
PROJECT SUMMARY

Alexandre Eremenko

Geometric function theory studies relations between properties of a meromor-
phic function and geometry of its image. In the case of univalent functions,
the image is a domain on the Riemann sphere. In the general case, it is a
“Riemann surface spread over the sphere”. These questions were intensively
studied during the whole XX century, but several challenging and important
problems remain unsolved. The theory has two different generalizations to
higher dimensions: quasiregular mappings and holomorphic curves.

The proposer intends to continue his study of geometric questions in the
theory of meromorphic functions, using the new techniques developed in his
previous work. The main directions of proposed research are following.

Questions related to Bloch’s theorem and the Type Problem of a simply
connected Riemann surface, especially the relations between the conformal
type of a surface and its integral curvature.

Relations between asymptotic properties of a meromorphic function in
the plane and geometry of the Riemann surface of the inverse function, and
related questions of value distribution of entire functions of finite order.

Problems of geometric function theory arising in real algebraic geometry.
Generalization of results of geometric function theory to quasiregular

maps in spaces of arbitrary dimension.
Normality criteria for families of holomorphic curves in projective spaces.
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RESULTS FROM PRIOR NSF SUPPORT

The research was titled “Meromorphic Functions and Holomorphic Curves”,
and was supported by NSF grant DMS–9800084 (Funding period: June 1,
1998 – May 31 2001). The amount of support was $88,589. The results of
this research are contained in the 13 papers listed below (10 published, 2
accepted for publication, and one preprint, submitted to a journal).

1. (with M. Bonk) Covering properties of meromorphic functions, negative
curvature and spherical geometry, Annals Math. 152 (2000), 1-42.
2. (with M. Bonk) Surfaces singulières de fonctions méromorphes, C.R. Acad.
Sci. Paris, 329, (1999), 953–955.
3. (with M. Bonk) Schlicht regions for entire and meromorphic functions, J.
Analyse Math. 77, 1999, 69–104.

For a meromorphic function f : C → C̄, considered as a map from the
complex plane to the Riemann sphere, we define the Bloch radius B(f) as
the least upper bound of spherical radii of spherical discs, where continuous
branches of the inverse f−1 exist. (The length element on the Riemann sphere
C̄ is 2|dz|/(1 + |z|2)).

In the first paper we prove that B(f) ≥ arccos 1/3 ≈ 70◦30′ for every
non-constant meromorphic function f . This estimate is best possible, and
equality holds for elliptic Weierstrass functions with hexagonal lattices. This
is the first time that a hexagonal pattern is shown to be globally extremal
for a Bloch-type problem. Earlier Ahlfors [1] proved B(f) ≥ π/4, and Pom-
merenke [46] improved this to B(f) ≥ π/3.

If all critical points of a meromorphic function f are multiple, then
B(f) ≥ π/2, and this is best possible. Earlier D. Minda [41] proved weaker es-
timates, depending on the multiplicity, and Pommerenke [46] proved B(f) ≥
π/2 for locally univalent meromorphic functions.

The second paper contains an announcement of these results with an
outline of proofs, and the third one some preliminary results, and the estimate
B(f) ≥ π/2 for non-constant entire functions, which is also best possible.

The proofs use a new geometric technique, based on bi-Lipschitz deforma-
tion of certain “singular surfaces”, associated with meromorphic functions.

4. Bloch radius, normal families and quasiregular mappings, Proc. Amer.
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Math. Soc., 128 (2000), 557–560.

The classical theorem of Bloch is extended to quasiregular maps in any
dimension. Let U be the unit ball in Rn. For a K-quasiregular map f :
U → Rn, let Be(f) be the least upper bound of radii of Euclidean balls,
where continuous branches of the inverse f−1 exist. It is proved that for any
given M > 0, the family of all such maps with B(f) < M is a normal family.

When n = 2 this is equivalent to Bloch’s theorem (without an explicit
constant). For arbitrary n ≥ 3, S. Bochner [8] obtained in 1946 a similar
result under the additional assumption that the functions f are harmonic.

