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ON SOME FUNCTIONAL EQUATIONS CONNECTED
WITH ITERATION OF RATIONAL FUNCTIONS

A. E. EREMENKO

ABSTRACT. Methods in the theory of iteration of rational functions are used to
investigate the functional equations f(g) = g(f) and G(g) = f(G), where
f and g are rational functions, and G is a meromorphic function on the
complex plane with an essential singularity at infinity.

Introduction

The creators of the theory of iteration of rational functions, namely, Fatou,
Julia, and Ritt, regarded it first of all as a method for investigating functional
equations ([1]-[3]). At the beginning of the 1980’s this theory went through a
period of stormy development that was connected with the use of new methods
in geometric function theory and the theory of dynamical systems. The ques-
tions put forth have in the first place originated from the theory of dynamical

systems (regular and chaotic behavior, bifurcation, structural stability, etc.), and .
apphcatlons to functional equations have received less attention. The goal of -

this paper is to study two classical functional equatlons with the help of new
methods in the theory of iteration. The first of these is

fhoty=hoh (0.1)
It is required to find all pairs of commuting rational functions. Fatou ([4], [5]),
Julia [6], and Ritt [7]( ) devoted thorough investigations to this problem. Before

describing their results we present the basic aspects of the theory of iteration of

rational functions. They may be found in [8], Chapter VIII, or the surveys [9]
and [10]. The classical work [1] continues to be an 1nd1spensable source.

Let f be a rational function with deg f > 2. Denote by f" its nth iterate.
Functions f and g are said to be conjugate if there exists a linear fractional
transformation ¢ such that fop = gog. A set E C C is said to be completely
invariant if its complete inverse image f 'E coincides with E. A maximal
finite completely invariant set E(f) exists and is called the exceptional set. We
always have card E(f) < 2. Further,’ if'card E(f) =1, then f is conjugate to
a polynomial (E(f) 3 oo for a polynomial). But if card E(f)=2,then f is
conjugate to g(z) =z", n € Z\{0, 1}. Obviously, E(g) = {0, oo}.

A point z is said to be periodic with perlod n 1f f z = z. The smallest
period is called the order of z. A fixed poin ‘ "’h period 1. If z isa
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906 A. E. EREMENKO

periodic point of order 7, then the number A = (f")'(z) is called its multiplier.
A periodic point is said to be repelling if 4| > 1.

Let N(f) be the maximal open set on which the family {f”} is normal in
the Montel sense [8]. Its complement is called the Julia set J(f) = C\N(f).
The latter coincides with the closure of the set of repelling periodic points; it is
always nonempty, perfect, and completely invariant, and, moreover, J " =
J(f). In particular, the set of repelling periodic points is infinite. On the other
hand, as shown by Fatou, the set of nonrepelling periodic points is finite. There
can fail to be any repelling fixed points, but there are always repelling points of
period 2.

The Julia set is either nowhere dense or coincides with C. We remark that
J(f) # C for a polynomial f, since the family {f"} is normal in a neighbor-
hood of co. The same is true for f(z) = z™", ne€ N\{1}. Thus, E(f) =@
if J(f)=C.

Let z, be a repelling fixed point of the function f, and let 1 = f (zp) -
Define A: z — Az. Then there exists a unique solution of the Poincaré equation

FoA=foF, F(0)=z, F0)=1, 0.2)

that is meromorphic in 'C.‘ It is easy to see that the exceptional set E(f) is
exactly the set of values not taken by f in C, while all the values in C\E(f)
are taken by F infinitely many times.

Following [4] and [6], we impose additional restrictions on the functions A
and f, in (0.1): /" # f; for all m, n € N. The problem of describing all
pairs of functions having a common iterate requires special consideration and
will not be discussed here (see [3] and [7] concerning this). We present an outline
of the arguments of Fatou and Julia [5], [6] they coincide). It is shown first of
all that commuting functions f, and f, have the same Julia set J and that
there exists a repelling periodic point z, common for f; and f,. Replacing
/i and f, by certain of their iterates (denote the iterates again by f; and f,),
we make z, a fixed point. It can then be shown that the Poincaré function
F corresponding to z, is the same for f; and f,. Thus, the meromorphic
function F satisfies the two functional equations

FolAj=fioF, Aizedz, A=f(z), FO)=z, j=1,2

From the fact that f1 and f2 do not have a:common iterate it can be deduced
that

Al # AT, m,neN. | (0.3)

Nowlet I = F “l( J) 6110\£;§'ffr0m the complete invariance of J with respect
to f, and f, that A

