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Mathematical Mapping from
Mercator to the Millennium

Robert Osserman
Mathematical Sciences Research Institute

Note: The material presented here ranges from elementary descriptive material all the way to recently
developed ideas in complex analysis. It is written throughout in a manner designed to convey the intuitive
and geometric ideas behind the mathematics, so that readers may be able to get something out of even
the parts that they cannot follow in detail. By way of specific background, section 1 uses only algebra
and trigonometry plus the definition of a derivative. Section 2 adds elementary facts about linear algebra
and 2 × 2 matrices. Section 3 deals with maps of the plane, while the remaining sections focus on
functions of a complex variable. Readers should not feel discouraged if they find that later sections
require more mathematical experience than they currently possess.

It came as something of a revelation, after years of working in and around the subject, to discover
that the single, simple, intuitive notion of the scale of a map underlies an astonishingly wide swath
of basic mathematics—from differential calculus and linear algebra to conformal and quasiconfor-
mal mapping and functions of a complex variable. Furthermore, the process of constructing maps
with given properties based on scale leads directly to the integral calculus. In the particular case
of the Mercator map, finding an explicit formula for its construction led to the formulation and
solution of a problem in calculus, as so beautifully told in the article by Rickey and Tuchinsky on
“An Application of Geography to Mathematics” [1980].
In view of these multiple connections, one might rightly suspect that the notion of the scale of

a map, although indeed intuitive, is not actually all that simple. Our goals, then, will be
first: define exactly what is meant by the scale of a map, both in its simplest form and in its
more refined senses,

second: describe a number of historically important geographical maps, many of which are
defined in terms of certain scaling properties,

third: explain how a number of purely mathematical notions are related to the concept of scaling,
and

fourth: review some of the major mathematical developments of the past 400 years where these
mathematical notions are involved.

233
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234 Part V: Applications and History

The term “mathematical mapping” in the title will be used in two ways. First, among geographical
maps, some are of the freeform variety, giving the general “lay of the land” but not purporting to
convey precise information about shapes and sizes. The maps that concern us have the feature that
they are based on some specific mathematical principle. Oddly enough, the use of the word “map”
in mathematics itself is extrapolated from the former, less “mathematical” kind of maps, which
allow any method at all of assigning to each point of the original—say an area in the countryside—
a point in our image: the “map” of that countryside, allowing some parts that interest us to be
enlarged and others of less interest to be contracted or even shrunk to a point. The particular
mathematical maps that we will deal with here will all be connected in some way to our central
theme: scale.

1 Scale
We start with the simplest example of scaling: an architect’s drawings showing, say, the floor plan
or the front view of a house. The plans will always be drawn to a certain scale: the ratio of the
size of any object shown in the drawing to the actual size of the object it represents.
Exactly the same idea is used for making maps of cities, states, or other geographical entities.

There are three ways commonly used to indicate the scale of a map: arithmetical, geometrical, and
verbal.
Arithmetical: The scale is indicated in the form 1:6,000,000, meaning that the ratio of distances
on the map to distance on the ground is 1/6,000,000.

Geometrical:

Miles

Kilometers

Verbal: 94.7 miles to the inch.
Of course, this last is an approximation. The exact scale is 6 million inches to an inch, but

since a mile is 5,280 feet times 12 inches to the foot, we get immediately the rough estimate that
6 million inches is somewhat under a hundred miles. It goes without saying that the same scale is
far more easily expressed verbally as 60 kilometers to the centimeter.
Whatever notation one uses, the meaning is the same: saying that the scale s of a map is 1 : n

or 1/n means that if any two points on the map are a distance d apart, then the corresponding
points on the region being mapped are a distance nd apart.
There is only one difficulty with this beautifully simple concept; a mathematical theorem states

that, for the surface of the earth, no such map exists. In its simplest form, where we take the
surface of the earth to be a sphere, the theorem goes back to Euler.

Theorem 1 (Euler [1775]) It is impossible to make an exact scale map of any part of a spherical
surface.

To risk stating the obvious, when we speak of a map in this context, we refer to a map drawn
on a flat sheet of paper. One can always make an exact scale “map” of the earth in the form of a
globe. What Euler’s Theorem says is that if we draw on a flat piece of paper a map of some region
on a spherical surface, there is bound to be some distortion. One sometimes sees the statement
that “one can preserve the size or shape, but not both.” In fact, Johann Lambert [1772 ] gave the
first general mathematical treatment of cartography, defining precise versions of preserving “size”
and “shape.” He also gave many new constructions, including some of the most widely used maps
since that time. However, the intuitive notions of preserving size or shape had long been known,
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together with the empirical fact that one could not do both; one could not construct an exact scale
map.
Mercator, in constructing his famous map in 1569, opted for very good reasons to abandon size

in favor of shape. We shall come back later to give exact definitions, but we start by explaining
the intuition behind Mercator’s map. The key idea is that we cannot have a fixed scale for the
map, but we can have a fixed scale in certain directions.
To make these ideas more concrete, let us examine a particular class of maps known in cartogra-

phy as “cylindrical projections.” In order to define them, we first recall some standard terminology.
The equator is the great circle equidistant from the North and South Poles.
The meridians are the circular arcs joining the North and South Poles. They are perpendicular

to the equator, and are the curves one traverses when traveling due north or south from any point.
The parallels of latitude, or parallels for short, are the circles perpendicular to the meridians.

They are also the circles at fixed distance from the North or South Pole, and they are the curves
one traverses when traveling due east or west from any point (other than the poles.)
A cylindrical projection is a map constructed as follows: The equator is represented by a

horizontal line segment. The length of the segment determines the scale of the map along the
equator; that is, if L is the length of the equator, and w the width of the map—the length of the
horizontal segment representing the equator—then all distances along the equator are represented
by the fixed factor w/L. The meridians are represented by vertical lines whose length may be
either finite or infinite, and the parallels of latitude by horizontal line segments of the same fixed
length w as the equator. As a result, all cylindrical projections have the following properties:

1. The map is in the form of a rectangle or infinite vertical strip representing all of the earth
except for the poles, with the two vertical sides corresponding to a single meridian, and every
other meridian corresponding to a unique vertical line. (In the infinite case, this is of course the
theoretical map, with the actual finite map cut off to represent the portion of the earth between
two fixed parallels of latitude.)

2. The map has a fixed scale along each parallel of latitude. Namely, the quarter circle along
a meridian from the equator to the North or South Pole is divided into ninety degrees, and the
latitude of any point is the number of degrees along the meridian north or south of the equator. It
follows that at latitude ϕ north or south, the parallel is a circle of radius R cosϕ where R is the
radius of the earth and the length of the equator is L = 2πR. Hence, at latitude ϕ, the parallel is
mapped with fixed scale

w

2πR cosϕ
=

w

L cosϕ
= s secϕ,

R

�

Rcos�

w

f ( )�

scale
/(2 cos )w R� �

scale
/2w R�

Figure 18.1.
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236 Part V: Applications and History

where s = w/L is the scale of the map along the equator.
These two properties illustrate Euler’s Theorem in action. The whole familiar class of maps in

which “north” is the vertical direction on the map and east-west is horizontal, and that have a fixed
scale along some east-west line, are of necessity a portion of a cylindrical projection and cannot
have a fixed scale for the whole map. The reason such maps are able to indicate a “scale” is that
the factor secϕ in the expression s secϕ for the scale will not vary enough over a small portion
of the earth’s surface to make any practical difference. (Other inaccuracies in the map are bound
to be far greater.)
Among the so-called “cylindrical projections” is one that is a true “projection” in the mathe-

matical sense. It can be defined geometrically as follows. Let S be a globe: a sphere depicting the
surface of the earth, and C a circular cylinder tangent to S along the equator. Project S onto C
along rays from the center O of S.

