1. Simplify

\[2i \log \frac{1 - i}{1 + i}. \]

(The answer should be in the form \(a + bi\), where \(a\) and \(b\) are real.)

Solution.

\[\frac{1 - i}{1 + i} = \frac{(1 - i)^2}{2} = -i = e^{-\pi i/2}. \]

\[\log(-i) = -\pi i/2, \]

so the answer is \(\pi\).
2. Find all solutions of the equation \(\sin z = i \) and make a picture of them. (All solutions should be written as \(a + ib \), where \(a, b \) are real.)

Solution. Set \(w = e^{iz} \). Then

\[
\sin z = (w - w^{-1})/2i = i, \quad w^2 + 2w - 1 = 0,
\]

and we have two roots \(w_1 = -1 + \sqrt{2} \) and \(w_2 = -1 - \sqrt{2} \). Now we have to solve

\[
e^{iz} = w_k, \quad k = 1, 2.
\]

For the first root,

\[
iz = \log |1 - \sqrt{2}| + i \text{Arg} (-1 + \sqrt{2}) + 2\pi in, \quad n = 0, \pm 1, \pm 2, \ldots.
\]

Notice that \(-1 + \sqrt{2} > 0\) and thus \(\text{Arg} (-1 + \sqrt{2}) = 0 \). So the first series of solutions is

\[
z_{1,n} = -i \log (\sqrt{2} - 1) + 2\pi n.
\]

To make an accurate picture, notice that \(0 < \sqrt{2} - 1 < 1 \), therefore the \(\log \) of it is negative. For the second series we have \(-1 - \sqrt{2} < 0\), therefore its argument is \(\pi + 2\pi n \), and absolute value is \(> 1 \). and the second series is

\[
z_{2,n} = -i \log (1 + \sqrt{2}) + \pi + 2\pi n, \quad n = 0, \pm 1, \pm 2, \ldots.
\]

To make an accurate picture it remains to notice that \(|w_1w_2| = 1\) so \(-i \log (\sqrt{2} - 1)\) is on the positive imaginary axis, while \(-i \log (1 + \sqrt{2})\) on the negative, opposite to it.
3. Show that the function $u(x, y) = e^x (y \cos y + x \sin y)$ is harmonic in the whole plane. Find an analytic function f for which u is the real part.

Solution. To check that it is harmonic just compute the Laplacian

$$u_{xx} + u_{yy}.$$

It is the real part of the function

$$-iz e^x = e^x (y \cos y + x \sin y) + i(y \sin y - x \cos y + c),$$

where c is any real constant.
4. Let f be an analytic function. Can $|f|^2$ be harmonic? Describe all f for which this is the case.

Solution. Harmonic means

$$\Delta = (|f|^2)_{xx} + (|f|^2)_{yy} = 0,$$

Let $f = u + iv$. Then

$$\Delta = 2(u_x^2 + u_y^2 + v_x^2 + v_y^2) + 2(u(u_{xx} + u_{yy}) + v(v_{xx} + v_{yy})).$$

The second expression in parentheses is zero because both u and v are harmonic. Thus the first expression in parentheses must be zero. But it is a sum of real squares, so each u_x, u_y, v_x, v_y is zero, and the function must be constant.
5. a) For each integer \(n \) (positive or negative, or 0), compute

\[
\int_{\gamma} (z)^n \, dz,
\]

where \(\gamma \) is the circle of radius \(R \) centered at the origin, and described counterclockwise.

b) For which \(n \) is the function \(f(z) = (z)^n \) analytic in the plane? Justify your answer.

Solution.

a) Parametrize the curve: \(z(t) = R \, e^{it}, \ 0 \leq t \leq 2\pi, \ dz = iR e^{it} \, dt \), so the integral equals

\[
iR^{n+1} \int_0^{2\pi} e^{it(1-n)} \, dt.
\]

When \(n \neq 1 \) this is equal to 0, when \(n = 1 \) to \(2\pi iR^2 \).

b) When \(n = 0 \) this function is constant, so it is analytic. For all other \(n \) it is not.

To prove the last statement, let \(f(z) = \overline{z} \) and \(g(z) = z^n \). Then denote \(h(z) = g(f(z)) \). Proving by contradiction, suppose that \(h \) is analytic in a neighborhood of some point \(w \neq 0 \). Let \(g^{-1} \) be some inverse branch of \(g \) near \(w \). Then

\[
f(z) = g^{-1}(h(z)),
\]

so \(f \) would be analytic as a composition of analytic functions. But we know from Cauchy-Riemann equations that \(f(z) = \overline{z} \) is nowhere analytic.

Another proof. \((\overline{z})^n = |z|^{2n}/z^n \), so if \((\overline{z})^n \) were analytic, then \(|z|^{2n} \) would be analytic, as a product of two analytic functions, but it is real-valued, so must be constant. Thus our function is analytic only when \(n = 0 \).

Remark. That the integrals in a) happen to be 0 is just an accident. On other curves they are not zero, and they are path-dependent.
6. a) Let D be a half-plane or a disc, f an analytic function in D, and $|f'(z)| \leq 1$ for every $z \in D$. Prove that

$$|f(z_1) - f(z_2)| \leq |z_1 - z_2|, \quad (1)$$

for all z_1, z_2 in D.

b) Give an example of a region D and an analytic function f in D with the property $|f'(z)| \leq 1$, $z \in D$ such that the inequality (1) does not hold for some z_1 and z_2 in D.

Hint: it is one of the examples given several times in this class for various reasons.

Solution. a) Let γ be the straight line segment from z_1 to z_2. Then

$$|f(z_1) - f(z_2)| \leq \left| \int_{\gamma} f'(\zeta)d\zeta \right| \leq |z_1 - z_2|,$$

where we used the Newton–Leibniz formula, and then the main estimate of the integral and the condition that $|f'(\zeta)| \leq 1$.

b). Take $D = \{z : |z| > 1\} \setminus (-\infty, 0]$, (exterior of the disc cut on the negative ray), and $f(z) = \log z$. Then

$$|f'(z)| = 1/|z| < 1,$$

on the other hand, $|f(-2 + i\epsilon) - f(-2 - i\epsilon)|$ is approximately 2π when $\epsilon > 0$ is very small, while the distance between these two points is only 2ϵ.