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The proposers intend to continue their study of the distribution of roots and
critical points of meromorphic functions, using the methods of geometric theory of
meromorphic functions and topology, the approach which already brought signifi-
cant results in their previous research. All problems in this proposal arise naturally
from the results of the previous research of the proposers funded by NSF. In this
proposal the term “meromorphic function” denotes a function meromorphic in the
complex plane, that is a ratio of two entire functions.

The proposers plan to concentrate on the following specific problems:
Geometry and topology of real and complex spectral loci for families of one-

dimensional Schrödinger operators with polynomial or rational potentials.
Singularities of implicit analytic functions defined by entire relations.
General study of certain classes of meromorphic functions that occur in holo-

morphic dynamics and in spectral theory of Schrödinger operators with polynomial
potentials.

Asymptotic distribution of zeros of sequences of entire functions.
Uniform polynomial approximation of discontinuous functions on systems of

intervals.
Dynamics of rational functions, especially analytic invariant curves of such

functions.
Proposed research will expand our understanding of solutions of transcendental

equations that occur in analysis and mathematical physics.
The broader impact of the theory of meromorphic functions consists in their

use in many areas of applied mathematics from mathematical physics to computer
science. The choice of the problems in this proposal is motivated by their pure
mathematical interest. However the previous work of the authors on this subject
already found applications, sometimes unexpected, in control theory, material sci-
ence, computer science, signal processing, mathematical physics and astrophysics.

This proposal contains several problems of function theory that arise in math-
ematical physics, namely in quantum mechanics, and the proposers expect their
results to be used by physicists.
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RESULTS FROM PRIOR NSF SUPPORT

A. Eremenko was supported by the NSF grant DMS–0555279 (funding pe-
riod: June 1, 2006 – May 31, 2011). The research was titled “Real Meromorphic
Functions”; the amount of support was $335,023. The results of this research are
contained in the 22 papers listed below (18 published and 4 accepted for publica-
tion). In addition, two preprints are posted on the arxiv, but not submitted to
journals yet.

A. Gabrielov was supported by the NSF grant DMS-0801050 (funding period:
June 1, 2008 – May 31, 2011). The research was titled “Homotopy, Complexity and
O-Minimality”; the amount of support was $219,000. The results of this research
are contained in 6 papers and 5 preprints. Below we only list his joint papers with
A. Eremenko and M. Azar, which are relevant for this proposal.

1. A. Bergweiler and A. Eremenko, Proof of a conjecture of Pólya on the zeros of
successive derivatives of real entire functions, Acta math., 197, 2 (2006), 125-146.

This is the final step which completes the proof of a conjecture of Pólya of 1943.
Combined with the previous results of Langley [52] and Kim [50], this result implies
a remarkable alternative: Let f be an arbitrary real entire function, and let N(fn)
denote the number of non-real zeros of the n-th derivative. Then either N(fn) = 0
for all sufficiently large n, or N(fn) → ∞ as n → ∞. The first statement holds
iff f = pg where p is a real polynomial and g is in the Laguerre–Pólya class, that
is g is a limit of polynomials with all zeros real.

2. A. Eremenko, A Markov-type inequality for arbitrary plane continua, Proc.
AMS, 135 (2007) 1505-1510.

Classical inequality of Markov on polynomials on an interval is extended by
replacing the interval by an arbitrary continuum in the complex plane.

3. A. Eremenko and P. Yuditskii, Uniform approximation of sgn(x) by polynomials
and entire functions, J. d’Analyse Math., 101 (2007) 313-324.

We found a precise asymptotics as d → ∞ of the error of the best uni-
form approximation of the function sgn(x) by polynomials of degree d on the
set [−1,−a] ∪ [a, 1]. The result already found applications in computer science
[65, 25] and was generalized by Nazarov, Volberg and Yuditskii [60].

4. A. Eremenko, N. Nadirashvili and M. Yakobson, On nodal sets and nodal
domains in the sphere and in the plane, Ann. Inst. Fourier, 57 (2007) 2345-2360.

All possible topological types of the nodal sets of spherical harmonics are de-
termined.
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5. A. Eremenko and I. Ostrovskii, On the “pits effect” of Littlewood and Offord,
Bull. London Math. Soc., 39 (2007) 929-939.

6. A. Eremenko, A. Gabrielov and B. Shapiro, High energy eigenfunctions of one-
dimensional Schrodinger operators with polynomial coefficients, Computational
Methods and Function Theory, 8 (2008). No. 2, 513–529.

The limit distribution of complex zeros of eigenfunctions of polynomial Her-
mitian and PT-symmetric oscillators as the eigenvalue tends to infinity is found.
This distribution depends only on the top term the polynomial potential and on
the boundary conditions.