; I, j=1,2. Let I' be the closed group generated
by the transformations Aj » J=1,2. Inview of (0.3) T is nondiscrete, and
hence contains a one-parameter subgroup I', . This imposes strong restrictions
on the set I, and thus also on J . There are the following possibilities:

1) I=C, in which case J =C. ‘

2) I is nowhere dense and consists of analytic curves (logarithmic spirals, or
rays emanating from zero, or circles about zero).
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Fatou [5] and Julia [6] thoroughly investigated the second case. It turned
out that m this case f] and f2 can be reduced by a conjugacy to the form
fl(z) =z" and f,(z) = z" orto the form f, =T, and f, =T,, where T}
is the Tchebycheff polynom1a1 determined by the equatlon cos k( T, (cos{ )

Thus, the problem of describing commuting functions without common it-
erates was solved for the case J # C, in particular for polynomials. Case 1)
could not be investigated in the analogous way, because at the time there were
no means for describing the chaotic dynamics that takes place in the whole
plane in this case.

At the same time, Ritt [7] obtained a complete solution of the problem of
commuting functions by a quite different method. Some more pairs, with
Poincaré functions expressed in terms of elliptic functions, are added to the
indicated pairs f|, f,. In no way did Ritt connect the method of his paper
with the theory of iteration, and the method has a topological-algebraic char-
acter. His proof seems very complicated and devoid of geometric clarity. Ritt
writes: “It would be interesting to know whether a proof can also be effected by
the use of the Poincaré functions employed by Julia” ([7], p. 400). The article
[5] came out a little later, and there Julia already refers to [7]. The search for a
proof of Ritt’s theorem in the spirit of the ideas of Fatou and Julia is what led
to the appearance of the present article. Examples of commuting polynomial
mappings C" — C" generalizing the polynomials z — z* and T, were con-
structed in the recent article [12]. A new proof of Ritt’s theorem can turn out
to be useful for describing all pairs of such mappings.

The new method for investigating (0.1) proved to be applicable to another
functional equation

Gog=foG, _ 0.4)

where g and f are rational functions. In the case when deg g = 1, (0.4) can be
reduced either to the Poincaré equation or to the equation G(z+1) = foG(z),
which has been thoroughly investigated (see, for example, [1], [13], [14]). Using
Fatou’s result, Azarina [15] gave a complete description of all solutions G of
(0.4) with deg g = 1 that are meromorphic on C. Next, assume that degg > 2.
Equation (0.4) is encountered in several papers of Fatou and Julia; the long
paper [16], which sums up all the preceding results, is especially devoted to this
equation. As a rule, the solution G is a very complicated multivalued function
about which little of consequence can be said in the general case. The study of
single-valued solutions is of interest. Following Julia, we confine ourselves to
the single-valued transcendental(z) solutions G having finitely many essentially
singular points in C. It is easy to see that the set E of these singular points is
completely invariant with respect to g, and hence E C E(g). With the help
of conjugacy the matter can be reduced to one of the following two cases:

a) g(z) =z", ne Z\{0, £1}, and G is meromorphic in C* = C\{0}.

b) g is a polynomial, and G is meromorphic in C.

The main result in [16] is that in both cases a) and b) we must have J(f) =
and the function G takes all values in C infinitely many times. Julia stopped
with this investigation, since there were no suitable methods for studying the
dynamics of functions f with J(f) = C. Examples of relations of the form

(2)The author does not know any results about rational solutions.
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(0.4) constructed by means of elliptic functions were presented in the same ar-
ticle [16]. At the time these were the only known examples of rational functions
with J(f) =C.()

We find all triples (g, f, G) of functions satisfying (0.4) and the condition
a) or b). They are all explicitly expressed in terms of elliptic functions.

§1. Formulation of results

Let us start with some definitions. According to Thurston ([18], [19]), a
(two-dimensional) orbifold is defined to be a Riemann surface S together with
a function n: 8 — NU {oc} equal to 1 outside a discrete set of points. (This
is the same as a marked Riemann surface; we prefer the short modern term.)
Orbifolds (S, n;) and (S,, n,) are regarded as equivalent if there exists a
conformal homeomorphism

9:S\{z: n(z) = 00} = §,\{z: n,(z) = oo}, n,(¢(z)) = n,(z).

