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Abstract

A spherical quadrilateral is a bordered surface homeomorphic to
a closed disk, with four distinguished boundary points called corners,
equipped with a Riemannian metric of constant curvature 1, except
at the corners, and such that the boundary arcs between the corners
are geodesic. We discuss the problem of classification of these quadri-
laterals and perform the classification up to isometry in the case that
two angles at the corners are multiples of π. The problem is equivalent
to classification of Heun’s equations with real parameters and unitary
monodromy.
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1 Introduction

Let S be a compact Riemann surface, and a0, . . . , an−1 a finite set of points on
S. Let us consider a conformal Riemannian metric on S of constant curvature
K ∈ {0, 1,−1} with conic singularities at the points aj. This means that in
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a local conformal coordinate z the length element of the metric is given by
the formula ds = ρ(z)|dz|, where ρ is a solution of the differential equation

∆ log ρ+Kρ2 = 0 in S\{a0, . . . , an−1}, (1.1)

and ρ(z) ∼ |z|αj−1, for the local coordinate z which is equal to 0 at aj . Here
αj > 0, and 2παj is the total angle around the singularity aj .

The general problem is how many such metrics exist with prescribed aj

and αj.
This question goes back to 19-s century, and for the history we refer

to [41, 16]. A complete answer to this question is known when K ≤ 0,
[34, 35, 37, 22, 48], but very little is known on the case K > 0.

One necessary condition that one has to impose on these data follows
from the Gauss–Bonnet theorem: the quantity

χ(S) +
n−1
∑

j=0

(αj − 1) has the same sign as K. (1.2)

Here χ is the Euler characteristic. Indeed, this quantity multiplied by 2π is
equal to the integral curvature of the smooth part of the surface.

The result of Troyanov [48] that applies to the caseK = 1 is the following:

Let S be a compact Riemann surface, a0, . . . , an−1 points on S, and
α0, . . . , αn−1 positive numbers satisfying

0 < χ(S) +
n−1
∑

j=0

(αj − 1) < 2 min{1, min
0≤j≤n−1

αj}. (1.3)

Then there exists a conformal metric of positive curvature 1 on S with conic
singularities at aj and angles 2παj.

F. Luo and G. Tian [30] proved that if the condition 0 < αj < 1 is
satisfied, then (1.3) is necessary and sufficient, and the metric with given aj

and αj is unique.
In general, the right hand side inequality in (1.3) is not a necessary con-

dition, and the metric may not be unique.
In this paper, we only consider the simplest case when S is the sphere,

so χ(S) = 2. For metrics on tori we refer to the recent work [6, 7].
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The problem of description and classification of conformal metrics of cur-
vature 1 with conic singularities on the sphere has applications to the study
of certain surfaces of constant mean curvature [19, 9, 10], and to several other
questions of geometry and physics [39, 48].

The so-called “symmetric case” is interesting and important. Suppose
that all singularities belong to a circle on the sphere S, and we only consider
the metrics which are symmetric with respect to this circle. Then the circle
splits S into two symmetric disks. Each of them is a spherical polygon,
(surface) for which we state a formal definition:

Definition 1.1 A spherical n-gon is a closed disk with n distinguished bound-
ary points aj called the corners, equipped with a conformal Riemannian met-
ric of constant curvature 1 everywhere except the corners, and such that the
sides (boundary arcs between the corners) are geodesic. The metric has conic
singularities at the corners.

In [50, 11], all possibilities for spherical triangles are completely described,
see also [19] where a minor error in [11, Theorem 2] was corrected. In the
case of triangles, the metric is uniquely determined by the angles when none
of the αj is an integer.

The case when all αj are integers, and n is arbitrary, is also well under-
stood. In this case, the line element of the metric has the global representa-
tion

ds =
2|f ′||dz|
1 + |f |2 ,

where f is a rational function. The singular points aj are the critical points
of f , αj − 1 is the multiplicity of the critical point aj , and αj is the local
degree of f at aj.

Thus the problem with all integer αj is equivalent to describing rational
functions with prescribed critical points [21, 42, 12, 13, 14, 15, 18, 32].

Almost nothing is known in the case when some of the αj are not inte-
gers, the number of singularities is greater than 3, and the right-hand side
inequality in (1.3) is violated.1

In this paper we begin investigation of the case n = 4, with the emphasis
on the symmetric case.

1After the first version of this work was posted on the archive, preprint [31] appeared,
where the authors find the general necessary and sufficient conditions on the angles αj of
a metric on the sphere with some singularities aj .
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In the symmetric case, we may assume without loss of generality that the
circle is the real line R ∪ {∞}. The real line splits the sphere S into two
symmetric spherical n-gons with the real corners aj and the angles παj at
the corners.

Thus we arrive at the problem of classification of spherical quadrilaterals
(surfaces). We study this problem using two different methods. One of them
is the geometric method of F. Klein [28] who classified spherical triangles.
Klein classified not only spherical triangles with geodesic sides, but also cir-
cular triangles, whose sides have constant geodesic curvature (that is, locally
they are arcs of circles). A modern paper which uses Klein’s approach to
triangles is [52].

Classification of triangles permitted Klein to obtain exact relations for
the numbers of zeros of hypergeometric functions on the intervals between
the singular points on the real line. Van Vleck [51] extended this approach
of Klein, using the same geometric method, and obtained exact inequalities
for the numbers of zeros of hypergeometric functions in the upper and lower
half-planes. Hurwitz [25] re-proved these results with a different, analytic
method.

We hope that our results can be used to obtain information about so-
lutions of Heun’s equation, in the same way as Klein obtained information
about solutions of the hypergeometric equation.

Klein’s classification of triangles was partially extended to arbitrary cir-
cular quadrilaterals (not necessary geodesic ones) in the work of Schönflies
[43, 44] and Ihlenburg [26, 27]. They considered certain geometric reduc-
tion process of cutting a circular quadrilateral into simpler ones. Then they
classified the irreducible quadrilaterals up to conformal automorphisms of
the sphere. Thus they obtained an algorithm which permits to construct
all circular quadrilaterals. Using this algorithm, Ihlenburg derived relations
between the angles and sides of a circular quadrilateral. However this algo-
rithm falls short of a complete classification. In particular, a quadrilateral
with prescribed angles and sides is not unique. Moreover, it seems difficult
to single out geodesic quadrilaterals in the construction of Schönflies and
Ihlenburg.

We use somewhat different approach which consists in associating to ev-
ery spherical geodesic quadrilateral a combinatorial object which we call a
net, thus reducing the classification to combinatorics. Then we solve this
combinatorial problem and obtain a classification of spherical quadrilaterals
up to isometry. Our approach can be also applied to general (non-geodesic)
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circular quadrilaterals.
The boundary of a spherical polygon is a closed curve on the sphere,

consisting of geodesic pieces. The angles of such a curve at the corners make
sense only modulo 2π. All possible sequences of angles have been described
by Biswas [3], see also [5]. These inequalities on the angles give necessary
but not sufficient conditions that the angles of a spherical polygon (surface)
must satisfy.

Our second method is a direct study of Heun’s equation. Classification of
spherical quadrilaterals can be stated in terms of a special eigenvalue problem
for this equation. This method leads to complete results when the eigenvalue
problem can be solved algebraically.

The contents of the paper is the following. In section 2, we recall the
connection of the problem with Heun’s equation, and recall the results on
Heun’s equation related to our problem.

In section 3 we begin the study of the case when two of the αj are integers
and two others are not. (If three of the αj are integers then all four must be
integers.) Complete classification for this case is obtained in the remaining
sections. Sections 3-5 are based on a direct study of the eigenvalue problem
for Heun’s equation. The results are illustrated with numerical examples in
section 16. Sections 6-14 are based on geometric and combinatorial methods.
The case when three angles are non-integers is treated in [17].

2 Connection with linear differential

equations

Let (S, ds) be the Riemann sphere equipped with a metric with conic sin-
gularities. Every smooth point of S has a neighborhood which is isometric
to a region on the standard unit sphere S; let f be such an isometry. Then
f has an analytic continuation along every path in S\{a0, . . . , an−1}, and
we obtain a multi-valued function which is called the developing map. The
monodromy of f consists of orientation-preserving isometries (rotations) of
S, so the Schwarzian derivative

F (z) :=
f ′′′

f ′
− 3

2

(

f ′′

f ′

)2

(2.1)

is a single valued function.
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Developing map is completely characterized by the properties that it has
an analytic continuation along any curve in S\{a1, . . . , an}, has asymptotics
∼ c(z − aj)

αj , z → aj, c 6= 0, and has PSU(2) = SO(3) monodromy. It is
possible that two such maps with the same aj and αj are related by post-
composition with a fractional-linear transformation. The metrics arising from
such maps will be called equivalent. Following [19], we say that the metric
is reducible if its monodromy group is commutative (which is equivalent to
all monodromy transformations having a common fixed point). In the case
of irreducible metrics, each equivalence class contains only one metric. For
reducible metrics, the equivalence class is a one-parameter family when the
monodromy is non-trivial and a two-parametric family when monodromy is
trivial.

The asymptotic behavior of f at the singular points aj implies that the
only singularities of F on the sphere are double poles, so F is a rational
function, and we obtain the Schwarz differential equation (2.1) for f .

It is well-known that the general solution of the Schwarz differential equa-
tion is a ratio of two linearly independent solutions of the linear differential
equation

y′′ + Py′ +Qy = 0, f = y1/y0, (2.2)

where
F = −P ′ − P 2/2 + 2Q.

For example one can take P = 0, then Q = F/2. Another convenient choice
is to make all poles but one of P and Q simple. When n = 3, equation (2.2)
is equivalent to the hypergeometric equation, and when n = 4 to Heun’s
equation [40].

The singular points aj of the metric are the singular points of the equation
(2.2). These singular points are regular, and to each point correspond two
exponents α′

j > α′′
j , so that αj = α′

j − α′′
j . If αj is an integer for some j,

we have an additional condition of the absence of logarithms in the formal
solution of (2.2) near aj.

It is easy to write down the general form of a Fuchsian equation with
prescribed singularities and prescribed exponents at the singularities. After
a normalization, n−3 parameters remain, the so-called accessory parameters.
To obtain a conformal metric of curvature 1, one has to choose these accessory
parameters in such a way that the monodromy group of the equation is
conjugate to a subgroup of PSU(2).
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By a fractional-linear change of the independent variable, one can place
one singular point at ∞. Then, making changes of the variable y(z) 7→
y(z)(z − aj)

βj , one can assume that the smaller exponent at each finite sin-
gular point is 0, see [40]. For the case of four singularities a0, . . . , a3, where
a3 = ∞, we thus obtain Heun’s equation in the standard form

y′′ +

(

2
∑

j=0

1 − αj

z − aj

)

y′ +
Az − λ

(z − a0)(z − a1)(z − a2)
y = 0, (2.3)

where

A = α′α′′,
2
∑

j=0

αj + α′ + α′′ = 2. (2.4)

Here the exponents at the singular points are described by the Riemann
symbol

P







a0 a1 a2 ∞
0 0 0 α′′ ; z
α0 α1 α2 α′







.

The first line lists the singularities, the second the smaller exponents, and
the third the larger exponents. So the angle at infinity is α3 = α′ − α′′. The
accessory parameter is λ.

Solving the second equation (2.4) together with α′ − α′′ = α3, we obtain

α′ =
1

2
(2 + α3 − α0 − α1 − α2) (2.5)

and

α′′ =
1

2
(2 − α3 − α0 − α1 − α2).

The question of the existence of a spherical quadrilateral with given corners
a0, a1, a2, ∞ and given angles παj, 0 ≤ j ≤ 3, is equivalent to the following:
when one can choose real λ so that the monodromy group of Heun’s equation
(2.3) is conjugate to a subgroup of PSU(2) ?

The necessary condition (1.2) can be restated for the equation (2.3) as

α′′ < 0. (2.6)

We also have
A = α′α′′ = α′′(α3 + α′′)
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by a simple computation.
One can write (2.3) in several other forms. Assuming that all aj are real,

we have the Sturm-Liouville form:

d

dx

(

2
∏

j=0

|x− aj |1−αj y′

)

+
(Ax− λ) sgn

(

∏

2

j=0
(x− aj)

)

∏2

j=0
|x− aj |αj

y = 0. (2.7)

Sometimes the Schrödinger form is more convenient:

y′′ −
(

λ+
1

4

3
∑

k=0

α2
k − 1

x− ak

∏

j 6=k

(ak − aj)

)

y
∏3

j=0
(x− aj)

= 0, (2.8)

where all four singularities are in the finite part of the plane. The exponents
in the Schrödinger form are (1± αj)/2. The potential in (2.8) is F/2, where
F is the Schwarzian (2.1).

A question similar to our problem was investigated in [29, 23, 24, 45, 46]:
when can one choose the accessory parameter so that the monodromy group
of Heun’s equation preserves a circle? All these authors consider the problem
under the assumption

0 ≤ αj < 1, for 0 ≤ j ≤ 3. (2.9)

The most comprehensive treatment of this problem is in Smirnov’s thesis
[45]. Smirnov proved that for all sets of data satisfying (2.9), there exists
a sequence of values of the accessory parameter λ = λk, k = 0,±1,±2, . . .
such that the monodromy group of the equation has an invariant circle. Each
of the two opposite sides of the corresponding quadrilateral covers a circle
|k| times, and the other two sides are proper subsets of their corresponding
circles.

The problem of choosing the accessory parameter so that the monodromy
group is conjugate to a subgroup in PSU(2) is discussed in [10]. However all
results of that paper are also proved only under the assumption (2.9).