7. A. Eremenko, A. Gabrielov and B. Shapiro, Zeros of eigenfunctions of some
anharmonic oscillators, Ann. Inst. Fourier, Grenoble, 58, 2 (2008) 603-624.

We prove that all complex zeros of eigenfunctions of the even quartic oscillator

−y′′ + (z4 + az2)y = λy, y(±∞) = 0 (1)

with real a, belong to the union of the real and imaginary axes. The proof uses a
new method based on a topological characterization of eigenfunctions.

8. A. Eremenko and A. Gabrielov, Analytic continuation of eigenvalues of a quartic
oscillator, Comm. Math. Phys., v. 287, No. 2 (2009) 431-457.

The method of paper 7 is applied to give a rigorous proof of the facts discovered
by physicists in 1969 [11]: The spectral locus of the even quartic family (1) (with
complex a) consists of exactly two connected components. These components are
smooth, and all singularities of the eigenvalue λ, as a function of the complex
parameter a, are algebraic branch points which accumulate only to infinity (See
the Project description on this).

9. A. Eremenko, P. Yuditskii, Extremal problem for a class of entire functions,
CR Acad. Sci. Ser. I, 346 (2008) 825-828.

The maximum value of the density of zeros of entire functions of exponential
type with a given indicator diagram [−iσ, iσ] is found. This class of entire functions
occurs in harmonic analysis: they are Fourier transforms of hyperfunctions with
support on [−σ, σ]. The paper answers a question asked in [38]

10. A. Eremenko, Fabry’s theorem for power series with regularly varying coeffi-
cients, Proc. AMS, 136 (2008), 4389-4394.
11. A. Eremenko, Densities in Fabry’s theorem, Illinois J. Math., 52, No. 4,
1277-1290 (2008).

These two papers contain a new approach to the classical theorem of Fabry
on singularities of a power series on its circle of convergence. Precise conditions
on the sign changes of coefficients of a power series with radius of convergence 1
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which ensure the existence of a singularity on a given arc of the unit circle are
studied. These conditions improve the results of Fabry.

12. W. Bergweiler and A. Eremenko, Direct singularities and completely invariant
domains of entire functions, Illinois J. Math. 52 (2008) N 1, 243-259.

Direct singularities of inverses of entire functions and their relation to dynamics
of these entire functions are studied.

13. A. Eremenko, L. Liao and T. Ng, Meromorphic solutions of higher order Briot-
Bouquet differential equations, Math. Proc. Cambridge Philos. Soc., v. 146, no.
1 (2009) 197-206.

All meromorphic functions having at least one pole and satisfying a differen-
tial equation of the form F (y(k), y) = 0, where F is a polynomial, are explicitly
described. It turns out that all these meromorphic functions are elliptic, possi-
bly degenerate. This description was conjectured by E. Hille and A. Eremenko
in 1970-s. The method developed for this problem found several applications in
the theory of integrable systems, see [19, 28, 51, 72], where equations relevant to
physics are treated.

14. W. Bergweiler and A. Eremenko, Meromorphic functions with linearly dis-
tributed values and Julia sets of rational functions, Proc. AMS. 137 (2009), 2329-
2333.
15. A. Eremenko and S. van Strien, Rational functions with real multipliers,
accepted in Trans. AMS

These two papers are closely related. In the first paper, we proved that if a
relatively open part of the Julia set of a rational function belongs to a smooth curve
then the whole Julia set must be contained in a circle. This generalizes one of the
main results of Fatou [42] on dynamics of rational functions. The proof explores
the connection between a rational function and its Poincaré function. Another
proof is given in the second paper.

In the second paper, we also use Poincaré functions to prove that whenever
the multipliers of repelling periodic points are all real, the Julia set must lie in a
circle. Preliminary classification of such functions is made.

16. W. Bergweiler and A. Eremenko, On the number of solutions of a transcen-
dental equation arising in the theory of gravitational lensing, Comput. Methods
and Funct. Theory 10 (2010), No. 1, 303–324.

Using the theory of harmonic maps, we show that certain transcendental equa-
tion occurring in the theory of gravitational lensing has at most 6 solutions, and
any number of solutions between 1 and 6 can actually occur.
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17. A. Eremenko and A. Gabrielov, Tangencies between holomorphic maps and
holomorphic laminations, Proc. AMS 138 (2010), 2489-2492.

This solves a problem arising in holomorphic dynamics: the set where a holo-
morphic map intersects a holomorphic lamination non-transversally is analytic.
This was proved in [3] for holomorphic curves; we extend it to maps of any dimen-
sion.

18. W. Cherry and A. Eremenko, Landau’s theorem for holomorphic curves in
projective space and the Kobayashi metric on hyperplane complement, Pure and
Appl. Math. Quarterly., 7 (2011) 199–221.