For example, if §| = C and n, =1, while §, = C, n,(00) =00, and n,(z) =1
for z # oo, then (S|, n)) = (S,, n,). If the surface S is compact, then the
Euler characteristic y of the orbifold @ = (S, n) is defined as follows. We
triangulate S with the condition that all points z with n(z) > 2 be vertices.
Let A be the number of faces, I" the number of edges, and P the set of vertices

“in this triangulation. Then

1
x(@’)_—A+F—Z€;M.

A cover of orbifolds R: (S, n,) — (S,, n,) is defined to be a holomorphic
branched cover R

S \{z: n\(z) = oo} = S,\{z: n,(z) = o0}

with the property deg, R - n,(z) = n,(R(z)), z € §;. Here deg, R is the
multiplicity of the function R at z. A cover is said to be universal if S, is
simply connected and ny=1.1If f: &, — @ and f5:0, = @ are universal
covers, then there exists a conformal homeomorphism ¢: &, — &, such that
Jfi=fo0. If &, and @, are orbifolds with compact surfaces, and R: g, — G,
is a finite-sheeted cover, then the Riemann-Hurwitz formula holds:

x(&)) = degR - x(F,).
We are interested in orbifolds & = (C, n) with x(&Z) =0, i.e.,

Z(l—n—(lz—))=2.

zeC
This equation has six solutions:
(00, 00), (2,2, 00), (1.1)
(2,4,4), (3,3,3), (2,3,6), (2,2,2,2). (1.2)

Associated with each solution except the last is a unique orbifold to within con-
formal equivalence, and associated with the solution (2,2,2,2) is a family

depending on a single complex parameter. Each orbifold in (1.1), (1.2) has a

(3)The first such example is usually attributed to Lattes (1918). However, Boettcher had an
analogous example in 1903 [17].
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universal cover by the plane C and has the form C/I', where I'" is a discontin-
uous group of orientation-preserving mixings of the plane ([18], [19], [22]). We
present an explicit form for universal covering functions F and the generators
of the groups I' ([19], [22]):

1) (00, 00);exp2nz;, z—z+1i;

) (2,2,00);c082nz;z— 2+ 1, z— —2z;

3) (2,4, 4); pz(z, 1,z z+1, z—iz;
4) 3,3,3):0(z,1,0) ;2 241, 2 z24+w, 2 0z}
5 (2,3,6): () (z,1,w);zz+1, z z+w, 2+ wz;

) (2,2,2,2);9(2z,1,7);2z22z+1, z— 24T, 2— —2Z.

Here p(z, w,, w,) is the Weierstrass elliptic function with periods w; and
w,, @ =e"" and Imt > 0. The meromorphic functions, F in 1)-6) admit
many interesting characterizations. For example, every meromorphic periodic
solution of the Poincaré equation has the form L oFoL,, where L, is a linear
fractional transformation, and L, is a linear function [27] (see also [14]).

Associated with each of the orbifolds (1.1), (1.2) is a family of rational func-
tions that implement a cover f:& — @& . All such functions f are obtained
from the commutative diagram

c A, c

|
e L .o |
Here F: C — & = C/T" is the universal cover, and A is a conformal homeo-
morphism with A" C I'. We present a list of admissible A for 1)-5) that give
functions f with deg f > 2 [19]):

1) z—nz, neZ, |n|>1;

2) zenz, znz+4i, neZ, |n|>1;

3) zmaz, z—az+ (1 +10), acZ{i], |a| > 2;

4) zmaz, aeZjw], |a| >3, w=e"3,

5) z—az, zw— az+ i1+ w), z— az+iV3/3, a € Z[w], |a| > 3,
w=expnif3.

In case 6) the conformal homeomorphisms A(z)=nz+a, n€Z, |n|>2,
2a €T, are admissible for each 7, and for certain special t there are also other
possibilities for A (so-called complex multiplications), the complete description
of which we omit (see, for example, [19}).

In case 1) f(z) = z", while in case 2) f = T, to within conjugacy. The
functions f corresponding to cases 3)-6) were the first examples of rational
functions with J(f) = C. Many other examples in which J = C are now
known (see, for example, [10], [20]).

THEOREM 1. Suppose that f, and f, arerational functions such that deg fj >

2and f" £ fy, m,neZ.If fiof,=f,0f,, then there exists an orbifold &
of type (1.1) or (1.2) such that f, and f, are covers @ — & .

We now consider covers &, — @, of different orbifolds in the list 1)-6). If
&, = C/T',, then a cover &, — &, ex1sts ifandonlyif I', cT,. The degree
of the cover is equal to the mdex of I', in T, . Therefore, covers g, — G, of
infinite degree are possible when @, has the form (1.1), and when é" has the

e
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form (1.2), where the pair ( ) =((2,2,00), (3,3, 3)) is excluded. Such
covers (¢ can be expressed in terms of the universal covers F, of the orbifolds
G, F,=GoF,|.