Assumption (2.9) seems to be essential for the methods of Klein [29],
Hilb, Smirnov and Dorfmeister.
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3 The case n = 4 with two integer corners:

condition on the angles

In the rest of the paper, we study the case n = 4 with two integer αj. We
answer the following questions:

a) In the equation (2.3), for which αj one can choose λ so that the mon-
odromy group is conjugate to a subgroup of PSU(2)?

b) If αj satisfy a), how many choices of λ are possible?
c) If, in addition, all aj are real, how many choices of real λ are possible?
One cannot have exactly one non-integer αj. Indeed, in this case the

developing map f will have just one branching point on the sphere, which is
impossible by the Monodromy Theorem.

Let us consider the case of two non-integer αj. In this section we obtain
a necessary and sufficient condition on the angles for this case, that is, solve
the problem a).

We place the two singularities corresponding to non-integer α at a0 = 0
and a3 = ∞, and let the total angles at these points be 2πα0 and 2πα3,
where α0 and α3 are not integers. Then the developing map has an analytic
continuation in C∗ from which we conclude that the monodromy group must
be a cyclic group generated by a rotation z 7→ ze2πiα, with some α ∈ (0, 1).
This means that f(z) is multiplied by e2πiα when z describes a simple loop
around the origin. Thus g(z) = z−αf(z) is a single valued function with
at most power growth at 0 and ∞. Then we have a representation f(z) =
zαg(z), where g is a rational function. Then α0 = |k+α|, α3 = |j+α|, where
k and j are integers, so either α0 − α3 or α0 + α3 is an integer. The angles
2πα1 and 2πα2 at the other two singular points a1 and a2 of the metric are
integer multiples of 2π, and they are the critical points of f other than 0 and
∞.

Let g = P/Q where P and Q are polynomials without common zeros of
degrees p and q, respectively. Let p0 and q0 be the multiplicities of zeros of P
and Q at 0. Then min{p0, q0} = 0, because the fraction P/Q is irreducible.

The equation for the critical points of f is the following:

z(P ′(z)Q(z) − P (z)Q′(z)) + αP (z)Q(z) = 0. (3.1)
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Since α1 and α2 are integers, we have the following system of equations:

α0 = |p0 − q0 + α|,
α1 + α2 − 2 = p+ q − max{p0, q0}, (3.2)

α3 = |p− q + α|.

The first and the last equations follow immediately from the representation
f(z) = zαP (z)/Q(z) of the developing map. The second equation holds
because the left-hand side of (3.1) is a polynomial of degree exactly p + q,
therefore the sum of the multiplicities of its zeros a1 and a2 must be p+ q−
max{p0, q0}

Solving this system of equations (3.2) in non-negative integers satisfying
min{p0, q0} = 0, p0 ≤ p, q0 ≤ q, we obtain the necessary and sufficient
conditions the angles should satisfy, which we state as

Theorem 3.1 Suppose that four points a0, . . . , a3 on the Riemann sphere
and numbers αj > 0, 0 ≤ j ≤ 3, are such that α1 and α2 are integers ≥ 2.

The necessary and sufficient conditions for the existence of a metric of
curvature 1 on the sphere, with conic singularities at aj and angles 2παj are
the following:

a) If α1 + α2 + [α0] + [α3] is even, then α0 − α3 is an integer, and

|α0 − α3| + 2 ≤ α1 + α2. (3.3)

b) If α1 + α2 + [α0] + [α3] is odd, then α0 + α3 is an integer, and

α0 + α3 + 2 ≤ α1 + α2. (3.4)

Sketch of the proof. For a complete proof see [16]. Conditions a) and b)
are necessary and sufficient for the existence of a unique solution p, q, p0, q0, α
of the system (3.2) satisfying

min{p0, q0} = 0, p0 ≤ p, q0 ≤ q, α ∈ (0, 1).

Thus the necessity of these conditions follows from our arguments above.
We may assume without loss of generality that a0 = 0, a3 = ∞, a1 = 1

and a2 = a ∈ C.
Then we set R(z) = zmax{p0,q0}(z − 1)α1(z − a)α2 . The second equation in

(3.2) gives degR = p+ q. Now we consider the equation

z(P ′Q− PQ′) + αPQ = R. (3.5)
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This equation must be solved in polynomials P and Q of degrees p and q
having zeros of multiplicities p0 and q0 at 0. Non-zero polynomials of degree
at most p modulo proportionality can be identified with the points of the
complex projective space Pp. The map

Wα : Pp ×Pq → Pp+q, (P,Q) 7→ z(P ′Q− PQ′) + αPQ

is well defined. It is a finite map between compact algebraic varieties, and it
can be represented as a linear projection of the Veronese variety. Its degree
is equal to the degree

(

p+ q

p

)

(3.6)

of the Veronese variety. Thus the equation (3.5) always has a complex so-
lution (P,Q). The function f = zαP/Q is then a developing map with the
required properties. So conditions a) and b) are sufficient. This completes
the proof.

It will be convenient to introduce new parameters instead of αj. Besides
other advantages, we eliminate the additional parameter A, (see (2.3), (2.4)),
and the new parameters allow us to treat the cases a) and b) in Theorem 3.1
simultaneously. We will rewrite (2.3) as

z(z−1)(z−a)
(

y′′ −
(

σ

z
+

m

z − 1
+

n

z − a

)

y′
)

+κ(σ+1+m+n−κ)zy = λy,

(3.7)
where κ is an integer, σ ∈ R is not an integer,

[σ] ≥ −1 in Case a), and [σ] < −1 in Case b). (3.8)

To achieve this we put m = min{α1, α2} − 1, and n = max{α1, α2} − 1.
In case a), we set

σ = min{α0, α3} − 1

and define κ by
2κ = −|α0 − α3| + α1 + α2 − 2. (3.9)

In case b), we set
σ = −min{α0, α3} − 1

and define κ by
2κ = −α0 − α3 + α1 + α2 − 2. (3.10)
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In both cases κ is an integer because the sums in the right-hand sides of
(3.9) and (3.10) are even. Inequalities (3.3) and (3.4) give that κ ≥ 0 in both
cases. Since m+ n = α1 + α2 − 2, we also get

2κ ≤ m+ n. (3.11)

Furthermore in case b),

σ + 1 ≥ κ− (m+ n)/2 (3.12)

because α0 + α3 ≥ 2 min{α0, α3}. Notice that in case a), inequality (3.12)
holds trivially because σ + 1 > 0.

To summarize, the new parameters are three integers m,n, κ, and one
real non-integer number σ, subject to the conditions (3.12) and

0 ≤ m ≤ n, 0 ≤ 2κ ≤ m+ n, (3.13)

Parameters αj are recovered by the formulas

(α0, α3) = (|σ + 1|, |m+ n+ σ + 1 − 2κ|),

(α1, α2) = (m+ 1, n+ 1),

up to a permutation of α1 and α2, and a permutation of α0 and α3, and
Heun’s equation is as (3.7).

4 Counting solutions

In most cases, there is no uniqueness in Theorem 3.1. In this section we
determine the number of equivalence classes of metrics for given aj and αj,
assuming that two of the αj are integers. As explained in the previous section,
in this case the Heun equation has a polynomial solution, and a solution of
the form zαP , where P is a polynomial. We call functions of this last type
quasipolynomials.

Substituting a formal power series

H(z) =
∑

s∈Z+β

h(s)zs

to the equation (3.7), we obtain recurrence relations of the form

cs−1h(s− 1) + ash(s) + bsh(s+ 1) = 0, (4.1)
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which can be visualized as a multiplication of the vector (h(s)) by a Jacobi
(three-diagonal) matrix













. . . . . .
. . . cs−1 as bs 0 0 . . .
. . . 0 cs as+1 bs+1 0 . . .
. . . 0 0 cs+1 as+2 bs+2 . . .

. . . . . .













. (4.2)

The explicit expressions are

bs = a(s+ 1)(s− σ), (4.3)

as = −s ((a+ 1)(s− 1 − σ) −ma− n) − λ, (4.4)

cs = (s− κ)(s+ κ− σ −m− n− 1). (4.5)

We see that an “eigenvector” h(s) can be a finitely supported sequence, say
with support [s1, s2], if and only if bs1−1 = 0 and cs2

= 0. If bs1−1 = 0, and
bs 6= 0 for s > s1, the elements h(s) can be defined recursively from (4.1),
with arbitrary non-zero value of h(s1). Each h(s) is a polynomial in λ of
degree s− s1, and the condition of termination of the sequence at the place
s2 is

cs2−1h(s2 − 1) + as2
h(s2) = 0. (4.6)

This is a polynomial equation of degree s2−s1 +1 in λ which is the condition
of having a polynomial solution of degree d = s2−s1. Similar condition gives
the existence of a quasipolynomial solution. Solutions of (4.6) are eigenvalues
of (d+ 1)× (d+ 1) Jacobi matrix obtained by truncating the infinite matrix
(4.2) by leaving rows and columns with indexes from s1 to s2.

Substituting a formal power series

H(z) =
∞
∑

s=0

h(s)(z − 1)s

to the equation (3.7) we obtain another recurrence relation of the form (4.1)
with appropriate coefficients as, bs and cs. Since the exponents of (3.7) at
the point 1 are 0 and m + 1, we can always find a holomorphic function H
whose power series begins with the term (z − 1)m+1. But to find a power
series solution beginning with a constant term, the condition

cm−1h(m− 1) + amh(m) = 0 (4.7)
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must be satisfied, and this is a polynomial equation of degree d = m + 1 in
λ. If the condition (4.7) is satisfied, then h(m+ 1) can be chosen arbitrarily.
Equation (4.7) is the triviality condition of the monodromy around 1. Solu-
tions of (4.7) are eigenvalues of the d × d Jacobi matrix obtained by taking
rows and columns of (4.2) with indices from 0 to m.

Thus we have four polynomial conditions which are necessary for Heun’s
equation (3.7) to have two solutions: a polynomial and a quasipolynomial.

(i) C1(λ) = 0 iff there exists a polynomial solution,

(ii) C2(λ) = 0 iff there exists a quasipolynomial solution,

(iii) C3(λ) = 0 iff the monodromy at 1 is trivial, and

(iv) C4(λ) = 0 iff the monodromy at a is trivial.

The degrees of these equations are:

degC1 = κ+1, degC2 = m+n−κ+1, degC3 = m+1, degC4 = n+1.

The first two formulas follow by setting cs2
= 0 in (4.5), and for the other

two one has to rewrite (3.7) to place a singular point with integer exponents
at 0, and write the formula for b(s) for this transformed equation (see (4.8)
and (5.3) below).

Thus the number of values of λ for which all four polynomials Ci vanish
is at most min{κ + 1,m + 1, n + 1}, where we used (3.11). Expressing this
in terms of the original exponents αj with the help of (3.9) and (3.10) we
obtain

Theorem 4.1 The number of classes of metrics with prescribed angles 2παj

at the given points aj is at most

min{α1, α2, κ+ 1},

where κ is defined by (3.9), (3.10),

κ+ 1 =







(α1 + α2 − |α0 − α3|)/2 in case a),

(α1 + α2 − α0 − α3)/2 in case b).

We will later see that equality holds for generic a. The crucial fact is
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Proposition 4.2 Of the four polynomials Cj, 1 ≤ j ≤ 4, the polynomial of
the smallest degree divides each of the other three polynomials.

Proof. We write Heun’s equation in the form (3.7).
1. Suppose that C1 is the polynomial of the smallest degree κ + 1. For

every root λ of C1, we have a polynomial solution p of degree at most κ. So p
cannot have a zero of order α1 or α2, because by assumption these numbers
are at least κ + 1. This implies that the monodromy is trivial at 1 and a.
Then the second solution of Heun’s equation also has no singularities at 1
and a. So in this case C1 divides C2, C3 and C4.

2. C2 cannot be the polynomial of the smallest degree in view of (3.11).
3. It remains to show that if Ck, k ∈ {3, 4} is the polynomial of the

smallest degree and λ is a root of Ck, then λ is also a root of C1 and C2.
Then it will follow that there is a polynomial and a quasipolynomial solutions,
so the monodromy will be also trivial at a, that is, λ will be a root of all
three remaining polynomials.

Proposition 4.3 Let m,n, κ be integers, 0 ≤ m ≤ n, 0 ≤ 2κ ≤ m+ n, and
σ not an integer. Consider the differential equation (3.7) which we write as
Dy = 0, where

Dy = z(z−1)(z−a)
(

y′′ −
(

σ

z
+

m

z − 1
+

n

z − a

)

y′
)

+κ(σ+1+ τ)zy−λy,

and τ = m + n − κ ≥ κ. Suppose that m ≤ κ, and that the monodromy at
1 is trivial, that is all solutions are holomorphic at the point 1. Then there
exist a polynomial solution and a quasipolynomial solution.

Proof. Let us transform our equation (3.7) to the form

z(z − 1)(z − a)

(

y′′ −
(

m

z
+

σ

z − 1
+
σ + 2 +m+ n− 2κ

z − a

)

y′
)

+κ(κ− n− 1)zy = λy. (4.8)

It has a polynomial solution of degree k simultaneously with the original
equation (3.7). Consider the infinite Jacobi matrix (4.2). The triviality of
the monodromy of (4.8) at 0 means that λ is an eigenvalue of the truncated
Jacobi matrix J0 given by the first m + 1 rows and columns. The existence
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of a polynomial solution of (4.8) of degree k means that λ is an eigenvalue
of the truncated matrix J1 given by the first k + 1 rows and columns.