Using a potential-theoretic approach developed by A. Eremenko and M. Sodin
in 1980-s, we give an explicit estimate of the Kobayashi metric of the complement
of 2n + 1 hyperplanes in projective space of dimension n. Hyperbolicity of this
complement was known long ago, but all previous proofs were non-constructive
and gave no explicit estimates. This solves a problem of Dufresnoy (1944).

19. A. Eremenko, Brody curves omitting hyperplanes, accepted in Ann. Acad.
Sci. Fenn., Math.

Using the same potential-theoretic method as in paper 18, the following result
is proved: A holomorphic curve in Pn with bounded derivative with respect to
the Fubini–Study metric, omitting n hyperplanes in general position, has growth
at most of order one, normal type. The number of omitted hyperplanes here is
optimal. This result was previously known only for n = 1 [18], or when n + 1
hyperplanes are omitted [16].

20. W. Bergweiler and A. Eremenko, Dynamics of a higher dimensional analog of
trigonometric functions, accepted in Ann. Acad. Sci. Fenn. Math.

The so-called “dimension paradox” in the dynamics of entire functions is ex-
tended to a class of quasiregular mappings in Rn, n ≥ 3. For every n ≥ 2 there
exists a dynamically defined partition of Rn into curves (properly embedded rays
[0,∞)) such that the union of the curves without their endpoints has Hausdorff
dimension 1.

21. A. Eremenko and J. Langley, A survey of some results after 1970. Appendix
to the book: A. Goldberg and I. Ostrovski, Distribution of values of meromorphic
functions, Transl. Math. Monogr., vol. 236, AMS, Providence, RI, 2008.

A survey of the theory of meromorphic functions in the last 40 years.

22. A. Eremenko and A. Gabrielov, Elementary proof of the B. and M. Shapiro
conjecture for rational functions, in the book: Notions of positivity and the geom-
etry of polynomials to be published by Birkhauser.

A new, simplified and elementary proof of our result [31] is given. This new
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proof may be suitable for further generalizations of the B. and M. Shapiro conjec-
ture, see [36, 69], and the next preprint:

23. M. Azar and A. Gabrielov, Some lower bounds in the B. and M. Shapiro
conjecture for flag varieties, arXiv:1006.0664.

This is a further development of the previous work of A. Eremenko and A.
Gabrielov [32, 36] on the lower estimates in real Schubert calculus.

24. A. Eremenko and A. Gabrielov, Irreducibility of some spectral determinants,
arXiv:0904.1714.
25. A. Eremenko and A. Gabrielov, Singular perturbation of polynomial potentials
in the complex domain with applications to PT-symmetric families, arXiv:1005.1696

These two preprints will be discussed in the Project description.

Human resources development. Currently A. Eremenko has two PhD students,
both started in 2009. Matthew Barrett is working on holomorphic curves in
projective space. The purpose is to obtain a complete generalization of the re-
sult of Clunie and Hayman [18] from dimension 1 to arbitrary dimension: for a
holomorphic curve in Pn omitting n hyperplanes in general position, condition
‖f ′‖(z) = O(|z|σ) implies T (r, f) = O(rσ+1). A partial result was obtained in the
paper 19 above. The proof in 19 has two drawbacks: it only deals with the case
of bounded Fubini–Study derivative, and it is non-constructive. There drawbacks
will be removed in a forthcoming joint paper. Matthew is expected to defend his
thesis by 2012.

Koushik Ramachandran is working on Martin functions in unbounded domains
in Rn. A Martin function is a positive harmonic function, zero on the boundary.
It is important to estimate the growth of a Martin function which depends on the
shape of the domain. A very general estimate from below can be obtained by a
method of Carleman which works in any dimension. However the usual method for
an upper estimate, based on a theorem of S. Warschawski, only works in dimension
2. The student is expected to produce upper estimates in arbitrary dimension, at
least for “nice” regions which are close to cylinders or cones in certain sense. This
problem arises in probability theory [4].

A. Gabrielov advised a graduate student, Monique Azar. She defended her
thesis in 2008 and then stayed at Purdue until 2009 as a postdoc. A preprint
based on her thesis has been posted in 2010 (item 23 above). In spring 2010, A.
Gabrielov advised an exchange student from Sweden, Per Alexandersson. Their
joint paper is in preparation; it will be discussed in the Project description.