THEOREM 2. Suppose that g and f are rational functions, degg > 2, and
G is a meromorphic function in C or in C* with an essential singularity at o .
If G satisfies the equation Go g = f o G, then there exist orbifolds g, of type
(1.1) and &, of type (1.2) such that the commutative diagram

ﬁl““““’@’l

of o
S/
_ G — 6,
consists of covers.

The examples given in [16] correspond to the case when &, has type (2, 2,
2,2).

We remark that if h: @ — & is a cover of an orbifold in the list 1)-6)
and h = h'" , meN, then h: & — & is also a cover. This remark permits
us to replace the functions Jis f , and g by iterates of them in the proofs of
Theorems 1 and 2.

§2. Auxiliary results

The measure on the Julia set that describes the asymptotic distribution of
the roots of the equation f”(z) = a as n — oo will serve as the main tool in
the proofs of Theorems 1 and 2. Unless otherwise specified, all measures are
assumed to be locally finite Borel measures.

Let U and V be domains in C, and y: U — V a sufficiently nice func-
tion (for example, holomorphlc on U or a homeomorphism). Then for every
measure 4 on V' the inverse image

www=[ n@d,  Ecu,

is defined, where n,(z) is the number of inverse images in U of a point
z € V, with multiplicity taken into account. In particular, a linear operator
A, = f"/deg f acting on the set of probability measures in C is defined for
a rational function f. There exists a unlque probablhty measure /i, with the
properties
Afﬂf Hes /‘f(E(f)) = » _. (2.1)
This measure does not have discrete components; its support commdes with
the Julia set. The measure u ’ is called the equilibrium measure of f. The
existence and uniqueness of u . for each rational function f was first proved
by Lyubich [21].(4) Later a number of other proofs appeared (see, for example,
[23]). In the present article u y is used mainly for studying the dynamics of

functions f with J(f) = C. This is precisely the case when the methods of

(4)It was also shown in [21] that u, is the unique maximal entropy measure for the fiinction

f.
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Fatou and Julia are not applicable. We show that the measures u, correspond-
ing to rational functions f and fj in equations (0.1) and (0.4) have a very
specific property. But first we investigate this property by itself,

A smooth nonsingular vector field in a domain V' C R’ is a smooth function
w:V — RZ\{O} . Associated with w is a local phase flow g,: V — R’—a
solution of the Cauchy problem -

d .
-d—tgtv=w(gt)’ gO =ld,

which is defined for sufficiently small t € R. If ¢: U — V is a diffeomorphism,
then the inverse image ¢*w of the vector field w is defined as :

(9 w)(z) = (¢ () (wlp(2))), (2.2)

where ¢’ is the derivative of ¢ (a linear mapping of the tangent space). The
straightening theorem (see [24], Chapter 2, §7) asserts that an arbitrary smooth
nonsingular vector field can locally be turned into a constant vector field by
means of a diffeomorphism.

DEFINITION. A'measure g on R? is said to be lamellar at a point z, € suppu
if in some neighborhood of this point there exists a smooth nonsingular vector
field w such that its local phase flow preserves u. If w(z,) = a, then 4 is
said to be lamellar in the direction a. v '

With the help of the straightening theorem we obtain an equivalent definition:
there exists a diffeomorphism ¥ of some neighborhood U of z, onto a domain

V c R? such that the measure v = ((o'l)* u is invariant with respect to shifts
in the direction of the x-axis. The last condition is equivalent to v being
the product of dx and some measure dv,(y) (x and y are the Cartesian

coordinates in R ). ,
If p is lamellar at the point z,, then it is also lamellar at all points close to
z, . The property of being lamellar is preserved under the action of the operator

y* if v is a diffeomorphism. .

