5, 6, 7, 11, 13, 15]. In this paper we find such a parametrization
for a class of meromorphic functions which occurs in the theory of totally
positive sequences.

We denote by ASWE the class of meromorphic functions of the form

f(z) = eσz
∏

k(1 + z/ak)∏
k(1− z/bk)

, (1)

where σ ≥ 0, (ak) and (bk) are two increasing sequences of positive numbers,
finite or infinite (possibly empty), and∑

k

(
1

ak
+

1

bk

)
<∞. (2)

This class coincides with the set of generating functions of one-sided totally
positive sequences, a. k. a. Pólya frequency sequences, [1, 4], see also [9, Ch.
8]. A function of the form (1) has exponential type σ.

Let us denote by (xk) the sequence of real critical points of f , where

k ∈ (Z ∩ (−p, q))\{0}, where −∞ ≤ −p < 0 < q ≤ +∞, (3)
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so that f has p−1 negative and q−1 positive critical points. We assume that
this sequence (xk) is increasing, each critical point is repeated according to its
multiplicity, and that x−1 < 0 < x1. We do not exclude the case p = q = 1
when the sequence (xk) is empty. Let ck = f(xk) be the corresponding
sequence of critical values.

A function f ∈ ASWE will be called normalized if f ′(0) = 1. We denote
by R = R ∪ {∞} the one-point compactification of the real line. Our main
result is the following.

Theorem 1 All critical points of a function f ∈ ASWE are real. For a se-
quence (ck), ck ∈ R, −p < k < q, k 6= 0, to be the sequence of critical values
of a function f ∈ ASWE, it is necessary and sufficient that the following
two conditions be satisfied:

(−1)kck ≥ 0, for − p < k < q, k 6= 0, ck 6=∞, (4)

if ck = 0 then k < 0 and 0 ∈ {ck−1, ck+1}, (5)

if ck =∞ then k > 0 and ∞ ∈ {ck−1, ck+1}, (6)

and
|c−k| < |ck|, for 0 < k < r = min{p, q}. (7)

The correspondence between sequences (ck) satisfying (4) and (7) and nor-
malized transcendental functions f ∈ ASWE is bijective.

A similar bijective correspondence holds between finite critical sequences
and rational functions in ASWE. It will be established in the process of
proof of Theorem 1.

Proof of Theorem 1. The following proposition permits to use approxi-
mation by rational functions in the proof of Theorem 1.

Proposition 1 Let F be a subset of ASWE, such that the set {f ′(0) : f ∈ F}
is bounded. Then F is a normal family in the whole complex plane C.

Proof.

f ′(0) = σ +
∑
k

(
1

ak
+

1

bk

)
,

where all summands are non-negative. So from every sequence fn ∈ F we can
select a subsequence, such that the zeros, poles and σ’s for this subsequence
will converge, and the limit sequences will satisfy (2). 2
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Every function f ∈ ASWE can be approximated by rational functions
fn ∈ ASWE, uniformly with respect to the spherical metric, on every
compact subset of C. (For the exponential factor we can use exp(σz) =
lim(1 + σz/n)n.)

Proposition 2 All critical points of a function f ∈ ASWE are real, and we
have

. . . ≤ x−2 ≤ a2 ≤ x−1 ≤ a1 < 0 < b1 ≤ x1 ≤ b2 ≤ . . . . (8)

Proof. Suppose first that f is rational of degree d, and f(∞) /∈ {0,∞}.
Then f has d zeros on the negative ray and d poles on the positive ray. By
Rolle’s theorem f has at least d−1 positive and d−1 negative critical points,
counting multiplicity. Thus all critical points are real, and (8) holds. The
general case follows by approximation. 2

As a corollary from (8) we obtain that critical values of every function f
in ASWE satisfy (4), (5) and (6).

We recall that a point a ∈ C is called an asymptotic value of a transcen-
dental meromorphic function f if there exists a path γ : [0, 1) → C, which
is called an asymptotic path to a, such that γ(t) → ∞ and f(γ(t)) → a as
t→ 1.

