1. Let $y(t)$ be the amount of the substance in the pool, in kilograms. Then

$$
y^{\prime}(t)=a b-k y-b y / V
$$

Here the first summand reflects pumping into the pool, second term reflects the radioactive decay, and the third term is for overflow from the pool to the river. The constant $k$ is related to the half-life by the formula $k=\log 2 / T$ (see the book). This is a separable equation, but the problem only asks for the equilibrium. Equilibrium happens when

$$
y=\frac{a b}{\log 2 / T+b / V} .
$$

This is the amount of the substance in the equilibrium. For concentration, one has to divide by $V$. We obtain

$$
\frac{a b}{V \log 2 / T+b} .
$$

So by making large enough pool we can decrease the concentration to any given amount. Especially when the half-life is not too long.
2. Let $x(t)$ be the amount of the chemical in the tank $A$, and $y(t)$ in the $\operatorname{tank} B$. We have

$$
x^{\prime}=-20 x / 100, \quad y(0)=1
$$

nd

$$
y^{\prime}=20 x / 100-20 y / 100, \quad y(0)=0 .
$$

Solving the first equation we get $x(t)=e^{-t / 5}$. Now the second one becomes a linear first order equation

$$
y^{\prime}=e^{-t / 5} / 5-y / 5
$$

Solving with the initial condition $y(0)=0$, we obtain

$$
y(t)=\frac{1}{5} t e^{-t / 5}
$$

The maximum is at $t=5$, and we have $e^{-1} \mathrm{~kg}$ of the chemical at this moment.

3, 4 were solved in class.
5. The right hand side factors as $(x-2)^{2}(x+2)$, so 2 is unstable and -2 iss unstable but semistable.
6. This is homogeneous. Setting $x=w y$ ( $y$ is the independent variable) we get $w^{\prime} y=\sqrt{w^{2}+1}$. This is separable

$$
\begin{gathered}
\frac{d w}{\sqrt{w^{2}+1}}=\frac{d y}{y} \\
\sinh ^{-1} w=\log |y|+C \\
w=\sinh (\log |y|+C), \quad x=y \sinh (\log |y|+C)
\end{gathered}
$$

7. This is neither homogeneous nor exact but can be converted into a homogeneous one by introducing new variables $u, v$ by the fomulas

$$
y=u-1 / 2, \quad x=v-3 / 2
$$

so that Then for $u$ and $v$ we have a homogeneous equation

$$
\frac{d u}{d v}=-\frac{u+v}{v-u}
$$

Such equation we solved in class. After solving this we return to $x, y$ by the above formulas.
8. This is exact.

$$
(x+y+2) d x+(1+x-y) d y=0=M d x+N d y
$$

$M_{y}=1=N_{x}$. The implicit solution is

$$
\frac{1}{2} x^{2}-\frac{1}{2} y^{2}+x y+2 x+2 y+C=0
$$

9. This equation does not belong to any class we studied, and finding a general solution is difficult. However, it is only asked for a solution of the initial value problem, and this has an evident solution $y(x) \equiv=0$. Existence and uniqueness theorem guarantees that there are no other solutions.
10. 

$$
-\frac{1}{2} t \cos t+c_{1} \cos t+c_{2} \sin t
$$