Both proposers regularly teach advanced graduate courses partially based on
their research funded by NSF.
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PROJECT DESCRIPTION
Meromorphic functions and their applications

1. Eigenvalue problems in the complex plane.

We consider eigenvalue problems of the form

−y′′ + P (z, a)y = λy, y(z) → 0, z → ∞, z ∈ L1 ∪ L2. (2)

Here P is a polynomial in z depending analytically on complex parameter a, and
Lj are two rays in the complex plane. When the coefficients of P are real and
L1 ∪ L2 = R, the problem is Hermitian. Under certain conditions on the top
degree coefficient of P and on the rays Lj , the problem has an infinite discrete
sequence of simple eigenvalues λj . Problem (2) was considered in full generality
for the first time by Sibuya [67]. Relevance of this problem to physics became clear
from [11, 68, 10]. If P is a monic polynomial, then there exists an entire function
F (a, λ), which is called the spectral determinant, such that the eigenvalues are
given by the equation

F (a, λ) = 0. (3)

The set of (a, λ) defined by this equation is called the spectral locus. The general
problem described in this section is the study of geometry and topology of such
spectral loci for various families of potentials P (z, a). The rays L1, L2 are called
admissible if F 6= 0. There is a simple description of all pairs of admissible rays
for any given P . For admissible rays, the spectral locus is non-empty.

For a family of even quartic oscillators (1), we proved in [33] that the spectral
locus consists of exactly two smooth hypersurfaces, the fact discovered in 1969
by Bender and Wu [11] by heuristic arguments combined with computation. This
was extended to several other one-parametric families of cubic, quartic and sextic
oscillators in [34]. One problem is to extend the result to multi-parametric families:

Conjecture 1. Let P (z, a), a ∈ Cd−1 be the family of all monic potentials of
degree d, and L1, L2 are admissible. Then the corresponding spectral locus is con-
nected.

Conjecture 2. Let P (z, a), a ∈ Cd−1 be the family of all even monic potentials
of degree 2d, and L1, L2 are admissible. Then the spectral locus consists of two
components.

The proof of both conjectures is almost complete by now. It will be contained
in a paper by P. Alexandersson and A. Gabrielov (in preparation).
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The methods that we use are completely different from the perturbative meth-
ods of all previous work on these problems [22, 23, 24]. Our method is global and
non-perturbative. It uses what we call the “Nevanlinna parametrization”, based
on R. Nevanlinna’s work [61]. If y is an eigenfunction of (2), and y1 is another
linearly independent solution, then f = y/y1 is a meromorphic function which
has no critical points and exactly degP + 2 asymptotic tracts. Asymptotic tracts
are sectors in the z-plane in which f(z) has a limit as z → ∞. These limits are
called asymptotic values. Due to the boundary conditions, two of these tracts that
contain the rays L1, L2 have zero asymptotic value. We conclude that

f : C\f−1(A) → C̄\A, (4)

where A is the finite set of asymptotic values, is a covering map. The main result
of Nevanlinna says that such map f is essentially determined by its topological
properties and by the set A. Moreover, for every local homeomorphism g like (4)
with finitely many tracts, there exists a meromorphic function f = g ◦ φ, where φ
is a homeomorphism of C. Up to a normalization, this meromorphic function is
determined by g and A uniquely. The parameters (a, λ) of (2) can be recovered
from the function f by the formula

f ′′′

f ′
− 3

2

(

f ′′

f ′

)2

= −2(P (., a) − λ).

This permits one to construct a parametrization of the spectral locus by a set G
of meromorphic functions f without critical points and with degP +2 asymptotic
tracts. Topology of the set G can be studied by combinatorial methods: coverings
of the form (4) are encoded by certain graphs embedded in the plane.

In [33], we find the monodromy of the map Φ which assigns to a function
f ∈ G its asymptotic values. The monodromy action has two transitivity classes
which implies that G (and thus the spectral locus) consist of two components.
However the monodromy action that we computed in [33] for the even quartic
potential contains much more information on the spectral locus, and to recover
this information is our next problem. It is likely that each component of G is a
surface of infinite genus with infinitely many ends. The results in [33] clearly show
that it must consist of periodic and doubly periodic pieces.

Conjecture 3. The spectral locus of the even quartic oscillator can be obtained
from some periodic and doubly periodic surfaces by a sort of surgery.

The correspondence between parameters A (asymptotic values, Nevanlinna
parameters) and parameters a of the potential is very complicated, and the study
of this correspondence is our main challenge. We have a map Ψ which assigns
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to a function f ∈ G the parameter a of the differential equation (2). Telling
something about critical values of this map is an important problem. Computer
experiments show that the set of these critical values has a hexagonal lattice-like
pattern. This pattern must be related to the doubly periodic structure that we
see in the monodromy of the map Φ.

One can study the map Ψ asymptotically (see below), or one can hope to find
points with special properties in the A-space such that the corresponding points
in the a-space can be determined. There are obvious candidates of such special
points in parameter space of cubic and even quartic potentials, and recent work
of D. Masoero [56, 57] suggests that they are related to poles of special solutions
of Painleve I and II equations which are called “integrales tritronquée”. We are
going to explore this connection.

Another long-standing problem is the study of “level crossing”. We proved in
[33] that all singularities of the multi-valued function λ(a) for the even quartic
family are algebraic ramification points, accumulating only to infinity. These ram-
ification points are conjectured to be simple [11, 68]. We are going to investigate
this. The critical values of the map Ψ above are contained in the set of values of
parameter a where the level crossing occurs.

