Fast Fourier Transform. Some answers and solutioins

1.3 Look at the remainders modulo $3: 2^{0}=1,2^{1}=22^{2}=1$, and so on, the pattern repeats, and 2^{k} and 2^{k+1} never give equal remainders. So by exercise 1.2 , the sums of digits are never equal.
1.5 Modulo 4: 1, 3; modulo 5: 1, 2, 3, 4 .
1.6 Those and only those remainders have multiplicative inverse which are mutually prime with the modulus. (Two integers are called mutually prime if they have no common factor, except 1 and -1).
$2.31+i=\sqrt{2} \exp (i \pi / 4), 1 / 2+i \sqrt{3} / 2=\exp (\pi i / 3)$.
3.1 Begin by factoring $z^{5}-1=(z-1)\left(z^{4}+z^{3}+z^{2}+z+1\right)$. It remains to solve

$$
z^{4}+z^{3}+z^{2}+z+1=0
$$

Divide by z^{2} :

$$
z^{2}+z+1+z^{-1}+z^{-2}=0 .
$$

Put $w=z+z^{-1}$ then $w^{2}=z^{2}+z^{-2}+2$; substituting to our equation we obtain

$$
w^{2}+w-1=0
$$

So $w_{1,2}=-(1 / 2) \pm \sqrt{5} / 2$. It remains to solve two quadratic equations for z :

$$
z+z^{-1}=-1 / 2+\sqrt{5} / 2 \quad \text { and } \quad z+z^{-1}=-1 / 2-\sqrt{5} / 2
$$

Solutions of the second equation are

$$
-\frac{1+\sqrt{5}}{4} \pm \frac{i}{2} \sqrt{\frac{5-\sqrt{5}}{2}}
$$

and solutions of the first:

$$
-\frac{1-\sqrt{5}}{4} \pm \frac{i}{2} \sqrt{\frac{5+\sqrt{5}}{2}}
$$

Remark. On the other hand, the 5 -th roots are $\exp (2 \pi i k / 5), k=$ $0,1,2,3,4$. Can you figure out which is which? Then you obtain precise expressions for sin and cos of several angles like $72^{\circ}, 54^{\circ}, 26^{\circ}$.
3.2 They are roots of the polynomial $z^{N}-1$. By the Fundamental theorem of Algebra, the polynomial factors into linear factors:

$$
f(z)=z^{N}-1=\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{N}\right)
$$

One still has to show that all these factors are distinct. If some factor $\left(z-z_{k}\right)$ appears at least twice, then z_{k} will be a root of the defivative $f^{\prime}(z)$. Indeed, if

$$
f(z)=\left(z-z_{k}\right)^{2} g(z) \quad \text { then } \quad f^{\prime}(z)=2\left(z-z_{k}\right) g(z)+\left(z-z_{k}\right) g^{\prime}(z)
$$

But $f(z)=z^{N}-1$ and $f^{\prime}(z)=N z^{N-1}$ have no common roots.
3.3. For degree 12: $\exp (\pi i k / 6)$, where $k=1,5,7,11$ are primitive, the rest are not.

In general, $\exp (2 \pi i k / N)$ is primitive if and only if N and k are mutually prime.

$4.2(2,4,-2,4)$.

5.2 Let $F(N)$ be the time spent on calculating N points. We are testing the hypothesis that $F(N)=c N \log _{2} N$. Dividing $F(N)$ by $N \log _{2} N$, we obtain the series

$$
5 / 12,25 / 64,15 / 40,35 / 96
$$

which is slowly decreasing from .42 to .37 . I would say that $c \approx .395$ from these data. Probably the slow increase of performance was due to computor's training in the process of calculation.
$5.3(a+e, b+f, c+g, d+h)$. Computation: denote

$$
\mathbf{f}=(a, b, c, d, e, f, g, h), \mathbf{F}=(A, B, C, D, E, F, G, H), \mathbf{G}=(A, C, E, G)
$$

and let \mathbf{g} be the vector we are trying to find. By definition, $\mathbf{G}(k)=$ $\mathbf{F}(2 k), 0 \leq k \leq 3$. By definition of FT:

$$
\mathbf{F}(2 k)=\sum_{n=0}^{7} w_{8}^{2 n k} \mathbf{f}(n)=\sum_{n=0}^{7} w_{4}^{n k} \mathbf{f}(n) .
$$

As $w_{4}^{n k}, 0 \leq n \leq 7$ repeat with period 4 , the last expression equals

$$
\sum_{n=0}^{3} w_{4}^{n k}(\mathbf{f}(n)+\mathbf{f}(n+4))
$$

This means that \mathbf{G} is the FT of the sequence $\mathbf{g}=(a+e, b+f, c+g, d+h)$.