By explicit formulas for the entries, the matrix J1 is upper block-triangular,
the bottom-left (m + 1) × k block being equal to zero, and the top-left
(m + 1) × (m + 1) block of J1 equals J0. Thus every eigenvalue of J0 is
an eigenvalue of J1.

To show the existence of a quasipolynomial solution y(z) = zσ+1q(z), we
write the differential equation for q (σ will be replaced by −σ − 2) and then
transform it to the form (4.8).

To summarize the contents of this section, we consider, for any given
α0, . . . , α3 satisfying conditions a) or b) of Theorem 3.1, the polynomial
F (a, λ) which is the polynomial of the smallest degree of those Cj in Propo-
sition 4.2. The condition

F (a, λ) = 0 (4.9)

is equivalent to the statement that the monodromy of Heun’s equation is
conjugate to a subgroup of PSU(2). Thus equivalence classes of metrics of
positive curvature 1 with singularities at 0, 1, a,∞ with prescribed αj are in
one-to-one correspondence with solutions of the equation (4.9).

Remark. The value λ in (4.9) depends not only on the quadrilateral (or
a metric) that we consider but also on the choice of the Heun equation.
Different Heun equations corresponding to the same quadrilateral can be
obtained by cyclic permutation of the vertices, and by the different choices
of exponents at the singularities. The angle at a vertex only fixes the absolute
value of the difference of the exponents. The values of λ corresponding to
the same quadrilateral but different Heun equations are related by fractional-
linear transformations.

5 Counting real solutions

In this section we assume that a is real and estimate from below the number
of real Heun’s equations with given conic singularities at 0, 1, a,∞ with pre-
scribed angles and unitary monodromy, or, which is the same, the number
of real solutions λ of equation (4.9). We will also show that for generic a we
have equality in the inequality of Theorem 4.1 for the number of complex
solutions.

Our estimates will be based on the following lemma.
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Lemma 5.1 Let J be a real (d+ 1) × (d+ 1) Jacobi matrix

J =





















a0 b0 0 0 . . . 0 0 0
c0 a1 b1 0 . . . 0 0 0
0 c1 a2 b2 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . cd−2 ad−1 bd−1

0 0 0 0 . . . 0 cd−1 ad





















.

a) If bjcj > 0, 0 ≤ j ≤ d− 1, then all eigenvalues of J are real and simple.

b) If cj 6= 0 for 0 ≤ j ≤ d− 1, then we have

JTR = RJ, (5.1)

where R = diag(r0, . . . , rd), r0 = 1 and

rj = rj−1

bj−1

cj−1

, 1 ≤ j ≤ d.

c) Suppose that the sequence dj = bjcj has the property dj > 0 for 0 ≤ j ≤ k
and dj < 0 for k + 1 ≤ j ≤ d. Then the number of pairs of non-real
eigenvalues, counting multiplicity, is at most [(d− k)/2].

Proof. Statement a) in contained in [20]; we include a simple proof for
convenience. Consider the matrix S = diag(s0, . . . , sd), s0 = 1, and

sj = sj−1

√

bj−1/cj−1, 1 ≤ j ≤ d.

Under the assumption of part a), the fraction under the square root is pos-
itive, and the matrix S is the positive square root of the matrix R given in
part b), S2 = R. By explicit calculation, the matrix

J̃ = SJS−1

is real and symmetric, so it is diagonalizable and has real eigenvalues. The
top right d× d submatrix of J̃ − λI, where I is the identity matrix and λ is
an eigenvalue of J̃ , is lower triangular and has the determinant

√

b0 . . . bd−1c0 . . . cd−1 6= 0.
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Hence all eigenvalues of J̃ are simple.
Statement b) is proved by direct calculation.
To prove statement c), we notice that our assumption about signs of dj

implies that there are [(d − k)/2] negative numbers among r1, . . . , rn, and
the rest are positive. Condition (5.1) means that our matrix J is symmetric
with respect to the bilinear form (x, y)R = xTRy, that is

(Jx, y)R = (x, Jy)R.

Quadratic form (x, x)R has [(d−k)/2] negative squares, so our matrix J has at
most 2[(d− k)/2] non-real eigenvalues, counted with algebraic multiplicities,
according to the theorem of Pontrjagin [38]. This proves the lemma.

Our main result on the symmetric case is the following:

Theorem 5.2 Consider the metrics of curvature 1 on the sphere with real
conic singularities a0, a1, a2, a3 and the corresponding angles 2πα0, 2πα1, 2πα2,
2πα3, where α1 and α2 are integers. Suppose that conditions of Theorem 3.1
are satisfied. Then

(i) If the pairs (a0, a3) and (a1, a2) do not separate each other on the circle
R, then all metrics with these angles and singularities are symmetric. Their
number is equal to

min{α1, α2, κ+ 1}
where κ is defined in (3.9) and (3.10).

(ii) If the pairs (a0, a3) and (a1, a2) separate each other, then the number of
of classes of symmetric metrics is at least

min{α1, α2, κ+ 1} − 2

[

1

2
min {α1, α2, δ}

]

,

where

δ =
1

2
max{α1 + α2 − [α0] − [α3], 0}

(iii) There is an ǫ > 0 depending on the αj such that if

∣

∣

∣

∣

(a2 − a0)(a3 − a1)

(a1 − a0)(a3 − a2)

∣

∣

∣

∣

< ǫ (5.2)

in (2.3) then all of metrics are symmetric, and their number is as in (i).
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The expression under the absolute value in the left hand side of (5.2) is
the cross-ratio which is equal to a when the vertices are 0, 1, a,∞.

In section 16 we will show that the estimate in (ii) is achieved sometimes,
and in section 15 we give another independent proof of this estimate.

Corollary 5.3 Suppose that aj are real, If the pairs (a0, a3) and (a1, a2)
separate each other on R, and

[α0] + [α3] + 2 ≥ α1 + α2

then all metrics with singularities at aj and angles παj are symmetric with
respect to the real line.

If Case a) of Theorem 3.1 prevails, this corollary can be also obtained as
a special case of Theorem 5.2 from [32].

Proof of Theorem 5.2. Let us transform our equation (3.7) to the form
(4.8). This equation has the same exponents at the singularities as (3.7), but
we placed the point with the smaller integer exponent m at 0. The recurrence
relations similar to (4.1) have in this case the following coefficients

cs = (κ− s)(κ− n− s− 1),

as = −s(s+ σ + 1 + n− 2κ+ a(s− 1 −m− σ)) (5.3)

bs = a(s+ 1)(s−m).

So
bscs = (κ− s)(κ− n− s− 1)a(s+ 1)(s−m), (5.4)

which is positive for a > 0 and 0 ≤ s < min{κ,m}. Thus for a > 0 all
eigenvalues are real and distinct by Lemma 5.1 a) with d = min{m,κ} + 1.
This proves (i).

For the case (ii) that is a < 0, we transform equation (4.8) by the change
of the variable z′ = 1 − z into equation

z(z − 1)(z − a′)

(

y′′ −
(

σ

z
+

m

z − 1
+
σ +m+ n+ 2 − 2κ

z − a′

)

y′
)

+κ(κ− n− 1)zy = λy. (5.5)

Here a′ = 1 − a. The coefficients of the recurrence become

cs = (κ− s)(κ− n− s− 1)

as = −s(s+m+ n+ 1 − 2κ) + a′(s−m− σ − 1)), (5.6)

bs = a′(s+ 1)(s− σ).
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So we have

csbs = (κ− s)(κ− n− s− 1)a′(s+ 1)(s− σ), (5.7)

which is positive when a′ > 0, σ + 1 > κ, and 0 ≤ s < κ. Thus under this
condition, all eigenvalues are real. The range a < 0 is covered by a′ > 0.

If σ + 1 ≤ κ, then the Jacobi matrix with entries (5.6) has the property
described in Lemma 5.1 c), where R has [σ] + 1 positive squares and [(κ −
[σ])/2] negative squares. So the number of pairs of non-real eigenvalues,
counting algebraic multiplicities, is at most (κ− [σ])/2. We recall that κ+ 1
is the degree of the polynomial C1 in Proposition 4.2. So the polynomial of
minimum degree among the Cj has at most (1/2) min{κ+ 1,m+ 1, κ− [σ]}
pairs of non-real zeros, and using the value of κ from (3.9), (3.10) and the
inequality (3.8), we obtain (ii).

To prove (iii) we notice that when a = 0 in (5.3), the Jacobi matrix is
triangular, so its eigenvalues are real and simple. By continuity this situation
persists when |a| is small enough.

6 Introduction to nets

In this section we begin a different treatment of spherical polygons which is
independent of sections 2–5.

Definition 6.1 A spherical n-gon Q is marked if one of its corners, labeled
a0, is identified as the first corner, and the other corners are labeled so that
a0, . . . , an−1 are in the counterclockwise order on the boundary of Q.

We call Q a spherical polygon when n is not specified. When n = 2, 3
and 4, we call Q a spherical digon, triangle and quadrilateral, respectively.
For n = 1, there is a unique marked 1-gon with the angle π at its single
corner. For convenience, we often drop “spherical” and refer simply to n-
gons, polygons, etc.

Let Q be a marked spherical polygon and f : Q → S its developing
map. The images of the sides (aj, aj+1) of Q are contained in geodesics
(great circles) on S. These geodesics define a partition P of S into vertices
(intersection points of the circles) edges (arcs of circles between the vertices)
and faces (components of the complement to the circles). Some corners of Q
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may be integer (i.e., with angles πα where α is an integer). Two sides of Q
meeting at its integer corner are mapped by f into the same circle.

The corners of Q with integer (resp., non-integer) angles are called its
integer (resp., non-integer) corners. The order of a corner is the integer part
of its angle. A removable corner is an integer corner of order 1. A polygon
Q with a removable corner is isometric to a polygon with a smaller number
of corners.

A polygon with all integer corners is called rational. All sides of a rational
polygon map to the same circle.

Definition 6.2 Preimage of P defines a cell decomposition Q of Q, called
the net of Q. The corners of Q are vertices of Q. In addition, Q may have
side vertices and interior vertices. If the circles of P are in general position,
interior vertices have degree 4, and side vertices have degree 3. Each face F
of Q maps one-to-one onto a face of P . An edge e of Q maps either onto an
edge of P or onto a part of an edge of P . The latter possibility may happen
when e has an end at an integer corner of Q. The adjacency relations of the
cells of Q are compatible with the adjacency relations of their images in S.
The net Q is completely defined by its 1-skeleton, a connected planar graph.
When it does not lead to confusion, we use the same notation Q for that
graph.

If C is a circle of P , then the intersection QC of Q with the preimage
of C is called the C-net of Q. Note that the intersection points of QC with
preimages of other circles of P are vertices of QC . A C-arc of Q (or simply
an arc when C is not specified) is a non-trivial path γ in the 1-skeleton of
QC that may have a corner of Q only as its endpoint. If γ is a subset of a
side of Q then it is a boundary arc. Otherwise, it is an interior arc. The
order of an arc is the number of edges of Q in it. An arc is maximal if it is
not contained in a larger arc. Each side L of Q is a maximal boundary arc.
The order of L is, accordingly, the number of edges of Q in L.

Definition 6.3 We say that Q is reducible if it contains a proper polygon
with the corners at some (possibly, all) corners of Q. Otherwise, Q is ir-
reducible. The net of a reducible polygon Q contains an interior arc with
the ends at two distinct corners of Q. We say that Q is primitive if it is
irreducible and its net does not contain an interior arc that is a loop.
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Definition 6.4 Two irreducible polygonsQ andQ′ are combinatorially equiv-
alent if there is an orientation preserving homeomorphism h : Q→ Q′ map-
ping the corners of Q to the corners of Q′, and the net Q of Q to the net Q′

of Q′.
Two rational polygons Q and Q′ with all sides mapped to the same circle

C of P are combinatorially equivalent if there is an orientation preserving
homeomorphism Q→ Q′ mapping the net QC of Q to the net Q′

C of Q′.
If Q and Q′ are reducible and represented as the union of two polygons Q0

and Q1 (resp., Q′
0 and Q′

1) glued together along their common side, then Q
and Q′ are combinatorially equivalent when there is an orientation preserving
homeomorphism h : Q→ Q′ inducing combinatorial equivalence between Q0

and Q′
0, and between Q1 and Q′

1.
For marked polygons Q and Q′, we require also that the marked corner

a0 of Q is mapped by h to the marked corner a′0 of Q′.

Thus an equivalence class of nets is a combinatorial object. It is com-
pletely determined by the labeling of the corners and the adjacency relations.
We’ll call such an equivalence class “a net” when this would not lead to con-
fusion.

Conversely, given labeling of the corners and a partition Q of a disk
with the adjacency relations compatible with the adjacency relations of P ,
a spherical polygon with the net Q can be constructed by gluing together
the cells of P according to the adjacency relations of Q. Such a polygon is
unique if the image of a0, the direction in which the image of the edge (a0, a1)
is traversed, and the images of integer vertices which are different from the
vertices of P , are fixed.

In what follows we classify all equivalence classes of nets in the case when
P is defined by two circles. In this case, the boundary of each 2-cell of the
net Q of Q consists of two segments mapped to the arcs of distinct circles,
with the vertices at the common endpoints of the two segments and, possibly,
at some integer corners of Q.