Let a be an asymptotic value, and B(a, ε) the disc (with respect to the
spherical metric) of radius ε centered at a. For every ε > 0 we can choose a
component Dε of the set f−1(B(a, ε)) such that Dε1 ⊂ Dε2 for ε1 < ε2, and
∩ε>0Dε = ∅. Any such choice ε 7→ Dε defines a transcendental singularity of
f−1 over a. The sets Dε are called ε-neighborhoods of this singularity. A
transcendental singularity is called direct if for some ε > 0 we have f(z) 6= a
for z ∈ Dε. Otherwise it is called indirect.

We will use

Theorem A For a meromorpic function f of order ρ, the inverse f−1 has
at most max{1, 2ρ} direct singularities.

This is due to Ahlfors, see [2] or [12].

Proposition 3 For a transcendental function f ∈ ASWE, the only possible
asymptotic values are 0 and ∞.

Proof. Suppose that a /∈ {0,∞} is an asymptotic value. We claim that
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there exists an asymptotic path to a or a in the (open) upper half-plane. If
a /∈ R = R ∪ {∞} this is evident, because f(R) ⊂ R. If a is real, let γ be
any asymptotic path to a. Then f(z) → a as z → ∞, z ∈ γ ∪ γ. The last
set is connected and symmetric with respect to the real axis, so we can find
an asymptotic path in the upper half-plane. This proves the claim.

Let us choose now a simple asymptotic path γ to a /∈ {0,∞} in the upper
half-plane. Consider a simple curve Γ = γ ∪ γ ∪ γ0, where γ0 is a bounded
curve. Let G+ and G− be the components of C\Γ, and assume that γ0 is
chosen in such a way that G+ contains all poles and G− contains all zeros
of f .

Notice that f cannot tend to a as z →∞ along the negative ray. Indeed
f either has infinitely many zeros on the negative ray, or tends to 0 as z →∞
along the negative ray, which follows from (1). Applying Lindelöf’s theorem
[12] to G− we conclude that f is unbounded in G−. It easily follows that
there exists an asymptotic path in G− on which f(z)→∞.

By a similar argument, there exists an asymptotic path to 0 in G+.
The singularities of f−1 corresponding to these two paths are direct because
f(z) 6=∞ in G− and f(z) 6= 0 in G+.

Let γ1 be a curve in the intersection of G+ with the upper half-plane, such
that f(z)→ 0, z ∈ γ1. Let γ2 be a bounded curve such that Γ2 = γ ∪ γ1 ∪ γ2

is a simple curve in the upper half-plane. Let G be the component of C\Γ2

which is contained in the upper half-plane. By appropriate choice of γ2 we
can also achieve thatG ⊂ G+. Applying Lindelöf’s theorem toG we conclude
that f is unbounded in G, so there exists an asymptotic path in G on which
f(z) → ∞. The singularity of f−1 corresponding to this path is also direct
because f has no poles in G.

Thus we found three direct singularities, which contradicts Theorem A
because f is of order 1. This proves Proposition 3. 2

Following Vinberg [16] we introduce the net Γ = f−1(R). By Propositions
2 and 3, all critical and asymptotic values of f belong to R, so the restriction
f : C\Γ → C\R is a covering map. Thus each component D of C\Γ is a
simply connected region in C, which is mapped homeomorphically onto one
of the half-planes C\R. If we denote by ∂D the space of prime ends of
D, then the induced map f : ∂D → R is a homeomorphism for each D,
because every conformal homeomorphism between open discs extends to a
homeomorphism of their closures. We will call these components D the faces
of the net. The set Γ\{critical points} is a disjoint union of simple analytic
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curves. It is clear that these curves have well-defined ends which can be
critical points or ∞. These curves will be called the edges of the net.

It is clear that R ⊂ Γ and that Γ is symmetric with respect to R. We are
going to describe all possible nets up to the following equivalence relation:
Γ1 ∼ Γ2 if Γ1 = φ(Γ2), where φ is a homeomorphism φ : C → C such that
φ(0) = 0, φ(z) = φ(z), and φ is increasing on the real line.

Let x be a critical point of multiplicity m. This means that x is repeated
m times among the xk as in (8), and that f is locally (m + 1)-to-1 in a
neighborhood of x. So exactly m edges γ in the upper half-plane meet at x.
(The total number of edges meeting at x is 2m+ 2.)

We divide all edges of the net in the upper half-plane into three types.
An edge which connects two finite critical points is of the first type. An edge
which connects a finite critical point to infinity is of the second type, and an
edge whose both ends are at infinity is of the third type.