�
r

r tan�}

Figure 18.2. Central cylindrical projection

Each meridian on the sphere will clearly map onto a vertical line, and each parallel of latitude
will map onto a circle on the cylinder parallel to the equator.
Cut the cylinder along a vertical line and unroll it onto a vertical strip in the plane. The result

is a particular case of cylindrical projection known as a “true cylindrical projection” or “central
cylindrical projection.” When reading about map-making one must be careful to distinguish the
way the word “projection” is used there, to mean any systematic form of representation, from its
more narrow use in mathematics, or for that matter in art and in everyday parlance, where one
thinks of a “projector” such as a slide projector or of a shadow projected on a wall. In cartography,
these “true” projections are sometimes referred to as “perspective projections.”
In order to give a precise formula for a general cylindrical projection, let us introduce rectangular

coordinates with the origin at the point corresponding to the equator on the left edge of the map.
The northern hemisphere will be represented by

0 ≤ x ≤ w, 0 ≤ y ≤ H, with H ≤ ∞.

An analogous discussion will hold for the southern hemisphere.
A point in the northern hemisphere is traditionally assigned a pair of coordinates: the latitude ϕ

and longitude θ. We have already defined ϕ as the angular distance above the equator as viewed
from the center of the sphere. The equator is divided into 360◦ starting at some point. That assigns
to each point on the equator an angle θ with 0 ≤ θ < 360◦. (One actually uses values of θ up
to 180◦ east or west of a given point, but that is equivalent, and mathematically more awkward.)
The longitude of any point is the value of θ where the meridian through the point hits the equator.
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Thus, every cylindrical projection is given explicitly by the equations

x =
wθ

360
, y = f(ϕ) (1)

for some monotonically increasing function f , with f(0) = 0, f(90) = H . For example, it follows
immediately from the geometric definition of a true cylindrical projection that if we want a map
of width w, we choose a globe of radius r = w/2π, and the equations become

x =
wθ

360
, y =

w

2π
tanϕ. (2)

As we saw earlier, the scale of every such map along the parallel at latitude ϕ is

sϕ = s secϕ (3)

where
s =

w

L
(4)

is the scale along the equator.
We can now describe exactly what it was that Mercator was trying to do, and how he went

about doing it.
Mercator wanted his map to have two properties: first, it should be a cylindrical projection so

that at any point of the map, the vertical direction represents north, and second, the map should
not distort shapes. Now it is clear intuitively that if a map has different scales in the horizontal
and vertical directions, then shapes will be distorted. (Think of looking at yourself in a fun-
house mirror.) Since Mercator knew the horizontal scaling factor at each latitude, either given
trigonometrically as in equations (3), or else geometrically via the ratio of the two horizontal
segments in Figure 18.3, he simply had to adjust the vertical scale accordingly.

�

Figure 18.3.

Mercator did not divulge the exact procedure he used to construct his map, but it seems most
likely that he proceeded somewhat as follows: divide up the region of the earth between two fixed
latitudes into thin strips, each bounded by a pair of nearby parallels of latitude. The horizontal
scale would be approximately constant in each strip, and one could use, for example, the exact
value at the center parallel of the strip. Map that strip onto a horizontal strip in the plane using
the same scale in the vertical direction. Stacking these strips one on top of another would give
Mercator the result he was seeking.
Needless to say, this gives only an approximation to a “true” Mercator map, where the vertical

scale exactly equals the horizontal scale at each point. However, all actual cartographic maps are
only approximate. The real problem was that anyone else wanting to make a “Mercator map” of a
part of the earth’s surface would have to either copy the original or else repeat the whole tedious
procedure. What was wanted was the actual function f(ϕ) in the equations (1) that resulted in
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238 Part V: Applications and History

Mercator’s map; that is, the function f(ϕ) for which horizontal and vertical scaling are everywhere
equal. In order to find such a function, we have to make precise what we mean by the “scale” of
a map in the vertical direction at a given point when that scale is constantly changing.
In the case of a cylindrical projection given by equations (1), an arc of a meridian is defined by

an interval of latitude, a < ϕ < b, while the image of this arc on the map will be a vertical line
segment f(a) < y < f(b). Assuming the earth is a perfect sphere, the length of the arc will be
L(b − a)/360, and the image on the map will have length f(b) − f(a). The overall scale factor
for this arc of the meridian is therefore

360
L

f(b)− f(a)
b− a .

The value of this scale factor over smaller and smaller intervals of arc will be closer and closer to
the exact scale factor at a point, leading us inevitably to the

Definition. The vertical scale of a cylindrical projection given by equation (1) at a point at
latitude ϕ = a is equal to

lim
b→a

360
L

f(b)− f(a)
b− a .

In other words, the notion of the scale at a point when the scale is continually changing is
precisely the notion of a derivative:

f 0(a) · 360
L
.

The extra factor 360/L arises because we have measured distance along the meridian in degrees,
rather than arc length, with one degree of latitude having length L/360.
In fact, given any monotonically increasing function y = f(x), we may picture it either via

a graph or as a map of an interval I of the x-axis onto an interval J of the y- axis. The two
interpretations are connected via the picture in Figure 18.4.
The scale factor of the map I → J at any point p is exactly equal to the derivative f 0(p). In

particular, the map shrinks distances if the scale factor f 0(p) is less than 1, and stretches them if
f 0(p) > 1.
Returning to our case of cylindrical projections, it is easier to work with them mathematically

if we express the latitude ϕ and longitude θ in radians rather than degrees. The equations (1) then
take the form

x =
wθ

2π
, y = F (ϕ), (5)

p
x

f p( )

y = f x( )J {

{

I

y

Figure 18.4.
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where again, w is the width of the map, and the scale along the equator is s = w/L, with L the
length of the equator. Since arc length along the meridian is given by ϕL/2π, the vertical scale at
latitude ϕ is

sv(ϕ) = F 0(ϕ) · 2π
L
. (6)

As we saw earlier in equations (3) and (4), the horizontal scale at latitude ϕ is

sh(ϕ) = s secϕ, s =
w

L
. (7)

Mercator’s goal was to have
sv(ϕ) = sh(ϕ) for all ϕ,

which reduces to
F 0(ϕ) =

w

2π
secϕ. (8)

The procedure we have outlined that Mercator presumably used in constructing his map was
precisely a numerical integration of this equation. That was made explicit by English mathematician
Edward Wright who used the method to construct a set of tables [1610] that would allow anyone
to draw a much more accurate “Mercator” map than Mercator himself was able to do.
We now know the exact solution to equation (8). With F (0) = 0, it is

F (ϕ) =
w

2π
log(secϕ+ tanϕ)

which Mercator could not possibly have known, since logarithms had yet to be invented, to say
nothing of the derivatives and integrals used to derive the equation. Again we refer to the article
by Rickey and Tuchinsky [1980] for the many steps leading to this result.
In general, constructing a map in which the pointwise vertical scaling is given in advance

amounts precisely, according to equation (6), to carrying out an integration. In other words, the
two fundamental operations, differentiation and integration, correspond precisely to determining
the scale of a variable scale map and constructing a map when given the (variable) scale.
As another example, if our goal was to preserve size rather than shape, then instead of having

the horizontal and vertical scaling factors be equal, we would make them reciprocal, so that the
stretching in one direction would match the shrinking in the other. Going back to equations (6)
and (7), we see that we need to make

F 0(ϕ) secϕ ≡ c, a constant

or
F 0(ϕ) = c cosϕ

so that
F (ϕ) = c sinϕ.

