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1. Let

φ(n) = sup
deg p=n

∫
|z|<1

|p′|
1 + |p|2 dm,

where the sup is taken over all polynomials of degree n and dm stands for
the area element. Littlewood [11] gives several equivalent definitions of φ(n).
He observed that φ(n) ≤ π

√
n. Let

α = lim sup
n→∞

log φ(n)

log n
.

Littlewood’s conjecture that α < 1/2 was proved by Lewis and Wu [10], who
showed that in fact α < 2−1 − 2−264. These authors used an approach from
[7, 8] where a weaker result was obtained. Early lower estimates of α are
due to Paley and Hayman, but only in [5] it was proved that α > 0. The
rigorous numerical estimate α > 10−5 is due to Baker and Stallard [1]. Using
a computer, Kraetzer [9] showed that in fact the method proposed in [5] gives
α > 0.242. This confirms an earlier computation of Carleson and Jones [3].

2. Let E be a regular compact subset of the plane and G the Green function
of C\K with the pole at infinity. For every ǫ > 0, let l(ǫ) be the length of
the level curve {z : G(z) = ǫ}. Put

βE = lim sup
ǫ→0

log l(ǫ)

− log ǫ
,

and
β = sup βE
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over all connected compact sets. It is known that .17 < β < .49. The
upper bound is due to Clunie and Pommerenke [4] and the lower bound to
Pommerenke [12]. The problem of estimating β comes from Littlewood’s
work on univalent functions. He proved that β > 0. Computer experiments
of Carleson and Jones [3] and Kraetzer [9] indicate that β > .242, which
seems to confirm the conjecture Carleson and Jones that β = 1/4.

One can ask the same question about sup βE over all regular compact sets,
not necessarily connected. I conjecture that the sup is attained on connected
sets. Paper [6] gives some evidence of this.

3. All lower estimates in [1, 3, 5, 9] are all based on iteration theory, more
precisely on “thermodynamic formalism”. Let pc(z) = z2 + c be a hyperbolic
polynomial (“hyperbolic” means that the trajectory of 0 under the iterates of
pc tends to an attracting cycle, possibly to infinity). Denote the n-th iterate
of pc by pn

c . The number

Pc = lim
n→∞

1

n
log

∑
z:pn

c
(z)=1

‖(pn
c )′|−1

is called the pressure, corresponding to |(pn
c )′|−1. The existence of the limit

and positivity of Pc for c 6= 0 was shown by Ruelle [13] who also proved
that c 7→ Pc is a real analytic function on every component of the set of
parameters c where pc is hyperbolic. It can be shown [5] that α ≥ Pc/ log 2
for all such c. Similarly, it is shown in [3] that β ≥ Pc/ log 2 for all c such
that the trajectory of 0 tends to a finite attracting cycle.

4. I do not know of any evidence in favor or against the Carleson and Jones
conjecture, except the computer experiments mentioned above. But there
are several questions which seem to be easier:
A. Is there any connection between α and β? Is it true that α = β?
B. How to obtain better estimates of α, β and supc Pc, even with the help of
a computer?
C. Are the polynomials P n

c extremal or nearly extremal for α?
D. For which c is the pressure Pc close to its supremum?

Remark added on March 17 2015 Beliaev and Smirnov [2] claim that they
proved α = β. However their argument is based on an unpublished result of
Binder and Jones, which is still not available (March 2015).
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