Homework 9

1. a) For which positive integers m is it possible that 2^{m} and 2^{m+1} have equal sums of digits in decimal system? Hint: Every number has the same residue modulo 3, as sum of its digits in decimal system. So, for example $721,020,013,214$ has residue 2 modulo 3 .
b) How to find out quickly, whether a given integer is divisible by 11 ?
2. a) Express a primitive root of 1 of degree 8 in the form $a+b i$ (your expression may contain radicals but no sines, cosines or exponentials).
$\left.b^{*}\right)$ Do the same for a primitive root of degree 5 .
3. a) A complex number w is a called primitive root of 1 of degree d, if all roots of 1 of degree d are powers of w. Which roots of 1 of degree 12 are primitive, and which are not?
$\left.b^{*}\right)$ Is $\exp 7 \pi i / 60$ a root of 1 of degree 120 ? If yes, is it primitive?
Definition. Fourier matrix of size $N \times N$ is the matrix with elements $a_{i, j}=$ $w^{-i j}$, where $w=\exp 2 \pi / N$ and $i, j=0, \ldots, N-1$. 4. Write explicitly the Fourier matrix 6×6.
4. Let A be the 4×4 Fourier matrix. Find A^{2} and A^{4}
5. a) Show that the 4 -th power of every Fourier matrix is a multiple of the unit matrix.
b) How does the second power of a Fourier matrix look?
6. Find the Fourier transform of the vector $(2,1,-2,1)$.
7. According to Danielson and Lanczos, their first calculation at Purdue, took 10 min to find the FT of a 8 -vector (all by hand, of course), 25 min for a 16 -vector, 60 min for a 32 -vector, and 140 min for a 64 -vector. Plot these data, and discuss, whether are consistent with the theoretical result that the time is proportional to $N \log N$. Estimate the coefficient of proportionality. (Please do all calculations by hand:-)
8. Prove Parceval's identity:

$$
\sum_{n=0}^{N-1}|F(n)|^{2}=N \sum_{n=0}^{N-1}|f(n)|^{2}
$$

10. Suppose that a vector (a, b, c, d, e, f, g, h) has $\operatorname{FT}(A, B, C, D, E, F, G, H)$. Find the vector (of dimension 4), whose FT is (A, C, E, G).
