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1.6 It is proved in [14] that for every countable set E in the complex plane
and every λ > 1/2 there exists an entire function of order λ, whose set of
deficient values coincides with E. This completely answers the first question.
For the second question a counterexample is constructed in [16]: for every
λ > 1/2 and for every sequence of complex numbers (ak) there is an entire
function f of order λ with the property δ(ak, f) > ck, k = 1, 2 . . ., or some
c ∈ (0, 1). On the other hand, Lewis and Wu [41] proved

∑
δα(ak, f) < ∞

for entire functions of finite order with an absolute constant α < 1/3−2−264.

1.16 Miles [47] gave a positive answer, by showing that for every meromor-
phic function

lim inf
r→∞

maxa n(r, a)

A(r)
≤ e− 10−28.

1.18 The last case which remained unsolved, l = 2, was completely settled
by Langley [34], who proved that the only meromorphic functions f for which
ff ′′ is zero-free, are f(z) = exp(az + b) and f(z) = (az + b)−n. An earlier
paper on the subject, [20] contains a gap in the case l = 2.

1.19 The last case which remained unsolved, n = 1, was settled in [6]:
for every non-constant meromorphic function f , the equation f ′(z)f(z) = c
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has solutions for every c 6= 0,∞. This was first proved by Bergweiler and
Eremenko for functions of finite order; then these authors [6], Chen and Fang
[11] and Zalcman [66] independently noticed that a general result of Pang
[49] permits an extension to arbitrary meromorphic functions. The proof
actually applies to all n ≥ 1.

1.20 This question is equivalent to 1.19. The last remaining case n = 3,
which corresponds to n = 1 in 1.19, was solved in [6].

1.33 This is a slightly more precise conjecture than 2.25. Both problems are
solved completely by the following theorem [17]: Suppose f is a meromorphic
function of lower order λ <∞, and

N1(r, f) := N(r, 1/f ′) + 2N(r, f)−N(r, f ′) = o(T (r, f)).

Then:
a) 2λ is an integer greater or equal than 2.
b) T (r, f) = rλ`(r), where ` is a slowly varying function in the sense of
Karamata,
c)
∑
δ(a, f) = 2, all deficient values are asymptotic, and all deficiencies are

multiples of 1/λ.

1.35 Steinmetz [61, 62] proved that every meromorphic solution of a ho-
mogeneous algebraic differential equation of second order has the form f =
(g1/g2) exp(g3), where gi are entire functions of finite order, thus T (r, f) =
O(exp(rk)), for some k > 0. Due to work of Wiman and Valiron (see, for
example [64]) it is known that “most” algebraic differential equations do not
have entire solutions of infinite order. A precise statement of this sort is
contained in Hayman’s paper [30].

1.37 We mention a result [56]: on every open Riemann surface there exists
a holomorphic function with prescribed divisors of zeros and critical points,
subject to the trivial restrictions.

1.42 This was completely solved by by Brüggemann [9] who proved the
following. Let a linear differential operator

L(f) = f (n) +
n−2∑
j=0

ajf
j
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with polynomial coefficients aj be given, with at least one nonconstant aj .
Then the only meromorphic functions f with infinitely many poles, satisfying
fL(f) 6= 0, are of the form f = (H ′)−(n−1)/2H−l, where l is a natural integer,
and H ′′/H ′ is a polynomial.

2.6 The following is proved in [13]. Let f be an entire function of order λ
and lower order µ. Then there exists an asymptotic path Γ, such that

log |f(z)| > (A(λ, µ) + o(1)) log |z|, z →∞, z ∈ Γ,

where A(λ, µ) is some explicitly written function with the property A(λ, µ) >
0 for 0 < µ < λ <∞.

2.9 If f(z) 6= 0, then for every K the level set |f(z)| = K contains a curve
tending to infinity. Under this condition Rossi and Weitsman [55] proved
that there is an asymptotic curve Γ with the following properties:

log |f(z)| > |z|1/2−ε(z), where ε(z)→ 0, and (1)∫
Γ
(log |f |)−(2+α)|dz| <∞ for all α > 0. (2)

On the other hand, Barth, Brannan and Hayman [2] constructed a zero-
free entire function, having no asymptotic curve, satisfying (1) with ε = 0.
Furthermore, Brannan pointed out that for their example every asymptotic
curve satisfies ∫

Γ
(log |f(z)|)−2|dz| =∞.