Especially interesting are spectral loci of certain real families of oscillators
(2). A problem (2) is called PT-symmetric if the potential satisfies P (−z, a) =
P (z, a), a ∈ R and the rays L1, L2 are symmetric with respect to the imaginary
axis. (“PT” stands for “parity and time” symmetry, but we don’t discuss the
physical interpretation here, referring to the papers of C. Bender [5, 6, 7]). The
eigenvalues of a PT-symmetric problem are symmetric with respect to the real
axis, and it is of great interest to physicists, when these eigenvalues are all real
(“unbroken PT-symmetry”) and how they escape from the real axis (“level cross-
ing” or “breaking of PT-symmetry”). This motivates a study of spectral loci of
real PT-symmetric families.

At this time, we have some preliminary results [35]. In this preprint, we con-
sider the simplest PT-symmetric family of cubic oscillators

−y′′ + (iz3 + iaz)y = λy, y(±∞) = 0. (5)

It is known [66] that for a ≥ 0, all eigenvalues are real. However, computer
experiments show that for a < 0, pairs of adjacent eigenvalues collide and escape
to the complex plane. The real spectral locus consists of a countable union of
disjoint analytic curves Γn in the real (a, λ)-plane. For each a ≥ 0 two eigenvalues
lie on each curve. All these features observed previously in computer experiments
are rigorously proved in [35]. The details of geometry of the spectral locus will
be subject of further investigation. Our main finding for this family is the way
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of labeling the components Γn of the real spectral locus by the numbers of zeros
of eigenfunctions that do not lie on the imaginary axis. This number is the “new
quantum number” predicted by Trinh [70].

Next we propose to study in the similar way two 2-parametric PT-symmetric
quartic families introduced in [8] and [9]. A preliminary study of the first family
is in [34] but many features of the real spectral locus remain unproved. Especially
interesting is the second family which (according to numerical evidence) displays all
sorts of level crossing, with escape of eigenvalues to the complex plane and without.
All these features are known only on the basis of computer experiments, and we
wish to explain them and to prove them rigorously. This family has an additional
interesting feature that it contains quasi-exactly-solvable (QES) subfamilies. This
means that finitely many eigenfunctions are “elementary” in the sense that they
have the form p exp q with polynomials p and q. The importance of QES families
is due to the fact that their eigenvalues and eigenfunctions can be found exactly by
solving algebraic equations. The QES part of the spectral locus makes a separate
irreducible component of the whole complex spectral locus. In [34] we proved that
this part is indeed irreducible, and we hope to be able to prove that the rest of
the complex spectral locus is irreducible as well.

Our method of study of the real spectral loci consists of two parts. First
part is the Nevanlinna parametrization described above. Second part is what
we call “degeneration”, that is finding the limit of the spectrum when one of
the parameters tends to infinity. By a rescaling, this is equivalent to “singular
perturbation”. To be more precise, we consider the family of potentials

Pt(z, a, c) = tzd + czm + p(z, a), (6)

where t ≥ 0, c ∈ C\{0}, and p is a polynomial of degree m−1. The normalization
rays L1 and L2 being fixed, we study what happens to the spectrum as t → 0.
This is a general problem of singular perturbation which was extensively studied,
see, for example, [11, 68, 17]. These authors use general theory of perturbation
of linear operators [49]. Our method is different. We use the specifics of ordinary
differential operators of second order with polynomial coefficients, and believe
that analytic theory of such operators [67] will give more precise results for our
problems. A preliminary study of this problem is contained in [35]. We proved that
under certain conditions the limit of the discrete spectrum of (6) as t → 0 is the
discrete spectrum of P0, or the eigenvalues of (6) escape to infinity, if the discrete
spectrum of P0 is empty. The assumptions which imply this are sufficient for our
purposes in [35], but we know that they can be substantially relaxed. Finding
the exact conditions when the limit of the spectrum spectrum of (6) coincides
with the spectrum of the limit problem is subject of further investigation. The
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expected result is finding the limit of the discrete spectrum of (6) for almost all
normalization rays L1, L2.

Our results on singular perturbation permit to prove rigorously that the spec-
trum and eigenfunctions of an even quartic can be approximated by those of the
QES sextic, the fact conjectured by physicists long ago. Similarly, the spectrum
and eigenfunctions of the PT-symmetric cubic can be approximated by those of
the QES PT-symmetric quartic. This permits to reduce the study of the spectral
loci of the even quartic and PT-symmetric cubic to purely algebraic problems.
These algebraic problems have many interesting patterns (like the approximate
hexagonal lattice symmetry mentioned above) which we will try to explain.