We can choose the constant c to make the horizontal and vertical scales equal at any given latitude
and hence have a very good map near that latitude. For example, if we let c = w/2π, then by
equations (6) and (7), the vertical and horizontal scales will be equal at the equator, and we get
one of Lambert’s maps: the cylindrical equal-area map (see Figure 18.5).
As a final example of a cylindrical projection, we note that one of the most simple-minded

of all goes back to antiquity and was commonly used in the 16th century under the name “plate
carrée.” It uses a fixed scale along each meridian—the same scale as that along the equator. It has
the advantage that the distance between any pair of points on the same meridian can be read off
directly from the map. Also, even though it preserves neither shape nor size, it does not have some
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240 Part V: Applications and History

Figure 18.5. Lambert Cylindrical Equal-Area projection with shorelines, 15◦ graticule. Standard parallel
0◦. Central meridian 90◦ W.

Figure 18.6. Plate Carrée projection with shorelines, 15◦ graticule. Central meridian 90◦ W.

of the extreme distortions of the Mercator or Lambert equal-area maps, but serves as a kind of
compromise between the two (see Figure 18.6).
The equations for the plate carrée could not be simpler:

x = cθ, y = cϕ.

2 Maps of the plane
Suppose we use any of the cylindrical projections described above to make a map of Australia. If
we compose that map with a map of the plane into the plane, we then get a new map of Australia.
Conversely, if we make any two different maps of Australia, then they are related to each other
by a map of the plane into the plane. Our goal, then, will be to look more closely at maps of the
plane into the plane, with our focus again on questions related to scale. That will also allow us to
make precise the intuitive notions of preserving shape and preserving size.
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We start with the simultaneously simplest and most important case: that of linear maps. We let
T be a linear transformation of the x, y-plane into the u, v-plane, which we may write in the form

u = ax+ by (9)
v = cx+ dy

where a, b, c, d are fixed real numbers. An arbitrary line through the origin in the x, y-plane may
be given parametrically by expressing x and y as constant multiples of a parameter t. Substituting
these expressions in equations (9) gives u and v as constant multiples of t, hence defines a line
through the origin in the u, v-plane, the image of the original line under the transformation T . This
mapping of a line into a line will have a fixed scale s, which represents the ratio of the distances
between any two points on the image line and the distances of their preimages. In general we will
have s > 0, but we may have the degenerate case s = 0 when the entire first line maps onto the
origin. As we rotate the original line around the origin, the scale s will attain a maximum s1 and
a minimum s2 with 0 ≤ s2 ≤ s1. A basic result of linear algebra is the following.
Lemma 1 One can choose new axes X , Y in the x, y-plane and U , V in the u, v-plane such that
the transformation T takes the form

U = s1X, V = s2Y. (10)

Said differently, the matrix

A =
µ
a b
c d

¶
of the linear transformation T can be reduced to a diagonal matrix by pre- and post-multiplication
by orthogonal matrices. We also have

| detA| = |ad− bc| = s1s2. (11)

In particular, the scale factor is always positive whenever A is nonsingular.
To be a bit more specific, we can always choose new axes in the x, y-plane by a rotation of the

axes, and if detA > 0, then we may do the same in the u, v-plane. If detA < 0, then we must
make an additional reflection in order to put the transformation in the form (10), with the scale
factors both positive.
One immediate consequence of equations (10) is that distances get scaled by the factors s1 and

s2 in two orthogonal directions, giving us the result:

Corollary 1.1 Under the transformation T , all areas are multiplied by the factor s1s2. In partic-
ular, areas are preserved under T if and only if s1s2 = 1.

A second consequence follows by noting that a line making an angle α with the X-axis is
given parametrically by X = t cosα, Y = t sinα, while its image under T has the equations
U = ts1 cosα, V = ts2 sinα and makes an angle β with the U -axis, where tanβ = (s2/s1) tanα.
We therefore conclude:

Corollary 1.2 Angles are preserved under T if and only if s1 = s2.

The unit circle C is given parametrically by X = cos t, Y = sin t, and its image under T is
given by U = s1 cos t, V = s2 sin t, which is a circle if s1 = s2 and an ellipse with major and
minor axes along the U and V axes and area πs1s2 if s1 > s2.
That leads us to look at two separate cases.
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Case 1: s1 > s2. The image of the unit circle under the transformation T is an ellipse whose
major and minor axes determine the U and V axes respectively. The pre-images of the U and V
axes are the X and Y axes: the directions of maximum and minimum scaling. The key properties
of the mapping are therefore made graphically clear by drawing the unit circle in the x, y-plane
with the directions of the X and Y axes indicated, and the image ellipse in the u, v-plane. The
size of the ellipse shows the area distortion and the eccentricity of the ellipse indicates the shape
distortion.

X

Y V

U
T

Figure 18.7.

Precisely this device is used by cartographers to give map-viewers an instantaneous overview of
the nature of the distortion for a given map. For example, Figures 18.8 and 18.9 are the pictures
for the plate carrée and the Lambert equal-area map shown above.

Figure 18.8. Plate Carrée projection with Tissot indicatrices, 30◦ graticule.

Notice that in both cases there are circles along the equator, indicating no shape distortion —that
is, equal scaling in the horizontal and vertical directions. Also in both cases, at all points off the
equator the ellipses have major axes in the horizontal direction, which is therefore the direction of
maximum stretching, but in the case of the plate carrée the ellipses grow larger and larger toward
the poles, indicating area distortion also, whereas in the equal-area map, the ellipses all have the
same area as the circles along the equator. The ellipses used in these distortion diagrams are called
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Figure 18.9. Lambert Cylindrical Equal-Area projection with Tissot indicatrices. 30◦ graticule. Standard
parallel 0◦. All ellipses have the same area, but shapes vary.

“Tissot indicatrices.” At any point of a map, the Tissot indicatrix shows the directions and relative
amounts of maximum and minimum scaling.
In contrast to the figures above, the Tissot indicatrices show that for the central cylindrical

projection (Figure 18.10) there is distortion in the vertical direction, whereas for the Mercator
projection (Figure 18.11), there is less size distortion and no distortion of shape: each Tissot
indicatrix is a circle.

Figure 18.10. Central Cylindrical projection with Tissot indicatrices, 30◦ graticule.

Case 2: s1 = s2.
Definition. A linear transformation is called a simple scaling or a homothety if it is of the form
u = sx, v = sy.
A linear transformation is said to “preserve shape” if it is a similarity transformation; that is, it

maps every triangle onto a similar triangle.
From the above discussion, together with a bit more argumentation, we can give an extended

characterization of these transformations.

Proposition 1 Let T be a linear transformation (9) with matrix A, and assume that T is
orientation-preserving; that is, detA > 0. (If T is orientation reversing: detA < 0, then we
may apply the statements below to the transformation consisting of T followed by a reflection—
for example replacing v by −v.) The following are equivalent:
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244 Part V: Applications and History

Figure 18.11. Mercator projection with Tissot indicatrices, 30◦ graticule. All indicatrices are circular
(indicating conformality), but areas vary.

