
Discrete Fourier Transform

A. Eremenko

September 19, 2024

Homework consists of the problems not marked with stars. Problems
with stars are just for fun: they are not a part of the homework, and their
solutions are not used in the text.

We begin by recalling prerequisites: some facts about integers and com-
plex numbers.

1. Arithmetic modulo N . Suppose that a positive integer N ≥ 2 is given.
Then every integer k can be divided by N with remainder, that is we have

k = pN + r, where p, r are integers, and 0 ≤ r ≤ N − 1.

We call this integer r the remainder of k modulo N . Two arithmetic opera-
tions, addition and multiplication, can be introduced on remainders: the sum
of two remainders is the remainder of their sum as integers; multiplication is
defined similarly. For example, 1 + 1 = 0 (mod 2), 7 + 10 = 5 (mod 12), and
−7 = 5 (mod 12).
1.1 Make the addition and multiplication tables modulo 2, modulo 4 and
modulo 5.
1.2* Show that an integer has the same remainder modulo 3 as the sum of
its digits in decimal system. Same modulo 9. In particular, an integer is
divisible by 3 (or by 9) if and only if the sum of its digits is.
1.3* Find all integers k with the property that 2k and 2k+1 have equal sums
of digits.
1.4* Derive the following criterion of divisibility by 11: a number a0 + a1 ×
10 + a2 × 102 + . . . is divisible by eleven if and only if its alternating sum of
digits a0 − a1 + a2 − . . . is.
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1.5 In the arithmetic modulo 4, which remainders have multiplicative in-
verses? Same question for moduli 2 and 5.
1.6* State the rule for arbitrary modulus. Which remainders have multiplica-
tive inverses? For which moduli all reminders except 0 have multiplicative
inverses?

2. Complex numbers. There are several ways to think about complex
numbers. One way is algebraic: complex numbers are expressions of the
form a+ bi with real a and b, which are added as polynomials of first degree
with respect to the letter i. To be able to multiply them as polynomials, we
set by definition i2 = −1 (more precisely, i2 = −1 + 0 · i). So, for example,
(2 + i)(1− i) = 3− i, (1 + i)(1− i) = 2. If z = a+ bi is a complex number,
then a and b are called the real and imaginary parts of zs, and we write

a = Re z, b = Im z.

Another way is to identify complex numbers with matrices of the form(
a −b
b a

)
, where a and b are real.

Then addition is the addition of matrices and the multiplication is multipli-
cation of matrices.
2.1* Show that both definitions agree, that is they lead to the same addition
and multiplication rules.

2 × 2 matrices are in one-to-one correspondence with linear transforma-
tions of the plane R2 (where we choose the standard basis).
2.2* Show that the matrices as above, representing complex numbers, corre-
spond exactly to those linear transformations which preserve angles1 between
vectors.

Another way to characterize these transformations is to say that each of
them multiplies the lengths of all vectors by the same factor, and preserves
orientation (“clockwise/anticlockwise”). Linear transformations with these
properties are called conformal.

1The angle between two vectors x and y is defined anticlockwise from x to y. So the
angle changes sign when x and y are interchanged. Sometimes this is called an oriented
angle.
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The norm of a complex number w = a+bi is by definition |w| =
√
a2 + b2

(positive square root). It is also called modulus or absolute value. Notice that
|a+ bi|2 = detA, where A is the matrix above representing a+ bi.

Complex numbers are in one-to-one correspondence with 2-dimensional
vectors, addition corresponds to addition of vectors, and the norm corre-
sponds to the norm of a vector. Using the standard rectangular coordinates
in the plane, we also obtain a one-to-one correspondence between complex
numbers and points in the plane. The set of all complex numbers of norm 1
is called the unit circle. It corresponds to the circle in the plane of radius 1
centered at the origin.

Using the polar coordinates in the plane, we can represent every complex
number w = a+ bi in the form

w = r(cos θ + i sin θ), where r = |w|.