2. Some general problems of function theory related to the previous
section

a) We plan to investigate the singularities of implicit functions λ(a) defined by the
general equations of the form (3) with entire F . It is known and easy to prove that
these singularities can be either algebraic branch points or such that λ(a) → ∞
as a → a0 along a curve. The set of singularities of the second type cannot be
too large: If λ(a) is any germ at a = a0 of the implicit function defined by (3),
and γ : [0, 1] → C any curve such that γ(0) = a0, and ǫ > 0 is given, then there
exists a curve γ′, γ′(0) = a0 such that |γ(t) − γ′(t)| ≤ ǫ, and λ(a) has an analytic
continuation along γ′. This result is due to Julia [48], and this is the only known
general result on the subject. If F is of a special form F (a, λ) = f(λ) − a, then a
more precise theorem of Gross holds: Analytic continuation of the given germ can
be performed along almost any ray from a0. It is known that the set of exceptional
rays can have the power of continuum. We plan to study the following questions:

Question 1. Does Gross’s theorem hold for all implicit functions defined by entire
relations (3)?

Question 2. Can one improve the exceptional set in Gross’s theorem?

Question 3. For which classes of functions F one can assert that the implicit
function defined by (3) has at most countable set of singularities?

These questions are related to the study of analytic sets in Cn and their pro-
jections [29]. Question 3 might have a connection to the recent research in model
theory [74, 76].

b) General properties of functions of class S. A meromorphic function f belongs to
the class S if there is a finite set A such that (4) is a covering map. R. Nevanlinna
and O. Teichmüller studied this class of functions in 1930-s from the point of view
of value distribution theory [62, 75]. In [37] it was shown that S is a natural
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class for the study of transcendental holomorphic dynamics. As we have seen in
section 1, these functions are also important in the study of spectral problems for
polynomial potentials.

Two meromorphic functions f and g are called topologically equivalent if there
are homeomorphisms φ and ψ such that f ◦ φ = ψ ◦ g. It was shown in [37] that
the set of meromorphic functions g topologically equivalent to a given f ∈ S is a
finite dimensional complex manifold Mf . The local parameters are the singular
values A. These manifolds play an increasing role in holomorphic dynamics, and
they parametrize the spectral loci (see section 1 of this proposal).

It is important to study compactification of these manifolds. This amounts to
the following: function g ∈Mf varies holomorphically with the singular values (the
points of the set A in (4)). What happens when two or more singular values collide?
This problem arises both in holomorphic dynamics and in the “degeneration”
procedure described in Section 1. One can show that the limiting function(s)
always exist but they may be meromorphic only in a disc, rather then in the
plane. Examples of this phenomenon will be described in the forthcoming paper
of A. Eremenko and his former student S. Merenkov. The problem is to find good
criteria which ensure that the limit functions are meromorphic in the plane. This
will be a subject of our investigation.

Another question on class S is how restrictive is the condition f ∈ S on a
meromorphic function f? It is known that functions in S can have arbitrarily fast
growth [58] but there is a universal estimate of the growth from below [30]. It is
known that the shape of a tract of an entire function corresponding to the infinite
asymptotic value can be almost arbitrary: for any unbounded simply connected
domain D from which the point ∞ is accessible, one can find an non-constant
entire function which is bounded outside D. Can this function f be chosen in the
class S? This question arises in the recent research in holomorphic dynamics [64].

3. Asymptotic distribution of zeros of sequences of entire functions.

Let us denote by Nδ(f) the number of zeros of an entire function f in the
region δ < | arg z| < π − δ. In [12] we proved the following. Let f be a real entire
function, with real zeros, but not in the Laguerre–Pólya class LP. Then there exist
δ > 0 and α > 0 such that

lim inf
n→∞

Nδ(f
(n))

n
≥ α. (7)

A theorem of Laguerre implies that N0(f
(n)) = O(n), so the rate of growth in

our result is optimal. This was the final step in the proof of “Conjecture B” of
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Pólya [63]. Complete proof of this conjecture is contained in the union of papers
[53, 52, 12]. Our proof of (7) is non-constructive: it gives no specific values of α
and λ.

We conjecture that α and λ in (7) can be explicitly estimated in terms of what
we call the “Wiman genus” of f , which is defined as the smallest integer p ≥ 0 in
the representation f = g(z) exp(az2p+2)h1(z) where g is a polynomial, a ≤ 0 and
h1 is a canonical product of genus at most 2p+ 1 with all zeros real. Every entire
function of finite order with all but finitely many zeros real can be written in this
form, so the Wiman genus is well defined. Functions of Wiman genus 0 with all
zeros real form the class LP.

This conjecture seems very hard. It is related to the following general problem
of potential theory which might be of independent interest. Suppose that three
regions Ωj , 1 ≤ j ≤ 3, Ωj ⊂ Ωj+1, 1 ≤ j ≤ 2 are given, and let u be a har-
monic function in Ω2 which has no harmonic extension to Ω3. Find a subharmonic
function ũ in Ω3 such that u(z) = ũ(z), z ∈ Ω1, and such that

∫

Ω3

∆ũ

is minimal, or estimate the last integral from below for all possible subharmonic
extensions ũ.