PROPOSITION 1. Suppose that the measure p is lamellar at.a point z, in the
two directions a and b, and the vectors a and b are linearly independent (over
R). Then in some neighborhood of z, the measure u is absolutely continuous
and has a smooth nonvanishing density. ‘ ‘

Proor. Denote by B,(z,) the family of neighborhoods E of z, with the
property max{|z, — {|:' { € OE} £ kmin{|z, - {|: { € OE}, k > 1. Let
u'(zo) = limu(E)/|E|, diamE — 0, E € B,(z,), where || is Lebesgue mea-
sure. According to a theorem of Lebesgue (see [25], Chapter IV), the derivative
i’ exists almost everywhere for each k > 1. We show that 4’ exists everywhere
in some neighborhood of z, and is a smooth function there. - ,

Let g,(z) and h,(z) be local phase flows preserving u, with the correspond-
ing vector fields linearly independent at z,. It is easy to see that there exists a
neighborhood V of z, with the property that for each pair of points z,, z, €V
the phase curves g,(z;) and 4,(z,) intersect at a unique point z; € V. There-
fore, there exist r and s such that A o g.(z,) = z,. The diffeomorphism
¢ = h, o g, preserves the measure 4 and maps the family B,(z,) into a fam-
ily By(z,) with some K that can be chosen independently of z,,z, € V.
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We have |p(E)| ~ CIEI for E € B,(z,), diamE — 0, where ¢ is the Jaco-
bian of ¢. Thus, if u (zl) exists, then ,u(zz) exists, and u (zz) = '(zl)/-c.
Obviously, ¢ depends smoothly on z, and z,.

We have shown that 4’ exists and is a smooth function. It remains to show
that 4 is absolutely continuous (then its density is necessarily equal to u').
Let & > 0 be arbitrary, and take a set K, K C V, |K| < ¢. It is necessary to
estimate u(K ). Let U be an open set contammg K with {U| < 2¢, and choose
M > max{y'(z): ze U}. Foreach z € K we cons1der a disk O(z) c U about
z such that u(O(z)) < M|0O(z)|. According to the theorem of Besicovitch
(see, for example, [26], Chapter 1, Theorem 1.1), there is an at most countable
covering {Oj} of K by these disks such that each point of the plane belongs
to at most six disks. Then

wK) < Z/‘(Oj) < MZ Iojl
k j

< 6M|U| < 12Me,

which is what was to be proved. :

Absolutely continuous measures with smooth nonvanishing densities will sim-
ply be called smooth measures below.

We consider the behavior of lamellar measures under holomorphic mappings
of the plane. Let us now identify R? with C, and vector fields with smooth
functions V — C If ¢ is a holomorphic function, then formula (2.2) is
preserved, with (p the complex derivative.

Suppose that U and V are ne1ghborhoods of zero, f U — V isa holo-
morphic mapping with f(z) = az* + 0(zk+l) ; z— 0, u is a measure on V,
and v = f"u is the inverse image of 4. :

ProrosiTION 2. If k > 3 and v is lamellar at zero, then v is smooth.

Proor. It suffices to confine ourselves to the case when f(z) = z¥. Then
V(E) = v(g, E), where E C U is an arbitrary Borel set, and g = exp2rnifk.
Therefore, if v is lamellar at zero in the direction a, then it is also lamellar in
the direction ¢,a . If k > 3, then the vectors a and ¢, are linearly independent
over R, and an application of Proposition 1 completes the proof.

ProrosiTION 3. If k > 2, then the measures u and v cannot be simultane-
ously lamellar at zero.

Proor. If v is a smooth measure, then its image u is a smooth measure in
a deleted neighborhood of zero, and its density has a singularity at zero. This
contradicts the condition that ux be lamellar.

Thus, it suffices in view of Proposition 2 to consider the case when k = 2.

It can be assumed that f(z) = . Suppose that both measures x4 and v are
lamellar. Denote by w and u the corresponding vector fields. We have

u(z) =u(0)(1+o0(1)), w(z)=w()(1+o(1)), z—0."

At the point z € U the measure v must be lamellar in thevdir‘ecﬁoh of the
inverse image f w(f(z)) of the vector w(f(z)). We have

rog@) =210y,  z-o0.
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It is easy to see that there is a sectorial domain A of angle 37/4 with vertex
at zero in which the vectors u(z) and f*w(f(z)) are linearly independent
over R. By Proposition 1, v is smooth in 4. Therefore, u is smooth in
f(A), which is a sectorial domain of angle 37 /2. But p is lamellar at 0.
Obviously, the images of the angle f(4) under the action of the local phase
flow determined by the vector field w fill a complete neighborhood of zero.
Therefore, u is smooth in a neighborhood of zero. But then v is also smooth,
and this is impossible, as we saw at the beginning of the proof.

PROPOSITION 4. If u satisfies the condition g u = e u in a neighborhood of
z,, where g, is the local phase flow and a > 0, then p is lamellar at z,.

PRrOOF. By the straightening theorem, it suffices to confine ourselves to the
case when g,(x,y)=(x+¢,y). In this case we have u(E +1) = e”u(E). Let

v(E) = /E Fdy (z=x+1).