Qualitative versions of the results from the papers 1–3 for arbitrary di-
mension are also obtained.

5. A Picard type theorem for holomorphic curves, Periodica Mathematica
Hungarica, 38, 1-2 1999, 39–42.

A simple direct proof of the following result is given: Suppose that 2n+1
hypersurfaces in n-dimensional complex projective space Pn have the prop-
erty that every n+ 1 of them have empty intersection. Then every holomor-
phic map f : C → Pn, omitting these hypersurfaces, is constant. This result
was essentially known, but the proposer hopes, that the new proof given in
the paper will permit to give explicit estimates of the Royden function [33,
Ch. IV] in the complement of the hyperplanes. Previous proofs known to the
proposer use a form of a rescaling principle, and thus do not lead to effective
estimates.

6. (with A. Atzmon and M. Sodin) Spectral inclusion and analytic continu-
ation, Bull. London Math. Soc., 31 (1999), 722–728.

We give a necessary and sufficient condition for the spectrum of an ele-
ment of a Banach algebra to belong to a given compact set K ⊂ C. It is
formulated in terms of certain “generalized Faber polynomials”, associated
with K. When K is connected, a similar result was obtained by V. Havin in
[29]. Applications to spectral theory are given. We also use these polynomi-
als to obtain a criterion for a germ of an analytic function at ∞ to have an
analytic continuation to C\K.

7. (with W. Hayman) On the length of lemniscates, Michigan Math. J., 46,
1999, 409–415.
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The following problem was proposed by Erdős, Herzog and Piranian in
1958, and since then it was repeated in several lists of unsolved problems, for
example in [30, Probl. 4.10].

What is the maximal length of the level set E(P ) = {z : |P (z)| = 1}
among all monic polynomials P of a given degree d? It is conjectured that
P (z) = zd +1 is extremal; the length of its level set is 2d+o(1) when d→ ∞.
The first upper estimate due to Pommerenke [45] was quadratic with respect
to d. Recently P. Borwein [9] proved the upper estimate 68.32d. Using a
different method, we improve this to 9.17d. But the main result of the paper
is the following property of extremal polynomials: all critical points of such
polynomial belong to E(P ). This property reduces the number of parameters
of the problem by a factor of 2. In particular, it follows, that for d = 2 the
polynomial P (z) = z2 + 1 is indeed extremal.

8. (with W. Hayman) Univalent functions of fast growth with gap power
series, Math. Proc. Camb. Phil. Soc., 127 (1999), 525–532.

In 1953 Hayman proved the following theorem about normalized univalent
functions in the unit disc f(z) = z + a2z

2 + . . .. There always exists a limit

α(f) = lim
n→∞

|an|

n
∈ [0, 1],

with α(f) = 1 if and only if |an| = n for all n. (This result does not follow
from the the proof of Bieberbach’s conjecture). We tried to test how precise
this theorem is, by considering univalent functions with gap power series, that
is an = 0 for infinitely many n. Hayman’s theorem gives for such functions
α(f) = 0, and the question is whether one can say more about the order of
growth of coefficients in this case.

We proved the following. Given arbitrary sequence (ǫn) → 0 and arbitrary
sequence of intervals (Ek), there exists a normalized univalent function in the
unit disc, for which an = 0, n ∈ Ek for infinitely many k, and

|an| ≥ ǫnn, n ∈ Ek,

for infinitely many k. So the Taylor series of a univalent function can have
arbitrarily large gaps, and at the same time the coefficients may grow on
some intervals as fast as Hayman’s theorem permits.

9. (with M. Bonk) Uniformly hyperbolic surfaces, Accepted in Indiana Univ.
Math. J., 2000.
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This paper is related to our work from the papers 1–3. We consider open
simply connected surfaces with (possibly singular) Riemannian metrics of
non-positive curvature, and prove that several different conditions of “uni-
form hyperbolicity” are equivalent. Among these conditions are: a linear
isoperimetric inequality, hyperbolicity in the sense of Gromov, upper bounds
for derivatives of conformal maps from the hyperbolic plane to the surface,
and the condition that the integral curvature of every compact disc of a fixed
radius on the surface is bounded from above by a negative constant. This
gives a geometric generalization of the classical Bloch theorem, as well as
some new inequalities for Bloch’s functions and for univalent functions.