By the Uniformization Theorem, each marked spherical polygon is con-
formally equivalent to a closed disk with marked points on the boundary. In
the case of a quadrilateral, we have four marked points, so conformal class of
a quadrilateral depends on one parameter, the modulus of the quadrilateral.
In section 14 below we will study whether for given permitted angles of a
quadrilateral an arbitrary modulus can be achieved. This will be done by the
method of continuity, and for this we’ll need some facts about deformation
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Figure 1: Partition P of the Riemann sphere by two circles.

of spherical quadrilaterals (see section 13).

7 Nets for a two-circle partition

Let us consider a partition P of the Riemann sphere S by two transversal
circles intersecting at the angle α (see Fig. 1). Vertices N and S of P are
the intersection points of the two circles.

We measure the angles in multiples of π, so that 0 < α < 1, and the
complementary to α angle is β = 1−α. An angle that is an integer multiple
of π is called, accordingly, an integer angle. A corner with an integer angle
is called an integer corner.

Let Q be a spherical n-gon over P (see Definition 1.1). We assume Q to
be a marked polygon (see Definition 6.1).

Theorem 7.1 An irreducible spherical polygon Q over the partition P has
at most two non-integer corners.

Proof. We prove this statement by induction on the number m of faces of
the net Q of Q. If m = 1 then Q is isometric to a face of P , thus it has
exactly two non-integer corners.

Let m > 1. Suppose first that Q has a maximal interior arc γ that is not
a loop. Let p and q be the endpoints of γ. Since γ is maximal, both p and q
are at the boundary of Q. Since Q is irreducible, at least one of them, say
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p, is not a corner of Q. Thus γ partitions Q into two polygons, Q′ and Q′′,
each of them having less than m faces of its net. The induction hypothesis
applied to Q′ and Q′′ implies that each of them has at most two non-integer
corners. But the corners of Q′ and Q′′ at p are non-integer, while Q does not
have a corner at p. Thus Q has at most two non-integer corners.

Consider now the case when all maximal interior arcs of Q are loops.
Since the 1-skeleton of Q is connected, there exists a maximal interior arc
γ of Q with both ends at a corner p of Q. We may assume that the disk
D bounded by γ does not contain another arc of Q with both ends at p,
otherwise we can replace γ by a smaller loop. Let C be the circle of P such
that γ is an arc of QC , and let C ′ be the other circle of P . Then γ intersects
with QC′ at exactly two points. Otherwise, either D would be a face of Q
with all its boundary in QC , or D would contain a face of Q with more than
one segment of both QC and QC′ in its boundary. Let γ′ be the maximal
interior arc of QC′ intersecting γ at those two points. If one of those points
is p, then p must be a preimage of a vertex of P . Then γ′ is a loop having
both ends at p, and a single intersection point q with γ inside Q. But this is
impossible because the complement to the union of the disks bounded by γ
and γ′ would contain a face of Q whose boundary would not be a circle.

Thus p cannot be a preimage of a vertex of P , and both intersection
points q and q′ of γ and γ′ are interior vertices of Q. Then γ′ must have
both ends at a corner p′ of Q. Otherwise the complement to the union of
the disks bounded by γ and γ′ would contain a face of Q whose boundary
would not be a circle. The same arguments as above imply that p′ is not a
preimage of a vertex of P , thus the union of γ and γ′ is a pseudo-diagonal of
Q shown in Fig. 2. Removing these two loops, we obtain a polygon having
m − 4 faces in its net, with the same number of non-integer corners as Q.
By the induction hypothesis, Q must have at most two non-integer corners.
This completes the proof of Theorem 7.1.

Rational spherical polygons. All corners of a rational polygon Q are
integer, and all its sides map to the same circle C of P . Thus Q is completely
determined, up to combinatorial equivalence, by its C-net QC . Each maximal
arc of QC connects two corners of Q. If Q is irreducible, QC does not have
interior arcs. Note that converse is not true, as there may be an arc of QC′

connecting two corners of Q.
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Figure 2: Pseudo-diagonal connecting two integer corners of Q.

8 Primitive spherical polygons with two

non-integer corners

In this section, Q denotes a marked primitive spherical n-gon with two non-
integer corners over the partition P , one of these two corners labeled a0, and
the other one labeled ak where 0 < k < n. The sides of Q are labeled Lj so
that aj−1 and aj are the ends of Lj, with an identified with a0. We assume
that the sides Lj for 1 ≤ j ≤ k belong to the preimage of a circle C of P ,
while the sides Lj for k < j ≤ n belong to the preimage of the circle C ′ 6= C
of P .

Lemma 8.1 The net Q of Q does not have interior vertices.

Proof. Let q be an interior vertex of Q, and let F be a face of Q adjacent
to q. Let γ be a maximal arc of QC through q, where C is a circle of P .
Since γ is an interior maximal arc, it may end either at a corner of Q or
at a side. Since Q is primitive, γ is not a loop, and the ends of γ cannot
be at two distinct corners of Q. If an end p of γ is at a side of Q, let L
and γ′ be the maximal arcs of QC′, where C ′ 6= C, passing through p and
q, respectively. Note that that L is a side of Q while γ′ is an interior arc.
We may assume that there are two adjacent faces, F and F ′, of Q having a
common segment pq of γ in their boundary. If there are no such faces then
we can replace q by an interior vertex of Q on γ closest to p. Then each of
these two faces must have an integer corner in its boundary where L and γ′

intersect, otherwise the intersection of its boundary with QC would not be
connected. The two corners must be distinct, since they are the ends of a
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side L of Q. This implies that an interior arc γ′ has its ends at two distinct
corners of Q, thus Q is not irreducible.

Corollary 8.2 Each interior arc of the net Q of Q is maximal and has order
one.

Lemma 8.3 Each of the two non-integer corners of Q has order zero.

Proof. Let p be a non-integer corner of Q of order greater than zero. Since p
is mapped to a vertex of P , there is a face F of the net Q of Q having p as its
vertex, with two interior arcs, γ and γ′, adjacent to p in its boundary. The
arcs γ and γ′ belong to preimages of two different circles of P . The other
ends of γ and γ′ cannot be corners of Q, thus they must be side vertices
of Q. This implies that the preimage of each of the two circles of P in the
boundary of F is not connected, a contradiction.

Corollary 8.4 Any interior arc of Q has one of its ends at an integer corner
ai of Q and another end on the side Lj, where either 0 < i < k < j ≤ n or
0 < j ≤ k < i < n.

Definition 8.5 Let Q be a marked primitive n-gon with two non-integer
corners labeled a0 and ak, and let Q be the net of Q. For each pair (i, j), let
µ(i, j) be the number of interior arcs of Q with one end at the integer corner
ai and the other end on the side Lj. Note that µ(i, j) may be positive only
when either 0 < i < k < j ≤ n or 0 < j ≤ k < i < n, due to Corollary 8.4.
We call the set T of the pairs (i, j) for which µ(i, j) > 0 the (n, k)-type of Q
(or simply the type of Q when n and k are fixed), and the numbers µ(i, j)
the multiplicities. We’ll see in Lemma 8.6 below that the number of pairs in
an (n, k)-type is at most n − 2. An (n, k)-type with exactly n − 2 pairs is
called maximal.

Since interior arcs of Q do not intersect inside Q, the (n, k)-type of Q
cannot contain two pairs (i0, j0) and (i1, j1) satisfying any of the following
four conditions:

i0 < i1 < k < j0 < j1, (8.1a)

j0 < j1 ≤ k < i0 < i1, (8.1b)

i0 < j1 ≤ k < j0 < i1, (8.1c)

j1 ≤ i0 < k < i1 < j0. (8.1d)
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Interior arcs of Q can be canonically ordered, starting from the arc closest
to the marked corner a0, so that any two consecutive arcs belong to the
boundary of a cell of Q. The linear order on the interior arcs of Q induces
interior order on the pairs (i, j) in the type T of Q.

Lemma 8.6 The number of pairs in the (n, k) type T of Q is at most n−2.

Proof. Let i, j ∈ T be the first pair, corresponding to the interior arcs of Q
closest to a0. We may assume that 1 ≤ i < k and n− k < j ≤ n. Otherwise,
we exchange k and n− k. Let (i,m) ∈ T be the pair furthest from a0, with
the same i as the first pair. Then there are at most n−m+1 pairs in T with
the same index i. The last arc of Q with the ends at the vertex ai and the
side Lm partitions Q into two polygons, Q′ and Q′′, with Q′′ containing a0.
Contracting Q′′ to a point, we obtain a (m− i)-gon Q̃ with the (m− i, k− i)-
type T̃ obtained from T by deleting all pairs with the same i as the first one,
and relabeling vertices and sides. Since m ≤ n and i > 0, we may assume
inductively that the type T̃ of Q̃ has at most m− i− 2 pairs. This implies
that the type T has at most n− i− 1 ≤ n− 2 pairs.

Lemma 8.7 Any (n, k)-type can be obtained from a (non-unique) maximal
(n, k)-type if some of the multiplicities are permitted to be zero.

Proof. Let T be a (n, k)-type with less than n− 2 pairs. We want to show
that one can add a pair to T . We prove it by induction on n, the case n = 2
being trivial. We use notations of the proof of Lemma 8.6. Note first that,
if i > 1 then a pair (1, n) can be added to T . Thus we may assume that
i = 1. Next, T should contain all n−m+1 pairs (1,m), . . . , (1, n), otherwise
a missing pair can be added to T . Finally, we can assume inductively that
T ′ contains exactly m− i− 2 = m− 3 pairs. Thus the number of pairs in T
should be (n−m+ 1) + (m− 3) = n− 2.

We can associate to a maximal (n, k)-type T a sequence of positive in-
tegers m = {m1, m2, . . . } partitioned into two subsets I and J (we write m
for m ∈ I and m for m ∈ J) so that

∑

ν

mν = n− 2, |I| < k, , |J | < n− k. (8.2)

Here mν are the numbers of pairs (i, j) in T with the same i, ordered ac-
cording to the linear order on the pairs in T . Obviously, for given (n, k), a
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sequence m with a partition (I, J) satisfying (8.2) corresponds to at most
one maximal (n, k)-type T .

Theorem 8.8 For any n ≥ 2, any k, 0 < k < n, any set T of pairs (i, j)
with either 0 < i < k < j ≤ n or 0 < j ≤ k < i < n, such that no two
pairs (i0, j0) and (i1, j1) in T satisfy any of the conditions (8.1a-d), and any
positive integers ν(i, j), (i, j) ∈ T , there exists a marked primitive spherical
n-gon, unique up to combinatorial equivalence, with two non-integer corners,
one of them marked, with the type T and multiplicities ν(i, j).

Corollary 8.9 Each primitive digon (n-gon for n = 2) with two non-integer
corners maps one-to-one to a face of P, with its two corners mapped to
distinct vertices of P. There is a single (empty) (2, 1)-type of a primitive
digon.

Let X (see Fig. 3) be a point on a circle of P shown in solid line, inside a
disk D bounded by the circle C of P shown in dashed line. For µ ≥ 0, let Tµ

(see Fig. 4) be a primitive triangle having a non-integer corner a0 mapping
to N , a non-integer corner a1 mapped to S (resp., to N) when µ is even
(resp., odd), and an integer corner a2 of order µ+1 mapped to X. The small
black dots in Fig. 4 indicate the preimages of the vertices of P which are not
corners of Tµ (though they are vertices of its net). The angle at the corner
a1 of Tµ is equal (resp., complementary) to the angle at its corner a0 when
µ is even (resp., odd). Then Tµ has the empty (3, 1)-type when µ = 0, the
maximal (3, 1)-type {(2, 1)} when µ > 0, and the multiplicity µ2,1 = µ.

Corollary 8.10 Every primitive triangle with two non-integer corners over
the partition P is combinatorially equivalent to one of the triangles Tµ. A tri-
angle T̄µ with the (3, 2)-type can be obtained from the triangle Tµ by reflection
symmetry, relabeling the corners a1 and a2.

Let X and Y (see Fig. 5) be two points on the same arc of a circle of P
shown in solid line, inside a disk D bounded by the circle C of P shown by
the dashed line. For µ, ν ≥ 0, let Rµν (see Fig. 6) be a primitive quadrilateral
having a non-integer corner a0 mapping toN , a non-integer corner a1 mapped
to S (resp., to N) when µ + ν is even (resp., odd), and integer corners a2

of order ν + 1 and a3 of order µ + 1 mapped to X and Y (resp., to Y
and X) when µ is even (resp., odd). The side L1 of Rµν is mapped to the
circle C traversing it counterclockwise. The angle at the corner a1 of Rµν

28



N

S

X

a

a

b

b

Figure 3: Location of the point X.

a a b b aa

a ba bb b a a

T2

T3

0 a

0 a1

a

1

a
2

a

2

a

Figure 4: Primitive triangles Tµ.

29



N

S

X

a

a

b

b

Y

Figure 5: Location of the points X and Y for adjacent integer corners.

is equal (resp., complementary) to the angle at its corner a0 when µ + ν is
even (resp., odd). Then Rµν has the empty (4, 1)-type when µ = ν = 0, the
(4, 1)-type {(3, 1)} with the multiplicity µ3,1 = µ when µ > 0, ν = 0, the
(4, 1)-type {(2, 1)} with the multiplicity µ2,1 = ν when µ = 0, ν > 0, and the
(unique) maximal (4, 1)-type {(3, 1), (2, 1)} with the multiplicities µ3,1 = µ
and µ2,1 = ν when µ, ν > 0. Note that when µ = 0 (resp., ν = 0) the corner
a3 (resp., a2) of Rµν is removable, thus Rµν is isometric to a triangle (to a
digon when µ = ν = 0). We’ll need such quadrilaterals later as building
blocks for constructing non-primitive quadrilaterals.