(a) T is a similarity transformation,

(b) all distances are multiplied by a fixed factor s,

(c) all angles are preserved,

(d) the coefficients of the matrix A satisfy the equations: a = d, b = −c,
(e) T is a composition of a rotation and a simple scaling,

(f) the equations (9) for T can be written in the form

u = s(x cosα+ y sinα)
v = s(−x sinα+ y cosα)

where s =
√
a2 + b2, cosα = a/s, sinα = b/s.

The reason for going into this much detail on linear mappings is that they govern the behavior
near each point for arbitrary differentiable maps, to which we now turn.

3 Smooth maps
Let F be a continuously differentiable map of the x, y-plane into the u, v-plane. The differential
dF of F at a point P is the linear transformation T whose matrix consists of the partial derivatives
of F at P ; that is,

a = ux(P ), b = uy(P ), c = vx(P ), d = vy(P ). (12)

There are two common interpretations of the differential. One is that it is the best linear approx-
imation to the map F in a neighborhood of P . The other is that it is the tangent map to F ; that
is, if C is any smooth curve through P , then the tangent vector to the image of C under F at the
point F (P ) depends only on the tangent vector to C at P , and this induces a linear map of tangent
vectors at P to tangent vectors at F (P ), which is precisely the differential dF at P . Since the
angle between a pair of smooth curves intersecting at P is by definition the angle between their
tangent vectors, it follows that the map F preserves angles at P if and only if dF is a similarity
transformation.
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Definition. A map F is a conformal map if it is a diffeomorphism that preserves angles at every
point; that is, F is a one-to-one continuously differentiable map with a differentiable inverse, and
dF is a similarity transformation at every point.

We shall come back in the next section to a more detailed look at conformal maps in the plane.
We note here that the cylindrical projections described in section 1 are all maps of the sphere into
the plane, and the differential of any such map can be defined exactly as in the case of plane maps
as maps of tangent vectors of curves on the sphere at a point to tangent vectors of their image
curves. From Proposition 1 it follows that the angle between any two curves at a point on the
sphere equals the angles between their image curves if and only if the maximum and minimum
scaling factors are equal; that is, the scaling factor is the same in all directions at the point. But
the way we constructed Mercator’s map was precisely from that property. We therefore conclude:

Proposition 2 Mercator’s map is the unique cylindrical projection that preserves angles.

It follows that Mercator’s map is the unique map with the two key properties

(i) the vertical direction on the map corresponds to the north/south direction,

(ii) given any two points on the map corresponding to a pair of locations on the earth, if the
straight line joining them on the map makes a given angle with the vertical, then starting at
the first location and following the fixed compass direction determined by that angle will lead
to the second location.

It was this second property that made Mercator’s map indispensable for navigation for a very long
time.
It is the combination of angle-preserving and the fixed vertical direction for north that gives

the second property above. If one does not specify vertical for north, then there are many other
possibilities for angle-preserving maps. Indeed, one of them goes back to antiquity. It is called
stereographic projection. It is a true projection, in which the sphere is projected from some point
on it—often chosen to be the North Pole—onto either the plane tangent to the sphere at the antipodal
point—say the South Pole—or else the plane parallel to that one through the center of the sphere;
which of those two planes one projects onto is immaterial, since the resulting maps will differ by
a similarity transformation between the two planes.
For stereographic projections from the North or South Pole, one has the property that the parallels

of latitude map onto concentric circles about the origin, and the meridians map onto rays extending
outward from the origin. The fact that stereographic projection preserves angles appears to have
first been pointed out and proved by Edmund Halley, of comet fame, in 1695.

z

Z

Z

z

O

N

Figure 18.12. Stereographic projection
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Our principal interest will be in conformal maps of the plane into the plane. By virtue of condition
(d) in Proposition 1 and equations (12), we have the following elementary but fundamental result.

Proposition 3 A smooth map F defined in a domain D in the x, y-plane and mapping D into the
u, v-plane preserves angles if and only if dF is nonsingular everywhere and satisfies the equations

ux = vy, uy = −vx. (13)

These equations are called the Cauchy-Riemann equations. They are simply the statement that
the tangent map to F at each point is a similarity transformation. In view of condition (e) of
Proposition 1, the geometric content of the Cauchy-Riemann equations is that near each point, the
map F behaves like a rotation composed with a simple scaling. This is an important picture to
keep in mind in the following sections.

4 The complex plane
Solving algebraic equations is one of the oldest and most fundamental problems in mathematics.
A particular case of importance is that of polynomial equations, such as

x2 = 1, x2 + 1 = 0, x3 = 15x+ 4, x5 = 1.

The first of these has the two obvious solutions, x = 1 and x = −1. The second has no real
solutions, but has two solutions if one introduces the imaginary number i =

√−1, namely, x = i
and x = −i. The third is of interest because it has three real solutions, but if one uses the general
formula for solving cubics developed by a series of Italian mathematicians in the 16th century
(see chapter 1 of Nahin [1998] for an excellent review of this subject) then one finds that the
expressions for two of these real roots involve imaginary numbers too. This led to the introduction
of complex numbers: expressions of the form a + bi where a and b are real numbers. We denote
|a+ bi| = √a2 + b2. The last equation above has the one real root x = 1 and four complex roots.
A number of facts and a number of questions soon emerged regarding general polynomial

equations—that is, an equation with a finite number of terms, each consisting of a constant times
a power of the unknown x. The degree of the equation is the highest power of the unknown that
occurs. The facts were

1. An equation of degree n can have at most n solutions.

2. Solutions may be real or complex or some of both.

The questions were

1. Is there a formula, or a general procedure for solving a polynomial equation of degree n, such
as the familiar quadratic formula when n = 2?

2. In the absence of a formula, can one at least guarantee that any polynomial equation does
have at least one solution?

The answer to the first question is well known. As already mentioned, Italian mathematicians
found the solution of the general cubic, and also, shortly afterward, all fourth degree equations.
Degree five stumped all comers, until Abel proved in 1824 that the general quintic equation had
no such solution.
As to the second question, the answer was generally believed to be “yes” but various attempts at

proofs were not considered very satisfactory until Gauss came along and devoted his PhD thesis of
1799 to the subject. According to Gauss’ own description in a letter, about a third of the thesis is
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devoted to a proof of the theorem that every polynomial can be written as a product of linear and
quadratic factors, while the rest is devoted to history and criticisms of previous “proofs” including
those of d’Alembert, Euler, and Lagrange.
Gauss returned repeatedly throughout his life to this question, providing a number of different

proofs. The result became known as “the fundamental theorem of algebra.” In fact, he returned to
it in 1849, giving a variant of his first proof, but making more explicit use of the complex plane.
The idea of representing complex numbers by points in the plane appears to have occurred to

several people independently towards the end of the 18th century. One gets a geometric picture
of the purely algebraic (and abstract) entities—complex numbers—by associating to each number
a+bi the point (a, b) in the plane. Or viewed the other way around, the “complex plane” is simply
the ordinary Euclidean plane, where to each point (a, b) one assigns the complex “coordinate” a+ib.
Finding real roots of a real polynomial equation—that is, real values of x such that P (x) = 0,
where P (x) is a polynomial with real numbers as coefficients—can be pictured geometrically as
finding a point where the graph of the equation y = P (x) crosses the x-axis. How does one
picture geometrically a complex root of the equation? The answer, not surprisingly, is by means of
mappings.
Let x and y be real variables, and let z = x+ iy. Then a polynomial P assigns to every complex

number z another complex number w = P (z), and so P defines a map from the complex z-plane
to the complex w-plane. Equivalently, letting w = u+ iv, P defines a smooth map from the x, y-
plane to the u, v-plane. There is always the trivial case to consider—a polynomial of degree zero,
which has only a constant term, and does not actually depend on z. Considered as a map, such
a polynomial maps the whole z-plane onto a single point—the value of the constant term. What
the fundamental theorem of algebra states is that for every polynomial P of degree > 0, P (z)
maps the z-plane onto the entire w-plane. This says that for any complex number c, the equation
P (z) = c has a (complex) solution. It is obvious, but worth stating, that the solvability for every
polynomial of degree n > 0 for every value of c is completely equivalent to solving P (z) = 0 for
every such polynomial, since we can just transfer the value c to the left side of the equation.
This picture of a polynomial mapping the z-plane onto the w-plane became the impetus for 200

years of further developments, some of them spectacular, that will be the subject of the remainder
of our discussion.