The polar angle θ in this representation is called an argument of w. Each
non-zero complex number has infinitely many arguments: w does not change
if we add to θ any multiple of 2π. If w = 0 its argument is undefined.
2.3 Write 1 + i, and 1/2 + i

√
3/2 in polar coordinates.

2.4 Show that the argument of a product of two complex numbers is the sum
of their arguments.2

This result suggests the following definition of the exponential of a pure
imaginary number:

exp(iθ) = cos θ + i sin θ, Euler’s Formula.

For example,

exp(πi) = −1, exp(πi/2) = i and so on.

The usual definition of the exponential of any complex number w is

exp(w) =
∞∑
n=0

wn

n!
.

One can show that this series is convergent for all complex w.

2More precisely, this means that each of the infinitely many arguments of w1w2 is the
sum of an argument of w1 and an argument of w2.
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2.5*Obtain Euler’s formula from this general definition, and using the known
Taylor expansions of trigonometric functions.

The most important fact about complex numbers is the
Fundamental Theorem of Algebra. Every non-constant polynomial with
complex coefficients factors into polynomials of first degree. More precisely,

P (w) = a(w − w1)(w − w2) . . . (w − wn),

where a, w1, . . . , wn are complex numbers and n = degP .
For example, w4 + 1 = (w − 1)(w − i)(w + 1)(w + i).

2.6 Find two solutions of the quadratic equation w2 + w + 1 = 0.

3. Roots of Unity. N -th roots of unity are defined as solutions of the
equation

wN = 1. (1)

There are exactly N distinct N -th roots of unity. For example, 2-nd roots of
unity are 1 and −1, and 4-th roots are 1, i,−1,−i. To find the 3-d roots of
unity, first factor

w3 − 1 = (w − 1)(w2 + w + 1),

and then use Exercise 2.6.
3.1* Express all 5-th roots of unity in the form a+ bi using only arithmetic
operations and radicals (square roots of positive numbers)3, that is exponen-
tial and trigonometric functions are prohibited.
3.2* Without using Euler’s Formula, exponents or trig, show that for every
N , there are exactly N distinct roots of unity of degree N .

Using Euler’s Formula, we can solve the equation (1) in the following way.
First it follows from (1) that |w| = 1, so by Euler’s Formula, w = exp(iθ) for
some real θ. Substituting this to (1), we obtain

exp(iNθ) = 1, thus iNθ = 2πk, k = 0, 1, 2, . . . ,

so θ = 2πk/N . Not all these θ give different solutions of (1). Namely,
exp(2πik/N) = exp(2πim/N) if and only if k−m is divisible by N . So there
are exactly N distinct solutions

wk = exp(2πik/N), k = 0, 1, 2, . . . , N − 1. (2)

3The question, for which N this is possible was solved completely by Gauss.
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We see that there is a one-to-one correspondence between N -th roots of unity
and remainders modulo N , and product of roots of unity corresponds to the
sum of the remainders.

Notice that wk = wk
1 , that is all N -th roots of unity are powers of one

of them. In general, an N -th root of unity w is called primitive if all N -th
roots of unity are powers of w. Thus the root w1 (as well as w−1) is always
primitive.
3.3* Find all primitive roots of degrees 3, 4 and 12.
3.4* Suppose that N is even, and w is a primitive N -th root of unity. Show
that w2 is a primitive root of degree N/2.

Try to state a general rule: which roots of degree N are primitive.
Now we discuss sums of the roots of unity.

3.5 Let w be any primitive root of unity, for example w1 = exp(2πi/N).
Then

N−1∑
k=0

wmk =

{
N if N divides m,
0 otherwise.

Hint: use the geometric progression formula to compute the LHS.
In words: sum of all roots of unity of fixed degree is 0. Sum of m-th

powers of all N-th roots of unity is N when m is divisible by N and zero
otherwise.

