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We use complex numbers and represent the motion as z(t). We first derive
the equal area law for an object moving under any central force:

z′′ = zf(|z|)

Let z = reiφ. Then

z′′ = r′′eiφ + 2ir′φ′eiφ + irφ′′eiφ − rφ′2eiφ = reiφf(r).

Dividing by eiφ and taking the imaginary part we obtain

2r′φ′ + rφ′′ = 0.

But this is the derivative of r2φ′ times r. So the area changes at a constant
rate.

Now we derive the first law. Consider an ellipse centered at zero.

Theorem. Squaring sends it to an ellipse with a focus at zero.

Proof. Parametrize the ellipse by Joukowski function: w = z + 1/z, |z| =
r, r > 1. The foci are ±2. Then w2 = z2 + 1/z2 + 2, an ellipse with foci ±2
shifted by 2.

Corollary. Each ellipse with a focus at 0 is a square of the unique ellipse with
center at 0.

Theorem. The differential equation z′′ = −z after the transformation w = z2

and a time change becomes

w′′ = −cw/|w|3. (1)
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Proof. Choose new time τ so that dτ/dt = |w|2/|z|2 = |z|2. Then
d/dτ = |z|−2d/dt. Now we compute:

d2w/dτ 2 = |z|−2
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zz3
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Differentiating the last expression in parentheses and using z′′ = −z we
obtain that it is constant. So the right hand side is a positive constant times
−1/(zz3) = −w/w3.

The hint for the time change is that the equal area law must be observed.

Third Kepler Law. Consider the scaling in space and time: w(t) = au(bt).
Then u will obey (1) if and only if a3b2 = 1.
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