Corollary 8.11 Every primitive quadrilateral over P with two adjacent non-
integer corners is combinatorially equivalent to one of the quadrilaterals Rµν.
A quadrilateral R̄µν with the (4, 3)-type can be obtained from the quadrilateral
Rµν by reflection symmetry, relabeling the corners a1, a2, a3.

Let X and Y (see Fig. 7) be two points on distinct circles of P .
For µ, ν ≥ 0, let Uµν and Ūµν (see Fig. 8) be primitive quadrilaterals

having a non-integer corner a0 mapping toN , a non-integer corner a2 mapped
to S (resp., to N) when µ + ν is even (resp., odd), and integer corners a1

of order µ + 1 and a3 of order ν + 1 mapped to X and Y , respectively, as
shown in Fig. 7a if µ is even and Fig. 7b if µ is odd. The angle at the
corner a2 of Uµν and Ūµν is equal (resp., complementary) to the angle at its
corner a0 when µ + ν is even (resp., odd). Then Uµν (resp., Ūµν) has the
empty (4, 2)-type when µ = ν = 0, the (4, 2)-type {(3, 1)} (resp., {(1, 4)})
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with the multiplicity µ3,1 = µ (resp., µ1,4 = µ) when µ > 0, ν = 0, the
(4, 2)-type {(1, 3)} (resp., {(3, 2)}) with the multiplicity µ1,3 = ν (resp.,
µ3,2 = ν) when µ = 0, ν > 0, and the maximal (4, 2)-type {(3, 1), (1, 3)}
(resp., {(1, 4), (3, 2)}) with the multiplicities µ3,1 = µ and µ1,3 = ν (resp.,
µ1,4 = µ and µ3,2 = ν) when µ, ν > 0. Note that when either µ = 0 or
ν = 0, the quadrilateral Uµν and Ūµν has a removable integer corner (both
integer corners when µ = ν = 0) and is isometric to a triangle (a digon
when µ = ν = 0). We’ll need such quadrilaterals later as building blocks for
constructing non-primitive quadrilaterals.

For µ, ν ≥ 0, let Xµν and X̄µν (see Fig. 9) be primitive quadrilaterals
having a non-integer corner a0 mapping toN , a non-integer corner a2 mapped
to S (resp., to N) when µ + ν is even (resp., odd), and integer corners a1

of order 1 and a3 of order µ + ν + 1 mapped to X and Y , respectively,
as shown in Fig. 7a if µ is even and Fig. 7b if µ is odd. The angle at
the corner a2 of Xµν and X̄µν is equal (resp., complementary) to the angle
at its corner a0 when µ + ν is even (resp., odd). Then Xµν (resp., X̄µν)
has the empty (4, 2)-type when µ = ν = 0, the (4, 2)-type {(3, 1)} (resp.,
{(1, 4)}) with the multiplicity µ3,1 = µ (resp., µ1,4 = µ) when µ > 0, ν = 0,
the (4, 2)-type {(3, 2)} (resp., {(1, 3)}) with the multiplicity µ3,2 = ν (resp.,
µ1,3 = ν) when µ = 0, ν > 0, and the maximal (4, 2)-type {(3, 1), (3, 2)}
(resp., {(1, 4), (1, 3)}) with the multiplicities µ3,1 = µ and µ3,2 = ν (resp.,
µ1,4 = µ and µ1,3 = ν) when µ, ν > 0. Note that the corner a1 of Xµν and
the corner a3 of X̄µν are removable, thus these quadrilaterals are isometric
to triangles Tµ+ν . We’ll need such quadrilaterals later as building blocks for
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constructing non-primitive quadrilaterals.

Corollary 8.12 Every primitive quadrilateral over P with two opposite non-
integer corners is combinatorially equivalent to one of the quadrilaterals Uµν,
Ūµν, Xµν, X̄µν.

Note that Uµ0 and Xµ0 are combinatorially equivalent for each µ, U0ν and
X̄0ν are combinatorially equivalent for each ν, Ūµ0 and X̄µ0 are combinatori-
ally equivalent for all µ, Ū0ν and X0,ν are combinatorially equivalent for all
ν.

Proposition 8.13 For given n ≥ 2 and k, 0 < k < n, the number M(n, k)
of distinct maximal (n, k)-types satisfies the following recurrence:

M(n, k) =
k
∑

m=1

M(n−m, k −m+ 1) +
n−k
∑

m=1

M(n−m,n− k −m+ 1). (8.3)

Since M(2, 1) = 1, this implies that

∞
∑

k,l=1

M(k + l, k)xkyl =
(1 − x)(1 − y)

(1 − x)(1 − y) − x(1 − y) − y(1 − x)
. (8.4)

Proof. This recurrence follows from construction in the proof of Lemma 8.6.
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9 Irreducible spherical polygons with two

non-integer corners

In this section, Q is an irreducible marked n-gon with two non-integer corners.
Its corners and sides are labeled as in the previous section. In particular, the
non-integer corners of Q are a0 and ak. Let Q be the net of Q, and let QC

and QC′ be preimages of the circles C and C ′ of P , respectively. Since Q is
irreducible, its net Q does not contain an interior arc with the ends at two
distinct corners of Q. However, Q may have loops.

Lemma 9.1 Integer corners of Q do not belong to preimages of the vertices
of P.

Proof. We proceed by induction on the number m of faces of Q, the
case m = 1 being trivial. Let p be an integer corner of Q that belongs to
the preimage of a vertex of P . Then there is a maximal interior arc γ of Q
with an end at p, such that γ partitions the angle at p into two non-integer
angles. The other end q of γ cannot be on a side of Q. Otherwise, γ would
partition Q into two irreducible polygons, each having non-integer angles at
both p and q, which contradicts Theorem 7.1. Thus q = p and γ is a loop.
Let γ be an arc of QC . Then there is a maximal interior arc γ′ of QC′ having
one end at p and intersecting γ in an interior vertex q of Q. We saw in the
proof of Theorem 7.1 that γ′ cannot be a loop. Thus γ′ partitions Q into two
irreducible polygons, each of them having less than m faces in its net, with
p being an integer corner of each of them. This contradicts the induction
hypothesis.

Lemma 9.2 Let γ be a loop of Q. Then γ contains an integer corner of Q.

Proof. Let γ be a loop in QC that does not contain a corner of Q. Then
γ intersects QC′ at two points q and q′. Let γ′ be the maximal loop in QC′

passing through q and q′. The same arguments as in the proof of Theorem
7.1 show that γ′ cannot be a loop. Since Q is irreducible, γ′ cannot have
both ends at the corners of Q. Thus one of its ends is at the side of Q. But
this implies that a face of Q adjacent to γ outside the disk bounded by γ has
a disconnected intersection with QC , a contradiction.
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Lemma 9.3 Let γ be a loop of QC with both ends at an integer corner p
of Q. Then γ there is a loop γ′ of QC′ intersecting γ at two points and
having both ends at an integer corner p′ of Q. The union of γ and γ′ is a
pseudo-diagonal of Q shown in Fig. 2.

Definition 9.4 The number νij of the pseudo-diagonals of Q (see Fig. 2)
connecting integer corners ai and aj of Q is called the multiplicity of a
pseudo-diagonal connecting ai and aj.

Theorem 9.5 Each irreducible spherical polygon Q with two non-integer
corners can be obtained from a primitive polygon by adding (multiple) pseudo-
diagonals connecting some of its integer corners. These pseudo-diagonals do
not intersect inside Q. For a primitive polygon with a maximal type, the
irreducible polygons that can be obtained from it are uniquely determined by
the multiplicities of the pseudo-diagonals.

Proof. The first part of the statement is obvious, since removing all loops
from the net of Q we obtain a primitive polygon Q′. If Q′ has maximal
type then each face of its net Q′ has at most two integer corners of Q′ in its
boundary. The multiplicities of the pseudo-diagonals connecting these pairs
of corners completely determine the irreducible polygon Q from which Q′

was obtained.

Each of the primitive quadrilaterals Uµν , Ūµν , Xµν , X̄µν (see Figs. 8,9)
contains a single face F of its net with both integer corners a1 and a3 in
its boundary. Adding κ pseudo-diagonals connecting the two integer corners
inside F , we obtain irreducible quadrilaterals Uκ

µν , Ū
κ
µν , X

κ
µν , X̄

κ
µν . For κ > 0,

these quadrilaterals are not primitive. We identify U 0
µν , Ū

0
µν , X

0
µν , X̄

0
µν with

Uµν, Ūµν, Xµν , X̄µν , respectively.

Corollary 9.6 Every marked irreducible quadrilateral over P with two op-
posite non-integer corners is combinatorially equivalent to one of the quadri-
laterals Uκ

µν, Ū
κ
µν, X

κ
µν, X̄

κ
µν with µ, ν, κ ≥ 0.

Note that Uκ
µ0 and Xκ

µ0 are combinatorially equivalent for each µ, κ, Uκ
0ν

and X̄κ
0ν are combinatorially equivalent for each ν, κ, Ūκ

µ0 and X̄κ
µ0 are combi-

natorially equivalent for all µ, κ, Ūκ
0ν and Xκ

0,ν are combinatorially equivalent
for all ν, κ.
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Definition 9.7 The (n, k)-type of an irreducible polygon Q (or simply the
type of Q if n and k are not specified) is the type of the primitive polygon Q′

obtained from Q by removing all loops, with the unordered pairs (i, j) added
for the integer corners ai and aj with positive multiplicities νij of the pseudo-
diagonals connecting these corners. The type of Q is maximal if the type of
Q′ is maximal, and any two integer corners of Q′ belonging to the boundary
of the same face of its net are connected in Q by at least one pseudo-diagonal.
Every (n, k)-type of an irreducible spherical polygon can be obtained from a
(non-unique) maximal (n, k)-type if some of the multiplicities are allowed to
be zero.

Proposition 9.8 The number of distinct maximal (n, k) types of irreducible
spherical polygons equals the number of distinct maximal (n, k) types of prim-
itive spherical polygons.

Proof. This follows from Theorem 9.5.

10 Classification of spherical digons and

triangles

For m ≥ 1, there is a unique rational spherical digon Dm, each of its corners
equal mπ.

There is a unique, up to combinatorial equivalence, irreducible spherical
digon with two equal non-integer corners, isometric to a face of P . Any
irrational spherical digon is obtained from it by attaching a digon Dm. Here
m ≥ 0, with m = 0 meaning that nothing is attached.

Theorem 9.5 implies that any irreducible spherical triangle with two non-
integer corners is primitive and combinatorially equivalent to one of the tri-
angles Tµ (see Corollary 8.10).

Any spherical triangle T over P is either rational or has two non-integer
corners. If T has two non-integer corners a0 and a1, it is combinatorially
equivalent to a triangle Tµ with digons Di, Dj and Dl attached to its sides
L1, L2 and L3, respectively, where i, j, l ≥ 0, the value 0 meaning that no
digon is attached, and i > 0 only when µ = 0.

If T is rational, it is combinatorially equivalent to a rational triangle ∇
with three removable corners, with digons Dj, Dk and Dl attached to its
three sides, where j, k, l ≥ 0 are determined by T uniquely up to cyclic
permutation. We use notation ∇jkl for such a triangle (see Fig. 10).
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Figure 10: Rational triangle ∇jkl.

11 Classification of spherical quadrilaterals

with two adjacent non-integer corners

We consider marked quadrilaterals over P with two adjacent non-integer
corners a0 and a1.

Lemma 11.1 A quadrilateral Q over P cannot have more than two non-
integer corners.

Proof. If Q is a union of irreducible polygons, then one of them, say Q̃,
should be either a quadrilateral or a triangle. If Q̃ is a quadrilateral, then,
by Lemma 9.1, Q̃ must have two corners that are not mapped to vertices of
P . These corners of Q̃, and the corresponding corners of Q, must be integer.
If Q̃ is a triangle, at least one of its corners is not mapped to a vertex of
P , thus Q has at least one integer corner. Since the number of non-integer
corners of any polygon over P is even, at least two corners of Q are integer.

A quadrilateral Q can be partitioned into irreducible polygons. We’ll
see later that for a quadrilateral with two adjacent non-integer corners this
partition is unique.

If one of these polygons is a triangle Tµ with its corners at a0, a1 and
either a2 or a3, then Q is a union of Tµ, a triangle ∇jkl attached to its side
other than L1 so that Dj is adjacent to Tµ, and digons Di and Dm attached to
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Figure 11: Quadrilaterals with adjacent non-integer corners.

the other two sides of Tµ so that Di is adjacent to its side L1 (see Fig. 11ab).
Here i, j, k, l,m ≥ 0, with i > 0 only if µ = 0.

Otherwise, Q contains a quadrilateral Rµν having the same corners as Q.
Then Q is the union of Rµν and digons Di, Dk, Dl, Dm attached to its sides
(see Fig. 11c). Here i, j, k, l ≥ 0, with i > 0 only if µ = ν = 0.

Note that a vertex of ∇ that is not a vertex of Tµ may be mapped to
a vertex of P when j is even, but not when j is odd. Fig. 12a-c shows the
complete net for the quadrilateral in Fig. 11a with j = 0 (and µ = i = k =
l = m = 0). All these quadrilaterals are combinatorially equivalent, although
the corner a2 is mapped to a vertex of P in Fig. 12a but not in Fig. 12bc.
Fig. 12d shows the complete net for the quadrilateral in Fig. 11a with j = 1.
In this case, the corner a2 cannot be mapped to a vertex of P , since there
are two points mapped to vertices of P on the side of ∇ connecting a1 and
a3.