10. (with W. Hayman) On a conjecture of Danikas and Ruscheweyh, Ac-
cepted in Rendiconti Lincei, Mat. e Appl., 2000.

We construct a counter-example to a univalence criterion, recently con-
jectured by Danikas and Ruscheweyh in [14]

11. (with W. Bergweiler) Entire function of slow growth whose Julia set
coincides with the plane, Ergod. Theory and Dyn. Syst. 20 (2000), 1-6.

Answering a question of I. N. Baker, we construct examples of tran-
scendental entire functions of arbitrarily slow growth, whose Julia sets co-
incide with the plane. Arbitrarily slow growth means that log |f(z)| ≤
O(φ(|z|) log |z|), as z → ∞, where φ > 0 is a given function, tending to
∞. Methods known before permitted to handle only special classes of entire
functions, which do not contain functions of very slow growth.

12. (with A. Gabrielov) Rational functions with real critical points, Preprint
MSRI, 2000-002, Submitted to a journal.

It is a classical result of enumerative geometry, that given 2d− 2 lines in
general position in d-dimensional complex projective space Pn, there exist

ud :=
1

d

(

2d− 2
d− 1

)

, the d-th Catalan number, (1)

of projective subspaces of codimension 2, intersecting all these lines.
If these given lines are real, the codimension 2 subspaces intersecting all of

them are not necessarily real. In real algebraic geometry, one is interested in
geometric conditions, which imply that a problem of enumerative geometry
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with real data has real solutions (see, for example, [25]). Besides an intrinsic
interest, this question is important for control theory of linear systems by
static output feedback [10, 51]. The following specific conjecture about the
problem stated above, was made by B. and M. Shapiro.

The rational normal curve of degree d is the map E : P1 → Pn, given in
the homogeneous coordinates by E(z) = (1 : z : . . . : zd). B. and M. Shapiro
conjectured that if 2d − 2 lines, tangent to E at real points are given, then
all ud codimension 2 subspaces, which intersect these lines, are real.

We proved this conjecture. It turns out to be equivalent to the following
statement about rational functions: if all critical points of a rational function
f belong to a circle C on the Riemann sphere, then the image f(C) of this
circle is also a circle.

The following information was known before: a) Given an integer d and
a circle C there exist configurations of 2d − 2 points on C, so that every
rational function of degree d with these critical points maps C onto a circle
[52]. b) The conjecture was tested numerically for d ≤ 9 [57].

13. Ahlfors’ contribution to the theory of meromorphic functions, in: Lec-
tures in the Memory of Lars Ahlfors, Israel Math. Conf. Proc. 14, AMS,
2000, 41-63.

This is an expanded version of the proposer’s lecture in Technion.
Human resources development. The proposer currently advises two PhD
students. B. Oh has passed his qualifying examinations in 1999, and now he
is working on conformal type criteria for simply connected singular surfaces.
S. Merenkov passed his qualifying examinations in summer 2000. Recently he
extended a theorem due to the proposer on the characterization of Riemann
surfaces by their semigroups of endomorphisms [17] to domains in Cn.

In 1999 the proposer taught a graduate course “Topics in Complex Anal-
ysis” and 2 reading courses, partially based on his NSF-sponsored research.