4. Discrete Fourier Transform. We fix an integer N ≥ 2, and a primitive
N -th root of unity w, for example we may take w = w1 = exp(2πi/N). (If
you did not care to solve 3.4, just assume that w = exp(2πi/N).) The symbol∑

k

will always mean summation over all remainders k modulo N .
Let f = (f(0), . . . , f(N−1)) be a vector of dimension N , in general, with

complex coordinates. The coordinates are indexed by remainders modulo
N . We define its (discrete) Fourier Transform as another complex vector
F = (F (0), . . . , F (N − 1)) of the same dimension N ,

F (k) =
∑
n

wknf(n). (3)

Thus Fourier Transform is a linear operator represented by the N×N matrix

A = (akn), akn = wkn,
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which is called the Fourier Matrix of order N .
4.1 Write explicitly the Fourier matrix of order 4 using w = exp(2πi/4) = i.
4.2 Find the Fourier Transform of the vector (2, 1,−2, 1) using the matrix
from 4.1.
4.3 Using Exercise 3.5, verify that the inverse matrix is

A−1 =
1

N
(w−kn).

In other words, a vector f can be recovered from its Fourier Transform
F by the Fourier Inversion Formula:

f(n) =
1

N

∑
k

w−nkF (k).

4.4 a) Find A2. Hint: this is N times a permutation matrix. What permu-
tation? b) Show that A4 = N2I.

4.5* Prove the Parseval Indentity∑
n

|F (n)|2 = N
∑
n

|f(n)|2.

This means that Fourier Transform increases the lengths of vectors by
the factor of

√
N .

Convolution of two vectors f and g is defined as the vector h = f ⋆g with
cooreinates

h(n) =
∑
k

f(k)g(n− k).

Fourier transform maps convolution of two vectors to the product of their
Fourier transforms:

H(m) = F (m)G(m).

Indeed,

H(m) =
∑
n

wmn
∑
k

f(k)g(n− k) =
∑
n

∑
k

f(k)wmkg(n− k)wm(n−k)

=
∑
k

f(k)wmk
∑
n

g(n− k)wm(n−k) = F (m)G(m).
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This is the main property which makes Fourier transform useful. For exam-
ple, suppose that we want to multiply two polynomials

a0 + a1q + . . .+ anq
n and b0 + b1q + . . .+ bnq

n.

The coefficients of the product are

cm =
m∑
k=0

akbm−k =
N−1∑
k=0

akbm−k,

where we assume that N > 2n, and that aj = bj = 0 for j < 0 and for
j > n. Then the coefficient sequence cj is the convolution of the coefficient
sequences aj and bj. Instead of computation this sequence cj directly it is
faster to apply the Fourier transform to aj and bj multiply the transforms
and then apply the inverse Fourier transform.

5. Fast Fourier Transform. Fourier Transform is one of the most basic
tools in Mathematics as well as in all kinds of data processing (for science,
engineering and communication). One of the important recent applications
is to multiplication of large integers needed for coding, for example. Unfor-
tunately there is no time in this course to explain any of these applications.
Many achievements of the modern “computer revolution” would be impossi-
ble without an algorithm for doing Fourier Transforms fast.

In general, multiplication of an N -vector by an N×N matrix requires N2

multiplications of numbers. (For simplicity we don’t count additions; their
cost is usually much smaller.) So it was an important discovery that Fourier
transform can be computed by about cN log2N multiplications, where c is
an absolute constant.
5.1 Suppose that your computer screen has 106 pixels. So a picture on your
screen in represented by a vector of dimension one million. Processing this in-
formation is usually done with Fourier Transform. How many multiplications
will the usual matrix multiplication require to compute one such transform?
Suppose that your computer can perform 50×106 multiplications per second.
How long will it take to compute Fourier Transform of one picture? How long
will it take using the Fast Fourier Transform algorithm which requires, say
4N log2N multiplications?

