Examples of partial fraction decomposition

Example 1

$$
\frac{2 x^{2}+2 x+13}{(x-2)\left(x^{2}+1\right)^{2}}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+1}+\frac{D x+E}{\left(x^{2}+1\right)^{2}} .
$$

Adding the fractions in the RHS, we write that the numerators are equal:

$$
2 x^{2}+2 x+13=A\left(x^{2}+1\right)^{2}+(B x+C)\left(x^{2}+1\right)(x-2)+(D x+E)(x-2)
$$

Writing that the coefficients at equal degrees are equal, we obtain the system of equations:

$$
\begin{array}{r|rl}
x^{4} & A+B & =0 \\
x^{3} & = \\
x^{2} & -2 B+C & =0 \\
x^{1} & 2 A+B-2 C+D & =2 \\
x^{0} & -2 B+C-2 D+E & =2 \\
A-2 C-2 E & =13
\end{array}
$$

whose solution is

$$
A=1, \quad B=-1, \quad C=-2, \quad D=-3, \quad E=-4 .
$$

Thus

$$
\frac{2 x^{2}+2 x+13}{(x-2)\left(x^{2}+1\right)^{2}}=\frac{1}{x-2}-\frac{x+2}{x^{2}+1}-\frac{3 x+4}{\left(x^{2}+1\right)^{2}} .
$$

Example 2

$$
\frac{1}{x^{2}\left(1+x^{2}\right)^{2}}=\frac{1}{x^{2}}-\frac{1}{1+x^{2}}-\frac{1}{\left(1+x^{2}\right)^{2}}
$$

Example 3

$$
\frac{4 x^{2}+4 x-11}{(2 x-1)(2 x+3)(2 x-5)}=\frac{A}{x-1 / 2}+\frac{B}{x+3 / 2}+\frac{C}{x-5 / 2} .
$$

Notice that the denominators of fractions should be of the form $(x-a)$, not of the form $a x+b$. When all linear factors in the denominator are different (so there are no powers), one can apply a shortcut. For example, to find A we multiply our equality by $x-1 / 2$ and put $x=1 / 2$. Everything in the RHS, except A will disappear, and we obtain $A=1 / 4$ just by plugging $1 / 2$ to

$$
\frac{4 x^{2}+4 x-11}{2(2 x+3)(2 x-5)}
$$

Similarly, to obtain B we multiply by $x+3 / 2$ and plug $x=-3 / 2$, which gives $B=-1 / 8$. Similarly we obtain $C=3 / 8$.

Example 4, using complex numbers.

$$
\frac{1}{x^{2}+1}=\frac{A}{x+i}+\frac{B}{x-i} .
$$

Using the same argument as in Example 3, we obtain $A=1 /(-i-i)=i / 2$ and $B=-i / 2$.