In Spring 1998 the proposer did a joint project with Peter Duselis, then
an undergraduate student. We found a rational function f of degree 47 with
B(f) ≈ 76◦.
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PROJECT DESCRIPTION
Geometric theory of meromorphic functions

1. Questions related to Bloch’s theorem and criteria of hyperbolic
type.

We recall that the Bloch radius B(f) of a meromorphic function f is
defined as the least upper bound of spherical radii of spherical discs, where
branches of the inverse f−1 exist. The main result in [6] says that

B(f) ≥ b0 := arccos(1/3) ≈ 70◦30′ (2)

for every non-constant meromorphic function in the plane. The question
of determining the precise estimate of B(f) from below is also interesting
for other classes of meromorphic functions. In [5] we considered meromor-
phic functions f defined on a compact Riemann surface S of given genus g,
and obtained lower estimates of B(f) in terms of g. These estimates are
asymptotically best possible when g is large. One question which remains
unsolved is what happens when g = 0, that is for rational functions. Let
B0 = inf B(f) over the class of all non-constant rational functions f . From
(2) follows B0 ≥ b0.

Question 1. Is it true that B0 = b0?.

The known extremal functions for (2) are elliptic ℘-functions whose crit-
ical points form hexagonal lattices in the plane. Question 1 seems to be re-
lated to the existence of finite configurations of points on the sphere, which
are close to hexagonal in a certain sense. There are many important ex-
tremal problems (encountered in both mathematics and science) about finite
configurations of points on the sphere, which lead to similar questions, [40].

We also don’t know whether the elliptic ℘-functions with hexagonal lat-
tices are the only extremal functions for (2). This leads to

Question 2. Do there exist meromorphic functions with B(f) = b0, other
than elliptic ℘-functions with hexagonal lattices?

It seems plausible that the answer is negative, which would imply an
interesting rigidity property of hexagonal lattices.
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Question 3. Is it true that for every non-constant meromorphic function f
in the plane, there is an open spherical disc D of spherical radius b0, such
that a branch of the inverse f−1 is defined in D?

Our result [6] only implies that such discs of radius b0 − ǫ exist, for every
ǫ > 0. Question 3 is related to existence of certain small perturbations of
elliptic ℘-functions with hexagonal lattices.

The main result of [6] is rather general, because it applies to all non-
constant meromorphic functions. On the other hand, it can be considered as a
special manifestation of the more general principle, that “negative curvature
implies hyperbolicity”, which goes back to Ahlfors [2] (see [44] for a survey
of recent results). The proposer intends to further explore this principle in
the context of geometric function theory.

According to the Uniformization Theorem, for every open simply con-
nected Riemann surface S there exists a conformal homeomorphism h :
D(R) → S, where D(R) := {z : |z| < R}, and 0 < R ≤ ∞. We say
that S is of parabolic type if R = ∞, and of hyperbolic type if R < ∞.
If S is given in some explicit way, for example as a surface equipped with
a Riemannian metric, a problem arises how the geometric properties of S
are related to the properties of the conformal map h, in particular, how to
determine the conformal type of S. This is called the Type Problem [3].

In geometric function theory we usually have the following situation. Sup-
pose that V is an abstract topological surface, C̄ is the Riemann sphere, and
g : V → C̄ is an open and discrete map. Then the spherical (Riemannian)
metric pulls back from C̄ to V via g, and we obtain a metric space S, which
we call a “Riemann surface spread over the sphere”, so that the map

g : S → C̄ (3)

preserves the lengths of curves. The metric on S uniquely determines the
conformal structure, which justifies the term “Riemann surface”. If h is a
uniformizing map, then f = g ◦ h is a meromorphic function. The metric
on S is a smooth Riemannian metric of constant Gaussian curvature +1 at
all points except an isolated set of singular points where g is not a local
homeomorphism.

Similarly one can consider Riemann surfaces spread over the plane, by
pulling back the Euclidean metric from the complex plane.
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The main result in [6] can be restated in the following way. Let S be an
open simply connected Riemann surface spread over the sphere, such that the
least upper bound of radii of the smooth discs in S is less than b0. Then S is
of hyperbolic type.