5 Analytic functions
An obvious next step up from polynomials, which have a finite number of terms, is to a kind
of “infinite polynomial”:

P∞
j=0 cjz

j . Such an infinite sum will define a unique complex number
providing it converges, which is equivalent to saying that the infinite sums of the real and imaginary
parts of each term converge. In general, any such power series will converge for all z satisfying
|z| < R for some R > 0, and fail to converge for |z| > R, in which case R is called the radius of
convergence of the series. There are also two extreme cases: the series may not converge for any
z 6= 0, in which case one says R = 0, or it may converge for every value of z, so that R =∞. In
this last case, the infinite series will define a function w = F (z) that can again be pictured as a
map F of the z-plane into the w-plane. Such functions are called entire functions. We shall return
to them later for a closer look. The fundamental result at the heart of the subject is the following:

Proposition 4 Let F be a smooth map of a domain D in the x, y-plane into the u, v-plane. Let
w = f(z) be the complex function defined by the map F , where z = x + iy and w = u + iv.
Then the following are equivalent:
(a) u and v satisfy the Cauchy-Riemann equations (13) at every point of D,
(b) f(z) has a complex derivative at every point of D,
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(c) for every point c of D, the function f can be written as a power series in z− c with a radius
of convergence R > 0.

Definition. The complex function f(z) is said to be analytic in a domain D if any (hence all)
of conditions (a), (b), or (c) holds.

The equivalence of three so diverse-appearing conditions has no analog in the theory of real
functions, and is a signal that one can expect complex analytic functions to enjoy many special
and sometimes surprising properties. The first of those is that by Proposition 3 complex analytic
functions define angle-preserving maps at all points where the differential is not zero. But the
complex derivative of a complex function f(z) is given in terms of the real and imaginary parts
by f 0(z) = ux + ivx, so that combined with the Cauchy-Riemann equations, f 0 = 0 at a point z
if and only if all partial derivatives of u and v with respect to x and y are zero at that point. One
consequence of condition (c) above is that if an analytic function is not constant, then its derivative
can vanish only at isolated points; everywhere else, it defines a conformal mapping.
One of the most important analytic functions is the exponential function define by

exp z = 1 + z +
z2

2
+
z3

3!
+ · · ·+ zk

k!
+ · · ·

which has the following properties:
1) the series converges for all z, so that exp z is an entire function

2) exp 1 = e

3) expx = ex for x real

4) exp iy = cos y + i sin y for y real

5) exp(a+ b) = exp a exp b

6) exp(z + 2πni) = exp z for every integer n

7) | exp z| = ex 6= 0 for all z.

One form of the fundamental theorem of algebra is that if P (z) is a polynomial of degree n,
and c any complex number, then the polynomial P (z)− c is also of degree n and can be written as
the product of n linear factors, each of which contributes one solution to the equation P (z) = c,
and some of which may be equal. Hence, there are at most n solutions to the equation P (z) = c
for any value of c. Furthermore, there are “in general” exactly n distinct solutions, the exceptions
being those (at most n − 1) values c of the form P (a) where P 0(a) = 0. Looked at in terms of
mappings, a complex polynomial P of degree n defines a mapping of the complex z-plane to the
complex w-plane with the property that for every point in the w-plane, its inverse image consists
of exactly n points, with at most a finite number (in fact, at most n − 1) exceptions where the
inverse image consists of fewer than n points.
If we think of entire functions as “polynomials of infinite degree” we might expect something

analogous to be true. We shall examine that question more closely in the following section, but it
is instructive to examine the case of the exponential function in more detail. We see immediately
one important difference. By virtue of property 7 above, the equation exp z = 0 has no solutions.
For any complex number c 6= 0, to find all solutions of the equation exp z = c, we write c in polar
form as c = r(cos θ+ i sin θ), where r = |c|. Combining properties 3, 4, and 5 of the exponential
function, we find that exp z = exp(x+ iy) = ex(cos y + i sin y) so that

exp z = c⇐⇒ ex = r and y = θ + 2πni for an arbitrary integer n (14)
⇐⇒ x = log r and y = θ + 2πni for an arbitrary integer n.
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In other words, the equation exp z = c has an infinite number of solutions for every c 6= 0, and
no solutions for c = 0.
It is clear from equation (14) that the way to visualize the function w = exp z as a map is to

use rectangular coordinates x, y in the z-plane and polar coordinates r, θ in the w-plane. We note
first that the image of the entire x-axis is the positive u-axis or the ray θ = 0, while the mapping
itself is given by the ordinary exponential function u = ex. Each horizontal line y = b maps in
the same way, by r = ex onto the ray θ = b. We should picture the effect dynamically, as the
horizontal line in the z-plane moves upward from y = 0 to y = 2π, the image ray rotates once
around from θ = 0 to θ = 2π. The effect is that the infinite horizontal strip 0 ≤ y < 2π maps
onto the whole w-plane minus the origin. The same process is repeated for 2π ≤ y < 4π and so
on, with each horizontal strip of width 2π mapping onto the whole plane minus the origin. Said
differently, as the horizontal lines in the z-plane sweep out the plane, the image rays rotate around
and around infinitely often.

w

z

2 i� w z= exp

O

Figure 18.13.

If we restrict to a single point moving vertically, tracing out the line x = a, say, the image
will trace out the circle of radius ea; in particular, the y-axis maps onto the unit circle, the left
half-plane maps onto the interior of the unit circle except for the origin, and the right half-plane
maps onto the exterior of the unit circle.
Next, we may view equations (14) in the reverse direction, as defining a map of the whole

w-plane minus the origin onto the horizontal strip 0 ≤ y < 2π in the z-plane. The map is given
explicitly in terms of polar coordinates in the w-plane, by

x = log r, y = θ (15)

and is called the complex logarithm, written z = logw. It maps rays emanating from the origin
onto horizontal lines, and circles centered at the origin onto vertical line segments.
The application of all this to geographic maps is gradually becoming better known, but not

nearly as well-known as it should be. Namely, if we map the globe by stereographic projection
from the North Pole onto the plane, the South Pole maps onto the origin, the meridians map onto
rays emanating from the origin, and the parallels of latitude onto circles centered at the origin.
If we compose this map with the complex logarithm defined by (15), then the meridians map
onto horizontal lines and the parallels onto vertical line segments. Furthermore, both stereographic
projection and the complex logarithm preserve angles, hence so does the composition. If we now
follow by a rotation of 90◦ in the positive direction, then meridians map onto vertical lines, and
parallels onto horizontal line segments, so that we have an example of a cylindrical projection.
But it is also a conformal map, and as we have seen, that determines it uniquely—it must be our
good old standby, Mercator’s projection. Summing up, to give explicit equations for the Mercator
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map, we simply make a stereographic projection and follow it by the complex logarithm, (15),
and rotation through 90◦.
One final note on the complex logarithm. What we have defined is actually just a branch of

the logarithm, defined by restricting θ to the interval 0 ≤ θ < 2π. However, if we allow all
possible values of θ in the polar representation of a complex number w, then equations (15) define
the general complex logarithm as a multiple-valued function whose different values all differ by
integer multiples of 2πi, just as the inverse trigonometric functions are multiple-valued, with values
differing by multiples of π or 2π. However, that is a whole other story that we need not go into
here.
For the geometric view of the complex exponential and logarithm, and of complex functions

in general, with many beautiful and instructive pictures, we recommend the book Visual Complex
Analysis [1997] by Tristan Needham.