It is easy to see that the measure v is invariant with respect to the flow g,.

Therefore, dv = (dx) x dA(y) and du = e dxdA(y). We verify that u is
invariant with respect to the local phase flow

(x,9) = (0,0, ), 9,00) = Flog(e™ +1),

which satisfies the differential equation

i — le_a¢'
a2 )

Indeed,
rrxe) ( d_fi_ %(x)) dx dAy) = e dx di().

Thus, p is lamellar.
§3. Commuting functions ,
We proceed to a proof of Theorem 1. Let fiof, = fo f;. If fz=1z,
then f'o f,z = fy0 f{'z = f,z, ie, f, maps the finite set of roots of the
equation fI"z — z into itself. Therefore, f; and f, have infinitely many

common periodic points. All but finitely many of them are repelling. Replacing
f, and f, by certain of their iterates (again denoted by f; and f;), we have the
existence of a common repelling fixed point z,. Let ;.= f; (z9), Ajiz— Az,
j =1, 2. We consider the Poincaré function:

FoA,=foF, F(0)=z,, F(0)=1L (3.1)

Let ¢=f‘20F0A2—1. We ha‘ve ¢(O)=209 (0,(0): 13and

-1 -1
fiow=tiofyoF oA = fofoF oA,
=f‘20FOA10A;1 =f.20FOA2_10A1 =¢0Al’
ie., ¢ satisfies (3.1) as F. In view of the uniqueness of the normalized
Poincaré function ¢ = F , i.e., ‘

FoA,=f,oF. (3.2)

Thus, F is a common Poincaré function for f; and f,.
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Let us now consider the operators A4 i and A4 5 defined at the beginning of
§2.. Obviously, 4 7 A 5= A oy = A fiofy = A 5 A 7 Therefo.re, ’the unique' fixed
points of these operators coincide: u 5= My = h In particular, the Julia sets
coincide: J(f,) =J(f,) =J. ' ,

Let v = F'u. Equations (3.1) and (3.2) give ANF" =Ff, j=1,2.

J
Since j;uzdegfj - u, we get
(degf) 'Av=v, j=1,2 (3.3)

Observe now that in view of (3.1) and (3.2) it follows from f* # fJ that
A;" # Ag for all m, n € N. Therefore, it is possible to choose m, and n,
tending to oo such that A;""AZ_ "1, Using (3.3), we get

) (degf2)n" *m
(deg ;)™

consequently, the group generated by the transformations (deg j})_lA; , J =
1, 2 is nondiscrete, and its closure contains a one-parameter subgroup I' =
{B,:teR"}, Bv(E)=1tv(t{"E), a € C*, p>0. The measure v is invariant
with respect to I', namely,

*—n .
AT id,

Bv=v, teR'; (3.4)

therefore, by Proposition 4, it is lamellar everywhere in C* (the vector field has
a singularity at zero). If I =suppy = F~'J , then in view of (3.4)

£I=1 forallt>0. (3.5)
Two cases must now be considered.

FIRST casE. J = C. Then I = C. If a point z € C has a simple (not

multiple) inverse image { € F _1(2) , £ # 0, then u is lamellar at z. This
follows from the fact that v = F*y islamellarat &,and F isa diffeomorphism
in a neighborhood of {. Next, by Proposition 3, all the F-inverse images of z

in C* are simple. Now suppose that z does not have simple inverse images in

C*. If v is not smooth at all points of F~! (2)\{0}, then all these points have
multiplicity 2 in view of Proposition 2. Suppose now that { € F "l(z) ;and v is
smooth at {. Then u is smooth in a deleted neighborhood of z. Consequently,
v is smooth in deleted neighborhoods of all points in F ‘l(z)\{O} . Since v

is also lamellar in C*, we get that it is smooth at all points in F _l(z)\{O} .
If one of these points has multiplicity &, then u has the following form in a

neighborhood of z: p(z')dxdy, z' = x +iy, where p(z') ~ c|z—z'|""™% as
z' — z. Therefore, all points { € F “l(z)\{O} hav ethe same multiplicity.

Thus, to every point z € C there corresponds a positive integer n(z) such
that all points { € F 'l(z)\{O} have multiplicity n(z). Note that F|.. takes
all values in C. If this were not so, then fj would have a nonempty exceptional
set, which is impossible because J = C.