I hope this example explains what I mean in the above sentence on
“achievements of computer revolution”.
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For the Fast Fourier Transform (FFT), it is convenient to choose N = 2n

(always do this if you want to implement this algorithm!) The FFT algorithm
is based on the following computation:

F (k) =
∑
j

wkjf(j) write even and odd j separately

=
N/2−1∑
j=0

w2kjf(2j) +
N/2−1∑
j=0

wk(2j+1)f(2j + 1)

=
N/2−1∑
j=0

(w2)kjf(2j) + wk
N/2−1∑
j=0

(w2)kjf(2j + 1).

Now w2 is a primitive root of degree N/2 (by Exercise 3.4, or if you did not
do it, and w = exp(2πi/N), then w2 = exp(2πi/(N/2)).) So the last line of
the formula above is the sum of two Fourier transforms of dimension N/2,
first performed on even components of the vector f , second on odd compo-
nents. Thus doing FT of dimension N is reduced to doing two transforms of
dimension N/2 each, plus N additional multiplications.

Let C(N) be the number of multiplications needed to compute FT of
dimension N . Our argument shows that

C(N) = 2C(N/2) +N.

If N = 2n, as we assume, the last equation gives a recurrence relation for
C(N). A solution of this recurrency is C∗(N) = N log2N , indeed

2C∗(N/2)+N = 2(N/2) log2(N/2)+N = N log2N−N log2 2+N = C∗(N).

As C(2) = C∗(2) = 2, we conclude that C(N) = C∗(N).
It is hard to tell in few sentences who was the first to discover this algo-

rithm. It was published in its present form for the first time by G. Danielson
and C. Lanczos at Purdue University in 1942. Danielson was a graduate stu-
dent in physics; he studied refraction of X-rays in liquids in his PhD thesis.
Fourier Transform is the main tool in these questions, and in optics in gen-
eral. Lanczos was his advisor. (One of the greatest applied mathematicians
of 20th century, he was once Einstein’s assistant, then escaped to the US
from the Nazi prosecution, and in 1940-s had a temporary job at Purdue).

In the introduction to their paper they wrote:
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“If a modern mechanical analyzer4 is available, the evaluation of Fourier
integral presents no difficulty. It is our purpose to show that, for occasional
analyses at least, one need not depend on such costly instruments, even when
the required number of coefficients is very large.”

The paper of Lanczos and Danielson went unnoticed at that time.5 The
algorithm was rediscovered by J. Cooley and J. Tukey in 1965. (Cooley was
a computer programmer for IBM, and Tukey, who suggested the algorithm,
was a scientific advisor of the US President (JFK). Tukey’s concern was the
possibility of detecting Soviet underground nuclear tests by seismic observa-
tions. This also requires Fourier Transform. Later some Soviet scientists said
that they are proud to learn that their nuclear tests stimulated the develop-
ment of the Fast Fourier Transform:–) The paper of Cooley and Tukey was
published at exactly the right time, when fast digital computers just became
available.

Later it was discovered that several people had this idea before Cooley,
Tukey, Lanczos and Danielson, the oldest reference I know is on the work of
Gauss (who was computing the orbits of small planets).

5.2 According to Danielson and Lanczos, their first calculation at Purdue
took 10 min to find the FT of a 8-vector (by hand, of course), 25 min for a
16-vector, 60 min for a 32-vector, and 120 min for a 64-vector. Plot these data
and discuss, whether they are consistent with the theoretical result, that the
time is proportional to N logN . Estimate the coefficient of proportionality
(with the least squares or without). Please, do all calculations by hand:–)

5.3* Suppose that a vector (a, b, c, d, e, f, g, h) has FT (A,B,C,D,E, F,G,H).
Find the vector of dimension 4 whose FT is (A,C,E,G).

4An analog computer specially designed to evaluate Fourier Transform. You can see a
picture of one of these on my web page.

5Lanczos’ appointment was not renewed after the war. He could not find a tenure
position until he grew 60.
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