To explain why this is so, one has to consider the integral curvature on
S. The Gaussian curvature in the usual sense does not exist at the singular
points, so one considers the generalized notion of integral curvature, due to
Aleksandrov, Huber and Reshtniak [47, 31]. In what follows we mean by a
Riemannian metric on a Riemann surface an intrinsic metric, whose length
element is given in local coordinates by ds = exp{−u(z)}|dz|, where u is a
difference of two subharmonic functions, such that exp{−u(z)} is integrable
on rectifiable curves. The integral curvature is the Laplacian ∆u.

For the surfaces spread over the sphere, described above, at each singular
point, where g has local degree m, the integral curvature has an atom of mass
2π(1 −m). On the smooth part of S the integral curvature is equal to the
area. Thus the singular points contribute to the negative part of the integral
curvature, while the smooth part of the surface contributes to the positive
part.

The condition that there are no smooth discs of radius more than b0 − ǫ
implies that the singular points are relatively dense on the surface, so for
large pieces of the surface, the negative contribution from singular points
dominates the positive contribution from the smooth part, so the integral
curvature of such pieces is negative. We show in [6] that this implies hy-
perbolic type. In fact this implies a stronger property, known as uniform
hyperbolicity or Gromov hyperbolicity [27].

Ahlfors’ generalization of the Schwarz lemma [2] implies the following:
every simply connected surface, whose Gaussian curvature is bounded from
above by a negative constant, is of hyperbolic type. Our result in [6] shows
that under certain circumstances one can replace the condition that curvature
is bounded from above by a negative constant at every point, by a weaker
condition, involving only integral curvature of large pieces of the surface.

One natural conjecture is the following

Conjecture 1. Let S be an open simply connected surface with a Rieman-
nian metric, whose Gaussian curvature is bounded from above. Suppose that
there exist ǫ > 0 and R > 0, such that whenever a disc D(a,R) ⊂ S has
compact closure, its integral curvature is at most −ǫ. Then the surface S is
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of hyperbolic type.

If this is true, one can probably strengthen the conclusion to “uniform
hyperbolicity” as in [6, 7].

In [7] the uniform hyperbolicity was proved under the assumptions of Con-
jecture 1 and the additional assumption that the curvature is non-positive.
When applied to Riemann surfaces spread over the plane, this result is equiv-
alent to Bloch’s theorem.

Another conformal type criterion of this sort was conjectured by R. Nevan-
linna [43, Ch. XII, §1]. He considered a special class of Riemann surfaces
spread over the sphere, which are ramified only over a finite set. We will
call such surfaces critically finite. Nevanlinna defines a quantity V , which he
calls the average ramification of such a surface, and conjectures that V = 2
implies parabolic type and V > 2 hyperbolic. The first part of this conjec-
ture was disproved in [56], but the second part, when restated in terms of
integral curvature leads to the following

Conjecture 2. Duppose that S is complete. If for some a ∈ S, ǫ > 0 and
R0 > 0 we have

integral curvature (D(a,R)) ≤ −ǫ areaD(a,R), for R > R0,

then S is of hyperbolic type.

In this form the conjecture applies to arbitrary complete surfaces with
a Riemannian metric. If it is true, one can probably extend it to simply
connected surfaces, which are not necessarily complete.

2. Critically finite Riemann surfaces spread over the sphere and
the Littlewood phenomenon

Critically finite surfaces were defined in the previous subsection. It is
worth mentioning that meromorphic functions in the plane, corresponding
to this class of surfaces play an important role in the general theory of mero-
morphic functions [43, 55] as well as in holomorphic dynamics [4, 23, 22].
Teichmüller proved in [54] that the conformal type of a critically finite sur-
face spread over the sphere is determined by its topology. It is natural to ask,
to what extent the other properties of the meromorphic function f = g ◦ h,
where h is the uniformizing map of S, are defined by topological properties
of the map g in (3).
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Suppose that S is known to be of parabolic type, so that f is a meromor-
phic function in the plane. Can the order (of growth) of f be determined
from topological properties of g? An example by Künzi [32] gives a negative
answer to this question for critically finite meromorphic functions. However
it seems plausible that the answer may be positive for the case of entire
functions.