2.11 Nazarov [48] proved that each of the following conditions
a) λk+1 + λk−1 ≥ 2λk and

∑
(1/λk) <∞, or

b)
∑

(log log k)/λk <∞
implies

lim sup
z→∞,z∈Γ

log |f(z)|
logM(|z|, f)

= 1.

for every curve Γ, tending to infinity.

2.12a Fryntov [22] proved the following partial result. Suppose f is an entire
function of lower order µ with density of non-zero exponents ∆. If λ∆ < 1/3,
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and γ is a curve which intersects each circle |z| = r at most once, then

lim sup
z→∞,z∈γ

log |f(z)|
logM(|z|) ≥ 2 cosπλ∆− 1.

2.19 Let f be entire, of exponential type σ, |f(z)| ≤ A for z < 0 and
|f(z)| < B for z > 0. A sharp bound for |f(z)|, z ∈ R was found in [15].
For complex z nothing is known, except in the case A = B.

2.20 This was proved by Bergweiler [3]: if f is a transcendental entire func-
tion, and n ≥ 2, then f has infinitely many periodic points of exact period
n. This also follows from the result in [4]

2.21 The existence of repulsive fixed points was proved for the first time
by Baker [1], who used Ahlfors’ theory of covering surfaces. Since then the
proof of this important result was generalized to meromorphic functions and
ultimately evolved into an elementary half-page argument of Berteloot and
Duval [8].

2.23 Bergweiler, Clunie and Langley [5] proved the conjecture by showing
that for every transcendental entire function f and every line, infinitely many
of the fixed points of every n-th iterate, n ≥ 2 do not lie on this line. Later
Bergweiler [4] improved this by showing that for every line there are infinitely
many repelling fixed points of each n-th iterate, n ≥ 2, which do not lie on
this line.

2.25 The negative answer follows from a stronger result, described in the
report on 1.33.

2.26 The functional equation

fn + gn + hn = 1

cannot have non-constant meromorphic solutions for n ≥ 9. Gundersen
constructed examples of transcendental meromorphic solutions for n = 5
and 6 in [26] and [27] respectively. Thus only the cases n = 7 and 8 remain
unsolved.

2.34 For every λ > 1 Fryntov [21] constructed an entire function f of order
λ with the property

lim sup
r→∞

logL(r)/ logM(r) < −1.
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2.35 Hayman and Kjellberg [29] gave a positive answer by proving that
for any non-constant subharmonic function u and K > 1 the set {z :
u(z) + KB(z)}, where B(z) = max|ζ|=|z| u(ζ), has no unbounded compo-
nents. Furthermore, if the set {z : u(z) + B(|z|) < 0} has an unbounded
component then u has infinite lower order, or else regular growth and mean
or minimal type of order λ, where 0 < λ <∞, or u is linear.

2.38 Drasin [12] constructed an entire function of order 1 with the property
L(r)M(r)→ 0.

2.52 This is solved completely by A.A. Goldberg [23], who proved the follow-
ing stronger result: Let f be a meromorphic function of zero order, satisfying

lim inf
r→∞

N(r, 0, f) +N(r,∞, f)

log2 r
≤ σ <∞,

then

lim sup
r→∞

minθ |f(reiθ)|
maxθ |f(reiθ)| ≥ C(σ),

where

C(σ) =

( ∞∏
n=1

1− q2n−1

1 + q2n−1

)2

, where q = exp(−1/(4σ)),

and this estimate is best possible.
A different proof of the original Barry’s conjecture was given by Fenton

[19].

2.64 This is completely settled now in [7]: if f is a real entire function with
the property that f ′′f has only real zeros, then f belongs to the Laguerre–
Pólya class. The proof uses the previous results by Sheil-Small [57] who
solved the problem in the case of finite order, and by Levin–Ostrovskii [38].

2.65 Köhler [33] proved that the answer is “yes”, for meromorphic functions
and n = 6. Namely, if f and g are meromorphic functions, such that f (k)/g(k)

are entire and without zeros, for 0 ≤ k ≤ 6, then f and g satisfy one of the
four relations suggested by Hinkkanen. If one makes additional assumptions
about growth of f and g, one needs fewer derivatives to achieve the same
conclusion [33, 63]. See also [35] for related results.
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2.69 For every λ > 1/2 Langley [36] constructed an entire function of order
λ with the property

lim inf
r→∞

T (r, f)

T (r, f ′)
> 1.