For the beginning we plan to restrict the class of functions considered. One
natural class consists of functions whose zeros have density on positive and negative
rays. For these functions, we intend to compute not only the numbers α and δ in
(7) but also the limit distribution of zeros of f (n) as n→ ∞.

The methods developed in [12] are flexible enough to handle other classes of
functions and other linear operators besides differentiation. A general problem can
be stated as follows: Let Pn be a sequence of linear operators, preserving a class
of entire functions, and f a function in this class. Find the limit distribution of
zeros of Pnf as n→ ∞. This includes the following interesting cases that we plan
to consider.

a) Pn is a sequence of operators which preserve polynomials with real zeros
(see the survey [20] on such operators; they also preserve class LP), and f is an
entire function with real zeros but not in the LP class. We expect to find out, for
which sequences Pn the number of non-real zeros of Pnf must tend to infinity.

For more restricted classes of functions f we hope to be able to find the asymp-
totic distribution of zeros of Pnf .

b) Pnf is the n-th partial sum of the Taylor series of f , and f is admissible
in the sense of Hayman [46], or belongs to some similar class. What can be said
about the limit distribution of zeros of Pnf?
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4. Polynomial approximation of sgn(x).

In [40], the following result is obtained. Let En be the error of the best uniform
approximation to sgn(x) on the set [−1,−a] ∪ [a, 1] by polynomials of degree n.
Then

En ∼ 1 − a√
πan

(

1 − a

1 + a

)n

. (8)

The hardest part here is the precise constant (1 − a)/
√
πa. Our proof was sub-

stantially simplified in [60].
Herbert Stahl suggested that we try to obtain a result of the same precision

for two asymmetric intervals. It is convenient to normalize these intervals as
[−A,−1]∪ [1, B]. This is a much harder problem. The similar problem for rational
functions was completely solved by Zolotarev in 1877 and his solution has a wide
range of applications. We expect that the solution of the polynomial problem will
also be useful in applications, see, for example, [65, 25] for some applications.

A related problem of finding a polynomial of the least deviation from 0 on two
intervals (=uniform approximation of zn) was completely solved by N. Akhiezer
[1]. His solution suggests that the asymptotic expression for En for asymmetric
intervals must contain an oscillating factor. The result of Akhiezer was generalized
by H. Widom [73] who replaced two intervals with an arbitrary finite system of
smooth curves in the plane. In this generality, one cannot have an explicit result
of the same precision as in [1]. For this reason we restrict ourselves to the simplest
situation of two intervals, trying to obtain the most precise result.

The problem of approximating sgn(x) seems harder than approximating xn,
because sgn(x) is only piecewise analytic, rather than entire, and this creates
substantial difficulties in applying the arguments of Akhiezer and Widom. W.
Fuchs [43, 44] considered uniform approximation of piecewise analytic functions
on several intervals of the real line, using the method of Widom, and obtained
the limit limn→∞ logEn/n. We are aiming at a much more precise result, an
asymptotic for En itself, rather than logEn.

Our method is based on a representation of the extremal polynomial in the
form cosφ(z) where φ is a conformal mapping of the upper half-plane or of a
quadrant onto a so-called “comb domain”. Functions of this form were intensively
studied since the pioneering work of Marchenko and Ostrovskii [55]; their use in
solution of extremal problems of approximation theory was proposed in [26].

The method consists of three steps: a) guessing the extremal polynomial in the
form cosφ(z), where φ is a conformal map onto an explicitly described domain,
b) proving that this polynomial is extremal by using the general arguments of
Chebyshev, and c) finding the asymptotic behavior of the conformal map φ as
n→ ∞; this last step is usually technically hard.
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The method also permits to study the best uniform approximation by entire
functions of given exponential type σ, which is sometimes easier than approxima-
tion by polynomials.

For asymmetric intervals, we have already performed steps a) and b), and we
hope to complete step c), which presents formidable technical difficulties, in the
near future. A simple problem which we intend to solve first is the limiting case
B = +∞: one considers in this case the best uniform approximation of sgn(x) on
[−A,−1] ∪ [1,+∞) by entire functions of given exponential type σ.

To conclude this section, we mention that the initial goal of this project was
to find some information on the mysterious “Bernstein constant”. This is the
constant µ in the asymptotics of the error En ∼ µ/n of the uniform polynomial
approximation of |x| on [−1, 1]. This asymptotics was proved by Serge Bernstein
in 1912, and he asked whether any kind of “explicit expression” for the constant
µ exists. Bernstein conjectured that µ = (2

√
π)−1 but this was refuted by Varga

[71] who computed the first 50 digits of µ. For the modern account of the problem
we refer to [54].