Counting quadrilaterals with given angles. We want to classify
marked spherical quadrilaterals Q with two adjacent non-integer corners a0

and a1, and with given orders A0, . . . , A3 of its corners, up to combinatorial
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equivalence. Here A0, A1 ≥ 0 and A2, A3 > 0 are the orders of non-integer
and integer corners of Q, respectively.

We define the following numbers: δ = 1

2
(A1 +A3 −A0 −A2), σ = 1

2
(A2 +

A3 − A0 − A1), ρ = 1

2
(A2 + A3 − |A1 − A0|). These numbers are integer if

and only if the corners a0 and a1 of Q are mapped to distinct vertices of P .
The relations of these parameters with those in Theorem 5.2 is the fol-

lowing
A0 = [α3], A1 = [α0], A2 = α1, A3 = α2,

In Case a), ρ = κ+ 1, and in Case b) σ = κ+ 3/2.

Lemma 11.2 For given positive integers p, q, r, s satisfying p+ r = q + s,
the system of equations x+y = p+1, y+z = q+1, z+t = r+1, t+x = s+1
has min(p, q, r, s) solutions (x, y, z, t) in positive integers.

The proof is left as an easy exercise for the reader.

Proposition 11.3 A marked quadrilateral Q with non-integer corners a0

and a1 mapped to distinct vertices of P exists if and only if ρ is a posi-
tive integer. In this case, there are min(A2, A3, ρ) combinatorially distinct
quadrilaterals with given orders A0, . . . , A3 of their angles.
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A quadrilateral Q with the corners a0 and a1 mapped to the same vertex
of P exists if and only if σ − 1 is a positive non-integer. In this case, there
are min(A2, A3, [σ]) combinatorially distinct quadrilaterals with given angles.

Proof. For a quadrilateral Q shown in Fig. 11a, its corners a0 and a1 are
mapped to distinct vertices of P if µ is even, and to the same vertex of P if
µ is odd. Orders of the corners of Q are A0 = i + m, A1 = i + j + k + 1,
A2 = k + l + 1, A3 = j + k + l + m + 1. We have δ = j + 1 + µ/2,
σ = l− i+1+µ/2. If A1 > A0, that is, j+ k ≥ m, then ρ = l+m+1+µ/2,
otherwise, ρ = j+k+ l+2+µ/2 > A2. In particular, δ is positive. Similarly,
δ is negative for the quadrilateral Q shown in Fig. 11b.

For the quadrilateral Q in Fig. 11c, its corners A and B are mapped to
distinct vertices of P if µ+ ν is even, and to the same vertex of P if µ+ ν is
odd. Orders of the corners of Q are A0 = i+m, A1 = i+k, A2 = k+ l+1+ν,
A3 = l + m + 1 + µ. We have δ = (µ − ν)/2, σ = l − i + 1 + (µ + ν)/2.
If A1 ≥ A0, that is, k ≥ m, then ρ = l + m + 1 + (µ + ν)/2, otherwise
ρ = k + l + 1 + (µ+ ν)/2.

Note that in all cases δ, σ and ρ are integer if and only if the corners a0

and a1 are mapped to distinct vertices of P . If i > 0 then µ = 0 in Fig. 11ab
and µ = ν = 0 in Fig. 11c, thus the fractional parts of the angles at a0 and
a1 are equal. If i = 0 then σ ≥ 1.

We start with the quadrilaterals with equal fractional parts of the angles
at a0 and a1.

Consider first the case δ = 0, that is, A3 − A0 = A2 − A1. This is only
possible for a quadrilateral Q in Fig. 11c with µ = ν. We may assume
A0−A1 = A3−A2 ≥ 0 (the other case follows by symmetry). Then A3 ≥ A2

and ρ = (A3 + A2 − A0 + A1)/2 = A2, so we have to prove that the number
of combinatorially distinct quadrilaterals is A2.

Lemma 11.2 applied to x = i, y = m+1, z = l+1, t = k+1 implies that
the number of quadrilaterals with i > 0 is min(A0, A1, A2, A3) = min(A1, A2).
If A1 ≥ A2, the number of quadrilaterals is A2. Otherwise, there are A2 −
A1 = A3 − A0 quadrilaterals with i = 0, m = A0, k = A1, 0 ≤ µ = ν <
A2 − A1, l = A2 − A1 − 1 − ν = A3 −A0 − 1 − µ. Thus the total number of
quadrilaterals is again C.

Consider now the case δ > 0 (the case δ < 0 follows by symmetry). Then
A3 > A2 +A0−A1, so A3 > A2 and ρ = (A2 +A3 +A1−A0)/2 = A2 +δ > A2

if A0 ≥ A1. If A0 < A1 then ρ = (A2 + A3 + A0 − A1)/2 = A3 − δ < A3.
Thus we have to prove that the number of quadrilaterals is min(A2, A3 − δ).
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The following three subcases are possible:
(i) a quadrilateral in Fig. 11c with i = 0 and µ > ν,
(ii) a quadrilateral in Fig. 11a with i = 0,
(iii) a quadrilateral in Fig. 11a with i > 0 and ν = 0.

Subcase (i). For a quadrilateral Q in Fig. 11c with i = 0 and µ > ν, we
have m = A0, k = A1, A2 > A1. For each ν such that 0 ≤ ν < A2 − A1,
there is a quadrilateral with l = A2 −A1 − 1− ν and µ = ν + 2δ. Thus there
are A2 − A1 quadrilaterals in this case.

Subcase (ii). For a quadrilateral Q in Fig. 11a with i = 0, we have
m = A0, j+k+1 = A1, k+l+1 = A2, µ+j+l+2 = A3−A0, δ = j+1+µ/2,
σ = l + 1 + µ/2 > 0. For a fixed even µ ≥ 0, we have j = δ − 1 − µ/2,
l = σ − 1 − µ/2, k = A1 − δ + µ/2. Thus δ − A1 ≤ µ/2 ≤ min(δ, σ). Since
µ is even, the number of quadrilaterals in this case is min(A1, A2) if A1 ≤ δ
and min(δ, σ) if A1 > δ. Note that σ − δ = A2 − A1.

Subcase (iii). For a quadrilateral Q in Fig. 11a with i > 0 and µ = 0, we
have δ = j+1, i+m = A0, i+k = A1− δ, k+ l+1 = A2, l+m+1 = A3− δ.
Lemma 11.2 applied to x = i, y = m + 1, z = l + 1, t = k + 1 implies
that the number of quadrilaterals is min(A0, A1 − δ, A2, A3 − δ). If A2 > A1,
that is l > i + j, then A3 − δ > A0 and the number of quadrilaterals is
min(A0, A1 − δ).

Combining subcases (i)-(iii), we see first that, if A2 > A1 and A1 ≤ δ, then
the number of quadrilaterals is A2 (there are no quadrilaterals in the subcase
(iii) in this case). Note that A3−δ = (A3+A2+A0−A1)/2 = A2+δ−A1 ≥ A2

in this case.
Next, if A2 > A1 and A1 > δ, the total number of quadrilaterals is

min(A2 − A1 + δ + A0, A2) = min(A3 − δ, A2).
Finally, if A2 ≤ A1 then there are no quadrilaterals in the subcase (i).

If A1 ≤ δ, there are no quadrilaterals in the subcase (iii), and the number
of quadrilaterals in the subcase (ii) is A2. If A1 > δ and σ > 0 then the
number of quadrilaterals in the subcase (ii) is σ. Since A0 + σ = A3 − δ and
A1−δ+σ = A2 the total number of quadrilaterals is min(A2, A3−δ). If σ ≤ 0,
there are no quadrilaterals in subcases (i) and (ii), A0 ≥ A2 +A3 −A1 ≥ A3

and A1−δ ≥ A2. Thus the number of quadrilaterals in (iii) is min(A2, A3−δ).
If the fractional parts of the angles at a0 and a1 are complementary then

i = 0. Since δ 6= 0 in this case, we may assume δ > 0 (the other case follows
by symmetry). Since i = 0, only subcases (i) and (ii) above are possible.

Repeating the above arguments, we see that A2 > A1 in the subcase
(i), and the number of quadrilaterals is A2 − A1. In the subcase (ii), since

41



µ ≥ 1 is odd, the number of quadrilaterals is min(A1, A2) when A1 < δ and
min([δ], [σ]) when A1 > δ.

Thus the total number of quadrilaterals is A2 if A1 < δ. Since A2 −A1 =
σ − δ, we have σ > A2 in this case.

When A1 > δ, either A2 ≤ A1 and the total number of quadrilaterals is
[σ] (since there are no quadrilaterals in the subcase (i)) or A2 > A1 and the
total number of quadrilaterals is again [σ] = A2 −A1 + δ. Note that σ < A2

when A1 > δ.
This completes the proof.

12 Classification of spherical quadrilaterals

with two opposite non-integer corners

We consider now marked quadrilaterals Q with two opposite non-integer
corners a0 and a2. We assume that the corner a0 is mapped to the vertex
N of P . The corner a2 may be mapped either to the vertex S or to the
vertex N , depending on the net of Q (see Corollary 8.12). For an irreducible
quadrilateralQ, the integer corners a1 and a3 are mapped to the pointsX and
Y on two distinct circles of P as shown on Fig. 7. However, for a reducible
quadrilateral Q one of these corners may be mapped to a vertex of P . Note
that a partition of such a quadrilateral Q into irreducible polygons may be
non-unique.

Example 12.1 Consider the quadrilaterals I, J,K shown in Fig. 13abc. The
quadrilateral I can be represented in two different ways as the union of a
primitive quadrilateral (either X01 or X̄01) and a digon D1 attached to its
side of order 2. The quadrilateral J can be represented in two different ways
as the union of a primitive quadrilateral (either X10 or X̄10) and a digon D1

attached to its side of order 2. The quadrilateral K can be represented in two
different ways as the union of a primitive quadrilateral (eitherX22 or X̄22) and
two digons D1 attached to its adjacent sides of order 2. Alternatively, K can
be represented in two different ways as the union of a primitive quadrilateral
(either U22 or Ū22) and two digons D1 attached to its opposite sides of order
2.
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Proposition 12.2 Every marked spherical quadrilateral Q over partition P
with two opposite non-integer corners is combinatorially equivalent to one of
the following:
Type U . An irreducible quadrilateral Uκ

µν with digons Di, Dk, Dl, Dm at-
tached to its sides L1, L2, L3, L4 (see Fig. 14a). Here i, k, l,m, µ, ν, κ ≥ 0,
with i > 0 only if µ ≤ 1 and l > 0 only if ν ≤ 1.
Type Ū . An irreducible quadrilateral Ūκ

µν with digons Di, Dk, Dl, Dm at-
tached to its sides L1, L2, L3, L4 (see Fig. 14b). Here i, k, l,m, µ, ν, κ ≥ 0,
with k > 0 only if ν ≤ 1 and m > 0 only if µ ≤ 1.
Type X. An irreducible quadrilateral Xκ

µν with digons Di, Dk, Dl, Dm

attached to its sides L1, L2, L3, L4 (see Fig. 15a). Here i, k, l,m, µ, ν, κ ≥ 0,
with i > 0 only if µ ≤ 1 and k > 0 only if ν ≤ 1.
Type X̄. An irreducible quadrilateral X̄κ

µν with digons Di, Dk, Dl, Dm

attached to its sides L1, L2, L3, L4 (see Fig. 15b). Here i, k, l,m, µ, ν, κ ≥ 0,
with l > 0 only if ν ≤ 1 and m > 0 only if µ ≤ 1.
Type T∇. An irreducible triangle T0 with a triangle ∇jik attached to its
base so that digon Dj has a common side with T0, and digons Dl and Dm

attached to the sides T1 (see Fig. 16a). Here i, j, k, l,m ≥ 0.

44



DkDi

DlDm
T0

a)

a0

a1

a2

a3

D

DkDi

DlDm

T0

b)

a0

a1

a2

a3

D

_

Figure 17: Equivalent quadrilaterals T∇ and T̄∇.

Type TT . Irreducible triangles Tµ and Tν, with a common integer corner
at a3, attached to the opposite sides of a digon D2κ with digons Di and Dk

attached to the bases of Tµ and Tν, and digons Dl and Dm attached to the
sides of Tµ and Tν (see Fig. 16b). Here i, j, k, l,m ≥ 0, with i > 0 only if
µ = 0 and k > 0 only if ν = 0.
Type TT . Irreducible triangles T̄µ and T̄ν, with a common integer corner
at a1, attached to the opposite sides of a digon D2κ with digons Dm and Dl

attached to the bases of T̄µ and T̄ν, and digons Di and Dk attached to the
sides of T̄µ and T̄ν (see Fig. 16c). Here i, j, k, l,m ≥ 0, with i > 0 only if
µ = 0 and k > 0 only if ν = 0.

For the type TT (resp., TT ), the integer corner a1 (resp., a3) of Q is
mapped to a vertex S (resp., N) of P if µ is even (resp., odd), while its other
integer corner cannot be mapped to a vertex of P. In all other cases, both
integer corners of Q are mapped to non-vertex points of P.