2.70 Some interesting examples related to this problem are contained in [37].

2.71 Gundersen [28] showed that for given a > 0 and b ≥ 0, there exists an
infinite sequence of real numbers λk → +∞, so that the differential equation

f ′′ + (az4 + bz2 − λk)f = 0

has solutions with infinitely many zeros, and all these zeros, except finitely
many of them are real. Rossi and Wang [54] proved that if an equation
f ′′+P (z)f = 0, where P is a polynomial, has a solution with infinitely many
zeros, all of them real, then the number of real zeros of P must be less than
than degP/2 + 1, counted with multiplicities. Eremenko and Merenkov [18]
proved that for every d there exist polynomials P of degree d such that some
solution of the equation f ′′ + Pf = 0 has only real zeros. The zero set of
such f can be infinite if and only if d 6≡ 2 (mod 4).

2.72 Brüggeman [10] and Steinmetz [60] independently gave a positive an-
swer, in fact each of them proved a stronger result than conjectured.

2.75 Goldberg and Ostrovskii [24] solved the problem under the following
additional assumption on the sequence of the exponents. There exists an
entire function L(λ) of exponential type, such that L(λn) = 0 for n = 1, 2, . . . ,
and

lim
n→∞

λ−1
n log(1/|L′(λn)|) <∞.

If these conditions are satisfied, the sequence (λn) is said to have finite index
of concentration. If the sequence of exponents of a Dirichlet series f has finite
index of concentration, the only possible indicators are h(f, θ) = a(cos+ θ)ρ,
where a > 0. In this paper they also obtained other results, with weaker
conditions on the sequence (λk), and studied the lower indicators as well.

2.78 An analog of the Fatou conjecture for the real quadratic family {z 7→
z2 + c : c ∈ R} (instead of the family Rd of all rational functions of degree
d ≥ 2) has been established now in [25] and [42]
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2.79 (a) has been established for the real quadratic family by McMullen [46],
and extended to the family {z 7→ zd+c, c ∈ R} by Levin and van Strien [40].
(b) is known for the following subclasses of rational functions:
Colet–Eckmann functions whose Julia set in not C̄ [52],
finitely renormalizable quadratic polynomials without neutral irrational cycle
[45].

2.83 (a) The answer is ‘yes’, if f is a polynomial of degree 2 [65].

2.86 (b) Rempe [53] proved that for E(z) = exp z+c, if E has an unbounded
Siegel disk U (of any period) then c ∈ ∂Ek(U) for some k.

2.87 The first question is the same as 2.77 and 2.67 is a special case of
this question. All these remain unsolved. The conjecture that iterates in a
wandering domain cannot converge to a fixed point follows from the results
of Pérez Marco [50, 51].

2.88 (a) It is known now that B is locally connected in the neighborhoods
of certain points [32, 44]
(b) Shishikura [58, 59] proved that the boundary of the Mandelbrot set B
has Hausdorff dimension 2.
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Guide to problems and references

Entries A-M refer to the list of references given after the tables.

Table 1. List of problems proposed

Topic A B C H I L
1 1–23 24–29 30 – 31–36 37–43
2 1–32 33–46 47–57 58–64 65–68 69–90

Table 2. Comments on problems

Problem Topic
Number 1 2

1 B B
2 B B
3 J D,J
4 B,F B,F
5 B,F
6 E,K,M C,M
7 B D,J
8 B B,C,E,G
9 B E,M
10 B,K D,J
11 B,K M
12 D M
13 B J
14 B C,G
15 B
16 C,M B,C
17 B B,E,F,J
18 B,C,G,M C
19 D,M J,K,M
20 D,E,M M
21 C,K B,M

Problem Topic
Number 1 2

22 B B,J
23 B,J,K M
24 C C
25 C,G B,K,M
26 J
27 D
28 C,D,J B,E,F
29 K B,F
30 B
31 B
32 C,G,K
33 M
34 K M
35 M
37 M J
38 F,M
40 C,J
41 J
42 M D,J
43 D
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Problem Topic
Number 2

44 C,G
52 M
55 D
57 D
58 J
62 J
63 J
64 M
65 M
66 K
69 M
70 M
71 M
72 M
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78 M
79 M
83 M
86 M
87 M
88 M
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