6 Nineteenth century highlights
Gauss’ 1799 proof of the fundamental theorem of algebra was a fitting culmination of eighteenth-
century mathematics. Both Gauss and his theorem went off in unanticipated new directions as the
nineteenth century got underway.
To start with Gauss, he published two papers in the 1820’s devoted to questions regarding

mappings. The second of the two, from 1827, is the more fundamental. It lays the foundation for
much of the subsequent work in the field of differential geometry. The most famous result in the
paper is known as Gauss’ Theorema Egregium or “most excellent theorem.” One corollary of the
theorem is a far-reaching generalization of Euler’s theorem that there is no exact scale map of
any region of a sphere onto a plane. What Gauss proved was that the sphere in this theorem is
the rule rather than the exception. Namely, if S is any surface, with a very few exceptions, then
there is no exact scale map of any region of S onto the plane. The exceptions are the so-called
“developable” surfaces, which may be obtained by simply rolling up a sheet of paper in various
forms; for instance, cylinders and cones and a class of surfaces known as “tangent developables.”
The other of Gauss’ papers, from 1822, contains a positive result about mapping. It says that

any sufficiently smooth surface has a mapping into the plane that is locally conformal. Said
differently, all small regions on the surface can be represented by a plane map that preserves
angles. Of course, if the surface is a sphere, then Mercator’s map and stereographic projection are
examples, but Gauss’ theorem states that conformal maps exist “in general.”
Gauss’ disciple and successor Bernhard Riemann also made two major contributions of relevance

to us. The first is known as the Riemann Mapping Theorem. It was a complete departure from
earlier work, in that instead of asserting that there was some conformal mapping in a given situation,
it said that you could actually prescribe the shape of the image. So for example, if you took any
two plane domains each bounded by a simple closed curve—one might be an ellipse, and the other
a rectangle—then Riemann’s theorem states that there exists a one-to-one angle-preserving map
between the two domains. The way the theorem is usually stated, one of the two domains is a
circular disk, which is sufficient, since if you can map each of the two domains conformally onto
a circular disk, then you can by composition map them conformally onto each other.
Riemann stated the theorem in his PhD thesis of 1851 and gave what he thought was a proof,

but there turned out to be a gap in his reasoning. It took much of the remainder of the century to
provide a complete proof and also to find ways to construct explicit mappings for simple cases,
such as the ellipse and a rectangle. A key figure in that work was H. A. Schwarz [1869–70].
We will come back to the second of Riemann’s contributions shortly, but first jump ahead to

one of the biggest surprises of the century in the theory of complex functions. It was proved in
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1879 by the young French mathematician, Émile Picard. It may be viewed as the direct successor,
80 years on, to the fundamental theorem of algebra.

Theorem 2 (Picard’s Theorem [1879]) Let f(z) be a nonconstant entire function. Then the
equation f(z) = c has a solution for every complex number c with at most one exception.

It is probably safe to say that up to the time that Picard proved his theorem, there was no
evidence at all that such a result would be true. Looked at from the point of view of a mapping,
it said that every “infinite polynomial” maps the whole plane either onto the whole plane or onto
the plane minus a single point. The fact that there may be an exceptional point was of course well
known from the example of the exponential function, where exp z = 0 has no solution.
Again thinking in terms of the fundamental theorem of algebra, as the degree of the polynomial

goes up, so does the number of solutions to the equation P (z) = c, and so one might expect that
an “infinite polynomial” would have an infinite number of solutions. Picard indeed went on to
show that a much stronger version of his first theorem was true.

Theorem 3 (Picard’s “big” Theorem [1879]) Let f(z) be an entire function that is not a poly-
nomial. Let R be an arbitrary positive number. Then for every complex number c with at most
one exception, the equation f(z) = c has a solution with |z| > R.
Corollary 3.1 For an entire function f(z), not a polynomial, the equation f(z) = c has an
infinite number of solutions for all values of c with at most one exception.

Proof. Case 1. For every R > 0 the equation f(z) = c has a solution with |z| > R for every c,
with no exceptions. Let z1 be any solution. Choose R > |z1| and choose a corresponding solution
z2 with |z2| > R. Proceeding in the same way gives an infinite number of solutions.
Case 2. For some R > 0 there is a value of c such that the equation f(z) = c does not have

a solution with |z| > R. Then apply the same reasoning above to any complex number 6= c.

These theorems of Picard set the stage for much of the research in the theory of functions of
a complex variable for the next hundred years and beyond. That will be the subject of our next
section. Let us mention here just one immediate corollary of Picard’s Theorem that requires the
introduction of a new concept.

Definition. A function f is called meromorphic in a domain D if, for every point a in D, there
is a neighborhood of a in which f(z) can be represented by a power series in (z − a) plus a
polynomial in 1/(z − a). A point a at which positive powers of 1/(z − a) occur is called a pole
of f .

Examples of meromorphic functions in the whole plane are rational functions: quotients f(z) =
P (z)/Q(z) of two polynomials. If P and Q have no factors in common, then the poles of f are
simply the zeros of the denominator.
For a rational function f , the equation f(z) = c has a solution for every value of c, since one

can multiply through by the denominator and apply the fundamental theorem of algebra. However,
one cannot view a rational function, or a meromorphic function, as a map into the complex plane,
since it has no finite value at a pole. One traditionally talks about a map into the extended plane
consisting of the ordinary complex plane plus a single point at infinity. Then if a is a pole of f ,
we write f(a) =∞.
Riemann’s second contribution, referred to earlier, was to give a beautiful geometric interpretation

of the extended plane. He simply imported stereographic projection from cartography to map the
ordinary plane onto a sphere minus a point, and then the point at infinity fills in the missing point
on the sphere. Using the standard stereographic projection from the North Pole, it is the North
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Pole on the sphere that corresponds to the point at infinity. It is easy to show that if a is a pole of
f , then as z → a, f(z) composed with the inverse of stereographic projection tends to the North
Pole, so that a meromorphic function in a plane domain D can be considered as a continuous map
of D into the sphere. A closer look at this map shows that at the North Pole the map is not only
continuous but has exactly the same behavior as at any other point on the sphere. In particular, at
a simple pole, where the term 1/(z − a) occurs, but no higher powers, the map into the sphere is
conformal at a. If higher powers of 1/(z− a) occur, then the map into the sphere behaves exactly
the same as at ordinary points where f is analytic, but f 0 = 0.
The unit sphere viewed this way as the extended complex plane via stereographic projection is

called the Riemann sphere. It has the effect of taming the “point at infinity” in the complex plane
and making it essentially no different from any other point. Another way of thinking about it is that
if f(z) is a meromorphic function with a pole at a, then one can compose f with stereographic
projection taking f(a) to the North Pole, and follow with a stereographic projection from any other
point on the sphere taking the North Pole onto a finite point. Then the composed map of the plane
into the plane will be an ordinary analytic function in a neighborhood of the point a.
Picard’s two theorems have an immediate extension to meromorphic functions:

Theorem 4 Let f(z) be a nonconstant meromorphic function in the entire plane. Then viewed as a
map into the Riemann sphere, the image of f covers the entire sphere with at most two exceptions.
Furthermore, if f is not a rational function, then the same is true for f(z) with |z| > R for any
R > 0.

