Let f be a rational function of degree at least two. Consider Jordan analytic curves C which are invariant under f. The simplest example of such a curve is a circle. If f has an invariant circle C, one can conjugate f by a linear-fractional transformation which sends C to the extended real line $\mathbf{R} \cup \{\infty\}$. Rational functions which map the real line into itself are real rational functions $f(\overline{z}) = \overline{f(z)}$.

What are the other possibilities? If f has a rotation domain (a Siegel disk or an Herman ring), then there is an analytic function ϕ in this domain which conjugates f with an irrational rotation. Then the level lines $\{z : |\phi(z)| = c\}$ are analytic invariant curves.

Question 1. Does there exist a rational function with an analytic invariant curve on which f is topologically conjugate to an irrational rotation, and such that C is neither a circle nor a level curve of a linearizer of a rotation domain?

Such curves do not exist for polynomials or rational functions [1]. A Jordan curve C is called a *degenerate Herman ring* if it is

- a) contained in the Julia set,
- b) is neither a circle nor a boundary component of a rotation domain, and

c) f is conjugate to an irrational rotation on C.

There exist smooth degenerate Herman rings [6]. Question 1 asks whether there exist analytic degenerate Herman rings. Many non-trivial degenerate Herman rings (which are not smooth) are constructed in [4].

Question 2. (Bergweiler) Is the number of degenerate Herman rings finite? Can it be estimated in terms of degree of f?

Now we turn to invariant curves such that the restriction $f: C \to C$ is not one-to-one.

Theorem [2]. Let C be an analytic invariant curve of a rational function f, and suppose that $f : C \to C$ is not a homeomorphism, and there is a repelling fixed point of f in C. Assume in addition that $C \subset J(f)$ and C contains no critical points or rational fixed points of f. Then either f is a Latté function or C is algebraic.

Examples of the first possibility were constructed in [2], and of the second possibility in [5].

Question 3. Which conditions of this theorem can be removed?

References

- Y. Azarina, Invariant analytic curves for entire functions, Siberian Math. J. 30 (1989) 349–353.
- [2] A. Eremenko, Invariant curves and semiconjugacies of rational functions, Fund. Math., 219 (2012) 3, 263–270.
- [3] P. Fatou, Sur les équations fonctionnelles, Troisième Mémoire, Bull. Soc. Math. France, 48 (1920) 208–314.
- [4] Willie Rush Lim, A priori bounds and degeneration of Herman rings with bounded rotation number, arxiv:2302.07794.
- [5] Peter Müller, Decompositions of rational functions over real and complex numbers and a question about invariant curves, Illinois J. Math., 59 (2015) 4, 825–838.
- [6] Fei Yang, Rational maps with smooth degenerate Herman rings, arXiv:2207.06770.