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Abstract

We show that the number N of solutions of the equation

log |z| = f(z),

where f is a rational function of degree d, satisfies d ≤ N ≤ 5d, and
this is best possible.
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The following question was asked on Math Overflow [6]. Let p, q be
polynomials of degrees m,n. How many solutions can the equation

p(z) log |z|+ q(z) = 0 (1)

have?

Theorem. The number N of solutions of equation (1), counting multiplicity,
satisfies

max{m,n} ≤ N ≤ 3max{m,n}+ 2m.

Examples.
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1. First we show that the lower estimate is exact for all m,n. Let p, q
be arbitrary polynomials of degrees m ≤ n, without common roots, and
consider the point w = ir with r > 0 large enough (depending on p, q). Then
the equation

p(z) log |z|+ q(z) + wp(z)

has max{m,n} solutions near poles of q/p: the number of solutions near a
pole is the same as the multiplicity of this pole. Similarly, if m > n, the
similar statement holds for about the equation

(p(z) + wq(z)) log |z|+ q(z) = 0,

solutions are near the poles of p/q. Thus the lower estimate in the Theorem
is exact for all m,n.

2. m = 0. Taking p(z) = 1 and q(z) = −cz we obtain 3 solutions when
c > 0 is small enough. More generally, with p(z) = 1, q(z) = 1− zn, n ≥ 2,
we have 3n solutions. Indeed, there are two on the positive ray, z1 = 1 and
z2 ∈ (0, 1), and thus two on each ray arg z = 2πk/n, 0 ≤ k ≤ n− 1, and one
on each ray arg z = π(2k + 1)/n, 0 ≤ k ≤ n − 1. So the Theorem is exact
when m = 0 and arbitrary n.

3. n = 0. For and arbitrary m, consider the equation

m log |z| = −
6 log 2

8zm + 1
. (2)

When m = 1, we have three positive roots, 1/16, 1/8, 1/4, and two negative
solutions which exist by the intermediate value theorem. Making the change
of the variable z 7→ zm in the equation with m = 1 we obtain equation (2)
with 5m solutions. So the upper estimate in the Theorem is exact when
n = 0 and m is arbitrary.

4. n ≤ m. Previous example can be perturbed as follows. Choose a polyno-
mial q of degree n ≤ m which is close to 1 on a compact set containing all
5m solutions of (2). As all solutions of (2) are non-degenerate, the inverse
function theorem will guarantee that the number of solutions of

m log |z| = −
6 log 2q(z)

8zm + 1

is at least 5m when q is sufficiently close to 1. This shows that the upper
estimate in the Theorem is best possible for all n ≤ m.
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An explicit example with m = n is

n log |z| = 3 log 2
zn − 1

zn + 1
. (3)

When n = 1 this equation has 5 real solutions: 1, 2, 1/2 and two negative
solutions, whose existence is evident from the intermediate value theorem.
Making the change of the variable z 7→ zn we obtain equation (9) with 5n
solutions.

5. n = 2m. Take c = 0.015, and consider the equation

log |z| = 3 log 2 (1− c(z − 1))
z − 1

z + 1
. (4)

This is a small perturbation of (3) with n = 1, and one can easily check that
it has 5 real solutions near those of (3) plus one negative solution ≈ −58.25
which exists by the intermediate value theorem. So the total number of real
solutions is at least 6.

Let f be the right hand side of (3). Then f has two real critical points,
x1 ≈ 10.72 and x2 ≈ −12.72 with critical values y1 ≈ 2.93 and y2 ≈ 1.47.
This shows that there is a curve γ in the upper half-plane with endpoints
x1, x2 on which f is real. As we have

log |x1| ≈ 2.37 < y1,

and
log |x2| ≈ 2.53 > y1,

we conclude that equation (4) must have a solution in the upper half-plane,
and by symmetry, another one in the lower half-plane. This makes the total
number of solutions 8.

Making the change of the variable z 7→ zm, we obtain an equation with
(m,n) = (m, 2m) having 8m = 3 · 2m + 2m solutions. This shows that the
upper estimate in the Theorem is exact when n = 2m.

6. m = 3n. Consider the equation

log |z| = f(z), (5)

with

f(z) = 3 log 2 (1− 0.015(z − 1)) (1 + 0.0018(z − 1))
z − 1

z + 1
,
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which is a perturbation of the previous example. This equation has 7 real
solutions,

(1.801, 1, 0.470,−0.083,−17.87,−150.1,−239.6).