Question 4. (A. Epstein). Suppose that f1 and f2 are critically finite entire
functions, and f1 = φ ◦ f2 ◦ ψ, where φ and ψ are homeomorphisms. Does
this imply that f1 and f2 have the same order?

Examples are known, which show that the answer may be negative for en-
tire functions that are not critically finite [59]. It turns out that the following
conjecture implies a positive answer to Question 4.

Conjecture 3. For every critically finite entire function f of finite order
there exists a set E ⊂ C, which has zero density, that is

areaE ∩ {z : |z| ≤ r} = o(r2), r → ∞, (4)

and such that for every a ∈ C, almost all solutions of the equation f(z) = a
belong to E.

“Almost all” means here “all but finitely many”. Conjecture 3 is not so
implausible as it may seem at the first glance. In fact something very similar
is known to be true even for arbitrary entire functions of finite order (but
not for meromorphic functions!). This is called Littlewood’s phenomenon.
Namely, for every entire function f of finite order λ > 0 there exists a set E
with the property (4), and such that for every a ∈ C most of the solutions
of the equation f(z) = a belong to E. Here “most” means that

n(r, a) = n(r, a, E) +O(rλ−ǫ), r → ∞, where ǫ > 0. (5)

This result was derived by Littlewood [36] from one conjectural inequality
for polynomials. It was proved by M. Sodin and the proposer in [24] with
a worse error term o(rλ), and after that Lewis and Wu [35] proved Little-
wood’s conjecture for polynomials, thus establishing (5). Later Lewis [34]
found a generalization of (5) to entire functions of infinite order, and even to
quasiregular maps in Rn.
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It is not known whether the error term in (5) can be improved to O(1),
even for arbitrary entire functions, though this is very unlikely in view of
examples in [16]. On the other hand, the assumption that an entire func-
tion is critically finite might imply (5) with the error term O(1), which is
Conjecture 3.

3. Meromorphic functions with real critical points

In [21] we parametrized an interesting class of rational functions, namely
those whose all critical points belong to the real line. This paper generates
several challenging questions which the proposer plans to investigate.

Two meromorphic functions f and g will be called equivalent, f ∼ g,
if f = l ◦ g with a fractional-linear transformation l. By the chain rule,
equivalent functions have the same critical points. The main result in [21],
conjectured by B. and M. Shapiro, is the following

Theorem 1. Let f be a rational function whose all critical points are real.
Then f is equivalent to a real rational function.

This is almost trivial if f is a polynomial. The reason is that any two
polynomials with the same critical points are equivalent. This is not so for
rational functions: given a generic configuration of 2d − 2 points on the
Riemann sphere there exist ud classes of rational functions of degree d with
these critical points, where ud are the Catalan numbers defined in (1). This
result was proved in [26], using a reduction of the problem to enumerative
geometry in projective space.

Writing a rational function as f = f1/f0 we arrive to the following re-
formulation: Suppose that the Wronskian determinant W (f0, f1) of two poly-
nomials has only real zeros. Then there exists a linear transformation with
constant coefficients, which transforms the vector (f0, f1) into a vector of real
polynomials.

Conjecture 4. (B. and M. Shapiro, [52, 53]) The same is true for arbitrary
number of polynomials.

Our method of proof of Theorem 1 does not extend to a proof of this
conjecture. The proposer thinks that an approach based on linear differential
equations with regular singular points may be more useful. As a first step
one has to find a new proof of Theorem 1, based on this approach.
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The set of equivalence classes of rational functions of degree d is parametrized
by the Grassmanian G(2, d), and the set of unordered 2d− 2-tuples of points
in C̄ is parametrized by P2d−2. Thus we have a map W : G(2, d) → P2d−2

sending a class of rational functions into its critical set. Our Theorem 1 im-
plies that this map W is unramified over the set of real 2d − 2-tuples. It is
an important problem (stated in [26]) to find exactly the ramification locus
of W . The proposer plans to study this question.

Another way to generalize Theorem 1 is the following.