We consider the orbifold @ = (C, n) and show that the fj &G — @ are
covers. Take an arbitrary point z € C andlet { € F _l(z)\{O}. Define z ;=
fi(z) and ¢;=A;(. Then F({;) = z; by virtue of (3.1) and (3.2). It follows
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from the same equations that deg, fj . degCF = degcj F,ie., deg, fj -n(z) =
n(z;), j=1, 2, which is what was required.

By the Riemann-Hurwitz formula deg f, - x(&) = x(&) , which implies that
%(&@) = 0. This proves Theorem 1 in the first case. - ‘

As mentioned in the Introduction, the second case was analyzed by Fatou and
Julia. However, the use of lamellar measures essentially simplifies the proof here
also. ' .

SECOND CASE. J is nowhere dense. Then I = suppv is also nowhere dense.
It follows from (3.5) that I is either a union of logarithmic spirals (in particular,
rays) starting from zero and disjoint in C*, or a union of the point O itself and
circles about zero. In any case an arbitrary point { € I\{0} has a neighborhood
V such that INV is diffeomorphic to the product of an open interval and some
closed nowhere dense subset of a closed interval.

We show that I is a line or ray. Note that z, = F (0) ¢ E( fj) . This follows
from the description of the exceptional set E(f) -in the Introduction and the
fact that z, is a repelling fixed point. Therefore, the Poincaré function F

takes the value z, infinitely many times.. Take a point { € F _1(20) , € 9é 0.
Suppose that W is a sufficiently small neighborhood of z, and let U, and

U, be the components of F~'W containing the points 0 and {, respectively.
The neighborhoods are chosen so that the restriction F IU‘ is univalent (recall

that F'(0) = 1), while the restriction F IU2 does not have critical points other
than perhaps the point -{. Obviously, { € I, because F({) = z, € J. The
component of I N U, containing { is a simple analytic curve. Therefore, the
component of J N W containing z, is also a simple analytic curve Gf ¢ is
a critical point, then this curve ends at z, but has a definite tangent there).
Since F: U, — V is a univalent conformal mapping, the component of U; N[
containing 0 is a simple analytic curve that possibly ends at zero but has a
tangent there. By the above description of the structure of I, this is possible
only if I is a line or ray. : . ' ‘ _

For simplicity we reduce both cases to a single case. Let F()=F (ct™),
where m = 1 if I is a line and m = 2 if I is a ray, and the number ¢ is
chosen so that the set I, = FI"I(J ) is the real line R. We have

Fp,0)=foFQ), o =12 - (3.6)

Let v, = Fl*u , suppv, = R. It follows from (3.5) that the number a in (3.4)
and (3.5) is real. Without loss of generality we assume that a > 0. Then it
follows from (3.4) that v,(tE) = t°v,(E) forall te R*, all Borel sets E CR,
and some o > 0. Therefore, the measure v, has the form

clx|” " dx. (3.7)

We show that ¢ = 1. Let us first see that J is a simple analytic curve (closed
or not). Suppose that z€ J, { € Fl_l(z) , V is a neighborhood of z, and
Uc FI"I(V) is a neighborhood of ¢ . Choose V' small enough that F; does not
have critical points in U\{. Moreover, we assume, without loss of generality,
that U is convex. Then U NR is an open interval. If { is not a critical point,
then V' NnJ is a simple open arc. If { is a critical point, then deg, F| = 2 and
V N J is a half-open arc with endpoint at z. This implies that J is a simple
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analytic curve. If J is a closed curve, then F, does not have critical points in
R. If J is a nonclosed curve with endpoints z, and z,, then the set of critical

points of F; on R coincides with FI_I({Zl , Z,}) and all these critical points
have multiplicity 2. Suppose now that { € Fl"l(zo) » & #0 (here z, = F|(0)).
It follows from the foregoing that deg, F, = degcl F, ; therefore, there exists a
conformal mapping ¢ of a neighborhood of zero onto a neighborhood of ¢ !
such that F () = F\(¢({)), ¢(0) = {,. It follows from the definition of v,
that ¢ preserves v, . Therefore, the density of v, with respect to the measure
dx cannot vanish nor be infinite at 0, because it does not vanish nor equal
oo at the point {,. This proves that ¢ = 1 in (3.6), and the measure v, is
proportional to dx . ~ : ‘

Let {, and {, be arbitrary distinct inverse images of an arbitrary point
z € J. As above, there exists a germ of a conformal mapping ¢ such that
9({,) = ¢, and F|({) = F|(¢({)) in a neighborhood of {,. This mapping ¢
preserves the real axis and Lebesgue measure on it. Therefore, ¢({) = £+ T.
This implies that the points glued together by F, belong to the orbits of some
group I' consisting of transformations z — +z + T, T € R. In other words,
F, is a universal cover of one of the orbifolds of type (1.1). Together with (3.6)
this finishes the proof.