The following proposition describes all possible nets of a function f in
ASWE.

Proposition 4 Let Γ be a net of a function f ∈ ASWE, having p−1 negative
and q − 1 positive critical points counting multiplicity. Put r = min{p, q}.

a) If p = q =∞ the net has only edges of the first type in the upper half-plane.
These edges connect x−k with xk for each positive integer k.

b) If r < ∞ but max{p, q} = ∞, the intersection of the net with the upper
half-plane consists of r − 1 edges of the first type, each of them connecting
x−k ray with xk, and infinitely many edges of the second type.

c) If p <∞ and q <∞, the intersection of the net with the upper half-plane
consists of:

r − 1 edges of the first type, each of them connecting x−k with xk, for
1 ≤ k ≤ r − 1;

max{p, q} − r edges of the second type,
and in addition it may contain countably many edges of the third type.

These edges of the third type are absent if and only if f is rational.

Corollary An infinite sequence (ck) determines the net completely. A finite
sequence (ck) determines two nets: one for a rational function and one for a
transcendental one.

Proof of Proposition 4. Let γ be an edge in the upper half-plane. Suppose
that none of the endpoints of γ ⊂ Γ is∞, so the endpoints are critical points
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in R.
We claim that one of these endpoints belongs to the positive ray and

another to the negative ray. Suppose that this is not so, for example, let the
endpoints xk ≤ xm be both positive. Consider the region G bounded by the
Jordan curve γ ∪ [xk, xm]. The closure of this region contains no zeros of f
because all zeros are on the negative ray. But there is at least one face D
such that D ⊂ G, and we conclude that f(z) 6= 0 for z ∈ ∂D, contradicting
the fact that f maps ∂D onto R homeomorphically. This proves our claim.

Now we show that edges of the second kind originating on the positive
and negative ray cannot be simultaneously present. Assume the contrary.
Let k be the smallest positive integer such that an edge of the second kind
γk originates at xk, and m the smallest positive integer such that an edge of
the second kind γ−m originates at x−m. Then it is easy to see that k = m
and each critical point x−n for n < k is connected with the critical point xn
by an edge of the first kind. So both γk and γ−k belong to the boundary of
some face D. We have a pole bk and a zero −ak in ∂D ∩R, and in addition,
f(z) tends to 0 or ∞ as z → ∞, z ∈ γk. This contradicts the fact that
f : ∂D → R is a homeomorphism.

Now we can complete the proof in the case a), the case of doubly infinite
sequence xk. It is clear that there cannot be edges of the second kind in
this case. Thus all negative critical points are connected to positive critical
points by sedges of the first kind, so all faces are compact and there are no
edges of the third kind.

Now consider the case b). We have finitely many (namely r− 1) edges of
the first kind and infinitely many edges of the second kind. To complete the
picture, it remains to show that there are no edges of the third kind in this
case. Suppose the contrary. Let G be a component of

C\ ∪ {edges of the first and second kind}

in the upper half-plane, such that G has an edge γ of the third kind on its
boundary. It is clear that ∂G∩R contains either a zero or a pole. Then γ is
mapped onto its image in R homeomorphically, so there are two asymptotic
values, say a and b to which f(z) tends as z ∈ γ, z →∞. If a = b then f(γ) =
R\{a}, but this is impossible because f maps ∂G onto R homeomorphically.
If a 6= b then {a, b} = {0,∞} by Proposition 3, and we obtain a contradiction
again, because ∂G already contains a zero or a pole on the real line. This
completes consideration of the case b).
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Case c) can be studied similarly and this is left to the reader. 2

Proposition 5 For every f ∈ ASWE, the inequalities (7) hold.

Proof. Suppose first that k is odd, 1 ≤ k ≤ r − 1. If x−k is a multiple
zero then c−k = 0; if xk is a multiple pole then ck =∞. In both cases there
is nothing to prove. Now assume that c−k 6= 0 and ck 6=∞. Our assumption
that k is odd, together with (4), implies that

ck < 0 and c−k < 0.