Conjecture 5. Suppose that f : S1 → S2 is a holomorphic map between
two compact Riemann surfaces, and S1 has an anti-conformal involution τ1
which leaves all critical points of f fixed. Then there is an anti-conformal
involution τ2 of S2, such that f ◦ τ1 = τ2 ◦ f .

Theorem 1 corresponds to the case when S1 = S2 = C̄. The next case
to consider is S2 = C̄ and S1 is of genus zero. The proposer hopes that the
method of proving Theorem 1 can be extended to this case.

The main new ingredient of the proof of Theorem 1 is a parametrization
of the class of real rational functions whose all critical points are real. The
similar class of polynomials permits a natural closure, which is a class M of
entire functions, studied by MacLane [37] and Vinberg [58]. This class of
entire functions is useful in many questions of analysis, see for example [38].

Thus it is interesting to find out, what is the transcendental counterpart
of the class of real rational functions whose critical points are real. Here are
two questions to begin with:

Question 5. Suppose that all critical points of a meromorphic function f of
genus zero belong to the real line. Does it follow that f is equivalent to a real
meromorphic function?

Question 6. Which real meromorphic functions whose all critical points are
real can be obtained as limits of similar rational functions?

4. Explicit constants in multi-dimensional extensions of Geometric
Function Theory.

A continuous map f from a region in Rn to Rn is called K-quasiregular
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if it belongs to the Sobolev class W 1

n , and the following inequality holds a. e.

‖f ′‖n ≤ KJf ,

where ‖ ‖ is the usual L2 norm, and Jf is the Jacobian determinant. A
quasiregular map between Riemannian manifolds of the same dimension is
defined using local coordinates.

The theory of K-quasiregular maps is regarded a reasonable generaliza-
tion of geometric function theory to higher dimensions [48, 49, 39]. For
example, quasiregular maps are open and discrete, and Picard’s theorem has
a (very non-trivial) generalization for them [50].

In [19] several versions of the Bloch theorem were proved for quasiregular
mappings, both for spherical and Euclidean metrics. The simplest of them
is for the maps of a sphere into itself.

Let Sn be the unit n-dimensional sphere, equipped with the standard spher-
ical metric, and f : Sn → Sn a non-constant K-quasiregular map. Then
there exists a continuous branch of the inverse f−1 defined in some disc
D(a,R) ⊂ Sn, of radius R ≥ R0(K,n), where R0 depends only on K and n.

When n = 2, R0 can be chosen independent of K, in fact we proved in
[5] that one can take R0 = b0, the constant from (2). On the other hand, for
n ≥ 3, examples show that R0 does indeed depend on K. A major drawback
of the existing proof of this theorem is that it is a pure existence theorem:
it gives no explicit value for R0. The proposer intends to further investigate
this question, and try to find an explicit constant. The problem is related
to the question, how large the ramification locus of a quasiregular map in
dimension ≥ 3 can be. Unlike in dimension 2, very little is known about this.

Another high-dimensional counterpart of the Geometric Function Theory
is the theory of holomorphic curves in projective space. The following result
due to Dufresnoy [15] can be considered as an extension of Montel’s normality
criterion.

Let f be a holomorphic map from the unit disc to the projective space of
dimension n, omitting 2n+1 hyperplanes in general position. Then ‖f ′‖ < C,
where C > 0 depends only on the omitted hyperplanes. The norm of the
derivative is measured using the Poincaré metric in the unit disc, and the
Fubini–Study metric in the projective space.

All existing proofs of this result for n ≥ 3 use some form of a rescaling
principle (a. k. a. Brody’s lemma [33, Ch. III]), which does not give any in-
formation about the constant C. Only in dimension 2 effective estimates are
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available [13, 28]. For higher dimensions, effective estimates were obtained in
[12] under much stronger assumption that f omits 2n + 1 hyperplanes. The
proposer intends to obtain an explicit estimate, using his potential-theoretic
methods from [20]. An alternative approach can be based on obtaining ex-
plicit estimates in Cartan’s theorem, mentioned in the next section.