Proof. If the image omits three points on the sphere, and if c 6=∞ is one of them, then the function
g(z) = 1/

¡
f(z)−c¢ will be an entire function omitting two points, contradicting Picard’s Theorem.

Another way to think of it is that if the image omits three points, then make a stereographic
projection from one of them onto the plane; that will again give an entire function omitting two
points.
When these results were first announced, they probably appeared to be the culmination of a

century’s work in the subject, and in fact, Picard’s proofs used some of the most sophisticated
developments of the previous years. However, as is so often the case, Picard’s theorems turned out
to be just the starting point for a whole array of further investigations. They will be the subject of
our final section.

7 The twentieth century
The years following the publication of Picard’s theorems saw many new proofs, generalizations,
and refinements, but nothing to compare with the sweep and depth of a paper by a young Finnish
mathematician, Rolf Nevanlinna, in 1925. That paper inaugurated a whole branch of complex
function theory called “value distribution theory” or simply “Nevanlinna theory.” What Nevanlinna
did was to look at the range of values taken on by an analytic or meromorphic function, and
introduce highly refined measures of the relative frequency with which the function took on those
values. Now for entire functions or meromorphic functions in the whole plane other than rational
functions, all values are assumed infinitely often, with one or two possible exceptions, so that what
one is comparing is not simply the size of these sets, but rather a kind of measure of their density.
Roughly speaking, one compares the number of solutions of the equation f(z) = c inside a circle
of radius R for different values of c, and then sees what happens as R tends to infinity. What
Nevanlinna proves is

(i) for “almost all” values of c, in a very strong sense, the solutions of f(z) = c have “the same
order of magnitude” or “the same density” in a very precise sense.
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(ii) for the exceptional values of c where the equation has “fewer solutions” there is a precise
measure of the size of the solution set, called the defect of c, and the sum of all the defects
is at most 2.

The second of these results is Nevanlinna’s far-reaching generalization of Picard’s theorem. It
follows immediately from the definition of the defect that if a meromorphic function in the plane
omits a value altogether, then the defect of that value is equal to 1. Hence there can be at most
two such values. For an entire function, the point at infinity is omitted, hence has defect equal to
1. It follows that the sum of all the other defects can be at most equal to 1, and in particular, at
most one finite value can be omitted altogether.
Among the many other results proved by Nevanlinna in this groundbreaking paper, we note

one of particular interest. For every value c, Nevanlinna introduces in addition to the defect, a
“ramification index” of c, and obtains a result similar to (ii) above for the sum of the ramification
indices. He also makes the following definition.

Definition. Let f(z) be an analytic or meromorphic function in a domain D. A value c of f(z)
is totally ramified if whenever f(b) = c, f 0(b) = 0.

In other words, if f is viewed as a mapping from the z-plane to the w-plane, then at none of
the points that maps onto c does f define locally a one-to-one conformal map, as would be the
case if the derivative were different from zero. Rather, at each of the pre-images of c, f behaves
like the function zn in a neighborhood of the origin, for some n > 1. The image is then said to
be “branched” or “ramified” in a neighborhood of c.

Theorem 5 (Nevanlinna [1925]) An entire function can have at most two totally ramified values.
A meromophic function in the plane can have at most four totally ramified values.

Both numbers “two” and “four” in this theorem are sharp. For example, the complex sine and
cosine are entire functions defined by

2 cos z = exp iz + exp(−iz), 2i sin z = exp iz − exp(−iz).

It follows that just as for real values of z, sin2 z + cos2 z ≡ 1 and cos z is the derivative of sin z.
Hence sin z = ±1 ⇔ cos z = 0, which means that the two values 1 and −1 are totally ramified
for f(z) = sin z. Similarly, Nevanlinna points out that examples of meromorphic functions with
exactly four totally ramified values include classical elliptic functions such as the Weierstrass ℘-
function. We give a more geometric description of such a function that will be of particular interest
in the sequel.
Let a regular tetrahedron be inscribed in the unit sphere, with one vertex at the North Pole. The

four vertices of the tetrahedron will form four equally-spaced points on the sphere. Project the
tetrahedron onto the sphere from the center of the sphere. The result will be a tiling of the sphere
by four congruent spherical triangles. We want to construct a meromorphic function in the plane
with the property that each of the four vertices will be totally ramified, and everywhere else the
map will be an unramified conformal map. To do so, we make a stereographic projection from the
North Pole, under which the four spherical triangles map onto one domain D bounded by three
circular arcs meeting at 120◦, together with three unbounded domains each having one side in
common with a side of D, and the other two sides consisting of rays from the endpoints of that
side out to infinity (see Figure 18.14).
We assume that configuration to lie in the w-plane, and we use the Riemann mapping theorem

to define a conformal map f(z) of the interior of an equilateral triangle in the z-plane onto the
domain D. That can be done in a way that takes the vertices into the vertices and the center



“master” — 2004/3/25 — 16:56 — page 254 — #268i
i

i
i

i
i

i
i

254 Part V: Applications and History

D

Figure 18.14. 3 circular arcs meeting at 120◦

into the center. A fundamental result of H. A. Schwarz that he obtained while investigating the
Riemann mapping theorem tells us that the map f(z) can be extended to a meromorphic function
in the whole z-plane by a process known as the “Schwarz reflection principle” [1869–70 (a)]. If
one pictures the z-plane tiled by the equilateral triangles obtained by successive reflection across
the sides of the original triangles and their images, then the extended function f(z) will satisfy
f 0(z) 6= 0 everywhere except at the vertices of the tiling, where the mapping will behave like z2.
We turn next to a 1926 paper of André Bloch. Bloch’s goal was two-fold. First, to give an

elementary proof of Picard’s Theorem, whose original proof and subsequent refinements tended to
be anything but elementary. Second, to implement in this case a general policy that has come to
be known as “Bloch’s Principle.” The idea is that if one has a theorem that applies to functions
of a certain class defined in the whole plane, then one should seek a finite version—say in a disk
of radius R—that yields the original theorem in the limit as R→∞.

Theorem 6 (Bloch [1926]) There exists a positive constant B with the following property. Let
w = f(z) be analytic in the unit disk and be normalized so that f 0(0) = 1. Then for every r < B
there exists a disk of radius r in the w-plane that is the one-to-one conformal image under f of
a domain inside the unit disk of the z-plane.

The largest value of B for which Bloch’s Theorem holds is known as Bloch’s constant. Its
precise value is not known.

Corollary 6.1 The mapping of the z-plane into the w-plane defined by an arbitrary nonconstant
entire function w = f(z) has the property that for every R > 0, there is a disk of radius R in the
w-plane that is the one-to-one image under f of some domain in the z-plane.