First six are close to the solutions of (10).
Function f has three real critical points and a critical point at ∞, all

simple. Two critical points are close to the critical points of the right hand
side of (4), and additional one is approximately−241.79. Three critical points
x1 < x2 < x3 and corresponding critical values satisfy the inequalities:

x1 < x2 < x3, f(x1) < log |x1|, f(x2) > log |x2|, log |x3| > f(x3). (6)

These inequalities are verified with Maple, for example

x1 ≈ −241.7888, f(x1) ≈ 5.479256 < 5.48806 ≈ log |x1|.

The set in the upper half-plane, where f is real consists of two disjoint curves,
γ1 from x1 to ∞ and γ2 from x2 to x3. It follows from the inequalities (6)
that our equation (5) has at least one solution on each of these curves. This
makes the total number of solutions at least 7 + 2 + 2 = 11, and shows
that the upper estimate in the Theorem is exact when (m,n) = (1, 3). We
found the roots −241.790963 + 13.653315i on γ1 and −8.53 + 10.28i on γ2.
Changing the variable z 7→ zm in (5) gives an equation with 11m solutions,
and n = 3m.

Proof of the Theorem.
We follow the method based on the combination of a topological degree

computation with Fatou’s theorem from holomorphic dynamics. The method
was used for the first time in [5], see also [1] and a survey [4]. The difference
of our argument in comparison with previous applications of the method is
that we reduce (1) to an equation (10) with infinitely many solutions, but it
is still possible to obtain the desired estimate.

Rewrite our equation (1) as

g(z) := log |z|2 + 2q(z)/p(z) =: log |z|2 + f(z) = 0 (7)

Function g is a continuous map of the Riemann sphere into itself, g(0) =
g(∞) = ∞. We recall the definition of topological degree [7, Ch. II, §2].
Take a regular value w that is such w that for all solutions of the equation
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g(z) = w the map g is continuously differentiable near z and the Jacobian
determinant Jg(z) 6= 0. Then the degree deg g is the sum over the full
preimage of w of sgn Jg(z). Taking w = ir with large real r we will find
(n−m)+ large preimages and m preimages near poles. Evidently Jg(z) > 0
at all these preimages. So the degree is deg g = max{n,m}. Let N+, N− be
the numbers of solutions of g(z) = 0 where Jg is positive and negative. Then

N+ −N− = max{n,m}. (8)

The lower estimate N = N+ +N− ≥ max{m,n} follows.
Computing the Jacobian we obtain

Jg = |gz|
2 − |gz|

2 =
1

|z|2

(

|1 + zf ′(z)|2 − 1
)

. (9)

Now we transform equation (7) into the form

e−f(z)/z − z =: h(z)− z = 0. (10)

The set of solutions of (7) is contained in the set of solutions of (10); equation
(10) can have infinitely many solutions, for example z = ez/z has infinitely
many solutions.

Computing the Jacobian of h(z)− z we obtain

|h′(z)|2 − 1 =
|e−2f(z)|

|z|4
|1 + zf ′(z)|2 − 1. (11)

If z is a solution of (7) that is |z|2 = exp(−f(z)), then the Jacobians (11)
and (9) have the same sign.

Thus
N− ≤ n−, (12)

where n− is the number of solutions of h(z)− z = 0 with negative Jacobian.
For these solutions we have |h′(z)| < 1, so they are exactly the attracting
fixed points of the antiholomorphic function h(z).

Now we use the generalized Fatou’s theorem [1] which says that the num-
ber of attracting fixed points of a holomorphic or of an antiholomorphic
function does not exceed the number of singular values. The number of
singular values of h is easy to estimate. From the explicit expression of h′

(see (11)) the critical points are zeros of 1 + zf ′ in C, so there is at most
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max{n +m, 2m} of them. The asymptotic values of h can be only 0,∞, so
they do not contribute. Thus

N− ≤ n− ≤ max{m+ n, 2m}.

Using (8), N+ = N−+max{n,m}, we obtain that the total number N++N−

of solutions of (1) is at most 3n + 2m when n > m and 5m otherwise. This
proves the upper estimate.

Corollary. If f is a rational function of degree d, then the equation

log |z| = f(z) (13)

has at most 5d solutions, and this is best possible.

This can be compared with the theorem of Khavinson and Neumann [3]
which can be stated as follows: For a rational function f of degree d, the
equation

|z|2 = f(z) (14)

has at most 5d solutions. This is also best possible [8].
For the case when f is a polynomial, our theorem gives the upper estimate

3d and the result of a theorem of Khavinson and Swiatek gives the same
estimate for equation (14), and this is also best possible [2].

The method permits to handle equations of the form |z|2/k = f(z), but is
not clear how to extend these results to other non-analytic functions in the
left hand side, for example, to the equation |z|3 = f(z).
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