So x−k ∈ (ak+1, ak), and xk ∈ (bk, bk+1). Consider the arc

Γ = [ak+1, x−k] ∪ γ ∪ [xk, bk+1],

where γ is the edge of the net connecting x−k with xk in the upper half-plane.
This arc Γ is a part of the boundary of some face, so it is mapped

homeomorphically onto some arc of R, namely on the negative ray, because
f(ak+1) = 0, f(bk+1) = ∞, and f(xk) < 0. It follows immediately that
f(xk) < f(x−k) < 0 that is |ck| > |c−k|, as advertised.

The case of even k is completely similar. This proves (7). 2

To complete the proof of Theorem 1, it remains to prove existence and
uniqueness of a function f ∈ ASWE with prescribed sequence of critical
values satisfying (4) and (7).

Suppose first that p and q in (3) are finite. First we are going to construct
a rational function f ∈ ASWE with the sequence of critical values (ck),
where −p < k < q, k 6= 0. Similar constructions were used in [16], [6] and
elsewhere.

It is easy to see that this sequence (ck) defines the class of the sequence
(xk) modulo increasing homeomorphisms of the real line, fixing zero. Indeed,
the maximal segments of equal xk’s correspond to the maximal segments of
zeros or infinities in the sequence (ck). Fix some sequence (yk) in the class of
(xk). Consider the net Γ with vertices at yk and no edges of the third kind.
We assume that all edges are of finite length with respect to the spherical
metric. The net is uniquely defined by the class of the sequence (xk).

Using the net Γ and the sequence (ck) we construct a open and discreet
(“topologically holomorphic”) map g from C to itself ramified at yk and
possibly at infinity.
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First we define g at the vertices of the net by putting g(yk) = ck. We also
put g(∞) =∞ if there is an edge from the negative ray to∞ and g(∞) = 0
if there is an edge from the positive ray to ∞.

The following observation is crucial. Suppose that D is a face with four
vertices on ∂D. Then the map g we just defined, which sends vertices to
some points on the circle R respects the cyclic order, that is either preserves
or reverses it, depending on the choice of orientations of ∂D and R.

Indeed, suppose that the four vertices on ∂D are x−k−1, x−k, xk, xk+1,
where the order corresponds to the natural orientation of ∂D. Then our
map sends these points to c−k−1, c−k, ck, ck+1 which are in a cyclic order on
R because of the inequalities (4) and (7). Furthermore, 0 ∈ [c−k−1, c−k] and
∞ ∈ [ck, ck+1].

Then we extend g to the edges so that it maps the closure of an edge
homeomorphically onto an arc of the circle R. There are two ways to choose
this arc, and we use the following rules:

1. On the real line, g(x) 6=∞ for x < 0, and g(x) 6= 0 for x > 0.
2. On all edges that are disjoint from the real line, g(z) /∈ {0,∞}.

These rules define g on Γ. It is continuous. It is easy to verify that for every
face D, the map g : ∂D → R is a homeomorphism. This follows from our
previous remark that restrictions of g on the boundary vertices of D respects
cyclic order.

Suppose that ∂D is equipped with the standard orientation (so that D
stays on the left), and R with the increasing orientation. Then all faces are
divided into two categories:
(1) those for which g : ∂D → R preserves the orientation and
(2) those for which it reverses the orientation.
If two faces have a common edge they belong to different categories.

We extend g homeomorphically into the interiors of faces, so that the
faces of the type (1) are mapped into the upper half-plane, and faces of the
second type into the lower half-plane.

The resulting map is topologically homeomorphic, and it is clear that it
can be chosen with the following symmetry property: g(z) = g(z).

Now there exists a homeomorphism φ, which is also symmetric and f =
g ◦ φ is a rational function, f(0) = 1.

Thus the existence statement in Theorem 1 is proved for the case of
finite critical sequences and rational functions. To obtain the general case
we approximate a given sequence by finite ones and refer to Proposition 1.
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Now we prove the uniqueness statement. Suppose that two transcendental
functions f1 and f2 of the class ASWE have the same sequence (ck). Then
their nets are equivalent, and this implies that the “Riemann surfaces spread
over the sphere” (see, for example [5, 3, 6, 16]) of f−1

1 and f−1
2 are isometric.