Proof. We can first normalize f so that f 0(0) = 1. Choose λ > R/B, where B is Bloch’s
constant. Then apply Bloch’s Theorem to the function g(z) = f(λz)/λ in the unit disk. Let
r = R/λ . Since r < B, we conclude that the image of the disk of radius λ under f includes a
disk of radius λr = R.
Note. Corollary 6.1 had been proved earlier by Valiron [1926].

Corollary 6.2 Picard’s Theorem.

To derive Picard’s theorem from Corollary 6.1, suppose that the image of a nonconstant entire
function f omits two points a, b. Then the function g(z) = (f(z) − a)/(f(z) − b) is an entire
function that omits the values 0, 1. We can then compose g with the complex logarithm to get an
entire function that omits the points 2πni for all integers n. Another slightly more complicated,
but still elementary composition yields an entire function that omits a rectangular lattice-type array
of points with the property that for some R sufficiently large, every disk of radius R contains one



“master” — 2004/3/25 — 16:56 — page 255 — #269i
i

i
i

i
i

i
i

OSSERMAN: Mathematical Mapping from Mercator to the Millennium 255

of those points. This gives an entire function that violates the conclusion of Corollary 6.1. Hence
the assumption that the original function could omit two distinct values is false.
The 1930’s saw a series of dazzlingly original papers on Nevanlinna theory by another Finnish

mathematician, Lars V. Ahlfors, for which he received one of the first two Fields Medals awarded in
1936. In those papers, Ahlfors re-frames, re-formulates, and re-proves the main results of Nevan-
linna theory in far more geometric fashion than in the original papers. One of those papers in
particular, “On the theory of covering surfaces” from 1935 was singled out by the committee
choosing the Fields medalists and was later described by Ahlfors himself as a “much more radical
departure from Nevanlinna’s own methods” which is indeed the case. We cite just one of the most
striking results from that paper.

Theorem 7 (Ahlfors [1935]) Let w = f(z) be a nonconstant complex function defined in the
whole z-plane.
1) If f is entire, then given any two disjoint disks in the w-plane, the interior of at least one of
them is the image under f of some domain in the z-plane;

2) If f is entire, then given any three disjoint disks in the w-plane, the interior of at least one
of them is the one-to-one conformal image under f of some domain in the z-plane;

3) If f is meromorphic in the whole plane, then the same holds for any five disjoint disks on
the Riemann sphere.

The third statement here is known as Ahlfors’ “five islands” theorem.
This three-part theorem of Ahlfors has some of the same aspects of astonishing simplicity of

statement and totally unanticipated result that characterizes Picard’s original theorem. Part 1 of the
theorem is of course a far-reaching generalization of Picard, since if a nonconstant entire function
were to omit two values, one could choose a disk about each in contradiction to Ahlfors’ result.
In the other direction, if one starts with the two disks, one knows from Picard’s Theorem that one
of them at least must be completely covered by the image of the function, but it might well be in
many bits and pieces, whereas Ahlfors’ theorem says it is the image of a single connected domain
(an “island”).
Similarly, part 2 of Ahlfors’ theorem implies Corollary 6.1 to Bloch’s theorem above, since one

can make all three of the given disks as large as one wants. But nothing in Bloch’s theorem and its
corollaries implies that one can pick specific disks in advance, only that somewhere in the image
is a disk with the specified property.
Finally, part 3 is an equally surprising generalization of Nevanlinna’s Theorem about the max-

imum number of totally ramified values for a meromorphic function in the plane, since if there
were five totally ramified values one could choose five disjoint disks about them and obtain a
contradiction to Ahlfors’ result.
If Ahlfors had stopped there he probably would still have been awarded the Fields Medal. But

in answer to “can you top this?”, he did. To fully understand the icing on this cake, one must take
note of a particular property of analytic and meromorphic functions that was generally understood
to account for the vast majority of special properties that they enjoy. That is the property known
as “rigidity.” What that means in this context, is that if you change an analytic function in some
neighborhood—no matter how small—of a point, then it changes everywhere. Said differently, the
values of an analytic or meromorphic function are determined over its whole domain of definition
by its values in an arbitrarily small neighborhood of any point in that domain. That property is
not shared by even infinitely differentiable real functions, which may be pushed and pulled locally
without affecting them elsewhere and still kept infinitely differentiable. The aspect of Ahlfors’
paper that must have been the most counterintuitive based on all that came before—where all
the elaborate machinery developed specifically for analytic and meromorphic functions had been
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invoked—was that his methods showed that none of the special properties of those classes of
functions were needed, but rather that the results and all their corollaries actually remain true for
an enormously broader class of mappings, with no rigidity properties whatever.
Definition. A smooth map between plane domains, or more generally between surfaces (such as
the plane and the sphere) is quasiconformal if there is a uniform bound to the ratio of maximum
to minimum scaling factors at each point.
To understand the significance of this condition, recall from sections 2 and 3 that the differential

of a smooth map at a point is a linear transformation that maps a circle onto an ellipse, and the
ratio of major to minor axes of that ellipse is precisely the ratio of maximum to minimum scaling
factor at the point. For a conformal map, the ellipse reduces to a circle at each point. In general,
as for example, in Lambert’s equal area map, or the plate carrée, the ellipses get more and more
distorted toward the poles, so that there is no uniform bound on the ratio of maximum to minimum
scale factor. Those maps are therefore not quasiconformal. However, the class of quasiconformal
maps is far larger than that of conformal maps. What Ahlfors proved was

Theorem 8 (Ahlfors [1935]) The conclusions of Theorem 7 are all valid for arbitrary quasicon-
formal maps of the plane into the sphere.

After many detours, this whole circle of ideas reached its culmination in the final year of the
twentieth century with a theorem of Mario Bonk and Alexandre Eremenko [2000]. In order to state
the theorem, we recall the example we gave of a meromorphic function that is totally ramified
over the four vertices of an equilateral tetrahedron inscribed in the unit sphere. Let C 0 be a circle
passing through three of those vertices, and let D0 be the circular disk on the sphere bounded by
C 0.

Theorem 9 (Bonk and Eremenko [2000]) Let D be any circular disk on the Riemann sphere
smaller than the disk D0 described above. Then for any (nonconstant) meromorphic function f(z)
in the plane, there is a domain in the z-plane mapped one-to-one conformally by f onto a disk
of size D.

One of the many remarkable features of this theorem is that unlike Bloch’s theorem and other
similar ones, there is no normalization required. The bound given on the size of the image holds
for all meromorphic functions in the plane. Furthermore, also unlike the original Bloch’s Theorem,
where the precise value of Bloch’s constant remains unknown, the bound given here is best possible,
since any disk larger than D0 would include one of the vertices of the tetrahedron in its interior,
and the example we have constructed would contradict the conclusion.
But the most remarkable feature of this theorem is that, as the authors show, it implies all

the previous theorems of Nevanlinna, Bloch, and Ahlfors described above. The proof employs an
eclectic array of tools, from classical spherical geometry to quasiconformal mappings. And it may
be worth a passing comment that in order to get a sharp result, the authors resort to the 2,000
year-old device of using stereographic projection from the plane onto the sphere.

Acknowledgement The maps and Tissot indicatrices for maps in Figures 18.5, 18.6, 18.8, 18.9,
18.10, and 18.11 were all taken from “An Album of Map Projections” by John P. Snyder and
Philip M. Voxland (U.S. Geological Survey Professional Paper 1453, 1989).
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