Remark 12.3 Note that combining ∇ with T̄0 (see Fig. 17b for the j = 0
case) instead of T0 as in type T∇ (see Fig. 17a for the j = 0 case) results in
a quadrilateral combinatorially equivalent to the quadrilateral of type T∇.
The dotted line in Fig. 17 is an interior arc of ∇ which is not shown in
Fig. 16a.
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13 Deformation of spherical polygons

Deformation in a neighborhood of a corner with integer angle. In
accordance with the previous sections, we consider the closed upper half-
plane H = {z : ℑz ≥ 0} ∪ {∞} instead of the unit disk D. Let x ∈ R = ∂H
be a corner with an integer angle (i.e., an angle πα where α is integer). and
X = f(x) its image under the developing map. Then the two sides adjacent
at x are mapped by f into a great circle, and by post-composition with a
rotation of the sphere we may assume that this great circle is the real line.
Then f is real on an interval of the real line containing x.

Suppose that X is not a vertex of P . We will show that one can deform
the polygon Q so that the net does not change, and the point X is shifted
to any position on some interval around X.

To do this, we take a disk V centered at X that contains no vertices of
P . Let U be the component of f−1(V ) that contains x. Let ψt be orientation
preserving diffeomorphisms of S which are equal to identity outside V , map
V ∩ R onto itself, shift X to X + t, where t ∈ R is small, and continuously
depend on t.

Then we define

gt(z) =

{

ψt ◦ f(z), z ∈ U,
f(z), z ∈ H\U.

This is a continuous family of smooth quasiregular maps H → S, and by the
known results on solutions of Beltrami equation [1], one can find a continuous
family of quasiconformal homeomorphisms ψt : H → H such that φt ◦ gt are
analytic. These are the developing maps of a family of polygons which have
the same partition P , and the same net Q as Q, but the image X of the
vertex x of Q is shifted on its own circle.

Notice that this procedure works also when X is a vertex of P , however
the net Q does change under the deformation (in a controllable way, see ...)
in the neighborhood of x.

In the case of a quadrilateral with two integer angles x and y, their images
X and Y may be on the same circle of partition P , as in Fig. 5, when the two
integer corners are adjacent, or on two different circles, as in Fig. 7, when
the two corners are opposite. We may assume that S = 0 and N = ∞.
By a fractional linear transformation, one can fix one of the two points X
or Y , then the second one gives a local parameter on the set of equivalence
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classes of quadrilaterals. This consideration shows that the curve in (4.9) is
non-singular for a 6∈ {0, 1}. Thus it is non-singular at all real points.

Degeneracy of spherical quadrilaterals Let us represent a marked spher-
ical quadrilateral as a rectangle in C with vertices a0, a1, a2, a3, equipped with
conformal Riemannian metric with length element ds = ρ(z)|dz| of curvature
+1. We will call the sides [a0, a1] and [a2, a3] horizontal and the other two
sides vertical. Such a quadrilateral has one conformal invariant for which we
choose the extremal distance L between sides [a1, a2] and [a3, a0]. We recall
the notion of extremal length and extremal distance [2].

Let Γ be a family of curves in some region D ⊂ C. Let λ ≥ 0 be a
measurable function in D. We define the λ-length of a curve γ by

ℓλ(γ) =

∫

γ

λ(z)|dz|,

if the integral exists, and ℓλ(γ) = +∞ otherwise. Then we set

Lλ(Γ) = inf
γ∈Γ

ℓλ(γ),

and

Aλ(D) =

∫

D

λ2(z)dm,

where dm is the Euclidean area element. Then the extremal length of Γ is
defined as

L(Γ) = inf
λ

L2
λ(Γ)

Aλ(D)
.

The extremal length is a conformal invariant. Extremal distance between two
closed sets is defined as the extremal length of the family of all curves in D
that connect these two sets. For a rectangle as before, the extremal distance
between the vertical sides [a1, a2] and [a3, a0] is equal to |[a0, a1]|/|[a1, a2]|,
see [2].

In addition to the extremal distance, we consider the ordinary intrinsic
distances between the pairs of opposite sides. They are defined as the infima
of ρ-lengths of curves contained in our quadrilateral and connecting the two
sides of a pair.

Now we have the following
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Lemma 13.1 Consider a sequence of marked spherical quadrilaterals whose
developing maps f are at most p-valent with a fixed integer p. If the intrinsic
distance between the vertical sides is bounded from below, while the intrinsic
distance between the horizontal sides tends to 0, then the extremal distance
between the vertical sides tends to +∞.

Proof. Let γ1 be a nearly extremal curve for the intrinsic distance between
the vertical sides of Q, that is the intrinsic length of γ1 is at most 2ǫ. Fix a
point P ∈ γ1. Choose an arbitrary (large) number M > 0, and denote the
intrinsic distance by d. Let D be the “annulus” with respect to the intrinsic
metric of radii r1 = 2ǫ and r2 = Mǫ centered at P , that is

D = {z ∈ Q : 2ǫ ≤ d(z, P ) < Mǫ}.

Let ǫ be so small that Mǫ < π/2. and

2(Mǫ+ ǫ) < c, (13.1)

where c is a positive lower bound of the intrinsic distance between the vertical
sides. As f is p-valent, the intrinsic area of all intrinsic disks B(r) satisfies

area B(r) ≤ 2πpr2. (13.2)

Let Γ be the family of curves in Q connecting the horizontal sides. Every
curve γ ∈ Γ must intersect γ1 and both “circles” of the annulus D:

C1 = {z ∈ Q : d(z, P ) = 2ǫ} and C2 = {z ∈ Q : d(z, P ) = Mǫ}.

Thus γ contains a curve of the family Γ′ in D which connect the inner “circle”
C1 to the outer “circle” C2. It follows that L(Γ) ≥ L(Γ′). The extremal
length L(Γ′) for metric annuli with metrics satisfying (13.2) is estimated in
[4, Lemma 6]:

L(Γ′) ≥ log(r2/r1)

32π
.

Substituting our values r1 = 2ǫ and r2 = Mǫ we obtain

1/L(Γ) < 1/L(Γ′) < (32π)/ log(M/2),

which proves the statement as M is arbitrarily large.
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Example 13.2 Let Q be one of the quadrilaterals with two adjacent non-
integer corners a0 and a1 (see Fig. 11).

The images X and Y of the integer corners a2 and a3 of the quadrilateral
Q in Fig. 11c under its developing map cannot be vertices of P . They belong
to the same arc of a circle of P as shown in Fig. 5. The two integer corners
are connected by an arc of order 1 of the net of Q, thus when their images X
and Y converge to a common point, remaining at a finite distance from the
vertices of P , the intrinsic distance between the “vertical” sides L2 and L4

of Q tends to 0, while the distance between its “horizontal” sides L1 and L3

does not tend to 0. Lemma 13.1 implies that the extremal distance between
L2 and L4 tends to 0. The corner a3 of Q is connected by an arc of order 1
to its corner a0 but not to its corner a1. Similarly, a2 is connected to a1 but
not to a0. Lemma 13.1 implies that, when either Y converges to the image
of a0 or X converges to the image of a1, the extremal distance between L2

and L4 tends to ∞.
For a quadrilateralQ in Fig. 11a (resp., Fig. 11b) the image Y of its corner

a3 (resp., the image X of its corner a2) cannot be a vertex of P . When Y
(resp., X) remains at a finite distance from vertices of P , and X converges
to Y (resp., Y converges to X), the same argument as above implies that
the extremal distance between the sides L2 and L4 of Q tends to 0. If Y
(resp., X) tends to the image of a0 (resp., a1) and X (resp., Y ) remains at a
finite distance from the vertices of P , Lemma 13.1 implies that the extremal
distance between the sides L2 and L4 of Q tends to ∞.

Example 13.3 Let Q be a quadrilateral of type U (see Fig. 14a) with µ =
ν = 0, with opposite non-integer corners a0 and a2. The images X and Y of
its integer corners a1 and a3 cannot be vertices of P . The corner a1 (resp.,
a3) of Q is connected by an arc of order 1 of its net to each of its non-integer
corners. When Y (resp., X) remains at a finite distance from the vertices
of P and X (resp., Y ) converges to the image of a0 (resp., a2), the distance
between the sides L2 and L4 of Q tends to 0 while the distance between its
sides L1 and L3 does not tend to 0. Lemma 13.1 implies that the extremal
distance between L2 and L4 tends to 0. When Y (resp., X) remains at a
finite distance from the vertices of P and X (resp., Y ) converges to the image
of a2 (resp., a0), the distance between L1 and L3 of Q tends to 0 while the
distance between L2 and L4 does not tend to 0. Lemma 13.1 implies that
the extremal distance between L2 and L4 tends to ∞.

Note that, for given i, k, l,m and κ, this quadrilateral is combinatorially
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equivalent to a quadrilateral of one of the types Ū , X, X̄ with µ = ν = 0
and the same i, k, l,m and κ.

Similar arguments show that, for a quadrilateral Q of type T∇ (see
Fig. 16a), the extremal distance between L2 and L4 tends to 0 when ei-
ther the image X of a1 tends to the image N of a0 or the image Y of a3 tends
to the image S of a2, and tends to ∞ when either X tends to S or Y tends
to N .

Example 13.4 Let Q be a quadrilateral of type U (see Fig. 14a) with µ > 0,
ν > 0, i = l = 0, with opposite non-integer corners a0 and a2. Then integer
corner a1 (resp., a3) of Q is connected by an arc of order 1 of its net to a2

but not to a0 (resp., to a0 but not to a2). The images X and Y of a1 and
a3 cannot be vertices of P . When Y converges to the image N of a0 and X
remains at a positive distance from the vertices of P , the distance between
sides L1 and L3 of Q tends to 0, while the distance between L2 and L4 does
not tend to 0. Lemma 13.1 implies that the extremal distance between L2

and L4 tends to ∞. When Y converges to the vertex S of P and X remains
at a positive distance from the vertices of P , the distance between sides L1

and L3 of Q tends to 0, while the distance between L2 and L4 does not tend
to 0, because a3 is connected by an arc of order 1 to a vertex q ∈ L1 of the
net of Q that is mapped to S, but is not connected by an arc of order 1 to
any point on L2 mapped to S. Similarly, when X converges to any of the two
vertices of P , the distance between sides L1 and L3 of Q tends to 0, while
the distance between L2 and L4 does not tend to 0. Lemma 13.1 implies
that the extremal distance between L2 and L4 tends to ∞ for each possible
degeneration of Q.

14 Chains of quadrilaterals

Let Q be a marked quadrilateral with non-integer corners a0 and a2, and
with integer corners a1 and a3 mapped to the points X and Y , respectively,
which are not vertices of P . Let Q be the net of Q. When one of those points
(say, X) approaches a vertex of P (say, N), and the combinatorial class of
Q is fixed, the following options are available.

(a) Q degenerates (see section 13) so that the distance between its opposite
sides L1 and L3 tends to zero, while the distance between its sides L2

and L4 does not tend to 0. Lemma 13.1 implies that the extremal
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distance between L2 and L4 tends to ∞. This happens when Q has an
arc of order 1 connecting a1 with a point on L3 mapped to N , but does
not have an arc of order 1 connecting a1 to a point on L4 mapped to
N .

(b) Q degenerates so that the distance between it opposite sides L2 and
L4 tends to zero, while the distance between its sides L1 and L3 does
not tend to 0. Lemma 13.1 implies that the extremal distance between
L2 and L4 tends to 0. This happens when Q has an arc of order 1
connecting a1 with a point on L4 mapped to N , but does not have an
arc of order 1 connecting a1 to a point on L3 mapped to N .

(c) Q does not degenerate, but converges to a quadrilateral Q′ with the
corner a1 mapped to the vertex N of P . This happens when Q does
not have an arc of order 1 connecting a1 with a point on one of the
sides L3 and L4 mapped to N .

(d) Q degenerates so that both distances, between L1 and L3 and between
L2 and L4, tend to zero. This happens when Q has arcs of order 1
connecting a1 with points on L3 and on L4 mapped to N (or an arc of
order 1 connecting a1 with a3, when a3 is mapped to N).

In the case (c), and in the corresponding cases with Y instead ofX and/or
S instead of N , we say that Q and Q′ are adjacent. Note that a quadrilateral
Q′ of type either TT or TT (see Fig. 16bc) has exactly one integer corner
mapped to a vertex of P , and there are two distinct combinatorial classes of
quadrilaterals adjacent to Q′.

Definition 14.1 For k > 0, a sequence Q0, Q
′
1, Q1, . . . , Q

′
k, Qk of quadrilat-

erals with distinct combinatorial types, where any two consecutive quadrilat-
erals are adjacent, and each of the terminal quadrilateralsQ0 and Qk has only
one adjacent quadrilateral, is called a chain of the length k. A quadrilateral
Q0 having no adjacent quadrilaterals is called a chain of length 0.

If both cases (a) and (b) are possible for degeneration of Q0 and Qk then
the chain is called an ab-chain. If only the case (a) is possible, the chain is
an aa-chain. If only the case (b) is possible, the chain is a bb-chain.

Example 14.2 It follows from Example 13.3 that a quadrilateral of type U
with µ = ν = 0 is an ab-chain of length 0. For given i, k, l,m and κ, this
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quadrilateral is combinatorially equivalent to a quadrilateral of one of the
types Ū , X, X̄ with µ = ν = 0 and the same i, k, l,m and κ.

A quadrilateral of type U with µ = ν = 1, i > 0 and l > 0 is an ab-chain
of length 0. A quadrilateral of type Ū with µ = ν = 1, k > 0 and m > 0 is
an ab-chain of length 0.

A quadrilateral of type X with µ = ν = 1, i > 0 and k > 0 is an ab-chain
of length 0. A quadrilateral of type X̄ with µ = ν = 1, l > 0 and m > 0 is
an ab-chain of length 0.

