MA440 REAL ANALYSIS (HONORS)

MIDTERM EXAM 2 PRACTICE PROBLEMS

1. Suppose that $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is a continuous function such that $\lim_{|x| \to \infty} f(x) = 0$, i.e., for all $\epsilon > 0$, there is an N so that $|f(x)| < \epsilon$ for all x with $|x| > N$. Show that f is uniformly continuous on \mathbb{R}^n.

2. Let f be a continuous function on \mathbb{R} to \mathbb{R} which does not take on any of its values twice. It it true that f must either be strictly increasing (in the sense that if $x' < x''$ then $f(x') < f(x'')$) or strictly decreasing?

3. Let f be defined for all real x, and suppose that $|f(x) - f(y)| \leq (x - y)^2$ for all real x and y. Prove that f is constant.

 Hint: Show that f is differentiable and find f'.

4. Let F be the Cantor set. Let f be a bounded real function on $[0, 1]$ which is continuous at every point outside F. Prove that f is Riemann integrable on $[0, 1]$.

 Hint: F can be covered by finitely many segments whose total length can be made as small as desired.

5. If $f : [0, 1] \rightarrow [0, \infty)$ is increasing and $f \left(\frac{1}{2} \right) > 1$, show that

 $$\int_0^1 f(x)dx > \frac{1}{2}.$$

6. Show that $f_n(x) = n \sin(x/n)$ converges uniformly on $[-a, a]$ for any finite $a > 0$ but does not converge uniformly on \mathbb{R}.

7. Show that a monotone function $f : [a, b] \rightarrow \mathbb{R}$ is continuous if and only if its image $f([a, b])$ is an interval.

8. Suppose
 - f is continuous for $x \geq 0$,
 - $f'(x)$ exists for $x > 0$,
 - $f(0) = 0$,
 - f' is monotonically increasing.

 Put

 $$g(x) = \frac{f(x)}{x}, \quad x > 0$$

 and prove that g is monotonically increasing.