§4. The Julia equation

We prove Theorem 2. Let n = degg and m = degf. Assume that g
is a polynomial. (According to the Introduction, this leaves out only the case

g(z) = z7", n € N\{1}, which can, however, be reduced to the case of a

2
polynomial gz(z) = z" by passing to the equation Go g2 =f 260G .) We need
the ’

THEOREM OF BOETTCHER ([3], [9], [10], [17]). For each polynomial g of
degree n > 2 there exists a neighborhood D of oo and a simply connected
conformal mapping B: A — D, where A= {z €C: |z| >r}, r> 1, such that

B(z")=goB(z), zeA. (4.1)
Let 9 =GoBoexp: H— C, where H={z: Rez > logr}:
H Z—nz H

exp exp

G G

C S c Y
The function ¢ is meromorphic on H and satisfies the equation

poN=fogp, - N:zw—nz, 4.2)
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which follows from (0.4) and (4.1). Moreover, it is obvious that
poT =¢, whereT:zw— z+2mi. 4.3)

We remark that ¢: H — C is surjective, since G takes all values in C infinitely
many times (see the Introduction). Let u = u, be the equilibrium measure, and
let v = ¢*u. Then suppr = H, because suppu = J(f) = C in view of the
result of Julia given in the introduction. By (4.2), N*¢* = ¢* f*. Considering
that f"u = mu, we get ,

" N'v=mv, (4.4)

and it follows from (4.3) that
T v =v. (4.5)

It follows from (4.4) and (4.5) that v is invariant with respect to the transfor-

mations N *TN*: z — z +2xi / n* , k € Z. Consequently, it is invariant with
respect to the closed group generated by these transformations, i.e.,

%k
T,v=v, acR,

where T,:z— z +ia. Thus, v is lamellar in H.

Repeating word-for-word the arguments in the proof of Theorem 1 (the first
case; the role of F: C* — C is played by ¢: H — C), we get that there exists
an orbifold &, of type (1.2) such that f: &, — &, is a cover.

Suppose now that F, is the Poincaré function for g that corresponds to a
fixed point z;, and G'(zo) # 0. (Such a fixed point z, can be found because
the repelling periodic points are dense in the Julia set; if necessary, replace g
and f by certain of their iterates.) We have

FoA=goF,, F(0)=z,, F(0)=1, A:zeg'(z) z.  (46)
ILet F=GoF,. Then

FoA=GogoF, =foGoF, ;foF,
F(0)=G(z,), F'(0)=G(zy) #0,

i.e., F is proportional to a Poincaré function for f. In particular, F is
meromorphic on C. (This was not at once completely obvious, because G
is meromorphic only on C*). We show that F: C — &, is a universal cover.
Choose a universal cover ®: C — ¢&, with the conditions F(0) = ®(0) and
F'(0) = ®'(0). Then fo® is also a universal cover; therefore, there exists a
linear function L with the properties fo® =®o L and L(0) = 0. We have
L'(0) = A'(0), since f o ®(0) = f o F(0). Consequently, L=A and ®=F,
because a normalized solution of the Poincaré equation is unique.

Thus, F: C — ¢, is a universal cover of orbifolds. Suppose that &, =
(C, n,) and Z, = {z: ny(z) > 1}. It follows from the relation

F=GoF, _ (47

that G is a branched cover over C that can be branched only over %,, and
all the G-inverse images of a point e € X, have multiplicity dividing n,(e) .
Therefore, we can introduce an orbifold &, = (C, n,) such that G: &, — a,
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is a cover of orbifolds. In other words, we let
_ 1(G(2))
n[( ) - deg G ’
If G is meromorphic only in C*, then we set 7 (0) oo . Denote by Z the set
of points at which #,(z) > 1. It follows from (4 7) that F, is unbranched over
C\Z, and all the inverse images of a point z € X, have mult1p11c1ty n(z). It
remains to show that g: g, — &, is a cover of orblfolds This can be done
exactly as in the proof of the first case of Theorem 1. Instead of (3.1) and (3.2)
we use (4.6). Next, degg - x(&,) = x(¢,) implies that y(&,) = 0. Thus, g,,
regarded as an orbifold (C, n 1) with n (oo) = 00, has type (1.1). The theorem
is proved.

zeC.
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