(A Riemann surface spread over the sphere is the plane equipped with the
pullback of the spherical metric via f). It follows that a branch of the map
f−1

1 ◦f2 maps conformally the plane with the critical points of f2 deleted into
the plane with the critical points of f1 deleted. By the removable singularity
theorem this maps has to be of the form az + b. Normalization conditions
show that a = 1 and b = 0. This completes the proof of Theorem 1. 2

Thus our class ASWE has three different parametrizations: an analytic
one as in (1), a geometric one by the sequence (ck), and the third one,
in terms of its Taylor coefficients, which are exactly the one-sided Pólya
frequency sequences.

A necessary and sufficient condition for σ = 0 can be given in terms of
the Taylor coefficients of f , see [9, Ch. 8, Thm. 10.1].

It is interesting to find a criterion for σ = 0 in (1) in terms of (ck).
In the symmetric case that ck = 1/c−k an equivalent problem was posed
by Teichmüller [14] and solved by A.A. Goldberg [8]. It is easy to extend
Goldberg’s result to the general case.

From now on we assume for simplicity that a function f ∈ ASWE has
infinitely many critical points.

This is equivalent to the property that the union of the sets of zeros and
poles is infinite.

Definition We say that a sequence (ck)
∞
k=1 satisfies condition K if

∞∑
n=1

1

mink≥n log+ |ck|+ 1
<∞.

Theorem 2. Let f ∈ ASWE be a transcendental meromorphic function
given by equation (1). Then σ > 0 if an only if each of the two sequences
(ck)

∞
k=1 and (1/c−k)

∞
k=1 is either finite or satisfies condition K.
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Proof. Let f be defined by (1). Put

g(z) =
f(z)

f(−z) = exp(2σz)

∏∞
k=1(1 + z/rk)∏∞
k=1(1− z/rk)

, (9)

where (rk) is the “union” of the sequences (ak) and (bk), rk > 0. This means
that (rk) is an increasing sequence, and the number of times some term occurs
in (rk) equals the sum of the numbers of times this term occurs in (ak) and
in (bk). Evidently,

ak ≥ rk and bk ≥ rk, (10)

whenever ak or bk is defined.
Thus σ = 0 if and only if g is a Blaschke product. Let

Ak = inf
x≤−ak

log
1

|f(x)| = inf
m≥k

log
1

|c−m|
,

Bk = inf
x≥bk

log |f(x)| = inf
m≥k

log |cm|,

and
Rk = inf

x≥rk
log |g(x)|.

We set Ak = +∞ or Bk = +∞ if ak or bk is not defined.
Notice that Rk > 0. Goldberg’s theorem [8, Thm. 10] says that g is a

Blaschke product if and only if

∞∑
n=1

1

Rn

=∞. (11)

Suppose that σ = 0, so g is a Blaschke product. We want to prove that
at least one of the two series

∞∑
k=1

1

A+
k

or
∞∑
k=1

1

B+
k

diverges. (12)

If Ak or Bk does not tend to +∞, this is evident. So assume that

Ak → +∞ and Bk → +∞. (13)
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In view of (13) and (10) we have for k large enough:

Rk = inf
x≥rk

(
log |f(x)|+ log

1

|f(−x)|

)
≥ max

{
inf
x≥rk

log |f(x)|, inf
x≤−rk

log
1

|f(x)|

}
.

Now, (rk) is the union of the sequences (ak) and (bk). If rk = ak′ for some
k′ then the previous estimate gives Rk ≥ Ak′. If rk = bk′ then Rk ≥ Bk′ .
Taking into account that Rk > 0 (because |g(x)| > 1 for x > 0 which follows
from (9)), we obtain

∞∑
k=1

1

Rk

≤
∞∑
k=1

1

A+
k

+

∞∑
k=1

1

B+
k

.

So if (11) implies (12).
Now suppose that σ > 0. Using the fact that the canonical products in

(1) are of minimal type, we obtain for k > 0

log |ck| = log |f(xk)| ≥ (σ + o(1))xk ≥ (σ + o(1))bk.

Now (2) implies that (ck)
∞
k=1 satisfies condition K. The proof is similar for

(1/c−k)
∞
k=1. 2

Entire ASWE functions constitute an important class which is called
LP1, the first Laguerre-Pólya class, the closure of the set of real polynomials
with negative zeros. Our results generalize the known results about LP1.
Parametrization of LP1 by critical values (a special case of Theorem 1) is
due to MacLane [10]. Another, more transparent proof was given by Vinberg
[16] who introduced the nets. Theorem 2 is new even for the class LP1.