We derived (heuristically) a non-linear integral equation for the conformal map
presumably related to the Bernstein problem. Bernstein’s constant can be ex-
pressed in terms of the solution of this equation. To justify all this, one has to
prove the existence and uniqueness of this solution. We hope to be able to do this.

In [41] we applied the same method of conformal mapping onto comb domains
to solve an extremal problem about entire functions. If f is an entire function
of exponential type whose indicator diagram is [−iσ, iσ], then the upper density of
zeros of f is at most cσ, where c = 1.508879... is the unique positive solution of
the equation

log(
√

c2 + 1 + c) =
√

1 + c−2.

This bound is exact.
Surprisingly, the same constant c appears in an old result of S. Bernstein on

polynomial approximation of entire functions by polynomials, [15], [2, Anhang,
III.83] which has no apparent relation to our result. We are going to investigate
this intriguing coincidence.

5. Analytic invariant curves of rational functions and a functional
equation.

The very last paragraph of the famous memoir of Fatou [42] that established
the foundation of holomorphic dynamics begins with the words: It remains to study
analytic curves invariant under rational transformations, which are intimately re-
lated to the functions studied in this chapter. We will return to this subject soon.
(Our translation from the French). Fatou never returned to the subject, at least
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in his published work. The subject is challenging but almost nothing is known
about it. We state the following

Conjecture 4. Let γ be a simple closed analytic curve in the Riemann sphere,
which is invariant under a rational function f . Suppose that γ is not contained in
a Siegel disc or an Hermann ring of f , and that f is not a Lattés function. Then
γ is a circle.

In this statement we used the standard terminology of holomorphic dynamics,
see, for example, [59].

The same conjecture under stronger assumption that γ is a “repeller” of f
was proposed by F. Przytycki (private communication). We have no means to
attack this conjecture in full generality. Let us consider the case when γ contains
a repelling periodic point, and f : γ → γ is a covering of degree m ≥ 2. Then
we can prove the following. There exist rational functions g and h satisfying the
functional equation

f ◦ h = h ◦ g (9)

such that g has an invariant circle C and h(C) = γ. This functional equation (9)
is of great independent interest [27, 45, 21]. Complete classification of its rational
solutions is probably out of reach at this time, but there is a reasonable hope
that one can prove, using this functional equation, that γ must be a circle. A
counterexample would lead to a counterexample to Conjecture 4.

The result obtained in [13, 39] is related to Conjecture 4. If the Julia set of a
rational function lies on a smooth curve than it also lies on an (invariant) circle.
In connection with this result, it is interesting to classify all rational functions
whose Julia set is contained in a circle. Surprisingly, this problem is hard (a
“solution” given in [47] is incorrect as the examples in [39] show). Fatou [42] gave
a complete classification of rational functions whose Julia set is a circle or an arc
of a circle. Alternatively, the Julia set can be a Cantor subset of a circle, and there
is no description of such functions. It is even not known whether there exists an
algorithm which for a rational function with integer coefficients would determine
whether the Julia set is contained in a circle. We plan to consider this problem,
starting from functions of small degrees and trying to guess the pattern.
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Math. Soc. 124 (1996), no. 3, 819–830.

[51] N. Kudryashov and M. Demina, Newton polygons for finding exact solutions,
arXiv:nlin/0606018.

[52] J. Langley, Non-real zeros of higher order derivatives of real entire functions
of infnite order. J. Anal. Math., 97 (2006), 357–396.

[53] B. Levin and I. Ostrovskii, The dependence of the growth of an entire function
on the distribution of zeros of its derivatives, Sibirsk. Mat. Z. 1 (1960) 427–
455.

[54] D. Lubinsky, On the Bernstein constants of polynomial approximation, Con-
str. Approx., 25 (2007) 303-366.

[55] V. Marcenko and I. Ostrovskii, A characterization of the spectrum of the Hill
operator. Mat. Sb. 97(139) (1975), no. 4(8), 540–606, 633–634.

20



[56] D. Masoero, Poles of integrale tritronquee and anharmonic oscillators. A
WKB approach, arXiv:0909.5537.

[57] D. Masoero, Y-system and deformed thermodynamical Bethe ansatz,
arXiv:1005.1046.

[58] S. Merenkov, Rapidly growing entire functions with three singular values,
Illinois J. Math. 52 (2008), no. 2, 473–491.

[59] J. Milnor, Dynamics in one complex variable, AMS, Providence, 2006.

[60] F. Nazarov, F. Peherstorfer, A. Volberg, P. Yuditskii, Asymptotics of the best
polynomial approximation of |x|p and of the best Laurent polynomial approx-
imation of sgn(x) on two symmetric intervals, Constr. Approx. 29 (2009), no.
1, 23–39.
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