5. Cartan’s Conjecture

The generalization of Picard’s theorem to holomorphic curves we dis-
cussed so far says that a holomorphic curve C → Pn, omitting 2n+1 hyper-
planes in general position, is constant. There is a more refined version, saying
that a holomorphic curve, omitting n+ 2 hyperplanes in general position, is
linearly degenerate. To make the statement about degeneracy more precise,
we introduce convenient homogeneous coordinates. Then the result, which
is due to Emil Borel, is the following:

Let f1, . . . , fp be zero-free entire functions, which satisfy

f1 + . . .+ fp = 0 (6)

Then the set of indices {1, . . . , p} can be partitioned into subsets I, such that
the functions, whose indices are in the same subset, are proportional and
∑

j∈I fj = 0 for every I.

When p = 3, this is equivalent to Picard’s theorem.
The problem is to find a normality criterion related to Borel’s theorem in

the same way as Montel’s normality criterion is related to Picard’s theorem.
Unlike for the similar problem considered in subsection 4, this cannot be
done with a rescaling argument, and the problem is much more subtle. This
problem was studied for the first time by Bloch in 1925. His work was
continued by H. Cartan in 1928 [11]. This work of Cartan is one of the
central results in complex hyperbolic geometry (see, for example [33]).

Let us denote by U(R), R > 0 the set of all holomorphic functions
without zeros in D(R) = {z : |z| < R}. We make the following assumptions:
(A). Let Σ be an infinite sequence of p-tuples f = (f1, . . . , fp) such that
fj ∈ U(R) for every j = 1, . . . , p and every f ∈ Σ, and the condition (6) is
satisfied for every f ∈ Σ.

The following conjecture was made by Cartan [11]: Under the assump-
tions (A) one can find an infinite subsequence Σ′ ⊂ Σ with the following
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property: the set of indices {1, . . . , p} can be partitioned into subsets I such
that for f ∈ Σ′ and every I we have
(i) fj/fk are uniformly bounded on compact subsets of D(R) for some k ∈ I
and all j ∈ I;
(ii)

∑

j∈I fj/fk → 0 uniformly on compact subsets of D(R), as f ∈ Σ′ and
f → F . Here F is the filter consisting of complements of finite subsets of Σ′,
and k ∈ I is the index for which (i) holds. A subset I ⊂ {1, . . . , p}, satisfying
(i) and (ii), will be called a C-class.

If p = 3, Cartan’s conjecture is equivalent to Montel’s normality criterion.
Cartan [11] proved his conjecture for p = 4 and obtained partial results for
arbitrary p. He proved that under the assumptions (A) either the whole
set of indices {1, . . . , p} makes a C-class, or there exist at least two disjoint
C-classes.

In [18] the proposer constructed a counterexample to Cartan’s conjecture
for every p ≥ 5. In fact the conjecture remains wrong even if one replaces
(ii) by a weaker condition that every I contains at least two elements. In the
same paper the proposer found, how to modify Cartan’s conjecture so that
it becomes true for p = 5.

Conjecture 6. under the assumptions (A) there exists an infinite subse-
quence Σ′ ⊂ Σ with the following property: the set of indices {1, . . . , p} can
be partitioned into subsets I such that for f ∈ Σ′ and every I we have (i) and
(ii) in the disc D(kR), where k = kp < 1 is a constant depending only on p.

Conjecture 6 has been proved in [18] for p = 5 with k5 = 1/64. The pro-
poser believes that his potential-theoretical arguments combined with Nevan-
linna theory as in [18] will eventually lead to a complete proof of Conjecture 6.
He already has a partial result for arbitrary p, but with an additional restric-
tion of the sequence Σ.

Cartan’s proof of his results is complicated, and all attempts to simplify it
failed so far. It seems possible to extract effective estimates from this proof,
and this was done by P. Hall for p = 4 in [28]. However Hall’s estimates are
weaker than expected, so the question deserves further investigation.
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