Another extension of the class LP1 is the class of entire functions LP2,
the second Laguerre-Pólya class. It can be defined as the closure of the set of
real polynomials with real zeros. According to a theorem of Pólya, functions
f ∈ LP2 have a parametric representation

f(z) = zm exp(−σz2 + τz)
∏(

1− z

ak

)
exp

z

ak
, (14)

where ak and τ are real, ak 6= 0,∑
k

1

|ak|2
<∞,
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and σ ≥ 0.
The theory of LP2 can be based on the following proposition analogous

to Proposition 1.

Proposition 6 Let F ⊂ LP2 be a subset with the property f(0) = 1 and
|f ′′(0)− (f ′)2(0)| ≤ M <∞ for f ∈ F . Then F is a normal family.

To prove this one observes that for f ∈ LP2, the function g defined
g(z2) = f(z)f(−z) belongs to LP1 ⊂ ASWE so one can use Proposition 1.

2

Parametrization of LP2 by critical values was also obtained by MacLane
in [10], and substantially simplified by Vinberg1 in [16]. We recall this result.

Let us call two functions of the class LP2 equivalent if f1(z) = f2(az+b),
where a, b ∈ R, a 6= 0.

All critical points of a function f ∈ LP2 are real. They form an increasing
sequence (xk) which can be infinite in both directions, or in one direction,
or finite. Let ck = f(xk) be the sequence of critical values. It is easy to see
that the signs of (ck) alternate.

It is easy to prove that the only possible asymptotic values of a function
f ∈ LP2 are 0 and ∞. If the sequence of critical points is finite in one
direction (this happens exactly when the sequence of zeros is finite in the
same direction), the function tends to a limit, 0 or ∞ along the real line in
this direction.

If this happens we extend the sequence (ck) in this direction by an infinite
sequence of 0’s if the asymptotic value is 0 or ±∞’s if the asymptotic value
is∞. The signs of ±∞ are chosen in such a way that the resulting extended
sequence alternates.

Let C be the set of all sequences of real numbers or symbols ±∞, with
alternating sign and the following property: whenever a ±∞ occurs at some
place it also occurs everywhere on the right or everywhere on the left of this
place. Two sequences (ck) and (c′k) of the class C are called equivalent if
ck = c′k+m for some integer m.

MacLane–Vinberg theorem says that the correspondence

function 7→ extended sequence of critical values

between equivalence classes of non-constant LP2 functions and equivalence
classes of sequences in C is bijective.

1The statement of the result in [16] contains a minor mistake.
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One can make this correspondence “explicit”. For this purpose we asso-
ciate to a sequence c = (ck) ∈ C the domain Dc ⊂ C which is obtained from
the left half-plane by deleting the horizontal rays

{t+ πik : −∞ < t < log |ck|}.

If ck = ±∞, this “ray” becomes a line, and our cuts break the plane into
infinitely many regions. In this case we take for Dc that region which is not
a horizontal strip of width π, if such region exists. If it does not exist, we
take any of the strips.

Let θc : H → Dc be a conformal map of the upper half-plane onto Dc

with sends ∞ ∈ ∂H to the prime end of Dc at infinity, corresponding a the
ray [x0,∞) ⊂ R, where x0 ∈ Dc. This map is defined up to a composition
with an automorphism z 7→ az + b of H , where a ∈ R∗ and b ∈ R.

By the Symmetry Principle,

fc(z) = exp θc(z)

has an analytic continuation to the whole plane. Thus f is an entire function,
and the MacLane–Vinberg correspondence is given by c 7→ fc.

The following analog of our Theorem 2 holds for LP2.

Theorem 3 Let f be a function with infinitely many zeros defined by (14).
Let c = (ck)k∈Z be the extended sequence of its critical values. Then σ > 0 in
(14) if and only if both sequences (ck)

∞
k=1 and (c−k)

∞
k=1 satisfy condition K.

We only sketch the proof. First we define a function g by the equation
g(z2) = f(z)f(−z). It is easy to see that g ∈ LP1. By an argument similar
to that in the proof of Theorem 2, the critical points of g satisfy condition
K if and only if both sequences (1/ck)

∞
k=1 and (1/c−k)

∞
k=1 of critical points of

f satisfy condition K.
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