It follows from Example 13.4 that a quadrilateral of type U with µ > 0,
ν > 0, i = l = 0 is an aa-chain of length 0. Similarly, a quadrilateral of type
Ū with µ > 0, ν) > 0, k = m = 0 is a bb-chain of length 0.

It follows from Example 13.3 that a quadrilateral of type T∇ is an ab-
chain of length 0.

Lemma 14.3 Any quadrilateral with opposite integer corners which is a
chain of length 0 is combinatorially equivalent to one of the quadrilaterals
in Example 14.2.

Proof. One can check directly that any quadrilateral with opposite non-
integer corners other than one of the quadrilaterals in Example 14.2 is either
one of the quadrilaterals of types TT and T̄ T̄ or adjacent to a quadrilateral
of type either TT or T̄ T̄ .

Example 14.4 A chain of quadrilaterals of length 2 is shown in Fig. 18. The
quadrilateral Q1 in Fig. 18c is the same as the quadrilateral I in Fig. 13a.
It can be represented either as X01 with a digon D1 attached to its side
L2 or as X̄01 with a digon D1 attached to its side L3. The quadrilateral
Q0 in Fig. 18a is X10 = U10 with a digon D1 attached to its side L2. The
quadrilateral Q2 in Fig. 18e is X̄10 = Ū10 with a digon D1 attached to its
side L3. The quadrilateral Q′

1 in Fig. 18b is a union of two triangles T0 and
a digon D1. The quadrilateral Q′

2 in Fig. 18d is a union of two triangles T̄0

and a digon D1.
If the point X to which the corner a1 of Q0 maps approaches N , the

distance between the sides L1 and L3 (but not of L2 and L4) tends to zero
(case a). The same happens if the point Y to which the corner a3 of Q0 maps
approaches S. If X approaches S, the quadrilateral Q0 converges to Q′

1 (case
c). If Y approaches N , both distances (between L1 and L3, and between L2
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and L4) tend to zero (case d). If the point X to which the corner a1 of Q1

maps approaches N , both distances (between L1 and L3, and between L2

and L4) tend to zero (case d). The same happens if the point Y to which the
corner a3 of Q1 maps approaches N . If X approaches S, the quadrilateral Q1

converges to Q′
1 (case c). If Y approaches S, the quadrilateral Q1 converges

to Q′
2 (case c).

If the point Y to which the corner a3 of Q2 maps approaches N , the
distance between the sides L2 and L4 (but not of L1 and L3) tends to zero
(case b). Thus the chain in Fig. 18 is an ab-chain.

Example 14.5 A chain of quadrilaterals of length 1 is shown in Fig. 19.
The quadrilateral Q′

1 in Fig. 19b has type TT (see Fig. 16b) with µ = 1,
ν = 0, κ = 1, i = l = m = 0 and k = 1.

The quadrilateral Q0 in Fig. 19a has type U (see Fig. 14) with µ = ν = 1,
κ = 1, i = k = m = 0 and l = 1. When the image X of the integer corner a1

of Q0 approaches the image N of its non-integer corner a0, the quadrilateral
Q0 does not degenerate, and converges to the quadrilateral Q′

1. When X
approaches the image S of the non-integer corner a2 of Q0, the quadrilateral
Q0 degenerates so that the distance between its sides L1 and L2 tends to 0,
while the distance between its sides L2 and L4 does not tend to 0. Lemma
13.1 implies that the extremal distance between L2 and L4 tends to ∞.

The quadrilateral Q1 in Fig. 19c has type U wit µ = 2, ν = 0, κ = 1,
i = l = m = 0, and k = 1. It is combinatorially equivalent to a quadrilateral
of type X with the same values of µ, ν, κ, i, l,m, k. The same argument shows
that Q1 either converges to Q′

1 or degenerates so that the extremal distance
between its sides L2 and L4 tends to ∞.

Thus the chain in Fig. 19 is an aa-chain.

15 Alternative proof of Theorem 5.2

The properties of nets described in sections 6 - 14 allow us to give an alterna-
tive proof of Cases (i) and (ii) of Theorem 5.2, computing the lower bound for
the number of marked quadrilaterals with given angles and modulus, when
only two angles are non-integer.

In the case of adjacent non-integer corners (Case (i) of Theorem 5.2),
Example 13.2 implies that, moving the images of integer corners of a quadri-
lateral with fixed angles in a given combinatorial equivalence class, one can
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Figure 18: An ab-chain of quadrilaterals of length 2.
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obtain a quadrilateral with the modulus (extremal distance between two of
its opposite sides) attaining any value between 0 and infinity. Thus the num-
ber of quadrilaterals with the given angles and modulus is bounded from
below by the number of distinct combinatorial classes of the quadrilaterals.
Proposition 11.3 implies that the number of such classes equals the number
of real solutions in Theorem 5.2 (i).

In case of opposite non-integer corners, one has to count ab-chains of
quadrilaterals instead of single combinatorial equivalence classes. It follows
from Definition 14.1 that, for any fixed angles, any admissible ab-chain C,
and any value of the modulus, there exists a quadrilateral combinatorially
equivalent to one of the quadrilaterals in C with the given angles and mod-
ulus.

Instead of counting ab-chains directly, we note that the total number of
chains equals to the number of complex solutions of equation (4.9), which is
also the number of metrics in Theorem 4.1 and the number of real solutions
in Theorem 5.2 (i). Indeed, due to Theorem 5.2 (iii), the number of real
solutions of (4.9) for a small a > 0 equals the number of its complex solutions.
Every ab-chain gives one solution, and every aa-chain gives two solutions (as
it has both ends at a = 0). Since the number of bb-chains equals the number
of aa-chains by reflection symmetry, the total number of solutions equals the
total number of chains.

This implies that the number of ab-chains equals the number of all chains
minus twice the number of aa-chains, and it is enough to count aa-chains (or
bb-chains). We perform that count in this section. Specifically, we count the
aa-chains of marked quadrilaterals having given orders A0, . . . , A3 of their
corners a0, . . . , a3.

Lemma 15.1 A chain of quadrilaterals is an aa-chain (resp., a bb-chain) if
and only if it contains a quadrilateral of type U (resp., Ū) with µ > 0, ν > 0
and min(i, l) = 0. A chain may contain at most one such quadrilateral.

Proof. Let us show first that each chain containing a quadrilateral Q0 of
type U with µ > 0, ν > 0 and min(i, l) = 0 is an aa-chain. Example 13.4
shows that Q0 itself is an aa-chain of length 0 when i = l = 0. If i = 0 and
l > 0 then ν = 1 and Q0 is adjacent to a quadrilateral Q′

1 of type TT with
ν = 0, l decreased by 1, and k increased by 1. The other quadrilateral Q1

adjacent to Q′
1 has type U with ν = 0, µ increased by 1, l decreased by 1, and

k increased by 1. Both Q0 and Q1 can be degenerated so that the extremal
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distance between their sides L2 and L4 tends to ∞, thus Q0, Q
′
1, Q1 is an aa-

chain of length 1. An example of such a chain is considered in Example 14.5
and shown in Fig. 19. The case when i > 0 and l = 0 follows by rotational
symmetry.

This argument implies also that a chain containing a quadrilateral of type
U with µ > 1, ν = 0, and k > 0 (or with µ = 0, ν > 1 and m > 0) is an
aa-chain of length 1 and contains a quadrilateral of type U with µ > 0, ν > 0
and min(i, l) = 0.

The proof that all other chains are not aa-chains can be done case-by-case
and not given here. One of the hardest cases is considered in Example 14.4
and shown in Fig. 18.

Theorem 15.2 The number of aa-chains of quadrilaterals having given or-
ders A0, . . . , A3 of their corners a0, . . . , a3 is

[

1

2
min(A1, A3, δ)

]

(15.1)

where δ = 1

2
max(0, A1 + A3 − A0 − A2).

Proof. According to Lemma 15.1, we have to count quadrilaterals of type U
with min(µ, ν) > 0 and min(i, l) = 0 with the given orders of their corners.
Note that for such a quadrilateral with l > 0 necessarily i = 0 and ν = 1,
thus η = (A3 − A0) − (A1 − A2) = µ − ν + 2l ≥ 2. Similarly, if i > 0 then
l = 0 and µ = 1, thus η = µ − ν − 2i ≤ −2. In particular, it is enough to
count quadrilaterals with η ≥ 0, for which i = 0 and l ≥ 0. The case η < 0
would then follow by rotation symmetry.

We start with the quadrilaterals Uκ
µν with i = l = 0, µ ≥ ν > 0 and

digons Dk and Dm attached. Then,

A0 = m, A1 = k + ν + 2κ+ 1, A2 = k, A3 = m+ µ+ 2κ+ 1.

Thus A0 ≥ 0, A2 ≥ 0, A1 ≥ A2 +2, A3 ≥ A0 +2, A3−A0 ≥ A1−A2 ≥ 2, and
0 ≤ κ ≤ 1

2
(A1−A2−2). This implies that the number of these quadrilaterals

is
[

1

2
(A1 − A2)

]

.
Note that each quadrilateral is uniquely determined by the value of κ, and

the possible values of κ constitute a segment of integers with the lower end 0
and the upper end max(κ) corresponding to a quadrilateral with 1 ≤ ν ≤ µ.
We’ll show next that either this number equals

[

1

2
min(A1, δ)

]

or there exists
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a quadrilateral Q′ with the same angles as Q, l > 0, and the multiplicity of
a pseudo-diagonal max(κ) + 1.

If k = 0 then A2 = 0 thus there are no quadrilaterals with l > 0 and the
number of quadrilaterals is

[

1

2
(A1 − A2)

]

=
[

1

2
A1

]

≤
[

δ
2

]

.
If k = 1 then, since A2 = 1, a quadrilateral Q′ with l > 0 exists only

when ν = 2 and µ ≥ 4, in which case Q′ can be taken as Uκ+1

µ−3,1 with D1

attached to the side L3 and Dm attached to the side L4.
If ν = 1 then a quadrilateral Q′ with l > 1 exists only when k ≥ 2 and

µ ≥ 5, in which case Q′ can be taken as Uκ+1

µ−4,ν with Dk−2 attached to L2,
D2 attached to L3, and Dm attached to L4.

If ν = 1 and µ ≤ 4 then
[

δ
2

]

= κ+ 1 =
[

1

2
(A1 − A2)

]

. If ν = 2 and µ ≤ 3
then

[

δ
2

]

= κ+ 1 =
[

1

2
(A1 − A2)

]

.
Next, we consider the quadrilaterals with i = 0 and l > 0. For such a

quadrilateral Q, necessarily ν = 1. Let κ be the number of pseudo-diagonals
of Q. Then the values m = A0, k = A1−2κ−2, l = A2−k = A2−A1+2κ+2,
and µ = A3 − A0 − l − 2κ − 1 = A3 − A0 + A1 − A2 − 4κ − 3 are uniquely
determined by κ, and the conditions k ≥ 0, l ≥ 1, µ ≥ 1 imply that 2κ ≤
A1 − 2, 2κ ≥ A1 − A2 − 1 and 2κ ≤ δ − 2. Thus, for the given values of
A0, . . . , A3, the available values of κ constitute a segment in the non-negative
integers which, if non-empty, has the upper end

[

1

2
min(A1, δ)

]

− 1. If the
lower end min(κ) of that segment is 0 then 2 ≤ A1 = k + 2 ≤ A2 + 1. Thus
there are no quadrilaterals with the same values of A0, . . . , A3 and i = l = 0.

Otherwise, for any 0 ≤ κ′ < min(κ) there is a unique quadrilateral with
the same values of A0, . . . , A3 and i = l = 0.

In any case, the total number of quadrilaterals with the given values of
A0, . . . , A3 equals (15.1).

16 Examples

In the following examples we choose the upper half-plane conformal model
with corners 0, 1, a,∞, integer angles α1 and α2 at 0 and 1, non-integer angles
α0 and α3 at a and ∞, so the Heun equation has the form

y′′ +

(

1 − α1

z
+

1 − α2

z − 1
+

1 − α0

z − a

)

y′ +
α′α′′z − λ

z(z − 1)(z − a)
y = 0.

We plot the real part of the curve

F (a, λ) = 0 (16.1)
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l

a

Figure 20: α1 = 4, α2 = 6, α0 = α3 = 65/32

a

l

Figure 21: α1 = 4, α2 = 6, α0 = α3 = 255/128
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a

l

Figure 22: α1 = 4, α2 = 6, α0 = α3 = 5/4

l

a

Figure 23: α1 = α2 = 3, α0 = α3 =
√

2
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l

a

Figure 24: α1 = α2 = 3, α0 = α3 = 15/8

a

l

Figure 25: α1 = α2 = 3, α0 = α3 = 63/32
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as in (4.9) which is defined by the condition that the monodromy of Heun’s
equation is unitary. In our examples (16.1) is the condition of absence of
logarithms in the expansion at 0.

The values 0 < a < 1 correspond to quadrilaterals with opposite integer
corners. In section 6 we did show that this curve has no real singularities
when a 6∈ {0, 1}. That it has no singularities over a = 0 and a = 1 follows
from the form of the Jacobi matrix: when a = 0, the matrix becomes tri-
angular, with distinct diagonal entries. In Fig. 20, the equation (4.9) is of
degree 4 in λ, and it has at least 2 real solutions for all a. For a close to
0 or 1 it has 4 distinct real solutions. In Figs. 21 and 22, there are no real
solutions for some values of a. Figs. 23, 24 and 25 show that the number of
real solutions can be larger than the lower estimate given by Theorem 5.2
even when a is not close to either 0 or 1.
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