Accessory parameter of the Heun equation

February 12, 2015

Consider the Heun equation

\[y'' + \left(\sum_{j=0}^{2} \frac{1 - \alpha_j}{z - a_j} \right) y' + \frac{A z - \lambda}{(z - a_0)(z - a_1)(z - a_2)} y = 0, \]

where the parameters \(\alpha_j, a_j, A \) satisfy \(\alpha_j > 0 \),

\[A = \alpha' \alpha'', \quad \sum_{j=0}^{2} \alpha_j + \alpha' + \alpha'' = 2, \]

where \(\alpha' \) and \(\alpha'' \) are real. \(\lambda \) is called the accessory parameter.

Problem. For given \(a_j, \alpha_j, A \), describe the set of values of \(\lambda \) for which the monodromy group of the equation is conjugate to a subgroup of \(SU(2) \).

Same question when the parameters \(a_j \) and \(\lambda \) are also real.

For which parameters \(a_j, \alpha_j, A \) is this set non-empty? Is it always finite? How many elements can it contain?